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Phase delays in ω-2ω above-threshold ionization
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Relative phases of atomic above-threshold ionization wave packets were investigated in an experiment
[L. J. Zipp, A. Natan, and P. H. Bucksbaum, Optica 1, 361 (2014)] exploiting interferences between different
pathways in a weak probe field at half the frequency of the strong ionization pulse. In this work we explore
theoretically the extraction of phase delays and time delays of attosecond wave packets formed in strong-field
ionization. We perform simulations solving the time-dependent Schrödinger equation and compare these results
with the strong-field and Coulomb-Volkov approximations. In order to disentangle short- from long-range effects
of the atomic potential, we also perform simulations for atomic model potentials featuring a Yukawa-type
short-range potential. We find significant deviations of the ab initio phase delays between different photoelectron
pathways from the predictions by the strong-field approximation even at energies well above the ionization
threshold. We identify similarities to but also profound differences from the well-known interferometric extrac-
tion of phase and time delays in one-photon ionization.
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I. INTRODUCTION

Measuring and analyzing ionization phases and timing in-
formation on electron wave packets ionized by absorption of
an XUV photon represent one of the major advances attosec-
ond pulses and phase-controlled femtosecond laser pulses
have enabled during the past decade [1,2]. Such XUV pulses
in combination with near-infrared or visible laser light permit
the control of electronic motion on the shortest accessible
timescales [3–6]. Pump-probe techniques such as attosecond
streaking [7–9] and reconstruction of attosecond harmonic
beating by interference of two-photon transitions (RABBIT)
[10,11] have been employed to measure attosecond time-
resolved electron emission from noble-gas atoms [12–17],
molecules [18,19], and solids [20–22]. Whereas attosecond
streaking of electrons ionized by an XUV pulse can be under-
stood in terms of a classical time-resolved shift in momentum
and energy by the probing IR field [7,23–27], RABBIT em-
ploys two interfering quantum paths to the same final state
in the continuum called a sideband [13,27]. This sideband
energy can be reached through a two-photon process involving
absorption of photons from one of two adjacent harmonic
orders of a high-order harmonic generation (HHG) radiation
followed by absorption or emission of an IR photon of the
fundamental driving frequency ω [28–30].

Two-color (ω-2ω) laser fields with well-controlled relative
phases between both colors have been studied experimentally
and theoretically since the last decade of the past century
[31–35]. Recently, they have also been employed as an al-
ternative tool to extract information on ionization phases and
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time delays [36–39]. One key feature is that the broken in-
version symmetry of the ω-2ω field allows for interference
between odd and even partial waves of the outgoing pho-
toelectron which leads to a θ ↔ π − θ asymmetry of the
emission signal.

More recently, Zipp et al. [40] extended the measure-
ment of ionization phases and attosecond time delays to the
strong-field multiphoton regime, providing new perspectives
on time-resolved strong-field ionization. In this ω-2ω inter-
ference protocol the role of electron wave packets emitted
by absorption of a single photon from either one of two
adjacent harmonics in the RABBIT protocol is replaced by
adjacent above-threshold ionization (ATI) peaks generated
by a strong driving field of frequency 2ω. The concomitant
weaker ω field opens up interfering pathways to sidebands
in between neighboring ATI peaks by absorbing or emit-
ting one ω photon. Measuring the photoelectron angular
distribution as a function of the relative phase φ between
the ω and the 2ω fields provides information on the ATI
amplitudes. This interferometric approach to multiphoton ion-
ization [Fig. 1(a)] resembles the original RABBIT protocol for
the extraction of the ionization phase in one-photon ioniza-
tion [Fig. 1(b)]. It promises new insights into relative phases
and possibly attosecond-scale timing information of multi-
photon strong-field processes. Somewhat simplified, it can
address the questions: which additional phase delays incur
and how much longer it takes forming a wave packet by
absorbing N + 1 rather than N photons. Some works based on
the strong-field approximation were recently reported in this
direction [41,42]. Indeed, first simulations employing semi-
classical trajectory methods [41,43,44] highlighted the role of
transient trapping of the wave packet for the phase shift of the
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FIG. 1. Comparison between (a) multiphoton strong-field inter-
ference (MPSFI) and (b) the standard RABBIT protocol for two
interfering pathways from the initial bound state |i〉 to final states | f 〉
in the continuum. While RABBIT applies to two pathways involving
ionization by one photon with energies (2m − 1)ω and (2m + 1)ω
generated by HHG, MPSFI involves (at least) two ATI peaks gener-
ated by absorbing N or N + 1 photons from the strong pump field
with frequency 2ω. The final state | f 〉 is reached in either case by the
absorption (ω) or emission (−ω) of one photon of the weak probe
field. Each arrow denotes a one-photon transition.

ATI peaks close to or even below the threshold. A detailed
analysis of the information encoded in the ionization phases,
their dependence on the intensities of the driving (I2ω) and
probing (Iω) fields, and the properties of the atomic potential
appears to be missing up to now.

