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First-order Bose-Einstein condensation with three-body interacting bosons
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Bose-Einstein condensation, observed in either strongly interacting liquid helium or weakly interacting atomic
Bose gases, is widely known to be a second-order phase transition. Here we predict a first-order Bose-Einstein
condensation in a cloud of harmonically trapped bosons interacting with both attractive two-body interaction
and repulsive three-body interaction, characterized respectively by an s-wave scattering length a < 0 and a three-
body scattering hypervolume D > 0. It happens when the harmonic trapping potential is weak, so with increasing
temperature the system changes from a low-temperature liquidlike quantum droplet to a normal gas and therefore
experiences a first-order liquid-to-gas transition. At large trapping potential, however, the quantum droplet can
first turn into a superfluid gas, rendering the condensation transition occurring later from a superfluid gas to
a normal gas smooth. We determine a rich phase diagram and show the existence of a tricritical point, where
the three phases, i.e., quantum droplet, superfluid gas, and normal gas, meet. We argue that an ensemble of
spin-polarized tritium atoms could be a promising candidate to observe the predicted first-order Bose-Einstein
condensation, across which the condensate fraction or central condensate density jumps to zero and the surface-
mode frequencies diverge.
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I. INTRODUCTION

Bose-Einstein condensation (BEC) is a ubiquitous
quantum phenomenon that occurs in a wide range of
many-body systems, including liquid helium [1], atomic
Bose gases [2,3], conventional and high-temperature
superconductors [4], and even the hypothetical dark matter
axions [5]. All the BEC transitions observed so far are
of second order and are described by the model F in the
XY universality class with O(2) symmetry [6]. In strongly
interacting liquid helium, it is a continuous transition from a
normal liquid (He I) to a superfluid liquid (He II) across the λ

line [1], while in weakly interacting gaseous Bose systems of
87Rb atoms [2,3], it is a smooth transition from a normal gas
to a superfluid gas.

In this work we propose that a first-order BEC transition
from a superfluid liquid to a normal gas could occur in weakly
interacting atomic Bose gases, when the two-body interaction
is tuned to be attractive (i.e., the s-wave scattering length
a < 0) and the resulting mean-field collapse is arrested by
a repulsive three-body interaction characterized by the scat-
tering hypervolume D > 0. Our proposal is motivated by
the recent experimental realizations of liquidlike quantum
droplets [7] in dipolar Bose-Einstein condensates [8–10]
or two-component Bose-Bose mixtures with attractive in-
terspecies interactions [11–13], which may experience a
liquid-to-gas transition at nonzero temperature. However, a
careful examination of the temperature effect [14,15] indicates
that the Lee-Huang-Yang (LHY) quantum fluctuation, which
is the key ingredient of the droplet formation [16–22], is
too fragile to finite temperature. As a result, LHY droplets

are thermally destabilized far below the superfluid transition
[14,15]. To overcome such a thermal instability, we resort to
earlier cold-atom proposals for quantum droplets based on
the three-body repulsive interactions [23–28], which play the
same role as LHY quantum fluctuations but are less sensitive
to temperature. These proposals have regained considerable
interest mostly recently [29,30] owing to the brilliant idea
by Tan and Zhu that nontrivial three-body effects can be
expressed in terms of a single parameter of the hypervolume D
[31,32], which can become positive and significant in realistic
van der Waals potential for atoms [30]. Quantum droplets
supported by the three-body interactions at zero temperature
were then discussed [29,30,33].

Here we address the finite-temperature properties of
three-body interacting bosons confined in three-dimensional
(3D) harmonic traps, by using the standard Hartree-Fock-
Bogoliubov-Popov (HFB-Popov) theory [34–36]. At weak
trapping potential, we find two phases, a low-temperature
quantum droplet and a high-temperature normal gas, sepa-
rated by the first-order BEC, while at strong trapping potential
another superfluid gas phase emerges and replaces the droplet
phase. This leads to the conventional smooth BEC transition
between a superfluid gas and a normal gas. An intriguing
tricritical point is formed in the phase diagram, at which the
quantum droplet, superfluid gas, and normal gas intersect. We
explore the scenario of realizing such a tricritical point with
ultracold atoms, for example, using a cloud of spin-polarized
tritium atoms [25,27].

Incidentally, a similar tricritical point has recently been
discussed by Son and co-workers for ultraquantum liquids
formed by a hypothetical isotope of helium with nuclear mass
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less than 4 amu [37,38]. Our results complement their studies
and take advantage of the controllability and simplicity with
ultracold atoms [3]. The liquid-to-gas transition and BEC
transition have also been considered in the context of strongly
interacting matter of α particles [39]. Therefore, it turns out
that the first-order BEC transition predicted in our work may
find wide applications in diverse fields of physics, ranging
from atomic, molecular, and optical physics to condensed
matter physics and to high-energy particle physics and nuclear
physics.

II. MODEL HAMILTONIAN AND HFB-POPOV THEORY

Three-body interacting bosons of mass M in 3D harmonic
traps under consideration can be well described by the model
Hamiltonian Ĥ = ∫

drH(r), with the Hamiltonian density

H = ψ̂†

(
− h̄2∇2

2M
+ VT − μ

)
ψ̂ + g

2
ψ̂†2ψ̂2 + G

6
ψ̂†3ψ̂3.

(1)

Here ψ̂ (r) and ψ̂†(r) are the annihilation and creation field
operators of bosons, respectively, μ is the chemical poten-
tial to be fixed by the total number of atoms N , and g ≡
4π h̄2a/M < 0 and G ≡ h̄2D/M > 0 are the attractive two-
body and repulsive three-body interaction strengths, respec-
tively. The harmonic trapping potential VT (r) ≡ Mω2r2/2 is
necessary to prevent the atoms from escaping in the gaslike
phase or the finite-temperature self-evaporation in the droplet
state [15,16].

