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Dynamics of elliptical vortices in a trapped quantum fluid
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The nonequilibrium dynamics of vortices in two-dimensional quantum fluids can be predicted by accounting
for the way in which vortex ellipticity is coupled to the gradient in background fluid density. In the absence of
nonlinear interactions, a harmonically trapped fluid can be analyzed analytically to show that single vortices will
move in an elliptic trajectory that has the same orientation and aspect ratio as the vortex projection itself. This
allows the vortex ellipticity to be estimated through observation of its trajectory. A combination of analysis and
numerical simulation is then used to show that nonlinear interactions cause the vortex orientation to precess,
and that the rate of vortex precession is once again mimicked by a precession of the elliptical trajectory. Both
vortex ellipticity and rate of precession can therefore be inferred by observing its motion in a trap. An ability
to anticipate and control local vortex structure and vortex trajectory is expected to prove useful in designing
few-vortex systems in which ellipticity is a ubiquitous, as-yet-unharnessed feature.
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I. INTRODUCTION

Quantum vortices [1] with orbital angular momentum have
been widely studied in Bose-Einstein condensates (BECs) [2]
and optical fluids [3]. Although these vortices typically have
circular cross sections in equilibrium, their nonequilibrium
counterparts tend to be elliptical in both superfluid [4] and
optical [5,6] settings. In fact, noncircular shapes are expected
whenever two or more vortices interact, as in the generation
or annihilation of vortex-antivortex pairs [6–8], the merging
of corotating vortices [9–11], and the braiding of vortex pairs
[12]. Such vortices do not move with the underlying fluid,
as in incompressible flows, nor can their trajectories be an-
ticipated by accounting for the influence of density gradients
[13]. Ellipticity introduces two additional degrees of freedom
that couple to the gradients in the background quantum state,
and a vortex velocity relation has recently been derived that
correctly incorporates this and applies it to predict the motion
of optical vortices in linear media [6].

In this paper, we elucidate the relationship between trap
strength, nonlinear interaction, and the motion of an isolated,
noncircular vortex in a quantum fluid. We find that a circular
harmonic trap causes an elliptic vortex to move in an elliptical
trajectory that, surprisingly, has the same orientation and as-
pect ratio as the vortex projection. Nonlinear interactions, on
the other hand, induce a precession in the vortex ellipticity
that is mimicked by an analogous precession in the vortex
trajectory. We further find that a strong nonlinear interaction
induces an oscillation of the aspect ratio of the elliptical
vortex.
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II. LINEAR QUANTUM FLUID

The motion of noncircular vortices in linear media
serves as a useful point of reference for understanding how
nonlinear effects change their dynamics. In this simpler
setting, the evolving quantum state, ψ (x, y, t ), is assumed
to be governed by the two-dimensional (2D) Schrödinger
equation,

i∂tψ = − 1
2 (∂xx + ∂yy) + Vψ, (1)

where V represents potentials such as a harmonic trap. The
initial fluid state has a Gaussian density profile implanted
with a noncircular vortex offset from the center of the fluid
by x0:

ψ0(x, y) = Ne− 1
2 (x2+y2 )[(x − x0)a + yb]. (2)

Here

a = − cos ξ + i cos θ sin ξ, b = − sin ξ − i cos θ cos ξ,

(3)

and N is a normalization factor. A hydrodynamic interpreta-
tion of this state [14] is that the fluid density is |ψ0|2 and the
fluid velocity is ∇Arg(ψ0). Both are plotted in Fig. 1. The
vortex core in our 2D quantum fluid is characterized by a point
with phase singularity and zero fluid density in the 2D plane.
The vortex shape is determined by the streamlines around this
vortex core, and its amplitude is a linear function of radial
position.