As will be shown in the following, multiphoton strong-field
interference (MPSFI) [Fig. 1(a)] substantially differs from the
standard RABBIT protocol as a multitude of pathways with
a different number of photons and a broad range of partial
waves of the emerging electronic wave packet contribute.
Phase delays can be extracted by this photoelectron interfer-
ometry at energies not only near the so-called sidebands but
also near the ATI peaks. Moreover, in the strong-field setting,
unlike in the RABBIT protocol, phase delays are found to be
remarkably sensitive to the probe field strengths, rendering the
separation of the atomic field and laser field influences on the
resulting phase and time delay more challenging.

In this work we investigate theoretically the phase delays
in the multiphoton regime accessible by such an ω-2ω in-
terference protocol for two collinearly polarized laser fields.
We find strong deviations of the time-dependent Schrödinger
equation results from strong-field approximation predictions,
clearly indicating that the atomic potential has a crucial influ-
ence on the ionization phase of ATI peaks in this strong-field
regime even at energies well above the ionization threshold.
We also present a simplified analytical description of the
MPSFI phase delays and discuss their potential to access
timing information.

In Sec. II we briefly introduce the simulation methods em-
ployed. In Sec. III we present numerical results for quantum
path interferences in multiphoton ionization. An approximate

analytical approach to the extraction of the information on
ionization phases, phase delays, and time delays from such an
ω-2ω protocol as well as numerical results for a model atom
with a short-range Yukawa-type atomic binding potential are
discussed in Sec. IV. The comparison with experimental data
for argon described by a suitable model potential [45] in the
single-active-electron approximation [32,46,47] is presented
in Sec. V. Concluding remarks are given in Sec. VI. Atomic
units are used unless stated otherwise.

II. METHODS

We consider a multifemtosecond laser pulse with fre-
quency ω and its second harmonic 2ω with electric-field
amplitude

F (t ) = f (t )[F2ω sin(2ωt + φ) + Fω sin(ωt )]ẑ, (1)

where f (t ) is the overall pulse envelope and ẑ is the polar-
ization direction of both fields. In the present ω-2ω scenario
F2ω is the amplitude of the strong pump field giving rise to
ATI peaks and Fω is the amplitude of the weak probe field, i.e.,
Fω � F2ω. The relative phase φ between the ω and 2ω fields is
the experimentally accessible knob to control the interference
between different multiphoton pathways. In the following we
will present results for the integral and angular differential
photoelectron spectra as a function of φ. For the envelope
function we choose the form f (t ) = sin2( πt

τ
), where τ is the

pulse duration covering 16 cycles in the strong pump field or
eight cycles of the probe field, i.e., τ = 16π/ω.

We solve the time-dependent Schrödinger equation
(TDSE) in the single-active-electron approximation in the
length gauge [32,46,47],

i
∂ψ (�r, t )

∂t
=

(
p2

2
+ Va(r) + �r · �F (t )

)
ψ (�r, t ). (2)

In our simulation for argon to be compared with the exper-
iment [40] we employ as atomic potential Va in Eq. (2) the
Muller model potential [45]. In order to delineate the role of
short-range and long-range potentials, we alternatively use a
Yukawa-type atomic potential

Va(r) = −b

r
e−r/a, (3)

with charge parameter b and screening length a.
In addition to full solutions of the TDSE, we employ two

popular versions of the distorted-wave Born approximation
(DWBA) that allow us to account for multiphoton and strong-
field processes, namely, the strong-field approximation (SFA)
[48–50] and the Coulomb-Volkov approximation (CVA) [51].
Accordingly, the transition amplitude from an initial atomic
state |φi(t )〉 to a final state |ϕ�k〉 with asymptotic momentum
�k in the continuum, i.e., a�k (φ) = limt→∞〈ϕ�k|ψ (t )〉 in the
DWBA, is given by

a(�k, ϕ) = −i
∫ +∞

−∞
dt

〈
χDW

�k (t )|zF (t )|φi(t )
〉
. (4)
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From Eq. (4), the SFA follows when a Volkov state is used as
the distorted wave [48–50]

χ
(DW)−
�k (�r, t ) ∼= χ

(V)−
�k (�r, t ) = exp[i(�k + �A) · �r ]

(2π )3/2

× exp

[
−i

∫ +∞

t
dt ′ [�k + �A(t ′)]2

2

]
. (5)

The CVA results when approximating the distorted wave by a
product of the Volkov solution and the Coulomb wave [51]

χ
(DW)−
�k (�r, t ) ∼= χ

(CV)−
�k (�r, t ) = χ

(V)−
�k (�r, t )DC (ZT , �k, t ), (6)

where DC (ZT , �k, t ) = N−
T (k) 1F1(−iZT /k, 1,−ik r − i�k · �r)

for a hydrogenic atom. The Coulomb normalization factor
N−

T (k) = exp(πZT /2k)�(1 + iZT /k) coincides with the am-
plitude of the Coulomb wave function at the origin, 1F1

denotes the confluent hypergeometric function, and ZT is the
electric charge of the parent ion. Equation (5) describes the
final state of a free-electron wave in the strong laser field
while completely neglecting the atomic potential. The CVA
in Eq. (6) includes also the Coulomb scattering of the free
electron but neglects the effects of binding and of dynamical
Stark shifts. These two DWBAs provide points of reference
for identifying dynamical multiphoton effects on ionization
phases.