The model Hamiltonian at nonzero temperature T can
be conveniently solved by the HFB-Popov theory [34–36].
We decompose ψ̂ (r, t ) ≡ �(r) + ψ̃ (r, t ) into a condensate
wave function �(r) and a field operator ψ̃ (r, t ) for noncon-
densate atoms. From the equation of motion for ψ̂ (r, t ), we
deduce, within the Popov approximation as shown in Ap-
pendix A, (i) the generalized Gross-Pitaevskii equation (GPE)
for the condensate wave function

L̂�(r) = μ�(r), (2)

where we have defined the operator

L̂ ≡ − h̄2∇2

2M
+ VT + g(nc + 2ñ) + G

(
n2

c

2
+ 3ncñ + 3ñ2

)

and nc(r) ≡ |�(r)|2 and ñ(r) ≡ 〈ψ̃†(r)ψ̃ (r)〉 are the conden-
sate and noncondensate densities, respectively, and (ii) the
coupled HFB-Popov equations for the ηth quasiparticle wave
functions uη and vη with energy Eη > 0,[

L̂ − μ + M̂ M̂
M̂ L̂ − μ + M̂

][
uη(r)
vη(r)

]
= Eη

[+uη(r)
−vη(r)

]
,

(3)

where the operator M̂ ≡ gnc + G(n2
c + 3ncñ). Once the

quasiparticle wave functions are obtained, the noncondensate
density can be calculated according to

ñ(r) = ñqd(r) +
∑

η

|uη(r)|2 + |vη(r)|2
eβEη − 1

, (4)

where ñqd(r) = ∑
η |vη(r)|2 is the depletion to the condensate

arising from quantum fluctuations and β ≡ 1/kBT . In the ab-

sence of the three-body interaction, i.e., G = 0, Eqs. (2) and
(3) recover the well-known HFB-Popov theory of a weakly
interacting Bose gas [35]. In the normal state (nc = 0 and
the total density n = ñ), Eq. (3) instead describes the single-
particle motion under a mean-field Hartree-Fock interaction
potential 2gn + 3Gn2.

The Popov approximation amounts to neglecting the
anomalous correlation m̃(r) ≡ 〈ψ̃ (r)ψ̃ (r)〉, which is a higher-
order effect beyond mean field [34,36]. It ensures the gapless
phonon spectrum in the homogeneous limit [34], where the
chemical potential is given by μ = g(nc + 2ñ) + G(n2

c/2 +
3ncñ + 3ñ2) and hence L̂k=0 = μ. However, it is worth not-
ing that, at low temperature, the anomalous correlation is at
the same order as the quantum depletion in magnitude. For
consistency, therefore, we neglect the quantum depletion in
the noncondensate density. This treatment is reasonable, since
the quantum depletion is typical about 10%, as shown in
Appendix C, and its absence recovers the standard GPE for
the condensate wave function [23,24,30,33]. In future studies
it would be useful to check the applicability of the Popov ap-
proximation used in this work through more advanced Monte
Carlo simulations. For a dipolar quantum droplet with a sim-
ilar condensate depletion, the use of extended GPE without
anomalous correlation was recently examined by using the
path-integral Monte Carlo technique [40]. There is reason-
able agreement between the extended GPEs and Monte Carlo
simulations [40]. Therefore, we anticipate similar agreement
between the HFB-Popov theory and Monte Carlo calculation
for a three-body interacting quantum droplet considered in
our work.

We also note that the Popov approximation leads to an arti-
ficial first-order superfluid transition with a few percent jump
in the condensate density [36]. This drawback has nothing to
do with the first-order BEC transition predicted in our work,
where the sudden jump in the central condensate density at the
transition is almost 100% (see Appendix F).

III. RESULTS AND DISCUSSION

We have iteratively solved Eqs. (2) and (3) in a self-
consistent way, with the chemical potential μ determined
by the number equation N = ∫

dr[nc(r) + ñ(r)] = Nc + Nth.
To ease the numerical workload, it is useful to introduce
the rescaled units for length r̄ ≡ r/ξ , density n̄ ≡ n/n0,
and energy Ēη ≡ Mξ 2Eη/h̄2, where ξ =

√
D/6π2a2 is the

length scale and n0 = 6π |a|/D is the equilibrium density
of zero-temperature quantum droplets (see Appendix B),
so the two interaction strengths now become dimension-
less: gn0Mξ 2/h̄2 ≡ ḡ = −4 and Gn2

0Mξ 2/h̄2 ≡ Ḡ = 6. The
reduced number of particles is given by N̄ = N/n0ξ

3, with
n0ξ

3 = √
D/6/π2a2. Hereafter, we consider a concrete case

with n0ξ
3 = 1 and without any confusion we will remove the

overbar in the rescaled units.
At zero temperature, the use of the rescaled units leads

to a simple GPE (−∇2/2 + ω2r2/2 − 4�2 + 3�4)� = μ�,
which has been well understood [23,33]. For instance, without
harmonic traps (ω = 0), the GPE allows a self-bound quantum
droplet with � � 1 and μ � −1 for a large reduced number
of particles N � 1 [24,33]. The droplet state is robust below a
characteristic trapping frequency, i.e., ω �

√
2(4π/3N )1/3 �
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FIG. 1. First-order BEC transition at N1/3ω = 0.5. (a) Tempera-
ture dependence of the free energy for the condensed-state solution
(red solid line) and for the normal-state solution (blue dashed line).
The inset highlights the transition at Tc � 0.661. (b) Condensate
fraction as a function of temperature. The green dot-dashed line
shows Nc/N = 1 − (T/Tc0 )3, where Tc0 � 0.9405N1/3ω is the tran-
sition temperature of an ideal Bose gas in harmonic traps [3]. The
inset shows a jump in the chemical potential at Tc. The free energy F
(or the chemical potential μ) and the temperature T are measured in
units of h̄2/Mξ 2 and h̄2/kBMξ 2, respectively. Here ξ ≡ √

D/6π 2a2

is the characteristic length scale of the system.

2.3N−1/3 [33]. It is easy to see that if we neglect the finite-size
effect for a large number of particles, the properties of the sys-
tem depend on the product N1/3ω, as in a weakly interacting
Bose gas [3]. Most numerical calculations in this work are
therefore carried out for N = 1000. We also vary N in the
range [125,8000] and find no sizable finite-size effect.

A. First-order BEC transition

Let us first consider the finite-temperature thermodynamics
at small effective trapping frequency, i.e., N1/3ω = 0.5, as
reported in Fig. 1. Remarkably, near the superfluid transition
we always find two possible solutions: One comes with a
significant condensate fraction, while the other is a completely
normal state. To identify which one is the ground-state solu-
tion, we calculate the free energy F = � + μN , where the
thermodynamic potential � takes the form (see Appendix A)

� =
∑

η

ln(1 − e−βEη )

β
+

∫
dr �∗

(
− h̄2∇2

2M
+ VT − μ

)
�

+
∫

dr
[

gn2
c

2
− gñ2 + G

(
n3

c

6
− 3ncñ2 − 2ñ3

)]
. (5)

FIG. 2. Second-order BEC transition at N1/3ω = 2.0. The tem-
perature dependence of the chemical potential is smooth and the
BEC transition occurs at Tc � 1.563. The inset shows the condensate
fraction and the green dot-dashed line is the ideal gas prediction
Nc/N = 1 − (T/Tc0 )3. The chemical potential μ and the temperature
T are measured in units of h̄2/Mξ 2 and h̄2/kBMξ 2, respectively.