A. Freely expanding linear quantum fluid

Suppose that the fluid is unbounded so that V = 0 in
Eq. (1). Then the convolution of the initial state of Eq. (2)
with the 2D Schrödinger Green’s function [15] immediately
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FIG. 1. Vortex on the Shoulder of a Gaussian Density Distri-
bution. An unbounded, linear, compressible 2D fluid is given a
Gaussian density distribution and an elliptical vortex (ξ = 80◦, θ =
60◦), about the point {x, y} = {x0, 0} with x0 = 0.5. (a) Regions of
low density are dark, higher densities are light, and selected density
contours are shown as solid curves (green). The fluid velocity is
depicted as colored arrows, with higher velocities in red and lower
velocities in blue. (b) A single contour in the neighborhood of the
vortex is an ellipse with orientation ξ and an aspect ratio of cos(θ ).

describes the time evolution:

ψ (x, y, t ) = (cos ξ (−x + x0 + ix0t − iy cos θ ) − y sin ξ

+ ix cos θ sin ξ + x0(−i + t ) cos θi sin ξ )

× 1

(−i + t )2

√
2

π
ei x2+y2

2(−i+t ) . (4)

We seek the trajectory of the vortex, and this can be ob-
tained if its velocity is quantified as a function of time. Toward
this end, it will prove both mathematically convenient and
physically insightful to develop a formalism for quantifying
the vortex ellipticity by visualizing vortices as the projection
of a virtual construct, a circular vortex with an axis of sym-
metry described by tilt angles ξ and θ as shown in Fig. 2. In
the northern hemisphere, polar leans θ can be achieved from
0◦ to 86◦ in an optical fluid [6] and up to at least 45◦ in a BEC
[4]. A comparable range is associated with polar leans in the
southern hemisphere.
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FIG. 2. Tilted vortex perspective. A 2D elliptical vortex in the
transverse plane can be viewed as the projection along the tilt axis of
a three-dimensional vortex. The ellipticity can then be described by
an azimuthal orientation angle ξ and a polar lean θ .

A variational argument [6] can then be used to show that
the vortex velocity is described by

�v = �vϕ + �vρ, (5)

where

�vϕ = ∇⊥ϕbg, �vρ = −�σ0∇⊥ ln ρbg. (6)

Here ϕbg and ρbg are the phase and magnitude of the
background field, ψbg = ρbgeiϕbg , obtained by dividing out
the contribution from the vortex itself. Their gradients each
contribute to the vortex velocity denoted by �vϕ and �vρ , re-
spectively. The Pauli-like operator σ0 in the 2D x-y plane is
defined as

σ0 =
(

0 −1
1 0

)
. (7)

The influence of vortex tilt is captured by the 2D tensor �. In
the coordinate frame of Fig. 2, its elements are

�xx = cos θ cos2 ξ + sec θ sin2 ξ, (8)

�yy = sec θ cos2 ξ + cos θ sin2 ξ, (9)

�xy = �yx = − sin (2ξ ) sin2 θ

2 cos θ
. (10)

This shows that the tilt of a vortex affects its motion because
it is coupled to the local gradient in the background density,
a result that is valid for both linear and nonlinear quantum
fluids.

In the limit of a circular, untilted vortex with θ = 0, the �

term in Eq. (5) becomes a 2D unit tensor, which is consistent
with the vortex velocity relations derived in earlier works
[13,16]. The vortex velocity relation for a circular vortex has
also been derived for the Ginzburg-Landau model [17].

The vortex velocity expression (5) is applied to the evolv-
ing system state (4) to obtain a prediction for direction and
speed of vortex motion. For this simple problem, both are
constant but depend on the tilt parameters, which are time
invariant here. Figure 3 shows the evolving density and veloc-
ity of the underlying background fluid along with both phase
and density contributions to vortex velocity. The left column
of panels is associated with an untilted vortex, showing that
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FIG. 3. Vortex velocity components. An unbounded, linear, com-
pressible 2D fluid is given a Gaussian density distribution and a
vortex about the point x, y = 0.5, 0. The left column shows three
subsequent time slices for a circular vortex, while the right column
is associated with an elliptical vortex. Regions of low (high) back-
ground density are dark (light), and selected background density
contours are shown in yellow. Green contours indicate the local
density of the vortex part of the fluid. Background fluid velocity is
depicted as colored arrows. The vortex velocity is shown in white
with its trajectory indicated with a dashed white line. For each panel,
the orange (medium thickness) arrow shows the background fluid
velocity at the vortex, the yellow (thin) arrow is the contribution to
vortex velocity from the local density gradient with tilt disregarded,
and the red (thick) arrow gives the actual contribution from the den-
sity gradient with tilt accounted for. The yellow arrows are tangent
to background density contours. The actual vortex velocity (white) is
the sum of red and orange arrows.

it moves straight up. In contrast, the right column of panels
shows that a tilted vortex will move at an oblique angle. The
affect of tilt is identified by also plotting the density contribu-
tion to vortex velocity (red arrows) with 
 = 1 in Eq. (5).
These predictions have only recently been experimentally
verified [6].

