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False signals of chaos from quantum probes
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We demonstrate that two-time correlation functions, which are generalizations of out-of-time-ordered cor-
relators (OTOCs), can show “false flags” of chaos by exhibiting behavior predicted by random matrix theory
even in a system with classically regular dynamics. In particular, we analyze a system of bosons trapped in a
double-well potential and probed by a quantum dot which is coupled to the bosons dispersively. This system
is integrable. Despite the continuous time evolution generated by the true Hamiltonian, we find that the n-fold
two-time correlation function for the probe describes an effective stroboscopic or Floquet dynamics. From this
perspective, the bosons appear to be alternately driven by two different noncommuting Hamiltonians in a manner
reminiscent of the Trotterized time evolution that occurs in digital quantum simulation. The classical limit of
this effective dynamics can have a nonzero Lyapunov exponent, while the effective level statistics and return
probability show traditional signatures of chaotic behavior. In line with several other recent studies, this work
highlights the fact that the behavior of OTOCs and their generalizations must be interpreted with some care.
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I. INTRODUCTION

Two-time correlation (TTC) functions are indispensable
tools in the investigation of the dynamics of quantum many-
body systems. For example, a TTC of the form 〈[Â(t ), B̂(t ′)]〉
enters Kubo’s formula for the linear response of the observ-
able A at time t due to the time-dependent perturbation at
earlier times t ′ by the drive B [1]. The wide utility of lin-
ear response theory means that TTCs are therefore a vital
ingredient in calculations in quantum many-particle kinetics
ranging from absorption spectra to reaction rates and diffusion
constants. They are also useful in assessing “quantumness”
through their connection to Leggett-Garg inequalities [2,3].

In this paper we consider a general n-fold TTC func-
tion [4–8] which for Hermitian operators we define as

Fn(t ) ≡ 〈[Â(t )B̂(0)]n〉, (1)

where Â(t ) = eiĤt Â(0)e−iĤt , and 〈· · · 〉 is the expectation
value taken with respect to a pure or mixed state. The first-
order TTC function F1 = 〈Â(t )B̂(0)〉 describes a perturbation
by operator B̂ at time t = 0 followed by a “probe” by op-
erator Â at time t like in the Kubo formula. This function
is related to quantities such as the quantum fidelity which
has been successfully employed as a means of detecting
and characterizing quantum phase transitions (QPTs) [9–13].
However, in general, the first-order TTC fails to capture the
spread of information across a system from an initial pertur-
bation. Thus, in recent years the second-order TTC function
F2 = 〈Â(t )B̂(0)Â(t )B̂(0)〉 has gained popularity and is often
referred to as the out-of-time-ordered correlation (OTOC)
function.

In addition to being more sensitive to QPTs than
first-order TTCs [14–16], OTOCs have been used to iden-
tify the “scrambling” of information across a system’s

degrees of freedom [17–19]. For this purpose it is useful
to express the OTOC function as an overlap between two
states, F2(t ) = 〈ψ1(t )|ψ2(t )〉, where |ψ1(t )〉 = B̂(0)Â(t )|ψ〉
and |ψ2(t )〉 = Â(t )B̂(0)|ψ〉 and |ψ〉 is some general state.
When the operators are chosen such that they initially com-
mute, [Â(0), B̂(0)] = 0, then F2 is unity at t = 0, and at
later times it decays as correlations build up and these op-
erators no longer commute. For some systems, for example,
the Sachdev-Ye-Kitaev [20] or Bose-Hubbard [21] models,
there is a quantum analog of the “butterfly effect” whereby
there is an exponential decay F2(t ) ≈ a − ceλt where a and
c are constants and λ is the decay rate. There is, however,
evidence that some nonintegrable short-range models, such as
Ising chains [22] and Luttinger liquids [23], do not display
such exponential dependence.

The exponential sensitivity of OTOCs to information
scrambling has led to the exciting idea that OTOCs might be
capable of quantifying many-body quantum chaos (or stated
more carefully, dynamics which would be chaotic in the
classical limit) [20,24–37]. The defining feature of classical
chaos is an exponential sensitivity to initial conditions, i.e.,
the exponential increase in separation over time of initially
close points in phase space, and is quantified by Lyapunov
exponents. This behavior is considered to be a prerequisite
for ergodicity and thermalization which destroys any mem-
ory of the initial state and it therefore seems natural enough
from an information-theoretic perspective that chaos should
be related to information scrambling. It has been demonstrated
in a number of specific examples that the OTOC decay rate
λ is directly related (but not necessarily equal [28]) to the
Lyapunov exponent λL in the classical limit of a chaotic
quantum system; these cases include the kicked rotor [28,38],
stadium billiard [30], Dicke model [37], and kicked Dicke
model [39].
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However, recently it has been shown that having λ > 0
for an OTOC does not necessarily indicate that the system is
chaotic, but instead can be caused by information scrambling
from dynamics near an unstable fixed point [40,41]. The sim-
plest example of such cases is the exponential separation of
trajectories at short times in the inverted harmonic oscillator,
which in single-particle quantum mechanics gives rise to λ >

0 at finite and infinite temperatures from the OTOC [42]. Fur-
thermore, OTOCs in integrable many-particle systems such as
the Lipkin-Meshkov-Glick model and the Dicke model (in the
latter’s integrable phase) [43,44] also exhibit positive λ near
unstable points resulting from second-order QPTs.

In this paper we provide another example of how TTCs
can exhibit false flags of chaos. In particular, we show that
for a regular (i.e., nonchaotic) system, the dynamics of Eq. (1)
can be governed by a time-evolution operator which displays
Wigner-Dyson-type spectral statistics described by random
matrix theory (RMT). RMT was first used in the 1950s to
understand the statistical properties of the spectra of complex
nuclei [45] and reached maturity in the 1980s with the real-
ization (as encapsulated by conjectures such as that due to
Bohigas, Giannoni, and Schmit [46,47]) that fluctuations in
the distances between energy levels have universal properties
in the semiclassical regime (far above the ground state) that
distinguish chaotic from nonchaotic systems. In fact, it seems
that apart from a few atypical exceptions the spectral statistics
of physical systems fall into one of four classes determined
by ensembles of random Hermitian matrices. For classically
integrable systems the statistics of the corresponding quantum
energy levels are Poissonian, whereas for classically chaotic
systems the corresponding energy level fluctuations follow
those of either the Gaussian orthogonal ensemble (GOE), the
Gaussian unitary ensemble (GUE), or the Gaussian symplec-
tic ensemble (GSE) independent of the details of the system
and depending only on the symmetry properties of the Hamil-
tonian under canonical transformations. For a Floquet-type
unitary operator [such as that effectively given by Eq. (1)],
these ensembles are changed from Gaussian to circular en-
sembles (COE, etc.) because the eigenvalues should have a
magnitude of 1.