It is readily seen from Fig. 1(a) that the free energies of the two
solutions intersect at Tc � 0.661 with different slope, clearly
indicating a first-order BEC transition. Consequently, the con-
densate fraction suddenly drops to zero at Tc, as shown in
Fig. 1(b). It is also significantly larger than the ideal gas result
for noninteracting bosons in harmonic traps, i.e., Nc/N = 1 −
(T/Tc0)3, where Tc0 = ω[N/ζ (3)]1/3 with the zeta function
ζ (3) � 1.202 [3]. We find that with increasing temperature
the noncondensate fraction increases exponentially slowly
compared with the usual power-law T 3 behavior in the gaslike
phase. This slow increase is due to the discrete excitation
spectrum of the self-bound quantum droplet, which persists
even in the absence of the trapping potential [33]. We note
that the sudden disappearance of the condensate fraction is
correlated with a jump in the chemical potential, as plotted in
the inset of Fig. 1(b). The observation of a first-order BEC
transition at small trapping frequency is the main result of
our work.

At large trapping frequency, the situation dramatically
changes. A typical case of N1/3ω = 2.0 is presented in Fig. 2.
Both the chemical potential and condensate fraction change
smoothly when temperature increases, suggesting a second-
order superfluid phase transition. We interpret it as a transition
from a superfluid gas to a normal gas and therefore use the
standard approach to determine a critical temperature Tc �
1.563 at which the condensate fraction should change most
significantly (i.e., d2Nc/dT 2 = 0) [41]. Our interpretation fol-
lows the two observations that the chemical potential is a
decreasing function of temperature near the superfluid tran-
sition and the condensate fraction lies systematically below
the ideal gas prediction (i.e., the green dot-dashed line), both
of which are the key features of the second-order transition of
a weakly interacting Bose gas [3]. The decreasing condensate
fraction is due to the competition between attractive two-body
and repulsive three-body interactions. While the attractive
two-body interaction tends to increase the condensate fraction
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FIG. 3. Critical temperature Tc (closed and open symbols) and
crossover temperature T∗ (crosses) as a function of N1/3ω. The thick
solid line is the critical temperature predicted at small trapping fre-
quency. The green dot-dashed line shows Tc0 � 0.9405N1/3ω. The
dotted line that connects T∗ is a guide for the eye. A tricritical point
is highlighted by the yellow circle. Typically, we take N = 1000.
The change in the reduced number of particles (i.e., the triangles
for N = 125, diamonds for N = 3375, and hexagons for N = 8000)
does not lead to a sizable difference in Tc. The trapping frequency ω

and the critical temperature Tc are measured in units of h̄/Mξ 2 and
h̄2/kBMξ 2, respectively.

and also the critical temperature in harmonic traps [3,42], it is
overwhelmed by the repulsive three-body interaction. Then,
overall, the condensate fraction becomes suppressed. Inter-
estingly, at low temperature the chemical potential is rather
an increasing function of temperature up to a turning point
(indicated by T∗ � 1.0 in the figure), which is consistent with
the picture of a quantum droplet.1 Thus, the system seems to
cross from a liquidlike droplet over to a gaslike phase at the
characteristic temperature T∗.

B. Phase diagram

By calculating the critical temperature Tc and crossover
temperature T∗ at different effective trapping frequency
N1/3ω, we determine a phase diagram in Fig. 3. An intriguing
tricritical point appears at (N1/3ω)tri � 1.0 and Ttri � 1.13,
where the droplet phase (i.e., superfluid liquid), superfluid
gas, and normal gas intersect with others. Below the tricritical
trapping frequency, i.e., N1/3ω < 1.0, a superfluid liquid turns
into a normal gas via a first-order transition (black closed
symbols), while at N1/3ω > 1.0, with increasing temperature,
the superfluid liquid first becomes a superfluid gas at the
crossover temperature T∗ (crosses) and then turns into a nor-
mal gas via a smooth second-order phase transition (red open
symbols). Note that, with decreasing N1/3ω, the crossover
temperature T∗ does not converge to the tricritical point. This

1The many-body binding energy of a quantum droplet is given
by −μ. We may anticipate that the binding energy of the droplet
becomes smaller with increasing temperature. Hence, the chemical
potential of the droplet increases as temperature increases.

is probably due to the difficulty of defining an appropriate
crossover temperature in a finite-size system close to the tri-
critical point (see Appendix E).

At vanishingly small trapping frequency (i.e., N1/3ω → 0),
the critical temperature can be analytically derived, as shown
in Appendix D. We find the relation N1/3ω = Tc exp(−1/3Tc)
and hence Tc ∼ − ln−1(Nω3). Due to the logarithmic de-
pendence, Tc could remain sizable at negligible trapping
frequency. As the self-evaporation rate of the droplet is
very slow at low temperature [43], it seems likely to find
a self-bound quantum droplet at small but nonzero critical
temperature (i.e., Tc � 0.1|μ|, where the chemical potential
μ � −1 sets the energy scale), when we gradually remove the
external harmonic trapping potential.

C. Observation of the first-order transition

The predicted first-order BEC transition can be straightfor-
wardly probed from the jump in the condensate fraction, or
more readily from the discontinuity in the central condensate
density, as we discuss in detail in Appendix F. For small ef-
fective trapping frequency, we find that the central condensate
density is nearly unchanged below the superfluid transition
and suddenly drops to zero right at the critical temperature Tc.

Alternatively, we may probe the first-order transition by
measuring the collective excitations of the system. For small
trapping frequency, the quantum droplet features peculiar sur-
face modes known as ripplons [16,33,44]. We find that the
ripplon mode frequency ωl�2,n=0 diverges towards the first-
order BEC transition at Tc, as shown in Fig. 4(a). In contrast,
at large trapping frequency there seems to be local minimum
in the ripplon mode frequencies near the second-order BEC
transition, as can be seen from Fig. 4(b). The ripplon mode
frequencies also show a characteristic local maximum at about
the crossover temperature T∗, which might experimentally be
used to locate the smooth crossover from a quantum droplet
to a superfluid gas. We emphasize that these two features
of local minimum and maximum in the ripplon modes are
indicative and their existence should be theoretically exam-
ined in a more rigorous manner, by taking into account
the co-dynamics of condensate and noncondensate within a
random-phase-approximation theory [45]. In this way, the
temperature dependence of collective mode frequencies will
be determined more accurately and the dipole mode frequency
will always be equal to the trapping frequency (i.e., ω10 = ω).

