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Effective thermalization of a many-body dynamically localized Bose gas
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Dynamical localization is the analog of Anderson localization in momentum space, where the system’s energy
saturates and the single-particle wave functions are exponentially localized in momentum space. In the presence
of interactions, in the context of a periodically kicked Bose gas, it has been argued that dynamical localization
persists. Focusing on the Tonks (strongly interacting) regime, we show that the many-body dynamically localized
phase is effectively thermal, a clear deviation from the breaking of ergodicity observed in standard many-body
localized systems. We relate the effective temperature to the driving parameters, and thus quantitatively describe
the loss of coherence at large distances in this phase. Contrary to the noninteracting case, the momentum
distribution decays as a power-law at large momenta, characterized by an effectively thermal Tan’s contact. This
is a rare example where driving and many-body (dynamical) localization lead to an effectively ergodic state.
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I. INTRODUCTION

Anderson localization of classical and quantum waves is
a universal phenomenon induced by disorder [1,2]. Whether
or not it survives in the presence of interactions has been
under intense scrutiny in recent years, both theoretically and
experimentally [3,4]. It is now well understood that while
interactions tend to destroy localization, a strong enough dis-
order will give rise to many-body localization (MBL), at least
in low dimensions. MBL can be understood in terms of an
effective integrability due to the existence of an extensive
number of local integrals of motions, breaking ergodicity, and
preventing thermalization [5,6]. The same mechanism pre-
vents driven MBL systems from absorbing an infinite amount
of energy and thus prevents runaway heating [7,8].

Dynamical localization is the quantum chaos analog of An-
derson localization, but takes place in momentum space [9]. In
the paradigmatic quantum kicked rotor (QKR), periodic kicks
give rise to a ballistic propagation in momentum space, while
the (pseudo) random phase accumulated during the free prop-
agation in between kicks by each momentum state plays the
role of disorder, resulting in destructive quantum interferences
and dynamical localization. Experimental realizations of the
atomic QKR have allowed for detailed investigations of the
Anderson physics: observation of Anderson transition [10],
characterization of its critical properties [11,12], localization
at the upper critical dimension [13], the effects symmetries on
weak localization [14], and classical-to-quantum transition at
early times [15].

Whether interactions destroy dynamical localization is a
fundamental question that challenges our understanding of
driven interacting quantum systems. This has been studied
for various toy models [16–21], as well as for the kicked
Lieb-Liniger model, a realistic model for cold atom experi-
ments [22]. At the mean-field level, it has been argued both
on theoretical and numerical grounds that interactions destroy
dynamical localization, which is replaced by a subdiffusion

in momentum space [23–28]. However, it is well known
that mean-field theory breaks down in one dimension [29],
questioning these predictions. Beyond mean-field, an early
study for two bosons hinted that interactions may also de-
stroy dynamical localization [30], but the validity of these
results has been recently questioned [31]. Finally, Rylands
et al. have argued that dynamical localization persists in the
presence of interactions, leading to a many-body dynami-
cally localized (MBDL) phase [32]. The MBDL phase can be
described by a steady-state density matrix ρ̂ss, which in gen-
eral should belong to a generalized Gibbs ensemble [33,34].
However, this regime and its density matrix have yet to be
characterized.

In this article, we study the MBDL phase of the kicked
Lieb-Liniger gas in the infinite interaction (Tonks) regime.
Our main result is that the steady-state of the system is
very well described by the density matrix of a thermal gas,
seemingly in contradiction with the fact that the system is
integrable and has an extensive number of conserved charges
(the occupation of the Floquet eigenstates). We stress that
this effective thermalization takes place while the system is
still periodically driven. This is a rare instance where driv-
ing and many-body (dynamical) localization give rise to an
effectively ergodic state. We relate this temperature to the
system’s parameters (kicks strength and period). This allows
us to quantitatively characterize two experimentally relevant
observables: the momentum distribution that does not decay
exponentially, as in the noninteracting limit, but as a power
law, which is to be expected for interacting quantum systems
[35,36]; and the coherence function, which decays exponen-
tially, demonstrating the absence of phase coherence.

The article is organized as follows. In Sec. II, we present
the model and the physical observables studied. In Sec. III,
we summarize our numerical results for the momentum dis-
tribution and the coherence function in the localized regime,
while in Sec. IV we interpret those results in terms of an
effective thermalization of the system, and we give arguments
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to explain such a thermalization in Sec. V. The discussion of
our results appears in Sec. VI.