The system we use to illustrate these features is a simple
model consisting of N identical bosons occupying two modes
and coupled to a single qubit probe (atomic quantum dot) and
has previously been discussed in a considerable number of
theoretical proposals (e.g., [48–56]). In general this system
is chaotic [52,56], but in this paper we do not allow the
qubit to exchange energy with the bosons (dispersive limit
of the interaction) and since the bosonic part of the Hamil-
tonian is integrable [57,58], this renders the entire model
integrable. Our model is relevant to experiments with bosonic
Josephson junctions, e.g., Bose-Einstein condensates (BECs)
in double-well potentials [59–62], or spinor condensates with
two internal states [63,64], if an additional impurity atom or
ion [65–68] is added. Alternatively, the same Hamiltonian
(Ising model with long-range interactions) can be realized
with trapped ions, again with two internal states [69], and
again a distinguished “impurity” atom or ion should be added
to the system. Solid-state Josephson junctions might offer
another route to realize the type of dynamics we will discuss
here [70–72].

The structure of the rest of this paper is as follows:
Section II presents the details of the model (bosons + probe)
to be used and Sec. III examines how a TTC of operators in the
subspace belonging to the probe can be written as a periodic
Floquet operator acting purely on the bosons. In Sec. IV
the classical dynamics generated by this Floquet operator is
examined, including the classical Lyapunov exponent which
is a signature of chaos. Section V turns to quantum proper-
ties: Sec. V A examines the quasienergy level spacings of the
Floquet operator and compares against the results of RMT,
while Sec. V B treats the quantum TTC as a survival amplitude
which leads naturally to computations of the inverse participa-
tion ratio and further comparisons against RMT. Conclusions
are presented in Sec. VI. This paper also has three Appendixes
where details of the calculations and some extra supporting
results are given.

II. MODEL

Our model couples the two-mode Bose-Hubbard model,
which describes N interacting bosons hopping between two
sites, to a single two-state atomic quantum dot (AQD), i.e.,
a qubit. In order to put the qubit and the bosons on a similar
footing it is convenient to express the boson operators in terms
of collective spin operators:

Ŝα ≡ 1/2
N∑
i

σ̂ i
α, (2)

where α ∈ {x, y, z}. Using the Schwinger representation the
same collective spin operators can alternatively be defined
via annihilation and creation operators acting on the sites:
If we label the two sites of the Bose-Hubbard model as L
(left) and R (right) then the number difference between the
left and right sites can be written (b̂†

Lb̂L − b̂†
Rb̂R) ≡ 2Ŝz, where

b̂†
L/R (b̂L/R) is the creation (annihilation) operator for a boson

on the left or right site obeying the usual commutation re-
lations [b̂i, b̂†

j] = δi, j where i, j ∈ [L, R]. Similarly, we have

(b̂†
Rb̂L + b̂†

Lb̂R) ≡ 2Ŝx which takes a boson from one site and
puts it onto the other (plus the reverse process to make the op-
erator hermitian), thus producing mode coupling (tunneling).

In this way one finds that, up to constant terms, the total
Hamiltonian can be written (for full details see [50]) as

Ĥ = ĤB + Ĥd + ĤBd , (3)

where HB, Hd , and HBd are the N boson, dot, and boson-dot
interaction Hamiltonians, respectively, and are given by

ĤB = kzŜ
2
z /(N + 1) − αxŜx + αzŜz, (4)

Ĥd = −�(1 + σ̂z )/2, (5)

ĤBd = βŜx(1 + σ̂z ). (6)

Here, the AQD operators are single Pauli matrices and are
distinguished from the boson Pauli matrices by the absence
of a superscript. The parameters in this Hamiltonian have
the following definitions: kz is the boson-boson interaction
energy, αx is the boson hopping and/or tunneling energy, αz is
the energy imbalance between the two boson modes, � is the
energy imbalance between the two AQD modes, and β is the
coupling energy between the AQD and the N boson hopping
or tunneling energy.
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FIG. 1. Schematic of system being considered: a BEC trapped
in a double-well potential with interwell hopping moderated by a
trapped AQD. Tuning the parameter β in ĤBd will effectively modify
the hopping strength αx . The BEC has a self-interaction strength kz,
and a bias or tilt in the double well can be controlled by αz.

It is important to note that there is no hopping term (σ̂x

operator) in the dot’s Hamiltonian and so it cannot make
transitions between its two states, i.e., [σ̂z, Ĥ ] = 0, and this
gives a dispersive interaction between the bosons and the
AQD. The AQD therefore plays a somewhat passive role in
the dynamics of the bosons: from ĤBd we see that the effect of
the AQD is to modify the tunneling energy of the bosons,
either having no effect or suppressing it depending on whether
the AQD is initialized in its excited or ground state, respec-
tively. It has previously been shown that when the AQD is
allowed to make transitions the classical dynamics displays
chaos above a certain critical value of β [52], and without
these transitions the dynamics is regular. Nevertheless, we
will show in this paper that when AQD operators are used in
Eq. (1), apparently chaotic dynamics emerge in the TTC due
to the presence of the AQD.