To summarize, phase gradients correspond to the velocity
of the underlying background fluid that may sweep a vortex
along like a keeled boat drifting downriver without regard for
its heading. A density gradient corresponds to a fluid pressure
differential, generating a Magnus force [18] that causes a
vortex to move relative to the underlying fluid in a direction

FIG. 4. Dynamics of a tilted vortex in a linear quantum fluid
(β = 0). The initial state is as shown in Figs. 1 and 2 with x0 =
0.25, y0 = 0, ξ0 = 150◦, and θ0 = 60◦. (a) The vortex trajectory
analytically derived in Eq. (11). The vortex tilt ξ (t ) = ξ0 and polar
lean θ (t ) = θ0 are stationary as the vortex moves, and its path is
an ellipse characterized by these same tilt angles, i.e., ξtr = ξ0 and
θtr = θ0. (b)–(d) The fluid density profiles for t1 = π/2, t2 = π , and
t3 = 3π/2, respectively, with specific contours highlighted to show
that ξ and θ are stationary.

orthogonal to the gradient. But in such density gradients, the
orientation of the keel of the boat is relevant because the rel-
ative motion between vessel and fluid could cause the boat to
cut a path that need not be orthogonal to the density gradient.
This is a general effect that could, in principle be observed in
any experiment in which a Magnus force acts on an object that
lacks azimuthal symmetry about its axis of rotation.

B. Trapped linear quantum fluid

Next consider the motion of a vortex in a compressible,
linear fluid that itself resides in a harmonic trap. The trap is
accounted for with a harmonic potential, V = 1

2 (x2 + y2), in
Eq. (1) and can be interpreted as the background fluid. The
direct healing length of a linear-core vortex is infinity and,
within our analytical framework, the typical size of the trap
is 1, as shown in Fig. 4. Since this has no phase gradient,
any vortex motion is solely due to an evolving gradient in the
background fluid density. The background field can be applied
to Eq. (5) to obtain the following prediction of vortex velocity:

vx = −x0(sin t + cos t cos ξ0 sin θ0 sin ξ0 tan θ0),

vy = x0 cos t sec θ0(cos2 ξ0 + cos2 θ0 sin2 ξ0). (11)

Here ξ0 and θ0 describe the initial vortex tilt. The expressions
for velocity can be easily integrated to obtain the vortex tra-
jectory, {xv (t ), yv (t )}. To more easily interpret this trajectory,
consider a linear transformation that rigidly rotates the trajec-
tory clockwise by the angle ξ0:

[̃xv (t ) ỹv (t )]T = R[xv (t ) yv (t )]T
. (12)

Here the rotation matrix is

R =
(

cos ξ0 sin ξ0

− sin ξ0 cos ξ0

)
. (13)
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This results in the relationship

[̃xv (t )]2

(x0 cos θ0)2 + [̃yv (t )]2

x2
0

= sin2 ξ0 + cos2 ξ0

cos2 θ0
, (14)

which implies that the vortex trajectory is a fixed ellipse
with azimuthal orientation ξtr = ξ0 and aspect ratio cos θtr =
cos θ0. In addition, an explicit evaluation of the vortex tilt
gives that the azimuthal angle and polar lean are both indepen-
dent of time—i.e., ξ (t ) = ξ0 and θ (t ) = θ0. This is shown in
Fig. 4 for a specific initial vortex tilt. If the vortex is initially
untilted, the resulting circular orbit is consistent with earlier
work [19,20]. The direction of the trajectory is determined
by the initial condition of the wave function. When ξ0 is
between −90◦ and 90◦, as shown in Fig. 4, the trajectory is
counterclockwise; otherwise, the trajectory is clockwise.

