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Generation of quantum vortices in photodetachment: The role of the ground-state wave function
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Formation of quantum vortices in laser-induced photodetachment from negative ions is analyzed. The driv-
ing laser field consists of a single ultrashort pulse of circular polarization and the unperturbed ground-state
wave function of the anion is found in either the s or p state. In particular, numerical illustrations for the
photodetachment from H−, O−, K−, and a model A− anion are presented. Special attention is paid to the
symmetry of the ground-state wave function and ionization potential over the final vortex pattern. It is shown
that the two-dimensional spectra of photoelectrons in momentum space comprise three well-defined regions:
The low-energy (central) region, multiphotonlike zone, and supercontinuum. While the supercontinuum does
not contribute to vorticity and the multiphoton zone depends only on the laser field characteristics, vortices in
the low-energy region strongly depend on the bound-state wave function and its ionization potential.
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I. INTRODUCTION

Electron vortices in quantum mechanics were first de-
scribed by Dirac in 1931 [1], only a few years after the
publication of the Schrödinger equation. In that paper, the
author described the fundamental characteristics of electron
vortex states by analyzing the general properties of the elec-
tron wave function. More than 40 years later, Hirschfelder
et al. [2–5] revisited Dirac’s findings to explore the formation
of matter vortices (originally known as quantum whirlpools)
during chemical reactions, molecular collisions, and scatter-
ing. This was done from the perspective of the hydrodynamic
formulation of quantum mechanics by Madelung [6]. A
detailed analysis of vortex structures analyzed under this for-
mulation can be found in, e.g., Refs. [7,8]

During the last decade, a growing interest in the generation
and properties of propagating electron vortex states (EVSs,
also known as twisted states) has been observed. EVSs are
characterized by a wave function which circulates around
nodal streamlines and carries intrinsic orbital angular momen-
tum (OAM). The OAM is quantized and acquires values of
mh̄, where m is an integer number called topological charge
or winding number. Moreover, the wave fronts of twisted
electrons follow a screwlike path (in position representation)
with a vanishing probability at its center [9]. Depending on
the type of solution of the Schrödinger equation (in cylindri-
cal coordinates), and the boundary conditions imposed over
it, nonrelativistic EVSs are commonly classified into Bessel
states, Laguerre-Gaussian states, bandwidth-limited states,
etc. [10–12]. Note, however, that sets of Bessel or Laguerre-
Gaussian functions constitute an orthonormal basis; hence,
it is in principle possible to decompose any wave function
representing an electron beam as a superposition of twisted
states [11].
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In recent years, another type of electron “vortexlike” struc-
tures has received attention. They were originally predicted
in photoionization of He atoms driven by two circularly po-
larized ultrashort laser pulses of opposite handedness [13].
Such structures appear as concentric multiarmed Fermat spi-
rals in the probability distribution of ionization in momentum
representation. Their actual shape depends upon the time de-
lay between consecutive laser pulses and their handedness
(right-left or left-right circular polarizations) [13]. It was also
found that the number of spiral arms varies when two-color
driving pulses are used [14]. Those works inspired subsequent
papers; such structures were predicted in the double ionization
of He [15,16] and single ionization of positive diatomic and
triatomic molecular ions [17,18], and have been experimen-
tally observed in photoionization of K atoms [19]. However,
it was recently shown that Fermat spirals are not necessarily
connected to actual quantum vortices [20]. In particular, the
authors showed that, in photodetachment from the H− ion (s
state), a sequence of two counter-rotating driving pulses leads
to no vorticity. In contrast, a single and short laser pulse (or
series of two corotating pulses) creates rich vortical structures.

In Ref. [21], the authors decomposed the electron wave
function showing Fermat spirals into a basis of twisted states.
The analysis was carried out for Ne atoms (p orbitals). It was
shown that, when two twisted states with opposite topological
charge (±m) interfere along well-defined regions in momen-
tum space, multiarmed spirals are clearly observed. This
happens when the target atom is found with a magnetic quan-
tum number m� = 0. As they argue, for m� �= 0 the resulting
electron wave function contains dissimilar contributions from
twisted states with positive and negative topological charges,
leading to blurred spirals. Those observations, together with
the analysis developed in Ref. [20], strengthen the idea that
Fermat spirals should not be confused with (or named as)
vortices; they appear when two twisted states with opposite
topological charges contribute equally to the final electron
wave function. Therefore, the total OAM vanishes at each
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point in momentum space and no actual electron vortices
are formed. It is, however, possible to find both vortices and
spiral-like (blurred) structures. This happens when the topo-
logical charges in the OAM decomposition do not cancel each
other (e.g., when the atom or ion has m� �= 0).

The use of two consecutive and opposite circularly polar-
ized driving pulses hinders the formation of quantum vortices
when the unperturbed target ion (atom) is found in the s
state. Moreover, laser fields consisting of two identical pulses
lead to additional nodal lines in the probability distribution
of photoelectrons but no new vortices are expected to ap-
pear [20]. Hence, the most favorable condition for the creation
of quantum vortices is met when photodetachment is driven
by single laser pulses, or more exotic trains of pulses with
different handedness [23].

The essence of theoretical physics is the analysis and
understanding of complex processes. Usually such physical
phenomena are influenced by (and depend upon) a large
number of parameters and variables. It is usually desir-
able to minimize the number of key variables, such that
the complexity of the analysis diminishes. Scientists create
a “controlled environment” where only certain parameters
are allowed to vary. In doing so, the problem under con-
sideration becomes tractable and a suitable model can be
constructed. Once the underlying mechanisms governing the
phenomenon are found, other variables can be incorporated
into the model. In this spirit, we shall present here a the-
oretical analysis of the formation of quantum vortices in
photodetachment. We base our calculations on the strong-field
approximation (SFA) [24–26] (further extended by Gribakin
and Kuchiev [27] to treat photodetachment) and we shall
focus mainly on the influence of the ground-state wave func-
tion of the target ion upon the resulting electron vortices.
Namely, other key parameters in photodetachment (e.g., po-
larization, frequency, and duration of the driving field) are
kept unchanged while we investigate the vortex formation
from anions in the s or p state. Note that in Ref. [22], the
authors analyzed the strong-field photoionization from neutral
atoms driven by linearly or circularly polarized laser fields.
Special emphasis was made upon the influence of the laser
pulse characteristics over the final OAM of the freed electron.
Particularly, by determining the probability amplitude of ion-
ization under the SFA, the OAM conservation relations were
obtained there. Even though their main analysis relates to a
“simple” ground-state wave function (i.e., the bound electron
is characterized by a magnetic quantum number m� = 0),
some extrapolations to other states were also made. It is the
aim of this paper to extend the investigations initiated there
and in Refs. [20,21,23].

This paper is organized as follows. In Sec. II we introduce
the main concepts in quantum vorticity by presenting Dirac’s
findings [1] in a more modern language. We also introduce the
definition of topological charges (Sec. II B) and show how to
calculate them in position representation. Its extension to the
three-dimensional (3D) momentum space [20,28] is shown in
Sec. III D. A general expression for the probability amplitude
of photodetachment, in the framework of the SFA, is presented
in Sec. III. In particular, we calculate this amplitude in the
length gauge (Sec. III A) for wave functions in either the s

or p state (Sec. III B) according to the short-range potential
model [27,29]. In Sec. IV we introduce the driving laser pulse
used in our calculations and determine its time and frequency
properties. Our numerical results are presented in Sec. V. We
analyze photodetachment from the H− and an A− “toy model”
(Sec. V A), and for the O− (Sec. V B) and K− (Sec. V C)
anions. The total probabilities of detachment are presented
in Sec. V D. Finally, in Sec. VI we summarize our main
conclusions.

We use atomic units (a.u.) throughout this paper. While we
set h̄ = 1, in our derivations we show the electron mass, me,
and charge, e = −|e|, explicitly. Our numerical illustrations
are presented in terms of the atomic units of momentum,
pat = αmec; electric field, Eat = p3

at/(|e|h̄me ); intensity, Iat =
ε0cE2

at; and energy, Eat = p2
at/me. Here, α represents the fine-

structure constant and ε0 is the permittivity of free space.
Also, c represents the speed of light. We take the conversion
factors of intensity and energy as Iat ≈ 7.02 × 1016 W/cm2

and Eat ≈ 27.21 eV, respectively.

II. VORTICES IN QUANTUM MECHANICS

In Dirac’s 1931 paper [1], the fundamental properties of
vortex states in quantum mechanics were described. Unfortu-
nately, this work remained largely unnoticed for many years.
For this reason, we deem it important to present some of his
most important results while using a more familiar notation
(Sec. II A). In doing so, important concepts necessary for the
proper understanding of vortex states are also introduced. In
Sec. II B we use such concepts to calculate the topological
charges.