IV. SPIN-POLARIZED TRITIUM ATOMS

In previous theoretical studies of the quantum droplet
stabilized by three-body interactions, spin-polarized tritium
condensate has been suggested to be a good candidate [25,27].
We have further explored this possibility by investigating
the hypervolume D of tritium atoms, inspired by the recent
universality work by Mestrom et al. [30]. In the absence
of Feshbach resonances, the s-wave scattering length a �
−11.92rvdW and the trimer energy ET � −3.50 × 10−3EvdW,
where rvdW = 6.499a0 and EvdW are the characteristic length
and energy of the van der Waals potential of tritium
atoms, respectively [25]. The trimer energy differs slightly
from the universal value ET,uni � −4.45 × 10−3EvdW [46],
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FIG. 4. Mode frequencies ωl,n=0 of the breathing mode (l = 0,
solid lines), dipole mode (l = 1, dotted lines), and surface modes
(l = 2, 3, 4, 5, symbols from bottom to top) as a function of temper-
ature T at (a) N1/3ω = 0.5 and (b) N1/3ω = 2.0. The dipole mode
frequency ω10 is not precisely the trapping frequency ω, due to the
mean-field interaction potential in the HFB-Popov theory [35]. The
mode frequency ωl0 (or the trapping frequency ω) and the tempera-
ture T are measured in units of h̄/Mξ 2 and h̄2/kBMξ 2, respectively.

suggesting that the universal formalism for the hypervolume
D � 1689R4

hh and Rhh ∼ a given by Mestrom et al. [30] could
be used. As there is no decay dimer channel, D is purely
real, without three-body loss [29]. To give some detailed num-
bers, the scattering length is about a � −4.1 × 10−9 m and
the equilibrium density is n0 = 6π |a|/D � 1.62 × 1023m−3,
leading to a gas parameter n0|a|3 ∼ 0.01. We can further apply
Feshbach resonances to fine-tune both a and D to realize a
cloud of three-body weakly interacting tritium atoms. Cooling
and trapping spin-polarized hydrogen and deuterium were
recently realized using Zeeman decelerator [47,48]. The same
technique can be applied to tritium [49].

V. CONCLUSION

We have proposed that three-body interacting bosons may
experience a first-order Bose-Einstein condensation in a weak
harmonic trapping potential, in sharp contrast to the conven-
tional smooth condensation transition observed so far. This
first-order transition can be unambiguously probed from the
sudden jump in the central density and the divergent ripplon
mode frequency at the critical temperature. We have suggested
that spin-polarized tritium atoms might be a promising can-
didate for observing the predicted first-order Bose-Einstein
condensation transition.
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APPENDIX A: THE HFB-POPOV THEORY

We start with the model Hamiltonian for N three-body
interacting bosons of mass M in 3D harmonic traps VT (r) ≡
Mω2r2/2,

Ĥ =
∫

drH(r), (A1)

where the Hamiltonian density is

H = ψ̂†

(
− h̄2∇2

2M
+ VT − μ

)
ψ̂ + g

2
ψ̂†2ψ̂2 + G

6
ψ̂†3ψ̂3.

(A2)

Here ψ̂ (r) and ψ̂†(r) are the annihilation and creation field
operators of bosons, respectively, μ is the chemical potential,
and the attractive two-body and repulsive three-body interac-
tion strengths are given by

g ≡ 4π h̄2a

M
< 0, (A3)

G ≡ h̄2D

M
> 0, (A4)

respectively. To derive the HFB-Popov equations, we fol-
low the procedure in the seminal work by Griffin [34] and
decompose the field operator ψ̂ (r) into a condensate wave
function �(r) and a field operator ψ̃ (r) for noncondensate
atoms, i.e., ψ̂ (r, t ) ≡ �(r) + ψ̃ (r, t ) and its Hermitian form
ψ̂†(r, t ) ≡ �∗(r) + ψ̃†(r, t ).

In the exact Heisenberg equation of motion for ψ̂ (r),

ih̄
∂ψ̂ (r, t )

∂t
=

(
− h̄2∇2

2M
+ VT − μ

)
ψ̂ (r, t )

+ gψ̂†ψ̂ψ̂ (r, t ) + G

2
ψ̂†ψ̂†ψ̂ψ̂ψ̂ (r, t ), (A5)

we take the thermal average and obtain
(

− h̄2∇2

2M
+ VT − μ

)
�(r) + g〈ψ̂†ψ̂ψ̂〉

+ G

2
〈ψ̂†ψ̂†ψ̂ψ̂ψ̂〉 = 0. (A6)

The last two terms in the equation of motion (A5) can be
treated in the self-consistent mean-field approximation [34],
namely (ñ ≡ 〈ψ̃†ψ̃〉 and m̃ ≡ 〈ψ̃ψ̃〉),

〈ψ̂†ψ̂ψ̂〉 = �2�∗ + �∗〈ψ̃ψ̃〉 + 2�〈ψ̃†ψ̃〉
= �2�∗ + �∗m̃ + 2�ñ (A7)
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and

〈ψ̂†ψ̂†ψ̂ψ̂ψ̂〉 = �3�∗2 + 3��∗2〈ψ̃ψ̃〉 + 6�2�∗〈ψ̃†ψ̃〉 + �3〈ψ̃†ψ̃†〉 + 2�∗〈ψ̃†ψ̃ψ̃ψ̃〉 + 3�〈ψ̃†ψ̃†ψ̃ψ̃〉
= �3�∗2 + 3��∗2m̃ + 6�2�∗ñ + �3m̃∗ + 6�∗ñm̃ + 3�(2ñ2 + m̃m̃∗). (A8)

Here we have decoupled the four-field-operator terms according to the Wick theorem,

〈ψ̃†ψ̃ψ̃ψ̃〉 = 3ñm̃, (A9)

〈ψ̃†ψ̃†ψ̃ψ̃〉 = 2ñ2 + m̃m̃∗. (A10)

Therefore, we find the time-independent generalized GPE [nc ≡ |�(r)|2](
− h̄2∇2

2M
+ VT − μ

)
� + g(nc + 2ñ)� + gm̃�∗ + G

2
(n2

c + 6ncñ + 6ñ2 + �2m̃∗ + 3m̃m̃∗)� + 3G

2
(ncm̃ + 2ñm̃)�∗ = 0.