Because of the azimuthal symmetry, the electron proba-
bility distribution P(�k) = |a�k|2 depends only on the electron
momentum parallel (kz) and transverse (k⊥) to the field
polarization direction or, alternatively, on the kinetic en-
ergy E and the polar emission angle θ , i.e., P(k⊥, kz, φ) =
(2E )−1/2P(E , cos θ, φ). In the multiphoton regime, the photo-
electron spectrum is composed of a series of peaks positioned
at energies En,

En = nω − (Ip + Up), (7)

corresponding to absorption of a given number of nω photons
of frequency ω and N photons of frequency 2ω such that
nω = nωω + N (2ω). In Eq. (7), Ip and Up denote the ion-
ization potential and the ponderomotive energy, respectively.
As a given peak En can be reached by different combinations
of photon numbers nω and N , photoelectron interferometry
in this strong-field setting is characterized by multipath inter-
ferences of partial waves with opposite parity. Consequently,
an important quantity for characterizing interferences between
partial waves of opposite parity and thus to map out ionization
phases in the ω-2ω protocol is the forward-backward (θ ↔
π − θ ) asymmetry of the photoelectron emission probability

A(E , φ) = S+(E , φ) − S−(E , φ)

S+(E , φ) + S−(E , φ)
, (8)

where the forward (backward) emission spectra S+ (S−) are
obtained by integrating the momentum distribution over the
+z (−z) hemisphere

S+(−)(E , φ) =
∫ 1(0)

0(−1)
d (cos θ ) P(E , cos θ, φ). (9)

The calculated (or measured) signal function, generically
denoted by S(E , φ), representing in the following either the
photoemission probability into one hemisphere S+(−) [Eq. (9)]

or the photoelectron asymmetry A(E , φ) [Eq. (8)], can be
written in terms of a Fourier series in the relative phase φ.
The emission signal takes the form [52]

S(E , φ) = c0(E ) +
∞∑

i=1

ci(E ) cos[iφ − δi(E )], (10)

where the leading term (i = 1) provides the information of
the relative ionization phase δ1(E ) = δ(E ) in analogy to the
RABBIT protocol [52]. Higher-order Fourier components
ci(E ) for i = 2, 3, . . . should provide an error estimate of the
fit. Invoking the analogy to RABBIT, Zipp et al. [40] in-
troduced an Eisenbud-Wigner-Smith (EWS)–type time delay
[53,54] by mapping the phase delay δ(E ) onto a time delay as

τ (E ) = δ(E )

2ω
. (11)

Equation (11) can be viewed as a finite-difference approxi-
mation to the spectral derivative dδ(E )/dE of the phase shift
δ(E ). We explore the physical significance of δ(E ) and τ (E )
in more detail below.

III. ENERGY DEPENDENCE OF PHASE DELAY IN
MULTIPHOTON IONIZATION

As a representative example of ω-2ω atomic ionization,
we choose the probe field with the fundamental frequency
of a Ti:sapphire laser of 800 nm wavelength in the near-
infrared (NIR) region of the spectrum and as pump field
its second harmonic with a 400 nm wavelength in the vis-
ible region. In line with the experiment of Zipp et al.
[40], we study atomic ionization of argon by the two-color
laser field in Eq. (1) with intensities I2ω = c/(8π )F 2

2ω = 8 ×
1013 W/cm2 and Iω = c/(8π )F 2

ω = 4 × 1011 W/cm2. In
Fig. 2 we exhibit the results of our TDSE calculations [46,47]
in the single-active-electron approximation starting from the
initial 3p0 ground-state orbital of argon since the ionization
from the m = 0 orbital, aligned along the laser polarization
axis, dominates over m = ±1 in the resulting spectrum. The
multiphoton ionization probability of the m = 0 state is found
to be typically larger by a factor 25 compared to the m �= 0
states in the parameter range considered in this study. In
Fig. 2(a) we show the variation of the total multiphoton spec-
trum (integrated over all emission angles θ ) as a function
of the relative two-color phase φ. We observe the typical
multiphoton peak structure with peak positions at energies
predicted by Eq. (7), with the ionization potential for argon
of Ip = 15.78 eV and ponderomotive energy Up = 1.19 eV.
Above-threshold ionization peaks at even multiples of ω result
predominantly from absorption of N photons of frequency 2ω,
while peaks at odd multiples of ω result from absorption or
emission of at least one additional ω (probe) photon. Follow-
ing the convention of RABBIT [13,27], we refer to the latter
group of peaks with energies near odd multiples of the NIR
frequency ω as sidebands. Unlike the total electron emission
integrated over all angles θ [Fig. 2(a)] whose φ dependence
displays a π periodicity (emissions near φ and φ + π are
identical), the emission into the forward hemisphere S+(E , φ)
given by Eq. (9) (0 � θ � π/2) [Fig. 2(b)] and the asym-
metry parameter A(E , φ) [Fig. 2(c)] display a 2π periodicity
indicative of the parity-breaking contributions due to ω-2ω
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FIG. 2. (a) Total photoelectron spectrum (logarithmic scale),
(b) forward emission spectrum integrated over the +z hemisphere
(logarithmic scale), and (c) asymmetry parameter A (linear scale)
for argon as a function of the relative phase φ and the electron
energy (in eV) calculated within the TDSE. The laser intensities
are I2ω = 8 × 1013 W/cm2 and Iω = 4 × 1011 W/cm2 for the re-
spective frequencies 2ω and ω = 0.057 a.u. with pulse duration τ =
881.85 a.u., corresponding to eight full cycles of the latter. (d)–(f)
Close-up in linear scale corresponding to (a)–(c), respectively.

interferences. These structures are magnified in the close-up
images in Figs. 2(d)–2(f).