II. MODEL

We consider N interacting bosons of mass m, the dynamics
of which is described by the periodic Hamiltonian

Ĥ (t )=
∑

i

(
p̂2

i

2
+ K cos(x̂i )

∑
n

δ(t − n)

)

+ g
∑
i< j

δ(x̂i − x̂ j ). (1)

The one-body term corresponds to the QKR Hamiltonian
ĤQKR(t ), while the other describes the contact interaction (we
also define ĤT G = Ĥ |K=0). Here and in the following, time
is in units of the period τ of the kicks and length in unit of
the inverse of the kick-potential wave number kK . Momenta
are normalized such that [x̂i, p̂ j] = ik̄δi j , with k̄ = h̄k2

Kτ/m
the effective Planck constant. The system is of size L = 2π ,
and we assume periodic boundary conditions, implying that
momenta are quantized in units of k̄ (we will use units such
that the Boltzmann constant kB = 1).

In the free case (g = 0), we recover the physics of the
QKR, where any single-particle wave function is localized in
momentum space at a long time (larger than the localization
time) and decays exponentially in momentum space, with
the same “localization length” ploc (for larger K/k̄, one finds
ploc ∝ K2/k̄ [37–39]). In particular, the total energy of the
system saturates to a constant value at long time.

Here, we focus on the Tonks regime, g → ∞, allowing us
to write the exact time-dependent wave function �B({x}; t ) of
the system using the Bose-Fermi mapping [40–44],

�B({x}; t ) =
∏
i< j

sgn(xi − x j )�F ({x}; t ), (2)

where �F ({x}; t ) = 1√
N!

det[ψi(x j, t )] is the free fermions
wave function constructed from the N single-particle orbitals
ψi(x, t ), which evolve according to the QKR Hamiltonian,
ik̄∂t |ψi(t )〉 = ĤQKR(t )|ψi(t )〉. We assume that the system
starts in its ground state, i.e., the fermionic wave function
describes a Fermi sea with Fermi momentum pF ∝ N and
ground state energy E0.

For a Tonks gas, all bosonic local observables (such as the
energy or the density) are given by those of free fermions.
Therefore, since the dynamics of the single-particle orbitals
ψi(x, t ) is that of the noninteracting QKR, we directly infer
that they all dynamically localize at long time. The energy
(of both fermions and bosons) will thus saturate to a finite
value E f � E0 + N p2

loc
2 for time larger than the localization

time, which is interpreted as MBDL [32], see Fig. 1. Since
the fermions orbitals reach a steady state in the MBDL phase,
we expect the system to be described by a steady-state den-
sity matrix ρ̂ss, belonging a priori to the generalized Gibbs
ensemble [33], see discussion in Sec. V. Here we focus on the
properties of the system in this MDBL steady state, and thus
do not write time dependence of observables.

FIG. 1. Time evolution of the total energy of the system Ef (t ) for
N = 61 particles for K = 20, 30 and 40 (k̄ = 6).

Nonlocal observables such as the steady-state one-body
density matrix (OBDM)

ρ(x, y) = N
∫

dx2 . . . dxN�∗
B(x, x2, . . . , xN )×

�B(y, x2, . . . , xN ),
(3)

and its Fourier transform, the momentum distribution

nk = 1

L

∫
dxdy eik(x−y)ρ(x, y), (4)

are significantly different with those of free fermions. Since
dynamical localization is a nonlocal phenomenon, we there-
fore expect these observables to significantly differ from
that of free particles [45]. We, therefore, focus on those
observables in the steady state (time much larger than the
localization time) in the following.

The time evolution of each single-particle orbital is per-
formed numerically by discretizing space and using fast
Fourier transform to alternate between real space for the kicks
and momentum space for the free propagation. The observ-
ables are computed using the method of Refs. [46,47].

III. MBDL MOMENTUM DISTRIBUTION
AND COHERENCE

The ground state of the Tonks gas is characterized by
quasi-long-range order, nk ∝ 1/

√
k at small momenta and

nk=0 ∝ √
N , where the sublinear scaling implies the absence

of true long-range order [48]. Figure 2 shows the momentum
distribution in the ground state and in the localized regime
for N = 51 bosons, k̄ = 6 and various values of K , in log-log
scale. The divergence at small momenta of the momentum
distribution is rounded (see inset), while we observe a power-
law decay at large momenta, nk � C/k4. This behavior is a
universal feature of interacting quantum systems, where C is
the so-called Tan’s contact [35,36]. We conclude that while
the interactions do not destroy dynamical localization, in the
sense that the system does not heat up to infinite temperature,
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FIG. 2. Steady-state momentum distribution for N = 51 parti-
cles at k̄ = 6 for K = 20, 30 and 40 in log-log scale (the different nk

have been shifted for better visibility in the main panel). The dashed
line shows the asymptotic behavior nk � Css/k4 at large momenta,
with Css computed using the effectively thermal density matrix (see
text).The inset shows the same quantities in linear scale.

they do significantly alter the exponential localization in mo-
mentum distribution of the bosons.