One way to realize the Hamiltonian in Eq. (3) is with
a BEC trapped in a double-well potential in the two-mode
regime and coupled to a distinguishable atom trapped be-
tween the two wells (see Fig. 1). This dot atom could be a
different species to the rest of the atoms or simply be in a
different hyperfine state. In fact the dot atom need not even
be trapped between the two wells, and could instead be al-
lowed to tunnel back and forth between the two wells like the
bosons [49,50,56]. Recent experimental realizations [73–75]
of 133Cs atoms immersed in an ultracold 87Rb gas allow for in-
dividual impurities to be controlled and used as nondestructive
quantum probes. In order for the interaction to be dispersive,
however, in this case the energy difference between the sym-
metric and antisymmetric states of the dot atom should be
much greater than all the other energies so that it remains in
just one state during the dynamics.

For such an ultracold atom realization the parameters in
Eqs. (4)–(6) can all be controlled using external fields: kz and
β contain the boson-boson and boson-dot s-wave scattering
lengths, respectively, and can be controlled via the Feshbach
resonance technique [76,77]; αx is the tunneling energy be-
tween the two BEC wells and can be controlled by raising
or lowering the height of the barrier, e.g., by laser intensity;
αz is the energy imbalance between the two wells and can be
controlled by providing a tilt between them via external fields

with spatial gradients; � is the energy difference between the
first two states of the AQD. An alternative realization, with
slightly modified parameter definitions, makes use of internal
states (for both the bosons and the AQD) rather than spatial
states, although all the atoms should then be tightly trapped so
that they occupy a single spatial mode. The tunneling between
states in this case must be driven by laser or radio frequency
radiation depending on whether the different internal states
are different electronic orbitals or hyperfine states.

Yet another way to realize the boson-impurity model is
via ions immersed in a BEC. In the experiment discussed in
Ref. [65] a single 171Yb+ ion was trapped inside a 87Rb BEC
and the experiment demonstrated independent control of the
ion and the BEC. More recent experiments have demonstrated
control and transport of a single 87Rb+ [66,67] ion impurity
immersed in a BEC. In these experiments, the ion is created by
ionizing a Rydberg atom, and Rydberg blockade ensures the
creation of only a single impurity in the BEC. Furthermore,
temperatures where ion-atom collisions are dominated by the
s-wave channel are being approached [78]. The Hamiltonian
ĤB can also be realized using a linear ion trap system using
171Yb+ with effective magnetic fields generated by stimulated
Raman transitions [79].

III. CORRELATION FUNCTION DYNAMICS:
FLOQUET OPERATOR

Our philosophy in this paper is to treat the AQD as a probe
of the boson dynamics and hence the operators we use in
Eq. (1) are all AQD operators. In fact, for simplicity we use
σ̂x for both operators Â and B̂ where, of course, we evolve
Â(t ) = σ̂x(t ) as a function of time but keep B̂(0) = σ̂x(0) at
t = 0. Furthermore, we assume that at t = 0 the probe and
bosons are uncorrelated so that the initial state of the system
is a product state of the form |	〉 = |ψ〉B ⊗ |+〉d where |ψ〉B

is the state of the BEC and |+〉d is the excited state of the
quantum dot (starting the dot in the ground state works as
well). This is, therefore, the state we use for evaluating the
correlator 〈· · · 〉. In addition, we make two simplifications to
Eqs. (4)–(6): first, since [Ĥd , Ĥ ] = 0 the AQD Hamiltonian
will only produce an overall dynamical phase in our calcu-
lations which will not affect the results, so we set � = 0,
and second, without loss of generality we set β = αx/2 (we
explain this last condition below).

Under these conditions we find that the n-fold TTC reduces
to a correlation function evaluated purely within the bosonic
state,

Fn(t ) = B〈ψ |F̂n|ψ〉B, (7)

where F̂n is a Floquet operator that repeatedly applies (n
times) the unitary operator

F̂ = e−iĤ1t e−iĤ2t . (8)

The derivation of this result is given in Appendix A where
it is shown that the two Hamiltonians appearing in F̂ are
given by

Ĥ1 = − ĤB = −kzŜ
2
z /(N + 1) + αxŜx − αzŜz, (9)

Ĥ2 = ĤB

∣∣
αx=0 = kzŜ

2
z /(N + 1) + αzŜz. (10)
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In line with the reduction of the full state to only the bosonic
state in Eq. (7), it is notable that these effective Hamiltonians
depend only on the boson operators and are different versions
of ĤB given in Eq. (4). Hence, the general TTC has turned into
a survival amplitude for the BEC part |ψ〉B of the total state
after n applications of the operator F̂ . The different signs in
front of the two Hamiltonians mean that the Floquet operator
describes a system being shaken forwards and backwards
(with slightly different forwards and backwards evolution) in
time where the elapsed time t = T is the length of each part of
the shake and the order n of the TTC is the number of cycles.

Our choice of β = αx/2 simplifies the Hamiltonian Ĥ2 so
that Ŝx does not appear, as explained in Appendix A. This
tuning is not central to the validity of our results: other choices
will simply add a finite hopping term to Ĥ2. However, the
vanishing of the β term in the other Hamiltonian is a robust
feature of having an uncorrelated initial state. This is a special
choice, but also a very reasonable one. As long as the initial
state is separable, one will always get forward and backward
pieces like in Eqs. (9) and (10).

We note in passing that a related issue to the one discussed
in this paper is also an important consideration in digital
quantum simulation, i.e., the breakup of continuous time evo-
lution into separate steps. This sometimes goes under the
name of Trotterization (after Trotter-Suzuki decompositions)
and careful control of the errors induced by this process is
critical to the accuracy of such simulations. In fact, it has been
shown that there is a deep connection to chaos because chaotic
systems are intrinsically less stable against such errors than
nonchaotic ones [80].

IV. CLASSICAL CORRELATION FUNCTION DYNAMICS

We begin our analysis of the correlation function dynamics
by checking for classical chaos. The classical theory is given
by the mean-field approximation and it is known that in this
limit the two-mode Bose-Hubbard model, which describes
the bosonic part of the system, is equivalent to a nonrigid
pendulum which is an integrable system [81]. When coupled
to an impurity spin the total system can be mapped in certain
regimes onto a double pendulum [50] which is in general
chaotic, although in the present dispersive case the second
pendulum has a constant angular momentum which keeps the
model integrable.