From the fit of the variation of the numerical data for
S+(E , φ) and A(E , φ) to the Fourier expansion [Eq. (10)] at
fixed E , the relative ionization phase δ(E ) can be extracted as
the phase shift of the cos φ oscillation. Because of the broad
Fourier width of the ultrashort pulse [Eq. (1)], the multiphoton
electron spectrum [Fig. 2(a)] is a continuous function of E .
Accordingly, also the phase shift δ(E ) can be viewed as a

0 5 10 15 20

0

2

4

6

ph
as

e
sh

ift
δ(

E
)

electron energy (eV)

SFA
CVA
TDSE

0

π

FIG. 3. Continuum phase shifts δ(E ) extracted from the asym-
metry A(E , φ) as a function of the emission energy from the TDSE
(thick black solid line), SFA (blue dotted line), and CVA (thin red
solid line) results. Solid vertical gray lines denote ATI peak energies
and dashed vertical yellow lines sideband energies according to
Eq. (7). The horizontal dashed line corresponds to the strong-field
limit for ATI phase shifts [δ(E ) = π ].
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FIG. 4. Examples of pairs of quantum paths reaching (a) the
sideband energy En = E15 or (b) the ATI (or main) peak energy
En = E14 for argon. In (a) the set Pi (i = 1, . . .) features pairs, each
with absorption [left (L)] or emission [right (R)] of one weak probe
photon ω, and the set P′

i features pairs with one additional absorp-
tion and emission of the strong pump photon (R) compared to the
direct path (L) while both absorbing one weak probe photon ω. The
absorption of the probe photons may occur in the continuum (P1,
P2, and P′

1) or in virtual intermediate bound states (P3 and P′
2). In

(b) the direct ATI process P0 can, to lowest order, interfere with path
pairs P′′

1 involving absorption or emission of two ω photons; P′′
2 are

examples of a process involving four ω photons. The P′
0 represents

one contribution to the dressing of the ATI electron by the probe field.

continuous function of E . Results for the energy dependence
of δ(E ) predicted by the TDSE, the SFA, and the CVA cal-
culations of S(E , φ) are shown in Fig. 3. Most strikingly, the
SFA jumps almost discontinuously and periodically between
π near the ATI energies [even n in Eq. (7)] and 0 in the
vicinity of sidebands [odd n in Eq. (7)]. The CVA introduces
modest variations to this SFA behavior which are a signature
of Coulomb scattering of the ionized electron. By contrast, the
full TDSE solution displays significant deviations from the
SFA predictions, indicating a much more complex variation
of the energy dependence interference phase δ(E ). Even at
relatively high energies above the threshold (∼20 eV), no
clear indication for the convergence towards the SFA limit as
assumed in previous analyses [40,43] emerges. These strong
variations of δ(E ) and deviations from SFA appearing in the
TDSE results are the signature of simultaneous interaction
of the escaping electron with both the atomic force field
and the strong laser fields, in particular intermediate off-shell
bound-bound and continuum-continuum transitions between
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field-dressed atomic states [55]. Such contributions are absent
in the SFA and the CVA.

Interpretation of the phase shift δ(E ) of the forward (or
backward) emission or asymmetry signal [Eq. (10)] requires
a more detailed analysis of the interfering quantum paths.
A key point is that in the present ω-2ω MPSFI scenario a
multitude of pathways contribute, a few of them shown for
argon in Fig. 4, well beyond the subset invoked in the analogy
to the RABBITT protocol [Fig. 1(a)]. This renders a quanti-
tative analysis more challenging. For example, the sideband
energy En = E15 can be reached not only by the path pair P1

[Fig. 4(a)], which resembles the RABBIT protocol, but also
by other path pairs with different sequences of absorption and
emission events to the same first order in the weak probe field
(e.g., P2, P3, . . .) or to different orders in the pump field (e.g.,
P′

1, P′
2). The (virtual) intermediate states reached by the probe

photon may involve continuum (e.g., P2, P′
1) or bound states

(e.g., P3, P′
2). The latter are expected to be more important

when the path proceeds via a bound-state resonance.
Multiphoton path interferences can be analyzed not only

near the sidebands [Fig. 4(a)] but also near ATI (or main)
peaks [Fig. 4(b)]. For example, at ATI energy En = E14 the
direct path P0 from the initial state to the final state with
E14 via absorption of seven photons with frequency 2ω can
interfere with a multitude of paths involving two probe pho-
tons P′′

1 [Fig. 4(b)], which are of the same order in the weak
field as the dressing of the ATI electron by the IR field P′

0.