The coherence of the Tonks gas in the MBDL regime can
also be characterized by the coherence function

g1(r) = 1

L

∫
dR ρ(R − r/2, R + r/2). (5)

In its ground state, the gas has algebraic correlations, g1(r, t =
0) ∝ 1/

√
r, corresponding to quasi-long-range order [29].

Figure 3 shows that in the MBDL regime, the coherence
function decays exponentially fast at large distance, implying
that the kicks have destroyed the coherence of the quasicon-

FIG. 3. Steady-state coherence function g1(r) for N = 101 par-
ticles at k̄ = 6 for K = 20, 30 and 40. Insets (a): Same data, in
semi-log scale, emphasizing the exponential decay in the MBDL,
compared to the 1/

√
r decay of the initial condition (dashed curve);

(b): Occupation of the zero-momentum state nk=0. It grows as
√

N
in the ground state (dotted line), but saturate to a finite value in the
MBDL regime.

FIG. 4. Comparaison between raw and averaged distribution for
the many-body momentum distribution. In this case, N = 61, K =
30, k̄ = 6.

densate. This is in agreement with the fact that nk=0 does not
scale with the number of particles [see inset (b) of Fig. 3].

IV. EFFECTIVE THERMALIZATION OF MBDL

The absence of quasi-long-range coherence of the localized
regime is similar to that of a thermal Tonks gas [29]. We now
show that the system is very well described in the MDBL
by the a thermal density matrix ρ̂ss � ρ̂th, where ρ̂th is the
thermal density matrix of the Tonks gas

ρ̂th ∝ e−(ĤT G−μeff N̂ )/Teff , (6)

with effective temperature Teff and effective chemical poten-
tial μeff that depends on the system’s parameters and the
number of particles.

Thanks to the Bose-Fermi mapping, if there is indeed effec-
tive thermalization, we expect the momentum distribution nF

k
of the underlying free fermions to be described by a Fermi-
Dirac distribution, allowing us to extract Teff and μeff . We
therefore begin by analyzing the thermal properties of the free
fermions, and then address the thermal-like properties of the
Tonks gas in the localized regime.

A. Fermions

An example of the momentum distribution of the fermions
in the localized regime is shown in Fig. 4 (symbols). Contrary
to the momentum distribution of the bosons, it is rather noisy,
as typical for disordered systems. To better fit the momentum
distribution of the fermions, it is convenient to introduce a
modified QKR Hamiltonian depending on a parameter q [49]

Ĥq = ( p̂ + qk̄)2

2
+ K cos(x̂)

∑
n

δ(t − n). (7)

Note that we never average the bosonic observables (we al-
ways consider the physical value q = 0), such as the OBDM
or the momentum distribution. The highly non-linear transfor-
mation relating the bosonic observables to that of the fermions
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FIG. 5. Effective temperature Teff/εF as a function of ploc/pF for
various particle numbers. The collapse of the data shows the linear
scaling for small enough ploc/pF , Teff/εF � 2

√
3

π
ploc/pF (black line).

Inset: Momentum distribution of the fermions nF
k in the localized

regime (symbols), fitted by a Fermi-Dirac distribution with tempera-
ture Teff and chemical potential μeff , for N = 101 and k̄ = 6.

averages out the fluctuations. In Appendix A, we show below
that the temperature that can be estimated from q = 0 is very
well correlated with that extracted from the average fermionic
distribution.