(A11)

It is well known that a nonzero anomalous correlation m̃ ≡ 〈ψ̃ψ̃〉 gives rise to a gapped excitation spectrum [34,36], even in the
absence of the three-body interacting term, which is unphysical. Therefore, we take the Popov approximation m̃ = 0 and m̃∗ = 0
everywhere in the generalized GPE. This leads to the form

L̂�(r) ≡
[
− h̄2∇2

2M
+ VT + g(nc + 2ñ) + G

(
n2

c

2
+ 3ncñ + 3ñ2

)]
�(r) = μ�(r). (A12)

The generalized Hartree-Fock-Bogoliubov equation for quasiparticles may be derived from the equation of motion for the
field operator ψ̃ (r) of noncondensate atoms [34], which can be obtained by subtracting Eq. (A6) from Eq. (A5). It can also be
equivalently derived by expanding the model Hamiltonian to the quadratic terms of ψ̃† and ψ̃ [34]. This alternative derivation
is useful to determine the expressions of the thermodynamic potential and free energy. Therefore, let us describe it in detail. We
first consider the two-body interaction term

ψ̂†2ψ̂2 = �2�∗2 + �2ψ̃†ψ̃† + 4��∗ψ̃†ψ̃ + �∗2ψ̃ψ̃ + ψ̃†ψ̃†ψ̃ψ̃,

= [(�2 + m̃)ψ̃†ψ̃† + H.c.] + 4(nc + ñ)ψ̃†ψ̃ + n2
c − (2ñ2 + m̃m̃∗). (A13)

In the second line of this equation, we have taken the self-consistent mean-field approximation to ψ̃†ψ̃†ψ̃ψ̃ , i.e.,

ψ̃†ψ̃†ψ̃ψ̃ = m̃ψ̃†ψ̃† + 4ñψ̃†ψ̃ + m̃∗ψ̃ψ̃ − (2ñ2 + m̃m̃∗). (A14)

The three-body interaction term can be treated in a similar way. We find that

ψ̂†3ψ̂3 = n3
c + (3�3�∗ψ̃†ψ̃† + H.c.) + 9n2

cψ̃
†ψ̃ + 9ncψ̃

†ψ̃†ψ̃ψ̃ + (3�2ψ̃†ψ̃†ψ̃†ψ̃ + H.c.) + ψ̃†3ψ̃3. (A15)

By inserting the mean-field decoupling, i.e.,

ψ̃†ψ̃†ψ̃†ψ̃ = 3ñψ̃†ψ̃† + 3m̃∗ψ̃†ψ̃ − 3ñm̃∗, (A16)

ψ̃†3ψ̃3 = 9[ñm̃ψ̃†ψ̃† + (2ñ2 + m̃m̃∗)ψ̃†ψ̃ + ñm̃∗ψ̃ψ̃] − (12ñ3 + 18ñm̃m̃∗), (A17)

we obtain that

ψ̂†3ψ̂3 = [(3�3�∗ + 9ncm̃ + 9�2ñ + 9ñm̃)ψ̃†ψ̃† + H.c.] + 9(n2
c + �2m̃∗ + �∗2m̃ + 4ncñ + 2ñ2 + m̃m̃∗)ψ̃†ψ̃

+n3
c − [(9�2ñm̃∗ + H.c.) + 9nc(2ñ2 + m̃m̃∗) + 12ñ3 + 18ñm̃m̃∗]. (A18)

By collecting all the bilinear terms in the field operators, we may rewrite the Hamiltonian density within the Hartree-Fock-
Bogoliubov approximation as

HHFB = 1

2

[
ψ̃†, ψ̃

][K̂HFB − μ M̂HFB

M̂HFB K̂HFB − μ

][
ψ̃

ψ̃†

]
+ �

(0)
HFB(r), (A19)

where we have defined the operators

K̂HFB ≡ − h̄2∇2

2M
+ VT + 2g(nc + ñ) + 3

2
G(n2

c + �2m̃∗ + �∗2m̃ + 4ncñ + 2ñ2 + m̃m̃∗), (A20)

M̂HFB ≡ g(�2 + m̃) + G(nc�
2 + 3ncm̃ + 3�2ñ + 3nm̃) (A21)

and

�
(0)
HFB(r) ≡ �∗

(
− h̄2∇2

2M
+ VT − μ

)
� + g

2

(
n2

c − 2ñ2 − m̃m̃∗) + G

6

[
n3

c − (9�2ñm̃∗ + H.c.)

− 9nc(2ñ2 + m̃m̃∗) − 12ñ3 − 18ñm̃m̃∗] (A22)
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is the density of the mean-field thermodynamic potential at
zero temperature. Let us now take the Popov approximation
and set m̃ = 0 and m̃∗ = 0 in K̂HFB, M̂HFB, and �

(0)
HFB(r). By

further assuming a real ground-state condensate wave func-
tion �(r), it is easy to see that M̂HFB becomes

M̂ = gnc + G(n2
c + 3ncñ) (A23)

and K̂HFB can be rewrite as

K̂ = L̂ + M̂, (A24)

where the operator L̂ is defined in Eq. (A12). Also, �
(0)
HFB(r)

takes the form

�(0)(r) = �∗
(

− h̄2∇2

2M
+ VT − μ

)
� + g

(
n2

c

2
− ñ2

)

+ G

(
n3

c

6
− 3ncñ2 − 2ñ3

)
. (A25)

From the Hamiltonian density for the field operators of non-
condensate atoms [Eq. (A19)], we directly write down the
coupled HFB-Popov equations for the ηth quasiparticle wave
functions uη and vη with energy Eη > 0,

[
L̂ − μ + M̂ M̂

M̂ L̂ − μ + M̂

][
uη(r)
vη(r)

]
= Eη

[+uη(r)
−vη(r)

]
.

(A26)

The total thermodynamic potential at finite temperature T is
given by

� = �
(0)
LHY + kBT

∑
η

ln(1 − e−βEη ) +
∫

dr �(0)(r),

(A27)

where β = 1/kBT is the inverse temperature and

�
(0)
LHY ≡ −

∑
η

∫
dr Eη|vη(r)|2 (A28)

is the contribution of quantum fluctuations to the thermody-
namic potential, the so-called Lee-Huang-Yang energy term
[3]. Once the quasiparticle wave functions are obtained, the
noncondensate density can be calculated according to

ñ(r) = ñqd(r) +
∑

η

|uη(r)|2 + |vη(r)|2
eβEη − 1

, (A29)

where ñqd(r) = ∑
η |vη(r)|2 is the depletion to the condensate

arising from quantum fluctuations and is the only contribution
to density at zero temperature.