A. Dirac’s analysis

Consider an electron moving in the presence of a potential
V0(r, t ). Its wave function, ψ0(r, t ), satisfies the Schrödinger
equation

− 1

2me
∇2ψ0(r, t ) + eV0(r, t )ψ0(r, t ) = i

∂

∂t
ψ0(r, t ), (1)

and can be written in terms of its modulus and phase,
i.e., ψ0(r, t ) = R(r, t )eiS0 (r,t ), where R(r, t ) = |ψ0(r, t )| and
S0(r, t ) = arg[ψ0(r, t )]. It is clear that the addition of integer
multiples of 2π to S0(r, t ) would leave ψ0(r, t ), and any
physical observables related to it, unchanged. Furthermore,
the continuity condition inherent to the wave function also re-
mains valid. Assume now that there is a linear transformation
T which adds an undefined phase �(r, t ) to all states in the

Hilbert space. In particular, ψ0(r, t )
T−→ ψ (r, t ) with

ψ (r, t ) = ψ0(r, t )ei�(r,t ) = R(r, t )eiS(r,t ), (2)

and S(r, t ) = S0(r, t ) + �(r, t ). As the additional phase is in-
dependent of any particular state, and common to all of them,
the transformation T should be related to the introduction of
an external force field acting upon the whole system. If ψ (r, t )
describes the state of an electron moving in the presence of the
potential V0(r, t ), it must satisfy the Schrödinger equation

− 1

2me
∇2ψ (r, t ) + eV0(r, t )ψ (r, t ) = i

∂

∂t
ψ (r, t ). (3)
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From Eqs. (2) and (3) it is easy to show that the following equation is also satisfied:

1

2me
[−i∇ + α(r, t )]2ψ0(r, t ) + e[V0(r, t ) + 1

e
α0(r, t )]ψ0(r, t ) = i

∂

∂t
ψ0(r, t ), (4)

where α(r, t ) = ∇�(r, t ) and α0(r, t ) = ∂t�(r, t ).
By comparing Eqs. (1) and (4) it becomes clear that the

multiplication of ψ0(r, t ) by the Dirac phase ei�(r,t ) intro-
duces a change in the electron momentum given by α(r, t ),
together with a change in potential proportional to α0(r, t ).
This is equivalent to the introduction of an electromagnetic
field external to our system. Such a field is defined by a vector
potential −eA(r, t ) = α(r, t ) and a scalar potential eV1(r, t ) =
α0(r, t ). The electric and magnetic fields compatible with
them are therefore given by

E (r, t ) = − 1

e
∇α0(r, t ) + 1

e

∂

∂t
α(r, t ), (5)

B(r, t ) = − 1

e
∇ × α(r, t ), (6)

respectively.
It is now interesting to calculate the changes in phase

�(r, t ) along a closed curve C. This is done by integrating
∇�(r, t ) = α(r, t ) around C, i.e.,

	�C =
∮
C

α(r, t ) · dr =
∫
S

[∇ × α(r, t )] · ds

= − e
∫
S
B(r, t ) · ds, (7)

where the right-hand-side integral is calculated over the area S
enclosed by the contour C. In other words, the change in phase
	�C around a closed loop is proportional to the magnetic flux
across S .

From this observation, Dirac concluded that the changes in
phase are determined by the magnetic flux plus an additional
�m = 2πm. Consider now a circular loop in the 3D space
with vanishing radius ρ. The magnetic flux through the sur-
face S = πρ2 vanishes and, from the continuity of the wave
function, only infinitesimally small changes in its phase are
possible. This implies that the only additional phase �m must
be �0 = 0.

Suppose that there is a point where both the real and
imaginary parts of the wave function vanish. A collection of
such points in the 3D space forms continuous nodal lines (or
surfaces) characterized by a vanishing probability density and
a singular phase. If the infinitesimally small contour surrounds
one of such lines, the change in phase of the wave function
around C does not have to be small, as the continuity condi-
tions for the phase do not apply anymore. In fact, it can take
a value close to �m with m not necessarily equal to zero [1].
Dirac already recognized the integer m as an intrinsic property
of the particular nodal line [30]. In modern terminology m is
known as the topological charge (see, e.g., Refs. [10–12]).

The generalization of those findings to an arbitrary contour
is straightforward; the total change in phase of the wave func-
tion along a closed path C and encircling N nodal lines with

topological charges mi is given by [1]

∮
C

∇S(r, t ) · dr = 2π

N∑
i=0

mi − e
∫
S
B(r, t ) · ds. (8)

Even though this fundamental result was derived from the
properties of a wave function in position representation, it
can be extended to an arbitrary three-dimensional space (see
below).

B. Calculation of the topological charge

The aim of this paper is to analyze the formation of vortices
in photodetachment driven by a short laser pulse. After the
interaction with the pulse is over, both the electric and mag-
netic fields vanish. Hence, at times t � Tp (with Tp being the
duration of the laser pulse), the change in phase of the wave
function ψ (r, t ) around the contour C is only determined by
the number of nodal lines encircled by it and their individual
topological charges, i.e.,

∮
C

∇S(r, t ) · dr = 2π

N∑
i=0

mi. (9)

With the wave function written in terms of the two real func-
tions R(r, t ) and S(r, t ) [see Eq. (2)] it follows directly that

Re(ψ∗(r, t )[−i∇]ψ (r, t )) = R2(r, t )∇S(r, t ). (10)

Hence, from Eq. (9) we obtain the following relation:

∮
C

Re(ψ∗(r, t )[−i∇]ψ (r, t ))

|ψ (r, t )|2 · dr = 2π

N∑
i=0

mi. (11)

The symmetry of our problem calls for a treatment in cylin-
drical coordinates. The topological charges are calculated for
a circular loop parallel to the laser field polarization plane (i.e.,
the xy plane) of radius ρr and center at the z axis. With ρ =
(ρr cos ϕ, ρr sin ϕ, ρz ) and taking ρr and ρz constant, Eq. (11)
takes the form [20]

m(ρr, ρz, t ) = 1

2π

∫ 2π

0
dϕ

Im(ψ∗(ρ, t )∂ϕψ (ρ, t ))

|ψ (ρ, t )|2 . (12)

Here, m(ρr, ρz, t ) is the total topological charge enclosed by a
circle of radius ρr at times t � Tp.

III. PROBABILITY AMPLITUDE OF DETACHMENT

We consider the photodetachment of a negatively charged
ion driven by a single ultrashort laser pulse. In our derivations,
we use both the single-active electron approximation and the
dipole approximation. It is assumed that at times t < 0 the ion
is in its unperturbed ground state. The outermost electron is
described by the stationary state |�0〉 with energy E0, such
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that

Ĥ0|�0〉 = E0|�0〉, (13)

where

Ĥ0 = p̂2

2me
+ eVSR(r̂) (14)

is the ionic Hamiltonian, p̂ is the momentum operator, and
VSR(r) is a short-range effective potential experienced by the
electron. When the laser pulse acts over the target anion (i.e.,
at times t ∈ [0, Tp]), the full Hamiltonian governing the elec-
tron dynamics is given by

Ĥ (t ) = Ĥ0 + ĤI(t ). (15)

Here ĤI(t ) is the gauge-dependent interaction Hamiltonian
(which accounts for the interaction with the light field) and
vanishes at t < 0 and t > Tp. It is assumed that at t � Tp the
freed electron is found in the exact scattering state |
p(t )〉
with asymptotic momentum p. This state contains information
about the interaction of the electron with both the effective
potential and the laser field during its whole evolution. Its
analytical expression is, in general, unknown.

The probability amplitude of detachment, A(p), from the
ground state |�0〉 to the scattering state |
p(t )〉 has been
previously calculated (see, e.g., Refs. [23,27,31]) and it is
given by

A(p) = −i
∫ Tp

0
dt〈
p(t )|ĤI(t )|�0(t )〉, (16)

where |�0(t )〉 = |�0〉 exp (−iE0t ). The essence of the SFA
consists in approximating the exact scattering state by the
Volkov solution of the electron in the laser field [32]. Namely,
it is assumed that the freed electron does not interact with the
parent ion (or neutral atom) after its promotion to the contin-
uum [33]. Hence, under the SFA framework, the probability
amplitude of detachment reads

A(p) ≈ −i
∫ Tp

0
dt〈ψp(t )|ĤI(t )|�0(t )〉, (17)

where |ψp(t )〉 represents the gauge-dependent Volkov state.
The introduction of such state, however, breaks the gauge
invariance of the theory; different predictions are expected
depending on whether the velocity or length gauges are used.