For a stronger probe field, even higher-order contributions
may become important; examples involving the absorption or
emission of two or four ω photons are shown in Fig. 4(b).
It is important to realize that the set of paths in Fig. 4 still
do not fully reflect the complexity of the entire ensemble
of contributing interfering paths as the angular momentum
degree of freedom is omitted here for simplicity (see [56]).
Each additional photon absorption or emission process leads
to a branching of paths to multiply degenerate states of the
same energy E in the continuum but different angular mo-
menta  → ( + 1,  − 1). Consequently, for an initial state
with angular momentum i all partial waves within the interval
[max(0, i − N ), i + N] can be coherently populated at the
final energy when the pulses are linearly polarized.

IV. ANALYTICAL MODEL FOR QUANTUM PATH
INTERFERENCES IN MULTIPHOTON IONIZATION

In order to provide an intuitive guide towards inter-
preting the ionization phase shift δ(E ) extracted from the
quantum path interferences contributing to MPSFI, we present
a simplified analysis based on a (lowest-order) perturbative
multiphoton description. Accordingly, the contribution of the
N-photon absorption path [e.g., P0 in Fig. 4(b)] to electron
emission in the θ direction following the absorption of N
photons of frequency 2ω in the visible has the complex am-
plitude

C(E2N , N ) =
∑



AN, exp
[
i
(

Nφ − N
π

2
− 

π

2
+ η(E2N , F )

)]
Y 0

 (θ ). (12)

In Eq. (12) AN, is the modulus of the N-photon absorption amplitude, η(E2N , F ) is the atomic ionization phase at energy
E = E2N , and Y m

 is the spherical harmonic of degree  and order m = 0. In the weak field-limit this phase is expected to
approach the one-photon atomic ionization phase at the same energy and angular momentum η(E2N , F → 0) = η(E2N ).
However, in the present strong-field setting, deviations from this limit are expected. The sum in Eq. (12) extends over all
orbital quantum numbers fulfilling the inequality max[0, i − N] �  � i + N . For estimating the phases in Eq. (12) we
have used that each photon absorption or emission event contributes a phase π/2, each angular momentum change �

adds another �π/2, and each absorption of a 2ω pump photon includes an additional relative phase φ of the pump field
relative to the probe field [see Eq. (1)]. Applying now Eq. (12) to the left path of pair P1 [Fig. 4(a)] contributing near
the sideband energy E2N+1, the combined amplitude for absorbing N visible 2ω photons followed by absorbing one NIR ω

photon reads

CP1,L(E2N+1) =
∑

,σ=±1

AV
N,ANIR

1+,σY 0
+σ (θ ) exp

{
i[Nφ − (N + 1)

π

2
− ( + σ )

π

2
+ η(E2N , F ) + ϕcc,1+

+σ (E2N , F )]
}
, (13)

with σ = � = ±1 the change in angular momentum due to the absorption of an additional NIR photon. Here ANIR
1+,σ denotes

the modulus and ϕcc,1+
+σ (En−1, F ) the corresponding additional phase of the absorption of one additional (1+) NIR photon. It

describes the continuum-continuum transition to the angular momentum sector  + σ in the sideband reached by the absorption
of N photons of frequency 2ω and one additional photon of frequency ω, i.e., n = 2N + 1. In the perturbative limit, this phase
is the analog to the corresponding phase in RABBIT which depends, in general, on  [17]. However, for probe fields beyond the
perturbative limit, the continuum-continuum phase is expected to be dependent also on Fω. When both pump and probe fields
are simultaneously present [Eq. (1)], the phases will depend, in general, on the combined field F . The corresponding expression
for the right of the path pair P1 is accordingly given by

CP1,R(E2N+1) =
∑

,σ=±1

AV
N+1,ANIR

1−,σY 0
+σ (θ ) exp

{
i[(N + 1)φ − (N + 2)

π

2
− ( + σ )

π

2

+ η(E2(N+1), F ) + ϕcc,1−
+σ (E2(N+1), F )]

}
, (14)
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where ANIR
1−,σ denotes the modulus and ϕcc,1−

+σ (E2(N+1), F ) the
corresponding continuum-continuum phase of the emission
amplitude of an IR photon. Note that the range of  included
in Eq. (14) is different from that in Eq. (13) and includes
max[0, i − (N + 1)] �  � i + N + 1. When, e.g., only the
path pair P1 in Fig. 4(a) is considered, the emission probability
near the sideband E = E2N+1 [Eq. (9)] is now given by the
coherent sum of Eqs. (13) and (14),

S+(−)(E2N+1, φ)

=
∫ 1(0)

0(−1)
d (cos θ )|CP1,L(E2N+1) + CP1,R(E2N+1)|2. (15)

The evaluation of Eq. (15) can be drastically simplified by
including only the dominant pathways along the so-called
yrast line well known from beam-foil spectroscopy [57,58] or,
equivalently, assuming that only the pathways preferred by the
Fano propensity rule [59,60] are realized. Accordingly, each
photoabsorption leads predominantly to an increase (1+ ↔
σ = 1) and photoemission to a decrease (1− ↔ σ = −1) by
one unit of angular momentum. Including only these domi-
nant paths eliminates the summation over  and σ in Eqs. (13)
and (14). We note that this approximate selection rule is only
applicable to resonant bound-bound or continuum-continuum
transitions but not to tunneling or above-threshold ionization.
For ATI peaks close to threshold, the dominant  values are

delimited by [61]