The mean-field versions of our various Hamiltonians are
derived in Appendix B. It is shown that the mean-field version
H of the total Hamiltonian Ĥ is given by

H = kz

4
z2 − αx

2

√
1 − z2 cos φ + 1

2
αzz − �

2N

(
1 + y

2

)

+ β

2

√
1 − z2 cos φ

(
1 + y

2

)
, (11)

which is obtained by replacing the mode operators with
complex numbers and taking the thermodynamic limit H =
limN→∞ Ĥ/N . From there, Hamilton’s equations of motion
can be used to generate the dynamics. The mean-field limits
of Ĥ1 and Ĥ2 are

H1 = − kz

4
z2 + αx

2

√
1 − z2 cos φ − αz

2
z, (12)

H2 = kz

4
z2 + αz

2
z. (13)

FIG. 2. Classical phase-space portraits of the n-fold TTC ob-
tained using the mean-field Hamiltonians H1 and H2 given in
Eqs. (B12) and (B13), respectively. As explained in the text, the
choices we make for the operators and states in the correlation func-
tion mean that the probe drops out of the problem and the correlation
dynamics is purely for the bosons: z is the number difference and
φ the phase difference between the two bosonic modes. The star in
each panel indicates the starting point. Time evolution proceeds with
repetitive application of each Hamiltonian and since Ĥ2 is diagonal
in the Ŝz basis, then in z coordinates H2 will evolve the classical
trajectory in a straight horizontal line to another constant energy
contour of H1. The left column shows classical trajectories with
αxT = 1 (weakly chaotic) while the right column shows αxT = 5
(strongly chaotic). (a, b) Initial state has all spins pointing along Sz

axis. (c, d) Initial state has all spins pointing along the Sx axis. Panel
(c) has such little variation from the initial state that it must be shown
in an inset. (e, f) Randomly selected initial classical vector with no
special symmetry. For all panels, kz = 3αx , αz = 0.01αx , and n = 50.

The dynamics are produced by using Hamilton’s equations
of motion for H2 for a period of time T ; then we switch to
Hamilton’s equations for H1 for the same period of time and
repeat this intertwining process for n cycles.

In Fig. 2 we plot the phase-space dynamics of the BEC
mean-field variables

z = (nL − nR)/N, φ = φL − φR, (14)

which are the scaled number difference and phase difference
between the left and right wells, respectively. Each row has
a different initial condition represented by a black star. At
short times (left column) the dynamics only accesses limited
regions of phase space, especially if the system is initial-
ized near the stable fixed point at φ = z = 0. However, at
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FIG. 3. The Lyapunov exponent, λL , as a function of the classical
kick period αxT for dynamics produced by the repeated application
of the mean-field Hamiltonians in Eqs. (9) and (10). At short times,
λL ≈ 0, suggesting the system is regular while for longer times a
clear nonzero Lyapunov exponent develops, suggesting chaotic dy-
namics. Each data point is the maximum λL which is then averaged
over 1500 random initial states in phase space. Here, αz = 0.01αx

and kz = 3αx while the Hamiltonians H1 and H2 are cycled n = 20
times. These results can be contrasted with those shown in Fig. 6 in
Appendix B where it is shown that the true (continuous) dynamics of
the full Hamiltonian has λL = 0.

longer times (right column) the dynamics becomes ergodic
and independent of the initial conditions which is a hallmark
of classical chaos. In fact, Fig. 2 shows how ergodicity is
established despite the two parts of the time evolution being
separately integrable: the H2 trajectories conserve z, so they
travel only along the φ direction, essentially providing a path-
way to different energy contours of H1, along which the orbit
proceeds.

To quantify the chaotic dynamics we numerically compute
the Lyapunov exponent λL and the results are plotted in Fig. 3
as a function of αxT . Each data point is obtained from a
phase-space average taken with respect to many random initial
states. When λL > 0 the trajectories are exponentially separat-
ing in time and hence we have chaos. As expected from Fig. 2,
for relatively short periods (αxT � 1) the trajectories tend to
stay in a small subregion of phase space leading to λL ≈ 0. As
the shake period is increased (αxT � 1) the Lyapunov expo-
nent becomes nonzero and the correlator dynamics becomes
chaotic. For a comparison with the actual model see Fig. 6 in
Appendix B, where a plot of λL versus kz shows that λL = 0,
demonstrating that H is regular. These results give us the first
hint that the dynamics of the general TTC function can be
chaotic even for a nonchaotic system.

V. QUANTUM CORRELATION FUNCTION DYNAMICS

We now turn to the fully quantum problem to look for
evidence of so-called quantum chaos in the correlator dy-
namics. To this end we first examine the spectral statistics of
the Floquet operator and compare to RMT and, second, we
calculate the survival probability.

A. Eigenphases and spacings of the Floquet operator

We first consider the Floquet operator F̂ in Eq. (8).
Recently it was shown that in a quantum stadium billiard
model (which has a classical limit which is chaotic) the spec-
tral statistics of the operator �̂(t ) = ln(−[x̂(t ), p̂x (0)]2)/(2t ),
which contains an out-of-time-ordered commutator, aligns
well with the predictions from RMT [30]. Similar results
were found when analyzing the spectral statistics of a Floquet
operator for a shaken system when its corresponding classical
system is chaotic [80]. We will follow this route here and
analyze the spectrum of F̂ . This is a unitary operator, but
rather than work with its complex eigenvalues eiθ j , we instead
examine the statistical properties of its eigenphases θ j .