A. Probability amplitude in the length gauge

The probability amplitude in the SFA, as presented in
Eq. (17), is very general. The interaction Hamiltonian, ĤI(t ),
and the Volkov state |ψp(t )〉 can be determined either in the
length or the velocity gauges. Our aim here is to calculate the
probability amplitude of photodetachment in the length gauge
(as suggested by Gribakin and Kuchiev in Ref. [27]) when
the target anion is found in the s or p state. In this gauge, the
Volkov solution takes the form [31,32]∣∣ψL

p (t )
〉 = |p − eA(t )〉

× exp

[
−i

∫ t

0
dt ′

[
1

2me
(p − eA(t ′))2

]
, (18)

and the interaction Hamiltonian reads

ĤI(t ) = −eE (t ) · r̂. (19)

Note that E (t ) = −∂t A(t ) is the oscillating electric field defin-
ing the laser pulse and A(t ) is the corresponding vector
potential.

From Eqs. (18) and (19), the probability amplitude of de-
tachment [Eq. (17)] can be written as [23,31]

A(p) = ie
∫ Tp

0
dt E (t ) · �̃0(p − eA(t ))eiG(p,t ), (20)

with

G(p, t ) =
∫ t

0
dt ′

[
1

2me
(p − eA(t ′))2 − E0

]
. (21)

For simplicity, we have also introduced the function �̃0(p)
evaluated at the kinetic momentum p − eA(t ). It is defined as

�̃0(p) =
∫

d3r r�0(r)e−ip·r = i∇p�̃0(p), (22)

where ∇p is the gradient calculated in momentum coordi-
nates and �̃0(p) is the Fourier transform of the ground-state
wave function �0(r) = 〈r|�0〉. According to the convention
adopted in this paper, the Fourier transform from position to
momentum coordinates is defined as

�̃0(p) =
∫

d3r e−ip·r�0(r). (23)

In the following, we shall introduce the ground-state wave
function for a weakly bound electron in a negative ion, accord-
ing to the short-range potential model, and calculate �̃0(p)
[Eq. (22)].

B. s and p states for a negative ion

As it was shown by Gribakin and Kuchiev [27], the pho-
todetachment from negative ions depends, up to a large extent,
on the asymptotic form of the ground-state wave function
(at least in the length gauge). It was demonstrated that the
many-electron interactions happening at short distances from
the nucleus do not influence importantly the probability am-
plitude of detachment and, in fact, can be accounted for by
choosing an adequate asymptotic form of the wave function
[i.e., by using appropriate parameters A and κ in Eqs. (28)
and (29) below]. Furthermore, in Refs. [20,23], the authors
corroborated that the SFA gives remarkable qualitative and
quantitative results (up to a constant factor) in photodetach-
ment from H− (s state) when considering only the asymptotic
form of the wave function. Their results were compared with
the numerical solution of the time-dependent Schrödinger
equation (TDSE). For this reason, we shall calculate the prob-
ability amplitude of detachment in the SFA only considering
the asymptotic form of the bound state.

1. Bound states in a short-range effective potential

We base our further derivations on a short-range potential
to model the electron-core interaction. For an electron charac-
terized by the azimuthal and magnetic quantum numbers � and
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m�, respectively, the ground-state wave function reads [29]

�0(r) ≈ A

√
2κ

π

K�+1/2(κr)√
r

Y m�

� (θr, ϕr), (24)

where r, θr, and ϕr are the magnitude, polar angle, and az-
imuthal angle defining the position vector r; Y m

� (θr, ϕr) are
the spherical harmonics and K�+1/2(κr) are the Macdonald
functions (also known as the modified Bessel functions of the
second kind). For this particular effective model, two param-
eters are introduced: The prefactor A, and κ . While the latter
relates to the ground-state energy of the anion as

E0 = −Eat
κ2

2
, (25)

the former is a fitting parameter (not a normalization constant)
chosen by comparing the expected ion properties with exper-
imental results or other ab initio calculations. For a detailed
discussion about the coefficient A, we refer the reader to
Ref. [34].

For s and p states, we use the analytical expressions for
the Macdonald function (see Eqs. 10.47.9 and 10.49.13 in
Ref. [35])

K1/2(κr) =
√

π

2κr
e−κr, (26)

K3/2(κr) =
√

π

2κr
e−κr

[
1 + 1

κr

]
. (27)

Hence, from Eq. (24), the s-orbital wave function reads

�s(r) = A

r
e−κrY 0

0 (θr, ϕr), (28)

and for p orbitals (m� = 0,±1) we obtain

�(m� )
p (r) = A

r
e−κr

[
1 + 1

κr

]
Y m�

1 (θr, ϕr). (29)

Of course, κ and the prefactor A in Eqs. (28) and (29) depend
upon the particular anion and its ionization potential.

2. Fourier transform of the wave function

The Fourier transform of the bound state �0(r) is given
by Eq. (23). By making use of the plane-wave decomposition
into spherical harmonics [36],

eip·r = 4π

∞∑
�′=0

�′∑
m′

�
=−�′

i�
′
j�′ (pr)Y

m′
�

�′
∗
(θp, ϕp)Y

m′
�

�′ (θr, ϕr), (30)

where j�(pr) are the spherical Bessel functions of the first
kind, �̃0(p) takes the form

�̃0(p) = 4A
√

2κπ (−i)�Y m�

� (θp, ϕp)

×
∫ ∞

0
dr r3/2K�+1/2(κr) j∗� (pr). (31)

In particular, for the s orbitals we obtain

�̃s(p) = 2
√

πA

κ2 + p2
, (32)

and from the definition of �̃0(p) in Eq. (22),

�̃s(p) = − 4
√

πAi

(κ2 + p2)2
p. (33)

Proceeding in the same way, we find out that the Fourier
transform for p states is

�̃(m� )
p (p) = −4iπAY m�

1 (θp, ϕp)
p

κ (κ2 + p2)
, (34)

where p, θp, and ϕp are the magnitude, polar, and azimuthal
angles defining the vector p. (According to our convention,
the px py plane corresponds to θp = π/2 and the px pz plane
corresponds to ϕp = 0 and π .) Moreover, from Eqs. (22)

and (34), the functions �̃
(m� )
p (p) for each magnetic quantum

number m� are

�̃
(−1)
p (p) =

√
6πA

κ (κ2 + p2)

(
ex − iey − 2(px − ipy)

κ2 + p2
p
)

, (35)

�̃
(0)
p (p) = 2

√
3πA

κ (κ2 + p2)

(
ez − 2pz

κ2 + p2
p
)

, (36)

�̃
(1)
p (p) = −

√
6πA

κ (κ2 + p2)

(
ex + iey − 2(px + ipy)

κ2 + p2
p
)

. (37)

Here, ex, ey, and ez are the unit vectors pointing along the
x, y, and z directions, respectively. As the ground-state wave
functions and their Fourier transforms have been calculated,
it only remains to define the laser pulse. This will be done in
Sec. IV, after we introduce the triply differential probability
distribution and the topological charges in momentum space.

C. Triply differential probability distribution
and total probability

We define now the differential probability distribution in
momentum space P̄ (p). According to the conventions used in
this paper, it reads

P̄ (p) = 1

(2π )3
|A(p)|2, (38)

such that the total probability of detachment P is

P =
∫

d3 p P̄ (p). (39)

This integral is performed by Monte Carlo methods
(Sec. V D). In our analysis we also present the energy-angular
triply differential probability distribution P (p)

P (p) = d3P

dE (p)d2�p
= me

(2π )3
|p| · |A(p)|2, (40)

where E (p) = p2/2me is the asymptotic kinetic energy of the
electron and �p is the solid angle of detection.

D. Topological charges in momentum space

In Sec. II we have shown how to calculate the topological
charges in position representation. Moreover, it is possible to
calculate them in any parametric space of arbitrary dimen-
sions. This is related to the so-called Berry connection [37].
In particular, we are interested in calculating the topological
charges in momentum representation. Given the probability
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amplitude of detachment A(p), it can be shown that the topo-
logical charges m(pr, pz ) at t � Tp are given by (see, e.g.,
Refs. [20,28] and references therein)

m(pr, pz ) = 1

2π

∫ 2π

0
dϕp

Im(A∗(p)∂ϕpA(p))

|A(p)|2 . (41)

This is equivalent to Eq. (12) but in momentum space. Here,
p ≡ p(pr, ϕp, pz ) is written in cylindrical coordinates such
that px = pr cos ϕp, py = pr sin ϕp, and pz is fixed. Namely,
the contour C in Eq. (11) is a circle of radius pr located at a
distance pz over the px py plane. Before proceeding further, we
shall define our laser field.