 � th � (2ZT αγ )1/2 =
(

2
√

2ZT

√
Nth

2ω

)1/2

, (16)

where α is the quiver amplitude, γ the Keldysh parameter of
the laser field with frequency 2ω, and Nth the minimum num-
ber photons of frequency 2ω required to reach the continuum
(Nth = 6 for argon). Accordingly, our TDSE calculations yield
f waves as dominant partial waves near threshold, which is
very close to the upper bound predicted by Eq. (16), th = 4,
and well below the prediction for the yrast line (or propen-
sity rule [59,62]), i + Nth = 7, as depicted in Fig. 5. The
partial-wave content of the first ATI peak above threshold
and starting point of the further spread in angular momentum
is thus centered at lower values of  � th. The evolution
of the partial-wave distribution p to higher partial waves
with increasing number of absorbed ATI photons (peak) is
discernible [Fig. 5(c)]. The first ATI peak exhibits a dominant
angular momentum of th = 3, whereas for the second ATI
peak the dominant angular momentum is  = 4. The com-
bined contribution of the d and g waves of the second ATI
peak produces a dominant f wave ( = 3) for the third ATI
peak but with an appreciable  = 5 contribution, i.e., p5 �
0.5p3. Applying the approximate propensity rule to Eqs. (13)–
(15) yields, e.g.,

S+(E2N+1, φ) =
∫ 1

0
d (cos θ )

{
(AV

N,)2
(
ANIR

1+
)2[

Y 0
+1(θ )

]2 + (
AV

N+1,+1

)2(
ANIR

1−
)2[

Y 0
 (θ )

]2 + 2AV
N,AV

N+1,+1ANIR
1+ ANIR

1− Y 0
+1(θ )Y 0

 (θ )

× cos
[
φ + η+1(E2(N+1), F ) − η(E2N , F ) + ϕcc,1−

 (E2(N+1), F ) − ϕcc,1+
+1 (E2N , F )

]}
, (17)

with an analogous expression for S−(E , φ). Consequently, the asymmetry A(E = E2N+1, φ) given by Eq. (8) is proportional to

A(E2N+1, φ) ∼ S+(E2N+1, φ) − S−(E2N+1, φ)

∼ 2AV
N,AV

N+1,+1ANIR
1+ ANIR

1−

∫ 1

0
d (cos θ )Y 0

+1(θ )Y 0
 (θ )

× cos
[
φ + η+1(E2(N+1), F ) − η(E2N , F ) + ϕcc,1−

 (E2(N+1), F ) − ϕcc,1+
+1 (E2N , F )

]
. (18)

Comparison with Eq. (10) yields now an explicit analytic but approximate expression of the phase delay between the two paths
of the pair P1 [Fig. 4(a)],

δ(E2N+1) � η(E2N , F ) − η+1(E2(N+1), F ) + ϕcc,1+
+1 (E2N , F ) − ϕcc,1−

 (E2(N+1), F ). (19)

In the limit where all contributions to the phase of the wave packet due to the interplay with the atomic force field and the laser
field can be neglected, δ(E2N+1) ≈ 0, Eq. (19) reduces to

A(E2N+1, φ) ∝ S+(E2N+1, φ) − S−(E2N+1, φ) = C cos φ, (20)

which agrees with the result in the SFA first given by Zipp et al. [40].
A similar analysis for a pair of paths contributing to the asymmetry near the ATI energy En, where now n = 2N , taking into

account only interference between the direct ATI path P0 and the path P′′
1 (R) [Fig. 4(b)] involving absorption of two NIR photons

yields

A(E2N , φ) ∼ S+(E2N , φ) − S−(E2N , φ)

∼ AV
N,AV

N−1,−1ANIR
2+

∫ 1

0
d (cos θ )Y 0

+1(θ )Y 0
 (θ ) cos[φ + π + η(E2N , F ) − η−1(E2(N−1), F ) − ϕcc,2+

+1 (E2(N−1), F )],

(21)
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with ANIR
2+ (ϕcc,2+

+1 ) the modulus (phase) of the two-photon transition amplitude from the ATI peak at En−2 with  − 1 to (En,  +
1). Consequently, the phase delay between these two paths δ(E ) is given by

δ(E2N ) � −π − η(E2N , F ) + η−1(E2(N−1), F ) + ϕcc,2+
+1 (E2(N−1), F ). (22)

In the limit where all atomic force field and laser field effects
on the phase delay can be neglected, the SFA emerges as

S+(E2N , φ) − S−(E2N , φ) = A cos(φ + π ), (23)

which predicts, indeed a phase jump of π between the side-
bands [Eq. (20)] and the ATI peaks [Eq. (23)], in agreement
with our numerical results (Fig. 3). In turn, the deviations
observed in the TDSE simulation and CVA simulations from
these SFA limits are an unambiguous signature of the in-
terplay between the atomic force field and laser fields in
the atomic ionization phases. It should be emphasized that
the TDSE results include all paths contributing to the mul-
tiphoton strong-field interference for photoelectrons well
beyond the simplified two-path double-slit model [Eqs. (19)
and (23)] explicitly treated above.