Equations (A12) and (A26), together with Eq. (A29) and
nc = |�(r)|2, form a closed set of HFB-Popov equations that
should be solved self-consistently [35]. The chemical po-
tential μ should be adjusted to satisfy the number equation
N = ∫

dr[nc(r) + ñ(r)] ≡ Nc + Nth.
The HFB-Popov theory has been extensively used to de-

scribe weakly interacting Bose gases at finite temperature
[35]. The advantages and shortages of such a theory are now
well understood. In particular, it is known that the theory does
not provide accurate descriptions at both zero temperature

and temperatures sufficiently close to the superfluid transi-
tion [36]. At zero temperature, this is because the anomalous
correlation m̃(r) neglected in the Popov approximation be-
comes comparable to the normal correlation, i.e., ñqd(r), if
we critically examine the role of zero-temperature quantum
fluctuations. For the consistency of the theory, it thus seems
necessary to discard the quantum depletion ñqd(r) and the
LHY energy term �

(0)
LHY. This treatment is well justified for

a weakly interacting Bose gas with a repulsive two-body
interaction alone, where the quantum depletion (or the LHY
energy) contributes only a few percent to the total density (or
the total energy) [35]. For a three-body interacting quantum
droplet considered in this work, as we will discuss below,
we find that the quantum depletion is typically at about 10%,
much smaller than that of a superfluid helium droplet, where
90% of atoms are out of the condensate at T = 0. In the
vicinity of the superfluid transition Tc, it is also known that the
Popov approximation predicts a spurious first-order superfluid
transition for a homogeneous Bose gas, as characterized by a
very small jump (i.e., about a few percent) in the condensate
density [36]. This spurious feature is not important and does
not show up when the system is confined in a harmonic trap.

APPENDIX B: NUMERICAL CALCULATIONS

At zero temperature, where the noncondensate density ñ =
0 as we neglect the quantum depletion, the generalized GPE
(A12) in free space (i.e., VT = 0) takes the form

(
− h̄2∇2

2M
+ g|�|2 + G

2
|�|4

)
� = μ�. (B1)

As g < 0 and G > 0, this GPE admits a self-bound droplet
as the ground state for a sufficiently large number of atoms
N = ∫

dr|�|2 � 1. To see this, let us check the case of an
infinitely large number of atoms, where we can safely neglect
the surface effect and remove the first kinetic term (i.e., the
∇2 term). We find that the bulk chemical potential (n = |�|2)

μ(n) = gn + G

2
n2 (B2)

and consequently the energy per particle

ε(n)

n
= g

2
n + G

6
n2. (B3)

It is clear that the energy per particle acquires a minimum at
the equilibrium density

n0 = 3

2

(−g)

G
= 6π

|a|
D

, (B4)

at which the pressure P vanishes due to the thermodynamic
relation

P =
(

n2 ∂ (ε/n)

∂n

)
n=n0

= 0. (B5)

The system is therefore self-bound into a droplet state at
zero pressure, in equilibrium with the surrounding vacuum. In
the absence of the external harmonic trap, the center density
would be fixed to n0, if we neglect the boundary (surface)
effect. When we add the particles to the droplet, the droplet

043301-7



HU, YU, WANG, AND LIU PHYSICAL REVIEW A 104, 043301 (2021)

expands and increases its radius while keeping its bulk density
unchanged.

1. Rescaled units

In numerical calculations, it is convenient to introduce the
units for length, density, and also energy and to make the
equations dimensionless. For the density unit, the equilibrium
density n0 is a natural choice. To fix the length unit ξ , let
us require that the three-body term in the energy per particle
assumes the simple form

G

6
n2 → Ḡ

6
n̄2 = n̄2, (B6)

after we use the rescaled units (as indicated by the bar above
the variables). This means that the dimensionless three-body
interaction strength is

Ḡ ≡ Gn2
0

h̄2/Mξ 2
= 6, (B7)

where h̄2/Mξ 2 is the energy unit related to the length unit ξ .
By substituting G = h̄2D/M and the equilibrium density n0,
we find that

ξ =
√

D

6π2a2
. (B8)

It is straightforward to check that the two-body interaction
strength then becomes

ḡ ≡ gn0

h̄2/Mξ 2
= −4. (B9)

From now on we will use the rescaled units for length r̄ ≡
r/ξ , density n̄ ≡ n/n0, energy Ēη ≡ Mξ 2Eη/h̄2, and trapping
frequency ω̄ = Mξ 2ω/h̄. The rescaled condensate wave func-
tion is �̄ = �/

√
n0. The reduced number of particles is given

by N̄ = N/n0ξ
3, with

n0ξ
3 =

√
D/6

π2a2
, (B10)

and the number equation becomes

N̄ =
∫

d r̄
nc(r̄) + ñ(r̄)

n0
≡ N̄c + N̄th. (B11)

Hereafter, for convenience, we consider the specific case with
n0ξ

3 = 1. Then we will remove the bar for all the rescaled
units. Our choice is motivated by the van der Waals universal-
ity for the hypervolume D � 1689a4 in the weakly interacting
regime, as recently predicted in Ref. [30]. Therefore, the di-
mensionless parameter

n0ξ
3 �

√
1689/6

π2
� 1.7, (B12)

close to the value that we choose.
In the dimensionless form (g = −4 and G = 6, and ef-

fectively h̄ = M = 1), the zero-temperature GPE (B1) then
becomes very simple,(

−∇2

2
+ ω2r2

2
− 4�2 + 3�4

)
� = μ�, (B13)

where we have reinserted the harmonic trap term. We see that
this equation depends on two controlling variables, the di-
mensionless trapping frequency ω and the reduced number of
particle N , both of which involve the microscopic parameters
of the model Hamiltonian such as the two-body scatter-
ing length a and the three-body scattering hypervolume D.
Equation (B13) has been discussed in detail in the previous
work [33]. It turns out that for a large reduced number of par-
ticles, we can neglect the finite-size effect and the properties
of the system actually depend on a single parameter N1/3ω.
In our calculations, we typically take the reduced number of
particles N = 1000.

2. Technical difficulties

The dimensionless HPB-Popov equations with the opera-
tors L̂ and M̂, obtained by setting h̄ = M = 1, g = −4, and
G = 6, can be solved by the routines outlined in previous work
[15,33,35]. The following three challenges in the numerical
calculations are worth noting.

First, for a droplet state, there are numerous quasiparticle
energy levels accumulated just above the particle emission
threshold |μ| [33]. The energy level separation is set by the
harmonic trapping frequency ω. To solve this difficulty, we
consider a dimensionless trapping frequency ω � 0.03 and
typically use several hundred expansion basis functions in
solving the quasiparticle wave functions uη and vη for a given
angular momentum l (which is a good quantum number for
our spherical harmonic traps). Further improvement on the
numerical accuracy could be achieved by considering the
fifth-order B-spline basis [15]. The B-spline basis would allow
us to use an uneven grid, which might better represent the
solution wave function. It also allows a higher-order approx-
imation of the derivative operator that appears in the kinetic
energy term.