IV. LASER PULSE

We consider the photodetachment process driven by a cir-
cularly polarized single laser pulse comprising Nosc = 3 field
oscillations within a sin2 envelope. It is assumed that the
total pulse duration is Tp; hence, the fundamental frequency
of oscillations is ω = 2π/Tp. If ωL is the laser carrier fre-
quency, then ωL = ωNosc and the corresponding wavelength is
λL = 2πc/ωL. Note that the phase of the laser field, φ = ωt ,
changes from zero to 2π while t changes from zero to Tp.

The laser pulse described above (and propagating along the
z axis) is defined by the oscillating electric field E (φ) as

E (φ) = E0[F1(φ)ex + F2(φ)ey], (42)

where

E0 = Eat

√
I/Iat (43)

is the peak amplitude of field oscillations and I is the maxi-
mum intensity achieved by the pulse provided that

max
φ∈[0,2π]

(
F 2

1 (φ) + F 2
2 (φ)

) = 1. (44)

The shape functions F1(φ) and F2(φ) are

F1(φ) = N sin2
(φ

2

)
sin (Noscφ) cos δ, (45)

F2(φ) = −N sin2
(φ

2

)
cos (Noscφ) sin δ (46)

for φ ∈ [0, 2π [ and are zero otherwise. The parameter δ deter-
mines the polarization of the pulse. In particular, for circularly
polarized fields, we set δ = π/4. In such case the normal-
ization constant is N = √

2 which guarantees that Eq. (44)
is satisfied. For our numerical illustrations we consider a
laser field of wavelength λL = 4000 nm (equivalent to ωL ≈
0.310 eV), pulse duration Tp ≈ 40 fs for Nosc = 3, and a max-
imum intensity I = 2.5 × 1011 W/cm2. This type of pulse has
also been considered in Ref. [20].

The vector potential associated to our light field, A(φ), is
obtained by integrating the electric field [Eq. (42)], i.e.,

A(φ) = − 1

ω

∫ φ

0
E (φ′)dφ′. (47)

For our choice of electric-field shape functions, the vector
potential also vanishes outside the interval φ ∈ [0, 2π ]. More-
over, we introduce here the phase-dependent ponderomotive

energy of the electron in the laser field, Up(φ):

Up(φ) = e2A2(φ)

2me
. (48)

Its relevance will be clear in the following sections.
Our investigation concerns photodetachment driven by

an ultrashort laser pulse. Such a pulse can be decomposed
in its Fourier constituents, and generally contains contribu-
tions from many frequencies. Under those circumstances, the
traditional concept of multiphoton ionization (where the en-
ergy spectra of photoelectrons consist of individual δ-like
peaks separated by a single-photon energy) is not necessar-
ily applicable; numerous photons of different frequency may
contribute to photodetachment. Hence, it is not expected that
the high-probability regions in the energy distributions of
photoelectrons appear at exact integer multiples of ωL. Nev-
ertheless, for longer pulses the frequency bandwidth narrows
around the laser carrier frequency, and sharp peaks separated
by single-photon energies should be observed. This is in ac-
cordance with Ref. [22].

In Fig. 1 we show the temporal evolution of the tips of
the vector potential eA(ϕ) (left panel) and electric field eE (ϕ)
(second panel) for the laser pulse configuration considered
here. Those parametric plots are created by changing the
phase of the laser field from φ = 0 to 2π . The curves start and
end at the origin of coordinates and evolve counterclockwise.
The angles (in degrees) correspond to ϕA(φ) = arg[eAx(φ) +
ieAy(φ)] for the vector potential and ϕE (φ) = arg[eEx(φ) +
eiEy(φ)] for the electric field. In the third frame we show the
two-dimensional (nonrelativistic) extension of the so-called
spiral of ionization Up(ϕA) [31,38–41]. It is constructed by
plotting the time (phase)-dependent ponderomotive energy
Up(φ) as a parametric plot. The angle with respect to the x
axis is, by definition, ϕA(φ) and the magnitude corresponds to
|Up(φ)|. The predicting power of the spiral can be summarized
in two basic points: (i) Up(ϕA) defines the regions in momen-
tum space where the probability of ionization (or detachment)
is maximal and (ii) interference effects are observed when the
arcs of Up(ϕA) intersect each other. If a section of the arc is
far enough from the remaining parts of the parametric curve,
an electron supercontinuum is formed (ionization without in-
terference) [42,43]. As it will be clear in the next section, the
spiral describes the main features of the probability distribu-
tion of photodetachment, from a qualitative perspective, for
the laser field parameters considered here.

In order to better characterize the laser pulse, it is necessary
to determine its frequency components. In doing so, we first
define the time-to-frequency Fourier transform of an arbitrary
vector function g(t ) as [cf. Eq. (23)]

g̃(ω) =
∫

dt eiωt g(t ). (49)

In particular we are interested in the frequency distribution of
the laser pulse, which is defined as

|Ẽ (ω)|2 = |Ẽx(ω)|2 + |Ẽy(ω)|2. (50)

This is shown in the right panel of Fig. 1 for our light field
(positive ω). The frequency at which the maximum appears
is very close to the laser carrier frequency ωL ≈ 0.310 eV,
as illustrated by the red vertical line, and the full width at
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FIG. 1. Temporal evolution of the tips of the vector potential eA(φ) (left panel), electric field eE (φ) (second panel), and the two-
dimensional spiral of ionization Up(φ) (third panel) as parametric plots. Those curves start and end at (0,0) and evolve counterclockwise
while changing φ from zero to 2π . The laser pulse is defined by Eqs. (42)–(47) and comprises Nosc = 3 field oscillations. The polarization is
circular (δ = π/4) and the wavelength and intensity are fixed to λL = 4000 nm and I = 2.5 × 1011 W/cm2, respectively. In the right panel we
present the frequency distribution of the pulse [see Eqs. (49) and (50)] indicating the position at which its maximum is achieved (red vertical
line) and the FWHM (red horizontal line).

half maximum (FWHM) is approximately 0.148 eV (red hor-
izontal line). Thus, the ratio FWHM/ωL ≈ 0.5 and photons
with frequencies close to 0.310 ± 0.074 eV can participate in
photodetachment.

V. VORTICITY, LASER PULSE, AND THE GROUND
STATE OF THE ANION

Vortex structures in the probability amplitude of photode-
tachment depend on both the laser pulse characteristics and
the ground-state wave function. This can be understood, as
a first approach, by applying simple consideration of OAM
conservation. We are dealing with circularly polarized laser
pulses, hence each absorbed photon transfers one unit of h̄ to
the final angular momentum of the photoelectron. For ionic
systems interacting with a laser pulse, at least

Nmin(E0, ωL) ≈ �(Ip + Up(φ0))/ωL� (51)

photons need to be absorbed to promote an electron to the con-
tinuum. Here, �x� denotes the ceiling function of x and Up(φ0)
is the ponderomotive energy of the electron at its time of
birth. This implies that the minimum topological charge of the
resulting electron wave packet is, at least, Nmin(E0, ωL). The
absorption of additional photons leads to the observation of
the so-called multiphoton peaks in above-threshold ionization
(ATI) (see Ref. [44] and, e.g., Ref. [45]) and to the increment
of the total OAM by one unit of h̄ [20]. On the other hand, the
initial state of the bound electron also contributes to the total
angular momentum; if the electron wave function is initially
found in the (�, m�) = (1,±1) state, the topological charges
are expected to acquire an additional ±h̄. In contrast, if the
electron is found in the (�, m�) = (0, 0) or (�, m�) = (1, 0)
state there is no additional OAM [21]. Therefore, as a simple
rule, one expects that the topological charges m(pr, pz ) are
approximately (see also Ref. [22])

m(pr, pz ) ≈ NATI(pr ) + Nmin(E0, ωL) + m�, pr > p0,

(52)

where NATI(pr ) is an integer which represents the num-
ber of multiphoton peaks (rings) surrounded by a circle of
radius pr in the three-dimensional momentum space. Fur-
thermore, p0 determines the region where the probability
distribution starts to exhibit the multiphoton behavior (see
below).

As it is stated in Ref. [7] quantum vortices can appear,
in the three-dimensional space, as lines which start and end
at ±∞ or as closed curves; in the intersection with a two-
dimensional plane they appear either as a single point where
the probability amplitude vanishes, or as two separated points
with opposite circulations. (A typical example of the creation
of closed vortex loops can be found in the formation of the
von Kármán streets of vortices by linearly polarized laser
pulses, where there is no net angular momentum transfer from
photons to electrons [28,46].) It is expected that Eq. (52) is
valid in the limit pr → ∞, as it arises from the conservation
of total angular momentum. Therefore, such an approximation
takes only into account the vortex lines which start and end at
±∞ while topological charges coming from vortex loops are
not accounted for [47].