In Fig. 4, in addition to the momentum distribution nF
k at

q = 0 discussed above, we also show the nF
k the momentum

distribution averaged over 150 random values of q (full line).
The smoothing effect of the averaging procedure is very clear.
On the same figure, we also show a Fermi-Dirac distribution at
an effective temperature Teff and effective chemical potential
μeff such that this thermal distribution explains very well the
data (dashed line). The effective temperature and chemical
potential are obtained by imposing that

∑
k∈Z

fFD(k, Teff , μeff ) = N,

∑
k∈Z

k̄2k2

2
fFD(k, Teff , μeff ) = E f ,

(8)

where E f is the energy obtained from the averaged momentum
distribution nF

k , and fFD is the Fermi-Dirac distribution

fFD(k, T, μ) = 1

e
k̄2k2−μ

2T + 1
. (9)

We observe that the fit is very good, see the inset of Fig. 5,
as long as pF 
 ploc (corresponding to small enough K), see
also Appendix A for a detailed analysis of the parameters
regime where the thermal fit works. We focus on this effec-
tively thermal regime here. This corresponds to low effective
temperatures compared to the initial Fermi energy εF = p2

F /2,
which allows us to find an explicit expression of the effective
temperature in terms of the two natural quantities ploc and pF .

The initial condition of the system corresponds to the
ground state, the energy of which is

E0 = NεF

3
, (10)

for a one-dimensional Fermi gas, with εF = p2
F
2 the Fermi

energy, which in our units read εF = N2

8 (N 
 1). On the
other hand, in the localized regime, the final energy reads

E f = E0 + N
p2

loc

2
. (11)

Assuming that the system is thermal, the Sommerfeld expan-
sion of the energy gives

E (Teff ) � NεF

3
+ Nπ2

12

T 2
eff

εF
+ · · · . (12)

Equating E f = E (Teff ), we obtain

Teff

εF
= 2

√
3

π

ploc

pF
. (13)

Note that the effective temperature is indeed small (compared
to the Fermi energy) for small ploc/pF , validating our initial
assumption.

Figure 5 shows that indeed Eq. (13) works very well for
ploc/pF � 1. Note that while the effective temperature scales
linearly with the particle number, the relative thermal broad-
ening of the Fermi distribution Teff/εF vanishes as N−1.

B. Implications for the bosons

Assuming that the steady-state density matrix ρ̂ss is ther-
mal allows us to quantitatively characterize the momentum
distribution and the coherence function of the Tonks gas in
the localized regime, an a priori formidable task without this
insight.

At short distance, the coherence function of a Tonks gas
is known to be nonanalytic due to the interactions, g1(r) ∼
πC
6L |r|3. For a thermal Tonks gas of N bosons at temperature
T , the contact reads Cth(T, N ) = 8NE (T,N )

L2k̄2 [50]. We therefore
infer that the contact in the MBDL regime Css should be
given by Css = Cth(Teff , N ). Figure 2 shows that the power-law
decay is very well explained by Cth(Teff , N )/k4, showed as
dashed lines.

At long distances, the exponential decay of g1(r) of a
Tonks gas at finite temperature, g1(r) ∝ e−2|r|/rc , is also
known [29,51], and in the low-temperature limit we expect
rc = k̄vF

Teff
, where vF = k̄N

2 is the Fermi velocity in our units.
Therefore, due to the effective thermality of the MBDL phase,
we expect the correlation length rc to be independent of the
particle number and to be inversely proportional to ploc. Com-
bining the thermal scaling and the expression in Eq. (13), we
do expect the scaling rc = π√

3
k̄

ploc
, which can be rewritten as

rc pF = k̄π√
3

pF

ploc
. (14)

Figure 6 shows good agreement between Eq. (14) and
the correlation length extracted from the steady state (see
Appendix B for details). The inset shows that Eq. (14) de-
scribes well the exponential decay of the coherence function.
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FIG. 6. Correlation length rc as a function of ploc for various N .
The collapse of the data shows that it is independent of the particle
number. The line corresponds to the scaling rc = π

3
k̄

ploc
. Inset: Coher-

ence function g1(r) (blue line) and the expected exponential decay
with rc = π

3
k̄

ploc
, for N = 101, K = 40, k̄ = 6.

V. EXPLANATION OF THE EFFECTIVE
THERMALIZATION

Let us now argue why the MBDL steady-state appears
thermal. This is best understood using the fermionic de-
grees of freedom, which are noninteracting and evolve
according to ĤQKR. Introducing the evolution operator over
one period ÛQKR and its Floquet eigenstates ÛQKR|φα〉 =
e−iωα |φα〉, it can be written in second quantization as ÛQKR =
exp(−i

∑
α ωα f̂ †

α f̂α ). Now, the occupation numbers of the
Floquet eigenstates nα = 〈 f̂ †

α f̂α〉 are obviously constants of
motion, and since there is an extensive number of them, the
system is integrable. We therefore expect the steady-state to
be described by the (periodic) generalized Gibbs ensemble
(GGE) [33,52], ρ̂ss � ρ̂GGE, with