III. NONLINEAR QUANTUM FLUID

Attention is now turned to our primary focus, vortex
dynamics in a trapped nonlinear fluid governed by the Gross–
Pitaevskii equation (GPE),

i∂tψ = ( − 1
2 (∂xx + ∂yy) + 1

2 (x2 + y2) + β|ψ |2)ψ, (15)

where β is the nonlinear interaction parameter.
This model for quantum fluids can be applied to 2D BECs

by setting the atomic mass, the trap frequency, and h̄ as char-
acteristic units, regarding t as the time and β as the product
of atom number and two-atom contact-interaction strength
[21]. It also captures the dynamics of paraxial optical fluid
propagating through a nonlinear medium by treating the wave
number and dielectric trap strength [22] as characteristic units,
interpreting the Poynting vector axis as time, and identifying
β as the nondimensional third-order susceptibility [23].

Because analytical solutions do not exist for nonequilib-
rium vortex dynamics, the GPE is solved numerically [24,25].
Despite the nonlinearity, the vortex velocity should still de-
scribed by Eq. (5) [6]. That has not been previously verified
and so is analyzed here.

A. Weakly nonlinear quantum fluid

A tilted vortex is placed off-center in a weakly nonlinear
quantum fluid (β = 1), and the GPE of Eq. (15) is numerically
solved by using an unconditionally stable relaxation pseu-
dospectral scheme implemented on a 1024 × 1024 spectral
grid [24,25]. Vortex position is subsequently obtained, at each
time step, by using a root finder to determine the site at which
both real and imaginary parts of the wave function are zero.
The evolving vortex tilt is then obtained by using a previously
developed algebraic methodology [6].

Strikingly, the nonlinear interaction generates a precession
in the vortex azimuthal orientation, which is evident in the
time slices of the fluid density shown in Figs. 5(b)–5(d), where
highlighted white contours give the vortex shape. As shown
in Fig. 5(e), the vortex precesses clockwise as its azimuthal
orientation ξ (t ) (green line) is a linearly decreasing function
of time, while the polar lean θ (t ) (yellow line) is constant over
the entire simulation. A typical vortex trajectory is shown in
Fig. 5(a), which exhibits several new features due to nonlinear
interactions, and an animation of the dynamics is included in

FIG. 5. Dynamics of a tilted vortex in a weakly nonlinear quan-
tum fluid. Nonlinear interaction β = 1 and initial state is as shown
in Figs. 1 and 2 with x0 = 0.25, y0 = 0, ξ0 = 150◦, and θ0 = 60◦.
(a) The vortex trajectory for time period t = 0 to 174, in which
the vortex spirals out (red) before spiraling back in again (blue).
The first three circuits for the vortex spiralling out are plotted in
the subfigure in (a). (b)–(d) The fluid density profiles for t1 = 16.6,
t2 = 51, and t3 = 85.4, respectively, corresponding to the black dots
in panels (a) and (e), with specific contours highlighted to show the
precession of vortex orientation. (e) Time evolution of azimuthal and
polar angles of the vortex, ξ (t ) (green) and θ (t ) (yellow), over one
cycle of outward and inward spiraling shown along with evolution
of azimuthal orientation of the trajectory, ξtr (t ) (red-blue). In the
simulation, the spatial range is [−8, 8] and the grid size is 1024 in
the x and y directions.

the Supplemental Material [26]. The vortex now moves on
a precessing elliptical trajectory, quantified by its evolving
azimuthal orientation ξtr (t ) plotted by the red (outward mo-
tion) and blue (inward motion) traces of Fig. 5(e). In addition,
these ellipses grow and shrink, a new type of slow-breathing
mode. A comparison of ξ (t ) and ξtr (t ) indicates that the rate
of precession of the trajectory mimics that of the vortex itself.
When the vortex trajectory is in the smallest ellipse, the vortex
and trajectory precess at the same rate just as in a linear fluid.
This implies that structural character of the vortex can be
quantified by observing the shape of the smallest trajectory.
As the size of the ellipse grows, nonlinear effects cause the
vortex to precess faster than the trajectory does.