In this section we analyze the influence of the symmetry
of the ground-state wave function upon the phase and magni-
tude of the probability amplitude of detachment. Regions in
momentum space where the probability distribution vanishes
determine the presence of vortex lines or nonvortex nodal
surfaces. (While the former are commonly visualized as points
in the intersection with a two-dimensional plane, the latter
appear as lines.) To distinguish among them, we calculate the
amplitude’s phase. If the phase changes continuously from
zero to 2π around a nodal point then we have a vortex line. In
contrast, if the phase jumps by π while crossing a nodal line
we have a nonvortex nodal surface. In addition, we calculate
the total topological charge m(pr, pz ) [Eq. (41)] as a function
of pr . This is especially useful to detect infinite vortex lines
and loops for which vortices and antivortices are sufficiently
well separated.

As our main objective is to understand the influence of the
symmetry of the wave function in photodetachment, we first
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FIG. 2. In the upper panels we show the triply differential probability of detachment P (p) [Eq. (40)] in the px py plane (θp = π/2) as a
function of the scaled kinetic energy E (p)/ωL and the azimuthal angle ϕp. While the distribution for the (1,0) state is calculated at pz = 0.05
a.u. (we show its projection over the px py plane), the remaining distributions are calculated at pz = 0. In the second row we show the triply
differential probability of detachment as a function of E (p)/ωL at constant polar and azimuthal angles of electron detection, θp = π/2 and
ϕp = π . There, broad multiphotonlike peaks can be observed with deep minima between them. The vertical red line, at E (p) ≈ 0.7ωL, locates
the transition from the central region to the multiphoton regime, and its position is similar for all distributions. In the third row we present
the topological charges m(pr, pz ) calculated from Eq. (41) as a function of the energy E (pr )/ωL = p2

r/(2meωL ). The contour C is a circle of
radius pr , parallel to the px py plane and at a distance pz from the origin of coordinates. Note that, in all cases, m(0, pz ) = 0. The laser pulse is
as defined in Fig. 1 and the target anion is H− for the s state [20] and a model anion A− for p states.

start by considering an H− and A− toy model. By this we
mean that for the s states we analyze the photodetachment
from the well-known H− (see Ref. [20]) while we assume that
there is another anion A− which has the exact same ionization
potential but can be found in the unperturbed p state (i.e.,
only the symmetry of the wave function is changed while the
remaining ionic and laser field parameters remain the same).
In doing so, we identify the differences in vorticity arising
only from the symmetry of the bound state. After that, we
shall consider photodetachment from other anions as O− and
K− such that the influence of the ionization potential can also
be determined.

A. H− and A− toy model

We start by considering the H− anion and A− model.
We assume the existence of the A− anion with the exact same
ionization potential (Ip) as H− but with a wave function in the
p states. Hence, the parameters defining the ground-state wave
function are, in both cases, κ = 0.2354 and A = 0.75 [27], for
which Ip = −E0 = 0.754 eV.

In the upper row of Fig. 2 we show the triply differen-
tial probability distribution of photodetachment in the px py

plane, P (p) with θp = π/2 [Eq. (40)], as a function of the
electron kinetic energy in units of the single-photon dominant
frequency, E (p)/ωL = p2/(2meωL), and the azimuthal angle
ϕp. Each panel corresponds to a different initial ground-state
wave function, characterized by the azimuthal and magnetic
quantum numbers (�, m�), as indicated in the upper part of the
figure. The left column shows the results for H− (s orbital)
and the three right columns are for the A− model (p orbitals
with m� = −1, 0, 1). All distributions are calculated at pz =
0, except for the one corresponding to the (1,0) state. In this
particular case, the probability amplitude of detachment has a
nodal plane at pz = 0 [21,27], so the distribution is calculated
for pz = 0.05 a.u. and we show its projection over the px py

plane.
Already from the upper panels in Fig. 2, important con-

clusions can be drawn. In the first place, all probability
distributions show three well-defined regions in momentum
space, independently of the symmetry of the ground-state
wave function. Each one of them exhibits a different quali-
tative behavior and can be classified within three groups: (i) a
central region, located at low photoelectron energy (E (p) �
0.7ωL), characterized by relatively low probabilities of
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detachment as compared to the remaining parts of the spec-
trum; (ii) a modulated supercontinuum, found around the
azimuthal angle of detection ϕp ≈ 0 (right part of the plots),
which spans from E (p) ≈ ωL up to the end of the spectrum
and appears as soft fluctuations of P (p) without reaching
zero (no nodes); and (iii) multiphotonlike rings, located close
to ϕp ≈ π (left part of the plots). This last region presents
strong interference effects and appears as concentric rings of
high probability intercalated with zones of low probability.
In particular, for ϕp = π , deep minima separated by roughly
ωL can be observed. Those characteristics can be traced back
to the spiral of ionization Up(ϕA) (outer rings) shown in the
third panel of Fig. 1. Strong interference effects are expected
to appear at ϕp = π , where two of the external arcs of the
ionization spiral intersect each other. On the other hand, a
supercontinuum should be observed at the azimuthal angle
ϕp = 0. As we have checked, by changing the number of
field oscillations within the envelope, the position of super-
continuum and multiphoton regions can change. For instance,
for Nosc = 2 or 4, the interference structures are observed at
ϕp = 0 and the supercontinuum appears at ϕp = π . In such
cases, the outermost arcs of the ponderomotive curve intersect
each other at ϕp = 0.

From the perspective of quantum vortices generation, only
the multiphotonlike structure and low-energy (central) region
are of interest. This is because the modulated supercontin-
uum does not exhibit zeros between maxima (the probability
amplitude never vanishes there) and thus vortices cannot be
formed. We start by analyzing the multiphotonlike zone. In
the second row of Fig. 2 we present the triply differential
probability of detachment P (p) [Eq. (40)], at fixed polar and
azimuthal angles θp = π/2 and ϕp = π , as a function of the
kinetic energy of photoelectrons E (p)/ωL. As before, we set
pz = 0 except for the (�, m�) = (1, 0) state, for which pz =
0.05 a.u. The red vertical line, located at E (p0) = 0.7ωL,
indicates the approximate position of the first minimum and
determines the transition from the central to the multiphoton
regions. The energy spectra of photoelectrons, for all cases
considered here, consist of broad peaks separated by energies
close to (but not exactly equal to) ωL. Both maximum and
minimum values in the spectra of photoelectrons are found at
rather similar kinetic energies independently of the quantum
state (�, m�). Given that vortices can only appear at places
where the probability distribution vanishes, it is expected that
the change in topological charges will be very similar for all
(�, m�) along the multiphoton region. This is actually the case.
The topological charges m(pr, pz ) [Eq. (41)] as a function of
the electron energy E (pr )/ωL are shown in the lower row
of Fig. 2. After the vertical red line, all topological charges
show a stairlike structure with increments of one unit of h̄
at energies for which the zeros of the multiphoton structures
are present (cf. with the middle row of the same figure).
This indicates that, in fact, each zero corresponds to a new
vortex, also in agreement with Ref. [22]. Their locations are,
for practical purposes, independent of the ground state of the
unperturbed anion.

Let us now concentrate on the maximum values of the
topological charges calculated here, which are for an en-
ergy E (pr ) = 7ωL. For the quantum states (0,0) and (1,0),
m(pr, pz ) = 11 [with pz = 0 for (0,0) and pz = 0.05 a.u. for

(1,0)]. On the other hand, for the states (1,−1) and (1,1)
the maximum topological charges reach m(pr, 0) = 10 and
m(pr, 0) = 12, respectively. This confirms the observations
made in Ref. [21], i.e., that the OAM of the ground-state
wave function is transferred to the final electron state. Such
effect increases (or decreases) the total topological charges by
±m�.

Up to now, three main conclusions can be drawn. First,
the supercontinuum region lacks vorticity; second, the vor-
tices generated in the multiphoton zone are independent of
the ground-state azimuthal and magnetic quantum numbers;
and third, the maximum topological charges are increased or
decreased by m�. This is in full agreement with the predictions
arising from Eq. (52). Let us now consider the topological
charges at the end of the central (low energy) region, i.e.,
at E (p0) = 0.7ωL (intersection of the red vertical line with
the blue one). While for larger energies m(pr, pz ) exhibits the
smooth stairlike behavior, for lower energies the topological
charges are not so predictable and depend upon m�. In par-
ticular, at the right of the red vertical line, we observe that
m(p0, pz ) = 5 for the states (0,0) and (1,0); m(p0, pz ) = 6 for
m� = 1; and m(p0, pz ) = 4 for m� = −1. However, note that
all multiphotonlike zones behave in a very similar way inde-
pendently of � or m�; the main difference is a global upward
or downward shifting by one unit of h̄ when m� = ±1. This
suggests that the transference of angular momentum from the
ground-state wave function (defined by the quantum numbers
� and m�) manifests itself in the central region (low-energy
portion of the spectrum). In contrast, the stairlike behavior
(multiphoton zone) remains independent of m�. This is, at
least, for the target ion and laser field parameters considered
here.