ρ̂GGE ∝ e− ∑
α λα f̂ †

α f̂α , (15)

where the Lagrange multipliers λα = log((1 − nα )/nα ) are
such that Tr(ρ̂GGE f̂ †

α f̂α ) = nα [53]. It is a priori surprising that
this GGE density matrix, depending on an extensive number
of Lagrange multipliers, is well described by a thermal density
matrix, depending only on Teff and μeff . To understand this, we
write it in terms of a nonlocal operator in momentum space

ρ̂GGE ∝ e− ∑
p,q Mp,q f̂ †

p f̂q , (16)

with Mp,q = ∑
α〈p|φα〉λα〈φα|q〉. Therefore, for generic dy-

namics and initial states, one should expect a large number
of nonlocal conserved quantities and a clear departure from a
thermal state. However, in the present case, we note that the
Floquet eigenstates are exponentially localized in momentum
space, over a scale of order ploc[9], implying that (i) only the
states with |pα| � pF + ploc are occupied [nα � 1 (resp. 0)
for |pα| � pF (resp. |pα| 
 pF )], with nα interpolating be-
tween 1 and 0 around |pα| � pF on a width of order ploc; (ii)
Mp,q � 0 if |p − q| 
 ploc, meaning that it is almost diagonal,
Mp,q � δp,qhp for some hp. In practice, we find that hp � fp ≡

FIG. 7. Comparison of hp (symbols) with fp for varying K , N =
51 and k̄ = 6.

(−μeff + p2/2)/Teff to a good approximation as shown in
Fig. 7, justifying the effective thermalization ρ̂ss � ρ̂th. Note
that this effective thermalization depends crucially on point
(i), as other initial conditions far from the ground state, or a
too large ploc implying that too many eigenstate are populated,
do not allow for a description of the steady state in terms of a
thermal density matrix [54].

The fact that Mp,q is not exactly diagonal means that the
steady state is not perfectly described by a thermal density
matrix. In particular, it implies that the natural orbitals of
the OBDM are not exactly plane waves, but have width
ploc and that the two-dimensional Fourier transform of the
OBDM, L−1

∫
dxdy eik(x+y)ρ(x, y; t ) decays exponentially as

exp(−|k|/ploc) instead of being Nδk,0, see Appendix C.

VI. CONCLUSION

We have studied the steady-state of a kicked Tonks gas.
While dynamical localization is preserved by the interactions,
in the sense that the system does not heat up to infinite temper-
ature, we have shown that the momentum distribution of the
bosons is not exponentially localized, as in the noninteracting
case. Instead, it decays as a power law given by Tan’s contact,
as expected for an interacting quantum many-body system.
We have also shown that the steady state is very well described
by a thermal density matrix, with an effective temperature that
scales linearly with both the Fermi and localization momenta.
This steady state is therefore both many-body dynamically
localized and well described by a small number of constant of
motions, corresponding to the particle number and the energy
of the localized state, even though the dynamic is integrable,
with an extensive number of conserved quantities. This is
in contrast with standard MBL, where ergodicity breaking
corresponds to emergent integrability and the existence of an
extensive set of quasilocal integrals of motion [4]. MBDL
should be observable in state-of-the-art cold atom experiments
by measuring the steady-state momentum distribution using,
for instance, the methods of Refs. [55,56]. As long as the
initial temperature is smaller than the effective temperature,
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effective thermalization should dominate [57]. It can be tested
by measuring the momentum distribution of the underlying
fermions [58,59], extracting the corresponding temperature,
and comparing with the bosons’ observables.

In the few-body limit, it has been shown that finite or infi-
nite interactions give a rather similar dynamical localization of
the kicked Lieb-Liniger model [31]. An interesting question
is whether this effective thermalization persists beyond the
Tonks regime and allows for a quantitative description of the
many-body dynamical localization at finite interactions.

Finally, it is well known that if the kicks strength is mod-
ulated, the (noninteracting) QKR displays a delocalization
transition similar to the Anderson transition [60,61], which
has been observed experimentally in the atomic QKR [10,38].
We therefore expect that modulating the kicks in the kicked
Lieb-Liniger model will induce a phase transition from the
MBDL to a new phase where the system can heat up to
infinite temperature. Understanding the properties of such a
delocalized phase is under progress.
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APPENDIX A: VALIDITY OF THE THERMAL FIT
OF THE STEADY-STATE OF THE FERMIONIC

MOMENTUM DISTRIBUTIONS

We focus here on giving details on the effective thermal-
ization and its range of validity with respect to the parameters
of the system.