First, we note that the eigenphases are time dependent in
a nontrivial way which can be seen by writing F̂ in terms
of a single effective Hamiltonian F̂ = e−iĤeff t = e−iĤ1t e−iĤ2t .
Using the Baker-Campbell-Hausdorff formula,

eX̂ eŶ = exp
(
X̂ + Ŷ + 1

2 [X̂ , Ŷ ] + · · · ), (15)

we find that Ĥeff for our system can be written at short
times as

Ĥeff (t ) = Ĥ1 + Ĥ2 − it

2
[Ĥ1, Ĥ2] + O(t2). (16)

At each moment in time the effective Hamiltonian yields a set
of instantaneous eigenstates {|vi(t )〉} such that Ĥeff (t )|vi(t )〉 =
εi(t )|vi(t )〉 where {εi(t )} is the set of instantaneous eigenener-
gies. From Eq. (16), we can see at early times the dynamics
is simply due to exp[−i(Ĥ1 + Ĥ2)t]; however, as t increases,
more terms contribute to Ĥeff and the dynamics of the eigenen-
ergies becomes complicated. Since εit = θi (mod 2π ), we
expect the eigenphases to inherit this complicated behavior
and this can indeed be seen in Fig. 4(a) where they are plotted
as a function of time. At early times the magnitude of the
eigenphases increases linearly until at around αxt ≈ 0.4 they
begin to wind around the interval [−π, π ) at which point tiny
avoided crossings form (they are at first too small to see at the
scale of the figure; however, when zoomed in incredibly nar-
row avoided crossings become visible). At around αxt ≈ 1.3
the avoided crossings begin to widen and at late times the
eigenphases are well separated and display the equivalent of
level repulsion found in time-independent chaotic systems.

Rather than examine the full statistical distribution of
the eigenphases, we instead calculate the average spacing
ratio [82],

rn = min(δn, δn+1)

max(δn, δn+1)
, r = 1

D

D∑
n=1

rn, (17)

where δn = θn+1 − θn is the difference between adjacent
eigenphases and D = N + 1 is the size of the BEC Hilbert
space. The spacing ratio takes on distinct values depending on
which RMT ensemble the eigenphases follow, if they follow
any at all. For our case, having αz �= 0 destroys the parity sym-
metry of the system, leaving only time-reversal symmetry. We
therefore expect that r should obey the circular orthogonal ex-
ample (COE) result of rCOE = 4 − 2

√
3 ≈ 0.536. Figure 4(b)

shows clearly that r does indeed oscillate around the COE
result provided we consider longer times αxt > 2.0. In fact,
comparing Figs. 4(a) and 4(b), we see that the dip in r in the
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FIG. 4. (a) Eigenphases θi of the Floquet operator F̂ as a function
of time for N = 16. At early times the eigenphases evolve regularly,
but as time goes on they begin to wind around the interval [−π, π )
and avoided crossings form. These are initially tiny but gradually
widen and result in the familiar level repulsion seen in chaotic sys-
tems. (b) Average eigenphase spacing ratio r as a function of time
for N = 100. At later times r oscillates around the RMT prediction of
rCOE, shown as a horizontal cyan line, coinciding with the occurrence
of level repulsion in (a). The other parameters for both images are
kz = 3αx and αz = 0.01αx .

range 0.4 � αxt � 1.3 corresponds to the range of times when
the eigenphases first begin to wind around the full interval
[−π, π ) and form small avoided crossings. The time at which
the dip occurs and how low it is are nonuniversal features
that depend on the parameters of the system. For αxt > 1.3
the avoided crossings of the eigenphases begin to widen and
eventually show the chaotic result of level repulsion quantified
by r ≈ rCOE.

B. Survival probability

Returning to Eq. (7), we focus our attention back on Fn(t ).
More precisely, we study its squared absolute value which
corresponds to the return probability Pn(t ) = |Fn(t )|2. Fur-
thermore, based on the results of the last section we expect
the clearest evidence of chaos to come from the long-time
average of Pn(t ). We start by inserting the resolution of iden-
tity, 1 = ∑

i |vi〉〈vi| (expressed in terms of the eigenvectors of

Ĥeff ), into Pn(t ). This gives

Pn(t ) =
∣∣∣∣∣

D∑
i=1

〈
ψ |F̂n|vi〉〈vi|ψ〉

∣∣∣∣∣
2

=
D∑
i, j

ein(εi−ε j )t |〈vi|ψ〉|2|〈v j |ψ〉|2. (18)

Here, and from now on, we suppress the subscript “B” on
|ψ〉B. Since the eigenstates and eigenenergies of Heff are com-
plicated functions of time, even the qualitative behavior of
the long-time average of Eq. (18) is not immediately clear.
For large enough TTC order n, the phase factor will oscillate
rapidly, making all terms where εi �= ε j approximately equal
to zero (the “diagonal approximation”). This condition is sat-
isfied naturally in the chaotic regime due to level repulsion of
the eigenenergies. The level repulsion of the corresponding
eigenphases is shown in Fig. 4, so we should expect the
same for the eigenenergies resulting in no degeneracies in the
spectrum. Thus, when n is large enough, the long-time average
of Pn(t ), P = limT →∞ 1

T

∫ T
0 Pn(t )dt , can be written as

P ≈
D∑
i, j

δi, j |〈vi|ψ〉|2|〈ψ |v j〉|2 = I{|ψ〉}. (19)

Thus, the survival probability becomes equal to the inverse
participation ratio (I) of the state |ψ〉 over the basis states of
Ĥeff (or F̂) where the participation ratio (R) is defined as

R{|ψ〉} ≡ 1∑D
a |〈va|ψ〉|4 , (20)

and is used to quantify how spread a state of interest |ψ〉 is
over a reference basis {|va〉}. What remains to be done is to
explore the effect of different BEC states |ψ〉 in which the
correlation function is evaluated, and we will see that this
choice can affect the outcome of P.

A generic state |ψ〉 (e.g., one taken at random, absent any
special symmetry) has complex coefficients in the basis of Ŝz

(i.e., the set of Fock states {|m〉} where the eigenvalues {m} are
half the boson number difference between the two sites) and
is best modeled by a circular unitary ensemble (CUE), whose
states are uniformly distributed on the unit sphere in CD. If,
however, we select a single eigenstate |m〉 of the Ŝz operator
for our TTC, there is a shift instead to COE statistics due to
the fact that these are eigenstates of Ĥ2, ultimately changing
the symmetry of F̂ . This can be seen explicitly from the TTC,
using Eq. (7):

Fn(t ) = 〈m| (e−iĤ1t e−iĤ2t )n |m〉
= e−iφ(m)t 〈m| (e−iĤ1t e−iĤ2t )n−1e−iĤ1t︸ ︷︷ ︸

Ût

|m〉 , (21)

where the phase φ(m) = kzm2/(N + 1) + αzm can be ne-
glected because we are interested in the survival probability
Pn(t ) = |Fn(t )|2. The evolution operator Ût in Eq. (21) is re-
lated to the Floquet operator by

Ût = F̂neiĤ2t (22)
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and has the additional symmetry Ût = Û T
t , meaning its eigen-

states have real components. Therefore, when considering the
Ŝz eigenstates as our basis, the time-dependent eigenstates of
Ût are not taken from matrices in the CUE (since those states
have complex components) and instead are best modeled by
random matrices in the COE, for which the states are dis-
tributed uniformly on the unit sphere in RD.