In Fig. 3 we show the phase (arg[A(p⊥)]) and magni-
tude [|A(p⊥)|ν , where ν = 0.5 has been chosen for visual
purposes] of the probability amplitude of detachment corre-
sponding to the probability distributions shown in the upper
row of Fig. 2. This time, our plots are functions of px and
py from −0.14 to 0.14 a.u., which coincide with the low-
energy region of the spectrum. [In fact, the semicircular line
of zero probability appearing at the left part of the plots
defines the boundary between multiphoton and central regions
as E (0.13 a.u.) ≈ 0.7ωL.] The laser pulse parameters are the
same as in Fig. 1. The left column corresponds to the photode-
tachment from the H− ion in the s state (see Refs. [20,48])
while the remaining columns relate to photodetachment from
the A− anion model. As before, the probability amplitudes
are calculated for pz = 0, except for the (1,0) quantum state,
where we have set pz = 0.05 a.u. For the photodetachment
from s states (left column) we see four vortices within the
central region [20]. (As mentioned before, vortices manifest
themselves as nodal points for which the phase of the proba-
bility amplitude changes continuously from zero to 2π around
them.) This agrees with the fact that the topological charge to
the left of the red vertical line in Fig. 2 (lower left panel) is
equal to 4. When considering the (1,−1) state (second col-
umn of Fig. 3) only three vortices are observed, which leads
to a topological charge m(pr → p−

0 , 0) = 3. For the (1,0) case
(third column), again four vortices are visible. Finally, in the
fourth column of Fig. 3 we show the probability amplitude for
detachment from the (1,1) state, where five vortices appear.
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FIG. 3. Magnitude (upper row) and phase (lower row) of the probability amplitude of detachment in the two-dimensional momentum space
A(p⊥) [Eq. (20)]. The magnitude |A(p⊥)|ν is raised to the power ν = 0.5 for visual purposes and all plots are obtained by setting pz = 0 (i.e.,
in the px py plane), except for the case (1,0). There pz = 0.05 a.u. The driving laser pulse is described in Fig. 1. Each column corresponds to a
different ground-state wave function. While the left column shows the results for the H− ion in the s state [20,48], the remaining columns are
for the model A− anion in the p states.

It is interesting to notice that the topological charges just
before p0 (i.e., at the low-energy region) are equal to 4 when
m� = 0. As it was mentioned above, an electron needs to
absorb at least Nmin(E0, ωL) photons to be promoted to the
continuum [see Eq. (51)]. However, it is not known what is
the value of the ponderomotive energy of the electron in the
laser field at its time of birth, Up(φ0). Note that one of the
most important features of the curve Up(ϕA) (see Fig. 1) is
its directional nature: Electrons detected with different ϕA an-
gles experienced different ponderomotive energies during the
detachment process [38,40]. As we are interested in the mo-
mentum region between central and multiphoton zones, it is
reasonable to choose the value Up(φ0) = Up(ϕA = π ), which
is approximately 0.256 eV = 0.83ωL. Hence, from Eq. (51),
the minimum number of photons required for photodetach-
ment from H− or A− is actually 4. This explains why the total
topological charges in the low-energy region are equal to 4 for
m� = 0.

B. O− anion

Up to now our analysis was based on a model where
the ionization potential of the A− anion is the same as the
H−. In order to continue our investigations it is necessary to
consider another anion with a different ionization potential.
Our choice is O−, which can be found in the ground-state
configuration [He]2s22p5, i.e., it has five electrons in the 2p
state. As before, we assume a short-range potential model
for which the unperturbed ground-state wave function is de-
scribed by Eq. (29) with the parameters κ = 0.328 a.u. and
A = 0.42 a.u., for which Ip = 1.46 eV. Those parameters
are suggested in Ref. [29]. The main difference between
this system and the A− model is that the ionization po-
tential is almost twice for O− (the symmetry of the wave
functions is the same). Therefore, more photons need to
be absorbed by the system and we expect to observe

richer vortex patterns in the low-energy region of the
spectrum.

In the upper row of Fig. 4 we present the triply differ-
ential probability distribution P (p) [Eq. (40)] as a function
of E (p)/ωL and the angle ϕp for the photodetachment from
the O− anion. The laser field parameters are the same as
described in Fig. 1. We see that the three regions observed
before (supercontinuum, multiphotonlike, and central regions)
are also present here. In the second row of the same figure
we show the energy spectra of photoelectrons for ϕp = π and
θp = π/2. In all cases, series of broad peaks separated by
energies of around ωL are observed. As before, the red vertical
line defines the boundary between central and multiphoton
regions but this time it is located at E (p0) = 0.47ωL. At its
right the topological charges (bottom row of the same figure)
present a stairlike pattern with uniform increments at the
points where the multiphoton zeros are found. By looking at
the left of the red (vertical) line, the blue curves indicate that
m(pr → p−

0 , pz ) = 5 for the quantum state (1,−1), m(pr →
p−

0 , pz ) = 6 for (1,0), and also m(pr → p−
0 , pz ) = 6 for (1,1).

Nevertheless, for the latter case, the topological charge jumps
by two units of h̄ when the transition to the multiphoton region
occurs. This implies that one of the central vortices appears
very close to the border between the two regions. Thus, we
corroborate our previous observation; the OAM of the ground-
state wave function is transferred to the final electron state
only in the low-energy region or at its border.

In Fig. 5 we show the same as in Fig. 3 but for the O− ion
(only p states). The range in momentum for which the prob-
ability amplitude is plotted coincides with the central region.
As expected, rich patterns of vortices can be found in the dis-
tribution. In particular, for the (1,0) state (middle column), the
vortices are located at the corners of a regular pentagon with
an additional one at its center. It is interesting to see that, for
the (1,−1) state (left column), the central vortex disappears;
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FIG. 4. The same as in Fig. 2 but for the O− anion. This time, only the probability distributions and topological charges for p states are
displayed. The ground-state wave function is defined by Eq. (29) with the parameters κ = 0.328 a.u. and A = 0.42 a.u. This corresponds
to an ionization potential Ip = 1.46 eV. As before, we set pz = 0 for the (1,1) and (1, −1) cases, and pz = 0.05 a.u. for (1,0). In all cases,
m(0, pz ) = 0 in the topological charge plots.

the remaining ones are relocated at the corners of another
pentagon. Perhaps the most interesting case is for the state
(1,1) (right column of the same figure). There, the vortices
(including the one at the transition to the multiphoton region)
appear at the vertices of a regular octagon. At the center of the
distribution, pairs of vortices and antivortices (closed vortex
loops) seem to be created along a polygon of low probability.
In order to observe this better, in the upper panel of Fig. 6 we
show the phase of the probability amplitude, arg[A(p⊥)], as a
function of the azimuthal angle ϕp ∈] − π, π ] and the radius
pr = |p⊥| for 0.03 � pr/pat � 0.06, which corresponds to
the central polygon. In such plot we observe the appearance
of seven vortex-antivortex pairs (which correspond to closed
loops in the 3D space) at different angles. Note the symmetry
of the curve with respect to ϕp = 0: For each vortex located
at (ϕp, pr ), there is another one at (−ϕp, pr ) with the same
winding number, except for ϕp = 0 or π . With respect to
the radial symmetry, note that the ring of low probability
containing the vortex-antivortex pairs is not centered at the

origin of coordinates, and it is strongly elongated towards
ϕp = π . For this reason, each pair of vortices appears at larger
momentum for increasing |ϕp|. In the lower panel of the same
figure, we show the total topological charges as a function
of pr . As expected, they jump by ±2 units of h̄ due to this
up-down symmetry, except when the first and last vortices are
found (for ϕp = 0 or π ), where the changes are ±1h̄. A small
misalignment between corresponding vortices leads to the
single point at m(pr ≈ 0.048pat, 0) = 0. Finally, outside the
polygon (pr > 0.06pat) the total topological charge vanishes,
which corroborates the presence of closed vortex loops.

From Eq. (51) it is estimated that at least Nmin = 6 photons
should be absorbed by the electron in order to be promoted
to the continuum. This explains, in the low-energy zone, the
presence of six vortices for the state (1,0), five vortices for
(1,−1), and 6 + 1 vortices for (1,1), without including the
one defining the boundary between central and multiphoton
regions, and which is being merged into the central zone
(see Fig. 5 and the discussion below). However, this simple
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FIG. 5. The same as in Fig. 3 but for the O− anion. Here we only present the results for p states. The parameters determining the ground-
state wave function are κ = 0.328 a.u. and A = 0.42 a.u. such that Ip = 1.46 eV [see Eq. (29)]. All distributions are calculated for pz = 0,
except for the case (1,0) for which pz = 0.05 a.u.

estimate cannot give us information about the presence of
closed vortex loops at the inner polygon.