The trajectory containing outward and inward spirals can
also be observed when the vortex is untilted. The circular
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FIG. 6. The trajectory of an untilted, circular vortex for time
period t = 0 to 174, in which the vortex spirals out (red) before
spiraling back in again (blue). The interaction strength is β = 1 and
the initial state is described by x0 = 0.25, y0 = 0, and θ0 = 0. In the
simulation, the spatial range is [−8, 8] and the grid size is 1024 in
the x and y directions.

vortex now moves in a circular trajectory, as plotted in Fig. 6,
where the red (blue) traces again the outward (inward) spirals.
The weak nonlinearity does not induce any meaningful tilt, so
the vortex keeps its circular shape with θ (t ) = 0 during the
time evolution.

The vortex velocity relation of Eq. (5) should predict even
such complex vortex motion in a nonlinear quantum fluid. It
requires that the gradients of the phase ϕbg and the amplitude
ρbg of the background field be evaluated at the vortex center.
To obtain the background field, we divide out the field of the
vortex, ψbg = ψ/ψLC , where ψ is the total wave function of
the quantum fluid obtained from solving the Gross–Pitaevskii
equation (GPE), and ψLC is the wave function of a linear-core
vortex given by

ψLC (x, y) = (x − xv )a + (y − yv )b. (16)

Here a = − cos ξ + i cos θ sin ξ and b = − sin ξ −
i cos θ cos ξ . Note that the vortex-center coordinates xv

and yv and the vortex tilt angles ξ and θ are all obtained from
the total wave function ψ . The tilted linear-core vortex of
Eq. (16) is then numerically divided out, and the resulting
magnitude ρbg and phase ϕbg of the background field are
shown in Fig. 7.

The challenge in calculating the gradients of ϕbg and ρbg at
the vortex center is that the above quotient procedure causes
a problematic numerical error for ψbg near the vortex center
since the value of ψbg at the vortex center is infinity. To avoid
this problem, we use separate approaches for estimating �vρ

and �vϕ .

FIG. 7. (a) Background magnitude ρbg and (b) background phase
factor ϕbg at t = 85.4 with magenta arrows denoting two times of
velocities �vρ and �vϕ , respectively. In panel (a), the white dot denotes
the center of the background field and the white circle denotes the
shape of the approximated Gaussian profile. In panel (b), the black
arrows denote two times of �vϕ calculated near the vortex center.

An estimate for �vρ is obtained by approximating the back-
ground amplitude as having a Gaussian profile:

ρbg = e− 1
2 [(x−xb)2+(y−yb)2]. (17)

Here {xb, yb} is the numerically estimated center of the back-
ground field, denoted by the white dot in Fig. 7(a). Note that
the Gaussian center deviation from the origin is a manifes-
tation of the inward and outward spirals of the entire system.
The circular shape of this Gaussian profile is shown as a white
circle in Fig. 7(a), in comparison with the real shape of the
background amplitude. Since the vortex position {xv , yv} and
background amplitude, ρbg are known, it follows that

vρx = −yv + yb,

vρy = xv − xb, (18)

where vρx and vρy are the x and y components of �vρ , respec-
tively. The magenta arrow in Fig. 7(a) denotes �vρ .

An estimate for �vϕ is obtained by calculating and averaging
the gradients of ϕbg for a set of locations in the neighborhood
of the vortex center. These are indicated with black arrows in
Fig. 7(b) with their average giving the magenta arrow.

The methodology was applied to construct the vortex ve-
locity components shown in Figs. 8(a)–8(c) and to estimate
the evolving vortex radial positions shown in Figs. 8(d) and
8(e). Figure 8(b) shows that the extremum of the background
density clearly deviates from the trap center, and the entire
background field actually spirals cyclically in sync with the
vortex. The background phase gradient shown in Fig. 8(c) is
particularly interesting because it changes only slightly over
the entire domain—i.e., it has a global character. All of these
features are departures from what is observed for the linear
media of Eq. (11), where the background field is on-center,
without any phase gradient, and the vortex velocity is purely
from �vρ .