FIG. 10. Effective temperature Teff/εF as a function of ploc/pF

for k̄ = 6 and various particle number. In practice, we plot
E f −E0

NεF
as

a function of T 2
eff/ε

2
F . The black line corresponds to the prediction

Eq. (13). The color code corresponds to that of Fig. 8.
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FIG. 11. Comparison of temperature extracted from Ef and from
the averaged distribution (respectively T (q=0)

eff and Teff ). The colored
dots are the data (green: k̄ = 6, red : k̄ = 7, blue: k̄ = 8) and the black
line is a guide to the eye. The collapse of the data around the black
line show that T (q=0)

eff and Teff are mostly the same.

FIG. 12. Correlation length for different k̄ (7, 8 from up to down).
The black line correspond on every figure to the relation Eq. (14).

FIG. 13. In both panels N = 51, K = 20, k̄ = 6. Top panel: 2D
graphic of the logarithm value of the OBDM in momentum space
ρ(k, k′). Bottom panel: comparison between the anti-diagonal of
the OBDM in momentum space and the most-occupied natural or-
bitals. We compare them to the k = 0 wave function for the same
parameters.

As hinted in the inset of Fig. 5, the thermal fit of the
steady-state fermionic momentum distributions works well
for ploc/pF � 1, while in the opposite limit, it does not work,
implying that the system does not effectively thermalize. This
can be quantified by introducing the error

ε =
∥∥nF

k − fFD(k, Teff , μeff )
∥∥∥∥nF

k

∥∥ . (A1)

The error as a function of N and K is shown in the top panel
of Fig. 8, and as a function of pF and ploc in the bottom panel.
The low value of ε, i.e., a good the thermal fit, corresponds to
the blue area in Fig. 8). In the following, we only consider pa-
rameters such that ε � 5%, where the effective thermalization
takes place.

Figure 9 shows that the localized energy in the steady-state
is well described by the Sommerfeld expansion Eq. (12) in
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terms of the fitted effective temperature Teff , as long as the
temperature is small enough, i.e., when the thermal fit works
well (dark blue symbols). Figure 10 shows that in the same
regime, the effective temperature is also well described by our
prediction Eq. (13).

Finally, let us address the effects of the averaging over q.
Figure 11 is a scatter plot of T (q=0)

eff , the effective temperature
extracted from the fermionic energy for q = 0, and Teff , the
effective temperature obtained from the averaged momentum
distribution, for various values of N , k̄ and K . We see a
very clear correlation between the two. This shows that while
averaging is convenient to analyze the fermionic degrees of
freedom, the effective temperature and chemical potential ob-
tained will describe very well the nonaveraged observables of
the bosons.

APPENDIX B: EXTRACTION OF rc

We observed that the coherence function of the Tonks gas
g1(r) decays exponentially in the localized regime as it was
shown in Fig. 3. Assuming that it decays as g1(r) ∝ e−2|r|/rc ,
we can estimate the correlation length rc by

rc =

√√√√2

∑
r r2g1(r) − (∑

r rg1(r)
)2∑

r g1(r)
, (B1)

which is well described by Eq. (14) as discussed in the main
text, where we have focus on the case k̄ = 6. We show in

Fig. 12 that for other k̄, our prediction is in good agreement
with the data.

APPENDIX C: NATURAL ORBITALS

The OBDM can be decomposed in natural orbitals φη(x),
which can be interpreted as the many-body version of the
wave functions occupied by the bosons, and which are the
eigenfunctions of the OBDM,∫

dyρ(x, y)φη(y) = ληφ
η(x), (C1)

with the ληthe occupation of η-th natural orbital. Figure 13
(top) shows the most occupied natural orbital in momentum
space for N = 51, K = 20, k̄ = 6 in semilog scale. We ob-
serve that it decays exponentially over a scale ploc, as can
been verified by plotting a localized wave function of the
noninteracting QKR (which decays over the same scale).

Figure 13 (top) shows the two-dimensional Fourier trans-
form of the OBDM,

ρ(k, k′) = 1

L

∫
dxdyeikx−ik′yρ(x, y), (C2)

where ρ(k, k) is the momentum distribution. We observe that
contrary to a thermal OBDM, it is nonzero for k �= k′ (as
expected by invariance by translation for the thermal gas).
However, it decays exponentially over the scale ploc, as can
be seen in Fig. 13 (bottom).
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