The two-path model can provide guidance as to which in-
formation can be extracted from MPSFI spectra. For example,
the phase contributions η and φcc will in general be depen-
dent on the field strengths F2ω and Fω in a strong-field ω-2ω

scenario fundamentally different from the standard RABBIT
protocol. Moreover, while the resulting phase delay δ(E ) is a
continuous function of E (see Fig. 3), the mapping of a phase
delay onto a time delay according to Eq. (11) depends on
the specific position within the spectrum. Near sideband ener-
gies E2N+1, Eq. (19) has the appearance of a finite-difference
approximation as implied by Eq. (11) and can thus be used
to extract approximate time delays τ = δ(E2N+1)/2ω. Near
ATI peaks [Eq. (22)], such an interpretation in terms of a
finite-difference approximation fails as the difference involves
now paths with different numbers of NIR photons (here 0
and 2). Moreover, when all path pairs are included, a sum
over many path pairs, each giving rise to terms of the form
[Eq. (19)] for sidebands and of the form [Eq. (22)] for ATI
peaks, will contribute to A(E , φ), rendering the extraction of
a spectral derivative for a specific phase difficult. Only in
cases where one path pair strongly dominates, in particular,
the pair P1 for the sideband, approximate EWS time delays for
a given partial wave can be unambiguously assigned. With this
caveat in place, we also give τ (E ) in Figs. 6–8 for illustrative
purposes.

Before comparing simulations with experimental data, we
illustrate the partial-wave path-interference structure for a
strongly simplified model system in which the number of
contributing paths and thus the complexity of the ionizing
process is drastically reduced. We consider an electron bound
by a Yukawa potential [Eq. (3)] with parameters (a = 4 and
b = 0.629) chosen such that a single 2ω photon is sufficient
to reach the continuum and the shallow potential supports
only one 1s-like bound state with E1s = −0.08. Consequently,
the energetic position of the first ATI peak coincides in this
case with the position of the standard photoionization peak.
For later reference we note that the screening length of this
potential (a = 4) is sufficiently large as to include, despite be-
ing asymptotically short range, some Coulomb-laser coupling

or continuum-continuum phase contributions [63]. Moreover,
we choose the intensities of the fields sufficiently low (I2ω =
1011 W/cm2 and Iω = 5 × 108 W/cm2) to be strictly in the
perturbative multiphoton regime. The photoelectron spectrum
in both the presence and absence of the weak probe field
is displayed in Fig. 6(a). Turning on the ω field creates the
sidebands, as expected, while the ATI peaks remain largely
unaffected by the probe field. The absorption of a single
visible (2ω) photon from the bound 1s initial state ionizes
the model atom, creating a p-wave electron of energy corre-
sponding to the first peak (ATI1). The second peak (ATI2)
results from the absorption of two visible (2ω) photons and
is composed of the superposition of s and d waves due to
the selection rule of angular momentum � = ±1. We have
determined the angular momentum composition of ATI2 to
contain 9.8% of s character and 90.1% of d character con-
sistent with the propensity rule invoked above. The lowest
sideband SB1 between the first photoionization peak ATI1
and the second peak ATI2 can be reached by either absorp-
tion of two photons [one visible (2ω) and one NIR (ω)] or
by absorption of two visible (2ω) photons and emission of

FIG. 5. Energy spectrum and angular momentum distribution
after strong-field ionization of argon by the one-color 2ω field
with the same parameters as in Fig. 2: (a) photoelectron spectrum,
(b) electron distribution as a function of the energy and angular mo-
mentum on a logarithmic scale covering three orders of magnitude,
and (c) normalized p (integrated over energy) for the first three ATI
peaks from threshold.

043113-7



S. D. LÓPEZ et al. PHYSICAL REVIEW A 104, 043113 (2021)

10-9

10-6

10-3

100

0 2 4 6 8 10
0.0

0.5

1.0

SB3

SB2

ATI3

(b)

ATI2

dP
/d

E
(a

.u
.) ω-2ω

2ω

ATI1

SB1

(a)

ph
as

e
sh

ift
(u

ni
ts

of
π)

electron energy (eV)

single photon
ATI peaks
SB

0

200

400

600

800 tim
e

delay
(as)

FIG. 6. (a) Electron spectra for a Yukawa potential [Eq. (3)] with
a = 4 and b = 0.629 calculated for one-color 2ω (black line) and
two-color ω-2ω (red line) laser fields with φ = 0. (b) Phase delays
δ(E ) in units of π calculated from the asymmetry A(E , φ) integrated
over hemispheres [see Eq. (9)]. For reference we also convert the
phase delay into a time delay [Eq. (11)] (right side axis). The laser
intensities are I2ω = 1011 W/cm2 and Iω = 5 × 108 W/cm2. The
other laser parameters are the same as in Fig. 2.

one NIR (ω) photon. For the first sideband SB1 the angular
momentum composition is given by 9.4%, 0.8%, and 89.8%
for the s, p, and d states, respectively. The population of s and
d partial waves in SB1 is close to that of ATI2 also in line with
the propensity for two-photon absorption irrespective of the
different frequencies involved. This distribution indicates the
dominance of the one visible (2ω), one NIR (1ω) absorption
path to the SB1 over the two visible (2ω) absorption, one
NIR (1ω) emission path in the perturbative regime, which is
expected since the latter path involves one more photon from
a weak field than the former and consequently is a higher-
order photoionization process. However, only the latter path
provides access to the p-wave sector and, therefore, a small but
crucial contribution giving rise to a nonvanishing φ-dependent
contribution from which the phase delay δ(E ) can be extracted
[Fig. 6(b)].