Gradients of the background fields [Figs. 8(b) and 8(c)]
were used to calculate a radial velocity that was subsequently
integrated to obtain the prediction for the radial evolution
of the vortex (red) shown in Fig. 8(d). This compares fa-
vorably with the vortex position measured directly by the
numerical simulation (blue). In both cases, low-pass filtering
to remove rapid cyclical oscillations, as shown in Fig. 8(e),
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FIG. 8. Prediction versus simulation measurement of the radial
position of a vortex. The simulation of Fig. 5 is used to assess the
accuracy of the vortex velocity relation of Eq. (5). (a)–(c) t = t3 =
85.4, corresponding to Fig. 5(d): fluid density |ψ |2, background mag-
nitude ρbg, and background phase φbg with magenta arrows denoting
two times of velocities �v, �vρ , and �vϕ , respectively, and a white dot
denoting the center of background field. (d) Prediction of vortex
radial position (red), obtained by integration of Eq. (5) compared
with the position measured (blue) using a root finder, as used in
Fig. 5(a), to identify the evolving zero of the wave function. Also
shown is the predicted radial position if coupling with tilt is not
accounted for (black) by setting � = 1 in Eq. (6). (e) The result of the
averaged vortex radial position, where the rapid cyclical oscillation
in panel (d) is removed by low-pass filtering.

helps to more easily compare prediction with measurement
over longer timescales. The background fluid density gradient
is an essential contributor to the vortex velocity, and this is
quantified in terms of the mean value of its contribution to the
total vortex velocity of Eq. (6):〈 |�vρ |√|�vϕ|2 + |�vρ |2

〉
= 36%. (19)

This ratio is calculated from the parameters for Figs. 5 and
8. The result is significantly different than that for a harmoni-
cally trapped, linear fluid. There vϕ = 0 so the ratio is 100%.
Figure 8(d) also shows curve (black) of what would be pre-

dicted for the radial position if the coupling between tilt and
fluid density were not accounted for. This was produced by
setting � = 1 in Eq. (6), and its poor prediction demonstrates
how crucial it is to account for the newly identified coupling.

In Figs. 8(d) and 8(e), the discrepancy between the pre-
dicted radial position (red) and the measured position (blue) is
due to the approximations associated with both the numerical
solution of the GPE and the methodology adopted to calcu-
late background field gradients for the vortex velocity. The
nonlinear GPE is numerically solved using a pseudospectral
method implemented on a 1024 × 1024 spectral grid. The
method is unconditionally stable, but errors are introduced by
this finite grid size which accumulate as the vortex completes
approximately 30 orbits. In addition, the finite grid size and
large domain (16 × 16) imply that vortex position has a com-
putational spatial uncertainty of ±0.02 in both the x and y
directions.

In addition to the uncertainty associated with the simu-
lator, the numerical implementation of the vortex velocity
prediction of Eq. (5) has its own sources of error. This is
because it is populated with gradients in the background field
evaluated at the center of the vortex, which is computationally
problematic since the background field is the ratio of two
fields that are both singular at the vortex center. As detailed
above, the issue is addressed with two pragmatic idealizations:
(i) that the background amplitude has a Gaussian profile; and
(ii) that the background phase gradient at the vortex is equal
to the average of its value in the surrounding neighborhood.
These each contribute to an uncertainty in the vortex velocity
prediction.

B. Strongly nonlinear quantum fluid

The weak nonlinearity medium (β = 1) is next replaced
with a strongly nonlinear quantum fluid (β = 1000). Instead
of using the initial state of Eq. (2), a linear-core vortex, the
initial vortex profile is given a finite healing length com-
patible with the value of β to make the vortex as stable as
possible [27]:

ψ0(x, y) = φgs(x, y)

√
1 − l2

l2 + x′2 + y2

x′ + iy√
x′2 + y2

. (20)

Here x′ = x − x0. The ground state of a nonlinear fluid with-
out any vortex, φgs(x, y), is numerically obtained through
imaginary time evolution, and the vortex healing length l is
related to β by

l = 1√
β|φgs(x0, 0)| . (21)

To create a tilted-vortex initial condition with this healing
length, Eq. (20) is modified by replacing x′ + iy with x′a + yb,
and replacing x′2 + y2 with |x′a + yb|2. The new parameters a
and b are defined as

a = − cos ξ0 + i cos θ0 sin ξ0,

b = − sin ξ0 − i cos θ0 cos ξ0. (22)
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The initial state with an offset, tilted vortex in a strongly
nonlinear quantum fluid is therefore given by

ψ0(x, y) = φgs(x, y)

√
1 − l2

l2 + |x′a + yb|2
x′a + yb

|x′a + yb| . (23)