On the other hand, at finite temperature T �= 0 we must
iterate the solutions of the GPE (A12) for the condensate
wave function and the HFB-Popov equations (A26) for the
quasiparticle wave functions, in order to gradually improve
the thermal density ñ(r) for convergence. This iterative pro-
cedure turns out to be very slow with increasing temperature.
In particular, sufficiently close to the superfluid transition, the
small number of condensed particles Nc ∼ O(1) implies that
the chemical potential μ appearing in the GPE (i.e., the lowest
eigenvalue of the operator L̂ in the zero momentum l = 0
sector) can no longer be treated as the chemical potential of
the whole system. To solve this problem, we introduce a new
chemical potential μt of the whole system, by requiring that

1

e(μ−μt )/kBT − 1
= Nc. (B14)

The difference between the two chemical potentials

μ − μt = kBT ln

(
1 + 1

Nc

)
∼ kBT

Nc
(B15)

is negligibly small away from the superfluid transition when
Nc � 1. However, in the vicinity of the superfluid transition,
in the Bose-Einstein distribution function fB(Eη ) we have to
measure the energy Eη of the Bogoliubov quasiparticles with
respect to μt , instead of μ. This leads to a modified expression
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for the thermal density (in the case of excluding the quantum
depletion),

ñ(r) =
∑

η

|uη(r)|2 + |vη(r)|2
eβ(Eη+μ−μt ) − 1

=
∑

η

|uη(r)|2 + |vη(r)|2
(1 + 1/Nc)eβEη − 1

. (B16)

The thermal contribution to the thermodynamic potential in
Eq. (A27) is modified in a similar way (i.e., by replacing Eη

with Eη + μ − μt ).
Finally, a high temperature leads to the significant popu-

lation of the high-energy quasiparticle energy levels, which
would require a large number of expansion basis functions in
solving the HFB-Popov equations and therefore considerably
slow down our numerical calculations. To avoid this prob-
lem, we consider the use of the local-density approximation
(LDA) for the high-lying quasiparticle wave functions [50].
For this purpose, we introduce a high-energy cutoff Ec. For
the quasiparticle energy Eη > Ec, we treat the quasiparticle
wave functions locally (at the position r) as plane waves with
amplitudes uk(r) and vk(r) at the momentum k [50]. The
HFB-Popov equations for the quasiparticles then become[

k2

2 + Veff(r) M(r)
M(r) k2

2 + Veff(r)

][
uk
vk

]
= Ek

[+uk
−vk

]
, (B17)

where

Veff = ω2r2

2
− μ − 8(nc + ñ) + 9n2

c + 36ncñ + 6ñ2, (B18)

M = −4nc + 6n2
c + 18ncñ, (B19)

from which we obtain

u2
k(r) = 1

2

[
k2/2 + Veff(r)

Ek(r)
+ 1

]
, (B20)

v2
k(r) = 1

2

[
k2/2 + Veff(r)

Ek(r)
− 1

]
, (B21)

and

Ek(r) =
√

[k2/2 + Veff(r)]2 − M2(r). (B22)

At the position r, therefore the LDA contribution from the
continuous high-lying energy levels to the thermal density
[i.e., Ek(r) > Ec] is

ñH (r) =
∫

dk
(2π )3

[ k2

2 + Veff(r)]/Ek(r)

(1 + 1/Nc)eβEk (r) − 1
. (B23)

Together with the contribution from the discrete low-lying
energy levels

ñL(r) =
∑

Eη<Ec

|uη(r)|2 + |vη(r)|2
(1 + 1/Nc)eβEη − 1

, (B24)

we obtain the total thermal density

ñ(r) = ñL(r) + ñH (r). (B25)

The LDA treatment for the high-lying quasiparticle energy
levels turns out to be very efficient. Our numerical results are

FIG. 5. Quantum depletion Nqd/N as a function of temperature
at three effective trapping frequencies N1/3ω = 0.5, 1.0, and 2.0.
The depletion is typically about 10%. It vanishes when we increase
the temperature towards the superfluid transition. The trapping fre-
quency ω and temperature T are measured in units of h̄/Mξ 2 and
h̄2/kBMξ 2, respectively.

essentially independent of the cutoff energy Ec, provided it is
reasonably large.

APPENDIX C: QUANTUM DEPLETION

We have self-consistently (and iteratively) solved the cou-
pled HFB-Popov equations, without the inclusion of the
quantum depletion ñqd(r) in the thermal density ñ(r). We
then calculated the number of quantum depleted atoms Nqd =∫

dr
∑

η |vη(r)|2 for a self-consistent check. The results are
shown in Fig. 5, where we consider the temperature de-
pendence of the ratio Nqd/N at three effective trapping
frequencies. We have also tried the inclusion of ñqd(r) in the
thermal density ñ(r) in our numerical iterations and found
qualitatively similar predictions.

It is readily seen that the quantum depletion is typ-
ically at around 10% at zero temperature. Actually, we
would anticipate that the zero-temperature quantum depletion
should be a universal function of n0ξ

3 in the absence of
the external harmonic trap (i.e., about a few percent at our
choice of n0ξ

3 = 1), where the bulk density of the droplet
state is precisely the equilibrium density n0. The increase
of the zero-temperature quantum depletion with increasing
effective trapping frequency should be contributed to the en-
hanced central density due to the external trapping potential.

In more detail, without harmonic traps we may estimate
the quantum depletion at zero temperature within the standard
Bogoliubov theory under the local-density approximation

Nqd =
∫

dr dk
(2π )3

1

2

⎛
⎝ h̄2k2

2m + gnc + Gn2
c√

h̄2k2

2m

(
h̄2k2

2m + 2gnc + 2Gn2
c

) − 1

⎞
⎠,

(C1)

where the condensate density nc(r) � n0 = −3g/2G within
the self-bound droplet (i.e., |r| < R). By rewriting the

043301-9



HU, YU, WANG, AND LIU PHYSICAL REVIEW A 104, 043301 (2021)

equation into the dimensionless units, we find that (x = kξ )

Nqd � 4πR3

3ξ 3

∫ ∞

0

dx

4π2
x2

(
x2 + 4

x
√

x2 + 8
− 1

)
= 2

√
2

3π2

4πR3

3ξ 3
.

(C2)

By dividing the total number of atoms N = N̄ (n0ξ
3) =

(4π/3)(R3/ξ 3)(n0ξ
3), we obtain

Nqd

N
= 2

√
2

3π2

1

n0ξ 3
, (C3)

which is about 9.6% at n0ξ
3 = 1, in agreement with what we

observe in Fig. 5.
At nonzero temperature, as shown in Fig. 5 the quan-

tum depletion decreases as anticipated. It becomes negligibly
small close to the superfluid transition. As in this work we are
mostly interested in the region near the superfluid transition,
the consistent exclusion of the quantum depletion in our HFB-
Popov calculations therefore seems well justified.