It is now interesting to analyze the changes of topological
charges towards the end of the central region for the O−
anion. We have seen that, while the states characterized by
m� = −1 or 0 show a jump of one unit of h̄ at the transition
to the multiphotonlike zone, the m� = 1 case shows a jump
of 2h̄. In order to understand this behavior, in Fig. 7 we show
the same as in Fig. 6 but for the three states m� = −1 (left
panels), m� = 0 (middle panels), and m� = 1 (right panels).
The red vertical line determines the approximate transition
between central and multiphotonlike zones, and it is located
at p0 = 0.1035pat. Note that the actual transition occurs very
close to p0 (mind the scale in the figure). Starting from the
left panels (m� = −1) we see a single vortex at ϕp = 0 and
pr ≈ 0.030pat (upper left panel) which causes the topological
charge to increase by one unit of h̄ (lower left panel). At
pr ≈ 0.038pat two vortices at ϕp ≈ ±π/2 are detected, with
the corresponding increment of two units to the total topolog-
ical charge. For larger momentum two more aligned vortices
are observed. At the transition from central to multiphoton
regions, a single vortex at the angle ϕp = π and pr close to p0

appears. A similar behavior is observed for m� = 0 (middle
panels), where pairs of aligned vortices may lead to an incre-
ment of 2h̄ of the topological charge, and a single vortex close
to ϕp = π defines the transition to the multiphoton regime.
Note that for m� = 0 and the range of momentum considered
here, the winding number starts at m(pr = 0.02pat, pz ) = 1
which is consistent with the presence of the single vortex at
px = py = 0 (see the middle lower panel of Fig. 5). Finally,
for m� = 1 (right panels), we see that the vortices are aligned
with each other such that the first increment of the topological
charge is of 4h̄, the next increment is of 2h̄, and finally, at
the border with the multiphoton region, two more vortices are
aligned (close to ϕp = ±π ), which causes another 2h̄ jump

during the transition. This alignment is the cause of a larger
jump of the winding number for m� = 1, as compared to
m� = 0 or −1, near the vertical red line.

Vortex transference and vortex-antivortex formation:
Intensity dependence

Up to now the most interesting case studied here has been
the photodetachment from O−. This is due to the rich vortex
structures observed in the central region and the formation of
vortex-antivortex pairs for the m� = 1 case. Simple conser-
vation of the total angular momentum allows us to predict
the location of vortices in the multiphotonlike zone and the
number of vortices in the central region. However, not much
was said about their intensity dependence and the formation
of vortex-antivortex pairs.

It is known that the creation of vortices in aero- or hy-
drodynamics depends upon the intrinsic properties of the
fluid, its velocity distribution, and the forces acting over
it. The formation of vortices in photodetachment depends
upon the parameters defining the laser field, the symmetry
of the ground-state wave function, and the ionization poten-
tial. While circularly polarized pulses stimulate the creation
of single vortices [20], linearly polarized fields lead to the
von Kármán streets of vortices-antivortices [28]. As we have
shown here, both single vortices and vortex-antivortex pairs
can be observed in the photodetachment from O−. By apply-
ing additional simplification, e.g., by using the saddle-point
method, it is possible to calculate analytically the approxi-
mate positions at which vortices appear in the multiphotonlike
zone [22]. However, to identify their location in the central
zone and to predict the formation of vortex loops is a difficult
task; such structures appear when very subtle interference ef-
fects take place and additional analytical simplifications may
lead to their misplacement. Nevertheless, some insight can be
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FIG. 6. Phase of the probability amplitude, arg[A(p⊥)] (upper
panel), and topological charges, m(pr, 0) (lower panel), for the pho-
todetachment from O− in the (1,1) state. The laser field parameters
are the same as in Fig. 1. In contrast to Figs. 4 and 5, we show here
our results as a function of the azimuthal angle ϕp ∈] − π, π ] and
the radius pr = |p⊥|, with pz = 0. The range in momentum 0.03 �
pr/pat � 0.06 coincides with the central polygon of low probability
shown in the lower-right panel of Fig. 5.

gained by observing in more detail the probability amplitude
of detachment for the (�, m�) = (1, 1) ground state of the O−
anion.

In Fig. 8 we show the modulus of the probability am-
plitude of detachment |A(p⊥)|ν , with ν = 0.5, in the px py

plane (pz = 0) for the O− anion in the (�, m�) = (1, 1) state.
While the laser pulse wavelength remains the same (we
keep λL = 4000 nm), each panel corresponds to a differ-
ent field intensity. Here I1 = 5.0 × 1010 W/cm2, I2 = 2I1 =
1.0 × 1011 W/cm2, I3 = 3I1 = 1.5 × 1011 W/cm2, . . . , I12 =
12I1 = 6.0 × 1011 W/cm2. In the panel corresponding to I2

we see a central region with seven well-defined vortices, iden-
tified as points of zero probability for which the phase changes
from zero to 2π around them (see the corresponding panel in
Fig. 9). The boundary between inner and multiphoton zones
can be identified as a semicircular ring of low probability at
the left part of the plot. With increasing intensity, this bound-
ary approaches the already existing central vortices, and at
I5 = 2.5 × 1011 W/cm2 it starts to merge into the low-energy
vortical pattern. This explains the jump of two units of h̄

close to the red line in the right panels of Fig. 7 as the first
multiphoton vortex aligns itself with another one belonging to
the inner zone. At higher intensities this new vortex is fully
incorporated into the central region. From I6 up to I8 another
semicircular ring (boundary) migrates towards the inner zone
and after I9 a new central vortex is observed. Such a process
repeats again, generating a net vortex transfer from multipho-
ton to central regions. As we have checked, the same intensity
dependence is observed for the (�, m�) = (1,−1) and (1,0)
states of O− (not shown). In particular, one of the boundary re-
gions starts to merge with the central zone at I6 = 3.0 × 1011

W/cm2 for those two states (this is in contrast to the m� = 1
case, where the merging happens at I5 = 2.5 × 1011 W/cm2).
Hence, at this higher intensity one would also observe a jump
of 2h̄ during the transition from central to multiphoton zones.

In order to corroborate our previous observation it becomes
important to analyze the phase of the probability amplitude
of detachment, arg[A(p⊥)], and not only its magnitude. This
is presented in Fig. 9 for the same laser pulse and ion pa-
rameters as in Fig. 8. From I2 to I4, it is seen that the phase
changes from zero to 2π around the seven single points of zero
probability in the central region. With increasing intensity, the
disturbance characterizing the boundary zone (together with
the lowest-energy multiphoton vortex) migrates towards the
center of the plot. At the intensity I5 = 2.5 × 1011 W/cm2 the
traveling vortex enters the central region and the formation of
a new disturbance at larger momentum (left part of the plot)
is observed. This vortex migration and transference continues
for the intensity range considered here. Additionally, in this
figure we can observe the appearance of vortex-antivortex
pairs distributed along closed rings at the center of some of
the plots, i.e., for I1, I2, I5, I8, and I11. This happens when the
boundary separating the multiphoton zone approaches closely
the inner structures (see Fig. 8).

In closing this section we note that vortex transfer from
the multiphoton to the central region is a direct consequence
of the ponderomotive shift Up(φ0)/ωL in Eq. (51), which
increases linearly with intensity. Namely, at larger intensities
more photons are required for the electron to be detached.
For instance, if a minimum of n photons is necessary for
detachment at an intensity I (n), then the n + 1 photon leads
to the first multiphoton peak. If the intensity is raised to
I (n+1) = I (n) + 	I , then n + 1 photons cause the detachment
and the n + 2 photon leads to the first multiphoton peak (a
new boundary is formed). By conservation of total angular
momentum, the change from I (n) to I (n+1) implies the trans-
ference of the lowest-energy vortex in the multiphoton region
to the central zone. From Eq. (51) and the rough estimate
Up(φ0) ≈ 0.83ωL for I = 2.5 × 1011 W/cm2, it is expected
that 	I is close to 3.0 × 1011 W/cm2. However, by inspecting
the transitions sown in Figs. 8 and 9, a more accurate value is
	I ≈ 2.0 × 1011 W/cm2.