Using the methodology introduced for the weakly nonlin-
ear quantum fluid, the GPE of Eq. (15) is solved numerically
with the results processed to obtain the evolving vortex posi-
tion and tilt angles. This reveals two fundamental differences
that can be seen by comparing Fig. 9 with Fig. 5: (1) cyclic
spiraling is now completely absent; and (2) the trajectory is
now roughly circular instead of elliptical. The lack of spiral is
due to the fact that the healing length is now extremely small,
so the vortex is no longer influenced by condensate features
on a larger length scale and, in particular, the position of the
trap center. This property is inherited from the circular vortex
case (black solid line), a setting in which it was previously
observed by Polkinghorne et al. [28]. The circular character
of the trajectory can be understood by noting, in Fig. 9(e), that
precession in the vortex azimuthal angle ξ (t ) is now extremely
fast. In fact, the precession rate is approximately proportional
to the interaction strength. For β = 1000, the vortex rotates
over 40 times for every degree of arc change in its orbit. As a
result, the vortex ellipticity is averaged out, and the result is a
circular motion as if the vortex itself was circular.

Another qualitative difference between weak and strongly
nonlinear media is associated with the evolution of the po-
lar lean θ (t ). For weak interactions, the polar lean is nearly
constant, as shown in Fig. 5(e), but Fig. 9(f) shows that it un-
dergoes substantial oscillations for strongly interacting fluids.
This is also evident in the changes of vortex aspect ratio shown
in the time slices of the fluid density, Figs. 9(b)–(d). Such
temporal changes are actually the combined result of three
separate contributions that are each amplified with increasing
nonlinearity.

First consider a circular vortex at the center of a trapped,
highly nonlinear condensate β = 1000. The magnitude of
variations in polar lean correlates inversely with grid size. For
a 1024 × 1024 spectral grid, the polar lean varies randomly
between 0◦ and 20◦, for a 2048 × 2048 spectral grid, the vari-
ations only range up to 10◦, and for a 4096 × 4096 spectral
grid the random variation in measured polar lean has a range
of only 5◦. Such noisy character of polar lean can therefore
be attributed to numerical error, most likely the uncertainty in
vortex position.

When the vortex is at the trap center, an elliptical vor-
tex exhibits an additional oscillation in the polar lean that
increases with the degree of nonlinearity. This is due to an
anisotropic squeezing force applied to the elliptical vortex by
the circular background quantum fluid. The vortex is squeezed
more heavily along the direction of the longer axis than that of
the shorter axis. This effect is analogous to the evolution of an
elliptical Bose-Einstein condensate in a circular trap, where
the shape of the condensate is periodically squeezed along the
longer axis and expanded along the shorter axis. The result is
that the polar lean rapidly decreases and then oscillates about
a lower average value. For a fluid with β = 1000 and an initial
polar lean of 60◦, the average polar lean reduces to 25◦ with
an oscillation of approximately ±20◦.

FIG. 9. Dynamics of an elliptical vortex in a quantum fluid with
strong nonlinearity. Nonlinear interaction β = 1000 and vortex ini-
tial position x0 = 1, y0 = 0. (a) Vortex trajectories of the first loop
for time period t = 0 to 44, for an elliptical vortex initialized with
ξ0 = 150◦ and θ0 = 60◦ in Eq. (23) (red solid line), a circular vortex
initialized with θ0 = 0◦ in Eq. (20) (black solid line), and a reference
circular trajectory (green dashed line). (b)–(d) The fluid density pro-
files for t1 = 7.8, t2 = 9.2, and t3 = 12.2, respectively, corresponding
to the elliptical vortex in panel (a) and the black dots in panel (f),
with specific contours highlighted to show the aspect ratio of vortex
shape. (e) Time evolution of vortex azimuthal angle ξ (t ) and (f)
time evolution of vortex polar angle θ (t ), both corresponding to the
evolution of the elliptical vortex in panel (a) for time period t = 0 to
44. In the simulation, the spatial range is [−16, 16] and the grid size
is 1024 in the x and y directions.