There exist signatures of chaos in both the survival prob-
ability of a single state, Pn, and for ensembles of states. For
the purposes of this article, we will focus on general features
of the survival probability and so we will average over an
entire basis; however, a more in-depth discussion of individual
survival probabilities can be found in Appendix C. Performing
the average over a basis {|ψi〉}, we can write the sum over
individual I{|ψi〉} as

I =
∑

i

I{|ψi〉} =
∑
i, j

|〈v j |ψi〉|4 = P, (23)

where the bar over P signals the average over the entire
basis. If we use a random basis or the basis states of the Ŝx

operator [80], we expect the average I to take on the CUE
prediction,

ICUE = 2D
D + 1

, (24)

where in the thermodynamic limit, N → ∞, and hence
ICUE → 2. Meanwhile, if we use the basis of Ŝz eigenstates,
we expect the average I to take on the COE prediction,

ICOE = 3D
D + 2

, (25)

for which ICOE → 3 as N → ∞.
Following Schiulaz et al. [83], we can also calculate the

Thouless time tTh for a fully connected model like ours
in the COE and CUE ensembles. tTh describes the time at
which the wave function first extends over the entire many-
body Hilbert space, and is thus the time at which universal
RMT predictions begin to govern the dynamics. For spa-
tially extended systems, tTh generally depends on the system
size [83,84]; however, for a fully connected model and N  1,

tCUE
Th =

(
3

2π

) 1
4

, (26)

tCOE
Th =

(
3

π

) 1
4

, (27)

where these times are expressed in units of α−1
x .

In Fig. 5(a) we plot numerical evaluations of Pn(t ) averaged
over the Ŝx basis. Since at short times Heff ≈ Ŝx, the survival
probability is briefly constant and subsequently drops off to
fluctuate near its relaxation value. The red dashed line is the
long-time average and takes the value Px ≈ 2.105, an ap-
proximately 7% error from its expected value of ICUE|N=60 ≈
1.968, shown as a solid cyan line. Although the survival
probability has large-amplitude oscillations, the long-time av-
erage agrees well with the RMT prediction in Eq. (24). It
is not required that we average over any particular basis in
order to agree with the prediction in Eq. (24), only that the
basis does not introduce any special symmetries to Fn(t ).

FIG. 5. The survival probability averaged over bases as a func-
tion of time. (a) Averaged over the Ŝx basis. The long-time average
Px ≈ 2.106 is shown as a red dashed line, while the predicted
ICUE ≈ 1.968 is shown as a solid cyan line. (b) Averaged over a
randomly selected basis. Here, the long-time average is PR ≈ 1.971.
(c) Averaged over the Ŝz basis. Here, Pz ≈ 3.242 and ICOE ≈ 2.905
are shown as red dashed lines and cyan solid lines, respectively.
Insets are identical, but plotted on a log-log scale, highlighting the
transition from regular to chaotic dynamics. The Thouless time tTh is
shown in every panel as a vertical dotted line. The parameter values
in all images are kz = 3αx , αz = 0.01αx , N = 60, and n = 50.

As a demonstration, Fig. 5(b) shows the survival probability
averaged over a randomly generated complex orthonormal
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basis (via a QR decomposition of a randomly populated com-
plex matrix), which we denote PR(t ). The long-time average
in the random basis is PR ≈ 1.969, and agrees extremely
well (within <0.1%) with ICUE|N=60. Finally, Fig. 5(c) shows
Pn(t ) averaged over the Ŝz basis. The long-time average is
Pz ≈ 3.229, again shown as a red dashed line, and has an
approximately 11% deviation from ICOE|N=60 ≈ 2.905. In
each image, the TTC order is n = 40 and the system size is
N = 60.

Taken together, the plots shown in Fig. 5 (see especially the
log-log plots in the insets) indicate that the effective dynamics
of the n-fold TTC are regular at short times, then undergo a
transition period until approximately tTh, shown in all panels
as a vertical dashed line according to Eqs. (26) and (27), after
which the survival probability settles down, or at least oscil-
lates about a universal value given by its RMT prediction in
the respective ensemble. In general, we expect the agreement
between the numerical result and the theoretical predictions
given in Eqs. (24) and (25) to improve for higher TTC order n
and correspondingly longer time averages.

VI. SUMMARY AND CONCLUSION

In this paper, we have given a proof of concept that conven-
tional signals of chaotic behavior, including level statistics,
classical Lyapunov exponents, and RMT predictions, can arise
from generalized n-fold TTCs even when starting from a
nonchaotic Hamiltonian. This is significant because TTCs,
and more specifically OTOCs (the n = 2 case), are commonly
used as diagnostic tools for what is often called quantum
chaos. Higher-order TTCs have been the focus of some previ-
ous studies [4–8], including as an improvement of the standard
four-point OTOC as a diagnostic of chaos, and so the emer-
gence of signatures of chaos as a result of the form of the
TTC is therefore of interest.

In our case we chose a rather simple system consisting of
a bosonic Josephson junction coupled dispersively to an AQD
or impurity spin. This has the benefit of being integrable and
thus all the signals of chaos we find are genuinely in the TTC,
not the original dynamics. Importantly, both the parameters
αx and αz must be nonzero in the system we are considering
so that there are noncommuting pieces in the Hamiltonian. In
particular, αx = 0 would allow the vanishing of the commu-
tator [Ĥ1, Ĥ2] = 0, resulting in trivial dynamics, while αz is

necessary to destroy the parity symmetry and thereby allow
the eigenstates of F̂ and Ût to be modeled by the appropriate
ensembles in RMT. However, the simplicity of our system
also means that even the effectively shaken n-fold TTC is
only weakly chaotic and thus our survival probabilities do
not rapidly converge to the RMT values (for our parameters
the deviation can be as large as 11%). However, we also
saw evidence that the bases of Ŝx and Ŝz remain in some
sense special (being the eigenstates of the two pieces of the
Hamiltonian), whereas when a truly random basis was chosen
we obtained excellent agreement with deviation of less than
0.1%.