C. K− anion

We consider now the photodetachment from the K− anion.
Its electronic configuration is [Ar]4s2, i.e., it contains two
electrons in the 4s state. As before, we use the ground-state
wave function given by Eq. (28) with the parameters κ =
0.192 a.u. and A = 1.24 a.u. [29] such that Ip = 0.502 eV.
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FIG. 7. The same as in Fig. 6 but for the three states m� = −1, 0, 1. This time, the range of momentum is chosen such that the single
vortices in the central region are observed. The red vertical line at p0 = 0.1035pat indicates the approximate transition to the multiphotonlike
zone (note that p2

0/2me = 0.47ωL).

FIG. 8. Magnitude of the probability amplitude of detachment, |A(p⊥)|ν , with ν = 0.5 [see Eq. (20)], in the px py plane (i.e., pz = 0). The
target anion is O− in the ground state (�, m�) = (1, 1). While each panel corresponds to a different intensity, the remaining laser field and
ion parameters are the same as in Fig. 5. Here, each intensity corresponds to I1 = 5.0 × 1010 W/cm2, I2 = 2I1, I3 = 3I1, . . . , I12 = 12I1 =
6.0 × 1011 W/cm2.
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FIG. 9. The same as in Fig. 8 but for the phase of the probability amplitude of detachment, arg[A(p⊥)].

This ionization potential is smaller than the one for the H−
anion (fewer photons are necessary for detachment) so we
expect simpler vortex configurations in the central region of
the spectrum.

In Fig. 10 we show the same as in Fig. 2 but for the
K− anion (s states and pz = 0). Once again, the triply dif-
ferential probability of detachment (upper panel) shows the
three characteristic regions: Structured supercontinuum, cen-
tral, and multiphoton zones. The topological charges (lower
panel) change in a stairlike way and increase by h̄ at the
energies where the zeros of the spectra of photoelectrons
are found (middle panel). This is provided that we are in
the multiphoton region [right of the vertical line located at
E (p0) = 0.55ωL]. To analyze the central region, in Fig. 11 we
show the magnitude and phase of the probability amplitude
of detachment. It can be seen that three vortices are present
within the low-energy region. Note that the semicircular ring
of low probability defines the boundary between central and
multiphoton zones. It can be found at p0 ≈ 0.11 a.u., which is
equivalent to E (p0) ≈ 0.53ωL.

According to the estimations in Eq. (51), the minimum
number of photons required for detachment from K− and
for the laser pulse considered here is approximately Nmin = 3
photons. It also explains the fact that three vortices are ob-
served in the probability distribution for the central region.

In closing this section we show the probability amplitude
of detachment (magnitude and phase) for the detachment
from K− driven by a weaker laser pulse of intensity
I = 1.0 × 1011 W/cm2 (Fig. 12). The remaining laser field
parameters are the same as in Fig. 1. By comparing Figs. 11
and 12 we see that for lower intensities both the momentum
range defining the central region and the number of vortices

in it are reduced. Instead of observing three vortices now we
have only two. This can be explained from Eq. (51): as the
ponderomotive energy of the electron is proportional to the
maximum intensity of the laser field, we obtain now Up(ϕA =
π ) ≈ 0.102 eV. Thus, the minimum number of photons for
detachment at lower intensities is two photons.

D. Total probability of detachment

As it was shown in Refs. [20,28] the strong-field approx-
imation gives impressive results for photodetachment from
negative ions. The results arising from the SFA and the TDSE
differ by a scaling factor often close to 1. This can be ex-
plained by the absence of a Coulomb tail in photodetachment
and the low-probability of rescattering events when the pro-
cess is driven by circularly polarized pulses. However, the
SFA may lead to unphysical results when the total probability
of detachment is above 1. Hence the validity of our model
is only ensured provided that P < 1. In order to check that
this condition is fulfilled, we estimate the total probability
of detachment P [see Eqs. (38) and (39)] by Monte Carlo
integration with at least 1 × 106 points, until convergence
is achieved. The error is always less than 1%. We present
our estimations for all cases considered here in Table I. By
inspecting the right column in this table, we see that all prob-
abilities are smaller than 1. Hence, we are within the range of
validity of our model.

VI. CONCLUSIONS

We have analyzed the laser-assisted photodetachment
driven by ultrashort laser pulses. By calculating the proba-
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FIG. 10. The same as in Figs. 2 and 4 but for the K− anion. We
show only the results for s states [see Eq. (28)] with the parameters
κ = 0.192 a.u. and A = 1.24 a.u. such that Ip = 0.502 eV. Again, we
observe that m(0, 0) = 0, as expected.

bility amplitude of detachment under the framework of the
SFA, we have determined the regions in momentum space
where vortices are formed. In particular, we have shown that
the two-dimensional triply differential probability distribution
contains three well-defined regions: The modulated super-
continuum, low-energy (central) zone, and multiphotonlike
region. The supercontinuum spans along few single-photon
energies and is characterized by a probability amplitude al-
ways larger than zero, hence no vortices are formed there.
In contrast, the multiphotonlike zone shows series of peaks
separated by roughly ωL and vortices can be found between
them. This is a consequence of the conservation of angular
momentum, as each absorbed photon carries an OAM equiva-
lent to one unit of h̄. Along this region, the topological charges
change in a stairlike pattern with increments of h̄ when the
zeros of the probability amplitude are found. This implies

FIG. 11. The same as in Figs. 3 and 5 but for the K− anion. Due
to the electron configuration of the ion, only the results for s states
are displayed. The probability amplitude of detachment is calculated
for the ground-state wave function in Eq. (28) with the parameters
κ = 0.192 a.u. and A = 1.24 a.u. (Ip = 0.502 eV).

that the vorticity along the multiphoton zone is determined
mostly by the characteristics of the laser pulse (polarization,
frequency, and duration).

The central (low-energy) region behaves differently as
compared to the other ones; the number of vortices de-
pends upon the ionization potential of the target ion and its

TABLE I. Total probability of detachment P [Eq. (39)] for the
target anions considered in this paper. The driving laser pulse is as
described in Fig. 1. The numerical data are obtained from Monte
Carlo integration with 1 × 106 points, ensuring that convergence is
achieved, and the error is not larger than 1%. We also present the
electron configuration and the ionization potential (Ip) of the anion.
The (�, m�) state for each unperturbed ground-state wave function is
also specified.

Anion Ip (eV) Configuration (�, m�) P

H− 0.754 2s2 (0,0) 0.0278
A− 0.754 (1,−1) 0.1205

(1,0) 0.0058
(1,1) 0.0276

O− 1.46 [He]2s22p5 (1,−1) 3.151 × 10−5

(1,0) 6.672 × 10−7

(1,1) 4.930 × 10−6

K− 0.502 [Ar]4s2 (0,0) 0.7476
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FIG. 12. The same as in Fig. 11 but for a weaker driving field.
While the intensity is now I = 1.0 × 1011 W/cm2, the remaining
field parameters are the same as in Fig. 1.

ground-state wave function. For instance, the larger Ip, the
greater number of vortices can be observed. This is also a
consequence of OAM conservation, as more photons need to
be absorbed in order to detach the electron. Furthermore, the
OAM transference from the ground-state wave function to the
final electron state seems to happen only at the low-energy

portion of the spectrum, at least for the laser field parameters
considered here. Additionally, we show that pairs of vortices-
antivortices (closed loops) can be formed in the central zone.
According to the numerical explorations presented here, the
central region is characterized by low probabilities of detach-
ment as compared to the multiphoton rings. This could make
difficult the experimental observations of vortices there [23].
However, the vortical structures in the low-energy zone deter-
mine, up to a large extent, the total topological charge of the
electron wave packet and may contribute importantly to its be-
havior, evolution, and propagation in position representation.

In contrast to Ref. [20], we have analyzed here the role
of the ground-state wave function, the ionization potential,
and the ponderomotive shift over the formation of quantum
vortices in photodetachment. We have shown that the electron
momentum distribution strongly depends upon those param-
eters. First, the angular momentum transfer from the bound
state to the freed electron happens at the central region or
at the boundary between low-energy and multiphoton zones.
This implies that at pr > p0 the total topological charges are
increased or decreased by m�. Furthermore, depending on the
symmetry of the wave function, single vortices and rings con-
taining vortex-antivortex pairs can also be formed. Second,
the ionization potential of the anion modifies importantly the
number of vortices observed at the central zone: Larger ion-
ization potentials lead to richer vortical structures. Third, the
ponderomotive shift plays a crucial role in the vortex transfer
from multiphoton zones to the inner region with increasing
intensity. In particular, for the (�, m�) = (1, 1) state of the O−
anion, the formation of vortex-antivortex pairs occurs when a
new vortex is incorporated into the central zone.
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Lett. 119, 13001 (2017).
[40] F. Cajiao Vélez, J. Z. Kamiński, and K. Krajewska, J. Phys.:
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