Finally, consider the case of an off-center tilted vortex, as
shown in Fig. 9(f). Now the nonuniform background field
introduces a further density gradient in the fluid around the
vortex which causes an additional squeezing force applied to
the elliptical vortex. The result is that an off-center vortex
once again evolves into a less tilted aspect ratio, but now the
subsequent oscillations are only on the order of the random
error observed for the centered case [Fig. 9(f)].
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C. Qualitative explanation for vortex precession
in a nonlinear quantum fluid

For both weakly [Fig. 5(e)] and strongly [Fig. 9(e)] non-
linear media, vortex precession is characterized by a linear
evolution of the azimuthal orientation, ξ with time. Consistent
with these results, Fig. 10(a) shows that azimuthal orientation
ξ (t ) decreases at a relatively constant rate for an intermedi-
ate value of nonlinear interaction strength β = 20. To focus
squarely on the precession, the vortex has been placed at
the center of the trap so that its orientation precesses but its
center stays fixed. This precession is only weakly dependent
on the initial vortex lean θ0, and the polar lean itself, θ (t ), is
relatively constant with time. These features are also evident
in the time slices of the field density, shown in Fig. 10(b),
where highlighted white contours show the vortex shape and
associated white arrows denote the evolving azimuthal angle.

Both of these characteristics can be explained with a simple
idealization in which the nonlinear term in GPE is absorbed
into the trap strength using

β|ψ |2 ≈ β|ψLC,init|2. (24)

Vortex evolution is then governed by a linear system with an
elliptical trap,

Hellip = − h̄2

2m
(∂xx + ∂yy) + 1

2
mω2(x2 + γ 2y2), (25)

where γ and ω are functions of β and the initial vortex tilt
angles. The associated eigenmodes are products of Hermite
polynomials, and the initial condition is reasonably approxi-
mated as the sum of the lowest pair of excited modes, |01〉 and
|10〉. The evolving field is then of the form

|ψ (t )〉 = N (|01〉 + αei(ε10−ε01 )t |10〉). (26)

The ellipticity-induced difference in mode energies, ε10 − ε01,
results in a beating phenomenon that is seen as the vortex lean
bobbing up and down as shown in Fig. 10(d). Likewise, the
ellipticity-induced weighting coefficient α imbalances what
would otherwise be an azimuthal standing mode, and the vor-
tex orientation oscillates back and forth. The magenta lines in
panel Figs. 10(c) and 10(d) emphasize that the rate of change
of vortex orientation, ξ̇ , is initially constant and negative,
while the rate of change of polar lean, θ̇ , is initially zero.
The nonlinear interaction in the GPE, though, amounts to a
self-trap that rotates with the vortex, implying that the ideal-
ized tilt dynamics hold for all times in a Zeno-like manner.
This explains the trends observed in the numerical results of
Fig. 10(a).

IV. CONCLUSION

We have shown that it is possible to quantitatively predict
vortex trajectories in quantum fluids by accounting for the

FIG. 10. Dynamics of an on-center elliptical vortex in a nonlin-
ear quantum fluid. Interaction strength β = 20 and initial azimuthal
angle ξ0 = 150◦. (a) Time evolution of azimuthal angle ξ (t ) and
polar angle θ (t ) with trap frequency ω = 1, where the numerical
result is for θ0 = 10◦ and 60◦, and the analytical estimate is with
〈h〉 = 0.0417 valid for small θ . (b) Time sequence of fluid densities
corresponding to black points in panel (a), where white lines show
density contours and white arrows indicate ξ (t ). (c), (d) Time evolu-
tion of vortex tilt for an elliptical trap idealization with γ = 0.95.

coupling between vortex tilt and the background quantum
state. This coupling is negligible in regimes that are well-
approximated as incompressible, but they are particularly
relevant when the vortex healing length is on the order of
vortex separation in few-body systems. In the absence of non-
linear interactions, the background field depends only on the
trap, and isolated tilted vortices move in an elliptical path that
is self-similar to their own projection. Nonlinear effects allow
for richer dynamics, however, since the vortex can now con-
tribute to its own background field. The effect amounts to the
vortex being able to influence its own motion and tilt. Signifi-
cantly, vortex tilt and its rate of precession are mimicked in the
trajectory observed, allowing these important local features
to be measured with relative ease. This capability, in turn, is
expected to be useful in developing on-the-fly manipulation of
trap strength and atomic interaction as a means of controlling
few-body vortex interactions such as nucleation, annihilation,
scattering, and braiding.
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