There remain signatures of chaos which we have not ad-
dressed here. For example, we have not attempted to identify
a quantum Lyapunov exponent [one typically uses F2(t ) and
finds that F2(t ) ≈ a − ceλt , where c is some constant]. Rather,
in Sec. IV we have merely looked directly at the classical
Lyapunov exponent obtained from the mean-field equations
of motion for the n-fold TTC. Furthermore, for a chaotic
system obeying the RMT predictions outlined in this paper, it
is expected that there exists a “correlation hole” (a signature of
correlations in level statistics) in the survival probability with
a minimum at tTh [83,85–88], which proceeds to ramp towards
the saturation value. We have not identified a correlation hole
in the TTCs studied here, likely because the transition from
a regular to chaotic system occurs explicitly in time, so level
correlations will not be detectable prior to tTh.
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APPENDIX A: TTC CALCULATION

We consider the two-time correlator,

Fn(t ) = 〈[Â(t )B̂(0)]n〉, (A1)

where Â(t ) = eiĤt Âe−iĤt and assume that Â and B̂ initially
commute. Selecting Â = B̂ = σ̂x, that is, the hopping operator
on the Hilbert space of the quantum dot,

Fn(t ) =
〈{

exp

[
i

(
kz

N + 1
Ŝ2

z − αxŜx + αzŜz − �

2
(1 + σ̂z ) + βŜx(1 + σ̂z )

)
t

]

× σ̂x exp

[
−i

(
kz

N + 1
Ŝ2

z − αxŜx + αzŜz − �

2
(1 + σ̂z ) + βŜx (1 + σ̂z )

)
t

]
σ̂x

}n〉
(A2)

=
〈{

exp

[
i

(
kz

N + 1
Ŝ2

z − αxŜx + αzŜz − �

2
(1 + σ̂z ) + βŜx (1 + σ̂z )

)
t

]

× exp

[
−i

(
kz

N + 1
Ŝ2

z − αxŜx + αzŜz − �

2
(1 − σ̂z ) + βŜx(1 − σ̂z )

)
t

]}n〉
, (A3)

where we have made use of the fact that for some function of the Pauli spin matrices f (σ̂x, σ̂y, σ̂z ), σ̂x f (σ̂x, σ̂y, σ̂z )σ̂x =
f (σ̂x,−σ̂y,−σ̂z ).
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For the expectation value we assume a product state
|ψ〉B ⊗ |+〉d , where |ψ〉B is a general state of the BEC and
|+〉d is the excited state of the AQD. The (1 − σ̂z ) and (1 +
σ̂z ) factors in Eq. (A3) act as projectors onto the excited and
ground AQD states, respectively. In particular, the operator
(1 − σ̂z ) appearing in the right-hand exponential acts as twice
the identity operator on the ket |+〉d and thus |+〉d passes
through this exponential replacing all the (1 − σ̂z ) factors
by the number 2. Meanwhile, the other exponential contains
(1 + σ̂z ) which annihilates |+〉d and so expanding out the
exponential in a Taylor series we find all the AQD operators
vanish and we can resum the exponential with only the boson
operators. As a result we find the surprising result that the
correlation function becomes completely independent of the
AQD and we are left with

Fn(t ) = 〈{
ei( kz

N+1 Ŝ2
z −αx Ŝx+αz Ŝz )t e−i( kz

N+1 Ŝ2
z −αx Ŝx+αz Ŝz−�+2βŜx )t

}n〉
B.

(A4)

The � term results in a global phase which we can choose to
set to zero, and we are free to select β as we wish; we choose
β = αx/2 to remove all Ŝx terms in Ĥ2 as described in the
main text, so that we finally achieve

Fn(t ) =
〈{

exp

[
i

(
kz

N + 1
Ŝ2

z − αxŜx + αzŜz

)
t

]

× exp

[
−i

(
kz

N + 1
Ŝ2

z + αzŜz

)
t

]}n〉
B

(A5)

≡ 〈F̂n〉B = 〈[e−iĤ1t e−iĤ2t ]n〉B. (A6)

APPENDIX B: MEAN-FIELD HAMILTONIAN AND
EQUATIONS OF MOTION

In order to write down the mean-field approximation to the
quantum Hamiltonians given in Eqs. (3), (9), and (10), we
first write the spin operators in terms of their corresponding
Schwinger representations,

Ŝz = (b̂†
Lb̂L − b̂†

Rb̂R)/2, (B1)

Ŝx = (b̂†
Rb̂L + b̂†

Rb̂R)/2, (B2)

where b̂(†)
L/R annihilates (creates) a boson in the left or right

well. The quantum dot operators can be similarly written,
using d̂ (†)

u/d :

σ̂z = (d̂†
u d̂u − d̂†

d d̂d )/2. (B3)

Next, we assume that in the classical limit N → ∞, we can re-
place the boson operators by complex numbers b̂i → √

nieiφi .
We can also make a similar replacement for the dot d̂i →√

nieiϕi (the “mean-field” theory is in fact exact for the dot,
since any state on the Bloch sphere is uniquely characterized
by two angles), and then defining nL = N − nR, φ = φL − φR,
z = (nL − nR)/N , and y = nu − nd we have the substitution

rules,

Ŝx → √
nLnR cos (φL − φR) = N

2

√
1 − z2 cos φ, (B4)

Ŝz → 1

2
(nL − nR) = Nz

2
, (B5)

σ̂z → 1

2
(nu − nd ) = y

2
. (B6)

Hence, the mean-field Hamiltonian (H = limN→∞ Ĥ/N) is
[also in the main text as Eq. (11)]

H = kz

4
z2 − αx

2

√
1 − z2 cos φ + 1

2
αzz − �

2N

(
1 + y

2

)