APPENDIX D: FIRST-ORDER BEC TRANSITION
TEMPERATURE

The first-order BEC transition temperature at small ef-
fective trapping frequency N1/3ω → 0 might be analytically
derived. To see this, let us consider the free energy FS (T ) of
the superfluid quantum droplet state and the free energy FN (T )
of a normal Bose gas.

1. Normal-state free energy FN (T )

For the normal phase, since the trapping frequency is very
small, the atomic cloud is dilute and can be treated as a
noninteracting Bose gas. The free energy can then be obtained
in the semiclassical approximation [3]

FN =
∫∫

dkdr
(2π )3

ln(1 − e−β(h̄2k2/2m+VT −μ) ) + μN, (D1)

where the chemical potential μ satisfies

N =
∫∫

dkdr
(2π )3

1

eβ(h̄2k2/2m+VT −μ) − 1
. (D2)

These Bose-type integrals can be worked out explicitly, with
the help of the polylogarithmic function Liν (z), i.e.,∫ ∞

0
dε

εν−1

eβ(ε−μ)−1
= (kBT )ν�(ν)Liν (z), (D3)

where the fugacity z ≡ eβμ and �(ν) is the Gamma function.
We find that [3]

FN

N
= kBT

Li4(z)

Li3(z)
+ μ, (D4)

N =
(

kBT

h̄ω

)3

Li3(z). (D5)

In the normal phase, the fugacity z turns out to be very small.
Indeed, below the condensation transition the chemical poten-
tial μ must turn into the bulk chemical potential of the droplet
state, i.e., μ0 = gn0 + Gn2

0/2 < 0, which serves as the energy
unit after we rescale and make the equations dimensionless.
For example, by taking g = −4, G = 6, and n0 = 1, we obtain

μ0 = −1. Therefore, it is reasonable to Taylor expand the
expressions of the free energy and the number of particles,
in terms of the small fugacity z ∼ eμ0/kBT � 1 at low temper-
ature kBT � |μ0|. In the rescaled units, after we take kB = 1
and h̄ = 1, we then obtain that

FN

N |μ0| � T
(

1 − z

16

)
+ T ln z, (D6)

Nω3 � T 3z
(

1 + z

8

)
. (D7)

By reexpressing the fugacity z in terms of the temperature T ,
to the leading order we finally arrive at

FN

N |μ0| � 3T ln
N1/3ω

T
. (D8)

2. Droplet-state free energy FS(T )

At low temperature, the free energy FS (T ) is essentially
the zero-temperature total energy E (T = 0) of the droplet, if
we neglect the small surface effect for a large droplet (with
N � 1). By using Eq. (B3), in the rescaled units we find that

FS

N |μ0| � −1. (D9)

This expression is easy to understand. At zero temperature we
anticipate that all the atoms are bounded into the droplet with
the binding energy |μ0|.

3. First-order superfluid transition temperature

Using the condition FN (T ) = FS (T ) at the transition tem-
perature Tc, we obtain

3Tc ln
N1/3ω

Tc
= −1 (D10)

FIG. 6. Temperature dependence of the chemical potential at
different effective trapping frequency N1/3ω. From bottom to top,
the value of N1/3ω is 0.5, 1.0, 1.2, 1.5, 1.7, 2.0, 2.2, and 2.5. The
chemical potential μ and temperature T are measured in units of
h̄2/Mξ 2 and h̄2/kBMξ 2, respectively.
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FIG. 7. Temperature dependence of the central condensate density at (a) N1/3ω = 0.5 and (b) N1/3ω = 2.0. The insets show the condensate
and thermal density distributions at T = 0.95Tc (black thick curves) and at T = 1.05Tc (red thin curves), respectively. The condensate
distribution is plotted as a solid line and the thermal distribution as a dashed line. The trapping frequency ω and temperature T are measured
in units of h̄/Mξ 2 and h̄2/kBMξ 2, respectively. Moreover, the radius r is measured in units of ξ and the density is measured in units of the
equilibrium density n0.

or

N1/3ω = Tc exp

(
− 1

3Tc

)
. (D11)

By restoring the full units, we find that

N1/3h̄ω = kBTc exp

(
μ0

3kBTc

)
, (D12)

where the bulk chemical potential takes the form

μ0 = −3g2

8G
. (D13)

It is clear that the critical temperature eventually goes to zero
Tc → 0, when we gradually remove the external harmonic
trapping potential ω → 0.

APPENDIX E: CHARACTERISTIC TEMPERATURE T∗
FROM THE CHEMICAL POTENTIAL

At large effective trapping frequency N1/3ω > 1.0, with
decreasing temperature the cloud of three-body interact-
ing bosons experiences a conventional smooth second-order
phase transition from a normal gas to a superfluid gas at Tc.
If we further decrease the temperature below Tc, the system
may become a superfluid liquid (i.e., a quantum droplet) at
a characteristic temperature T∗, where the chemical potential
acquires a maximum in its temperature dependence.

This is not always true, when we decrease the effective
trapping frequency to the regime N1/3ω < 1.0, as reported
in Fig. 6. In that regime, the temperature dependence of
the chemical potential becomes rather flattened. Moreover,

at even smaller effective trapping frequency (i.e., the lowest
curve with N1/3ω = 0.5), the chemical potential monotoni-
cally increases with increasing temperature, before the sudden
(first-order) jump to the chemical potential of a normal phase.
We cannot observe that the characteristic temperature T∗
smoothly merges with the transition temperature Tc at the
tricritical point (N1/3ω, Tc)tri � (1.0, 1.13).

APPENDIX F: CENTRAL CONDENSATE DENSITY
ACROSS THE SUPERFLUID TRANSITION

The difference in the first-order and second-order BEC
transitions can be most easily identified by measuring the cen-
tral condensate density at the trap center. In Fig. 7 we report
the central condensate density as a function of temperature
at two different effective trapping frequencies N1/3ω = 0.5
[Fig. 7(a)] and N1/3ω = 2.0 [Fig. 7(b)], at which the system
experiences the first-order transition and second-order transi-
tion, respectively. The two insets show the spatial distributions
of the condensate density and the thermal density before and
after the BEC transition (see, for example, the black thick
curves at T = 0.95Tc and the red thin curves at T = 1.05Tc).

The first-order BEC transition is clearly revealed in the
inset of Fig. 7(a), where the central condensate density sud-
denly jumps to zero while the thermal density (enlarged by ten
times in the inset) becomes nearly flat in the region plotted. In
sharp contrast, at the second-order BEC transition the central
condensate density gradually vanishes as the temperature in-
creases. As illustrated in the inset of Fig. 7(b), there is still
a considerable condensate density at T = 1.05Tc, due to the
finite number of particles (i.e., the finite-size effect).
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