+ β

2

√
1 − z2 cos φ

(
1 + y

2

)
, (B7)

where all energies on the right-hand side are measured in
terms of αx. Hamilton’s equations give

ż = − ∂H
∂φ

= −αx

2

√
1 − z2 sin φ

+ β

2

√
1 − z2 sin φ

(
1 + y

2

)
, (B8)

φ̇ = ∂H
∂z

= kz

2
z + αz

2
+ αxz cos φ

2
√

1 − z2

− βz cos φ

2
√

1 − z2

(
1 + y

2

)
, (B9)

ẏ = − ∂H
∂ϕ

= 0, (B10)

ϕ̇ = ∂H
∂y

= β

4

√
1 − z2 cos φ − �

4N
. (B11)

Likewise, the mean-field approximations for Ĥ1 and Ĥ2 are
[also in the main text as Eqs. (12) and (13), respectively]

H1 = − kz

4
z2 + αx

2

√
1 − z2 cos φ − αz

2
z, (B12)

H2 = kz

4
z2 + αz

2
z. (B13)

The classical trajectories for H1 and H2 are similarly cal-
culated using Hamilton’s equations; however, the set of
conjugate variables {y, ϕ} is no longer present:

ż1 = − αx

2

√
1 − z2 sin φ, (B14)

φ̇1 = − kzz

2
− αz

2
− αxz cos φ

2
√

1 − z2
, (B15)

ż2 = 0, (B16)

φ̇2 = kzz

2
+ αz

2
. (B17)

The dynamics are governed by repeatedly alternating between
H1 and H2 for a time αxT .

In Fig. 3 of the main text, we show the effects of tuning the
time at which the TTC is measured on the Lyapunov exponent
for the classical Hamiltonians (B12) and (B13). Alternatively,
in Fig. 6, we demonstrate the presence of a positive classi-
cal Lyapunov exponent for the system alternating between
H1 and H2 as a function of the bosonic interaction energy.
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FIG. 6. The Lyapunov exponent, λL , as a function of kz for dy-
namics produced by the mean-field version of Eq. (3) (blue squares)
and the mean-field versions of Eqs. (9) and (10) (red dots). We can
see for H, λL ≈ 0, suggesting the system is regular while for the
combination of H1 and H2, λL > 0, suggesting chaotic dynamics.
Each data point is the maximum λL averaged over 1500 random
initial states in phase space. For both sets of data αz = 0.01αx and
for the red data the dynamics is cycled through H1 and H2 n = 20
times.

The original Hamiltonian has no appreciable Lyapunov ex-
ponent while the shaken system rapidly develops exponential
separation of trajectories after kz/αx > 0.5. The distance d
between trajectories {zn, φn} and {zm, φm} in the BEC coor-
dinates corresponds to a great-circle distance on the Bloch
sphere,

d = cos−1
[
znzm +

√(
1 − z2

n

)(
1 − z2

m

)
cos(φn − φm)

]
,

(B18)
which can be used to calculate λL.

APPENDIX C: INDIVIDUAL SURVIVAL PROBABILITY

In Sec. V B of the main text we concerned ourselves mainly
with the general features of the survival probability without
specifically selecting states. The qualitative nature of Pn(t )
broadly follows Pn(t ) (the average), although it is more sen-
sitive due to the lack of averaging over initial states. The
saturation values when not averaged over the bases are then

PCUE = 2

D + 1
, (C1)

PCOE = 3

D + 2
. (C2)

In Fig. 7, we show the survival probability Pn(t ) for three
different states using n = 50 and N = 200 at kz = 3αx and
αz = 0.01αx. Figure 7(a) shows the survival probability for
|ψ〉 = |N/2〉x = e−iŜyπ/2 |N/2〉, which is the ground state of
the Ŝx operator and also a coherent state. Much like the av-
erage, the survival probability is roughly constant for short
times, then drops off, saturating at approximately 8.521 ×
10−3, which is within 14% of the CUE value of 9.901 × 10−3.
For Fig. 7(b), we chose an initial state which is Gaussian (but

FIG. 7. Survival probability Pn(t ) for two different choices of
|ψ〉 (a) using |ψ〉 = |N/2〉x = e−iŜyπ/2 |N/2〉, (b) using the Gaussian
state given in Eq. (C3), and (c) using |ψ〉 = |N/2〉. tTh is shown as
a vertical dotted line, the long-time average of the data is given as a
horizontal solid cyan line, and the corresponding RMT prediction is
given by a dashed red line. The parameter values in each image are
kz = 3αx , αz = 0.01αx , N = 200, and n = 50.

not a coherent state) in the Ŝz basis,

|ψ〉 = 1

(2πN )1/4

N/2∑
m=−N/2

e− m2

4N |m〉 . (C3)
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This broader state has excellent agreement with the CUE
value at approximately 9.757 × 10−3, within 1.5%. Finally, in
Fig. 7(c), we instead choose a member of the Ŝz basis, |ψ〉 =
|N/2〉. The return probability of this state demonstrates sharp
peaks reminiscent of dynamical phase transitions (DPTs) and
subsequently saturates at 16.605 × 10−3, approximately 12%
higher than PCOE.

Comparing the actual saturation values with those pre-
dicted in Eqs. (C1) and (C2), we find that the relative errors
can be fairly large, on the order of 10–15 %. However, the
errors on individual states can be extremely sensitive to pa-
rameter shifts. For example, a change to kz = 8αx (deeper into
the “chaotic” region, extrapolated from Fig. 6) can reduce the

error from the coherent state (|ψ〉 = |N/2〉x) to approximately
9.393 × 10−3, which is 5.1% error from the PCOE value.

The return probability can occasionally reach extremely
small orders of magnitude, especially for larger N , at which
machine-precision exact diagonalization becomes insufficient
to properly resolve Pn(t ). This effect occurs in the regular
regions prior to tTh in Fig. 7(c), where DPT-like sharp val-
leys can only be resolved with precision on the order of 80
decimal places (increasing with N). The extreme sensitivity
of numerical noise in the Loschmidt echo in similar systems
has been identified in Ref. [89]. The region which requires
high sensitivity to properly resolve the dynamics is, however,
not our primary concern since it is not the chaotic region.
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