Remarkably, whereas δ(E ) near the ATI peaks closely
follows the SFA predictions δ(En) � π [Eq. (23)], near the
sideband peaks strong deviations can be observed in Fig. 6(b).
For the first sidebands for which this phase could be reli-
ably extracted we find δ(En) � 0.3π . For reference we also
convert the phase delay δ(E ) into an EWS-type time de-
lay following Eq. (11) and find for the sideband, within a
fairly small energy window (3 eV � E � 10 eV), an al-
most energy-independent time delay of about τ ≈ 200 as.
Using the approximate expressions [Eqs. (20) and (23)] for a
qualitative analysis of the two-path interference, these results
suggest that the phase delay near the ATI peaks is strongly
dominated by the SFA contribution (∼π ) corresponding to
a time delay of 660 as, while atomic field corrections play
only a minor role. By contrast, near the sideband peaks the
phase differences induced by the atomic field η+1(E2(N+1)) −
η(E2N ) + ϕcc,1−

 − ϕcc,1+
+1 are clearly visible. We note that the

presence of a nonvanishing contribution to the phase delay
by the one-photon continuum-continuum transition ϕcc,1± for
the Yukawa potential is consistent with the fact that with
increasing screening length (a = 4 in the present case) an
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FIG. 7. TDSE phase delays δ(E ) calculated as a function of the
emission energy for (a) ATI peaks and (b) sidebands for the same
pulse parameters as in Fig. 2. Phase shifts were extracted from data
for forward half spheres S+(E , φ) (squares) and asymmetry A(E , φ)
(circles) with integration over the energy window around each peak
energy (closed symbols) and at the energy peak only (open sym-
bols). Closed green circles correspond to experimental data by Zipp
et al. [40] normalized to the TDSE result at the highest sideband
energy (∼15 eV).

increasing part of the full long-range Coulomb-laser coupling
is restored [63]. Therefore, we can use Eq. (19) to estimate
this contribution to the sideband phase delay as

ϕcc,1+
+1 (E2N ) − ϕcc,1−

 (E2(N+1))

� δ(E2N+1) + η+1(E2(N+1)) − η(E2N ), (24)

where we have dropped the argument F because we consider
the perturbative limit (F → 0). The atomic ionization phases
η can be obtained by the one-photon atomic ionization phase
in a partial-wave expansion for the Yukawa potential. By
using Eq. (24), we estimate the continuum-continuum phase
contribution to SB1 as ϕcc,1+

2 − ϕcc,1−
1 � 0.45, to SB2 as

ϕcc,1+
3 − ϕcc,1−

2 � 0.8, and to SB3 as ϕcc,1+
4 − ϕcc,1−

3 � 0.92,
corresponding to time delay contributions of approximately
11, 19, and 22 as, respectively. These phase contributions
could shed some light on how the Yukawa potential affects
the continuum-continuum contributions to the time delays.
In addition, new studies on the holographic angular streak-
ing of electrons by corotating (ω-2ω) fields suggest that
nonadiabatic effects in the ionization process could be respon-
sible for such a difference of the time delay with respect to
the strong-field approximation [64,65]. The identification of
nonadiabatic effects on time delays (included in the TDSE
calculations) are beyond the scope of this paper. It is worth
recalling that–as the de Broglie wavelength of the electron is
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FIG. 8. Interference phase delay δ(E ) as a function of the probe
laser intensity Iω extracted from asymmetry parameter A integrated
over hemispheres for (a) three ATI peaks and (b) three sidebands
with energies as indicated. All other laser parameters are the same as
in Fig. 2. The horizontal dashed line corresponds to the strong-field
limit for ATI phase shifts [δ(E ) = π ]; the SFA limit for the sidebands
is δ(E ) = 0 (not shown).

larger than the screening length of the Yukawa short-range
potential-, classical or semiclassical approximations cannot
expected to be valid for the energy region shown in Fig. 6(b).

V. COMPARISON WITH EXPERIMENT

For a comparison with the experiment of Zipp et al. [40],
we extract the multiphoton ionization interference phase shifts
δ(E ) from the TDSE simulation (Fig. 2). In view of the rapid
variation with the energy E (Figs. 2 and 3), we not only eval-
uate δ(E ) at the ATI or sideband peaks E = En [Eq. (7)] but
also integrate the spectrum over an energy window of width
�E = 0.3ω centered around each peak. We show in Fig. 7 fits
to δ(E ) for emission into the forward hemisphere S+(E , φ)
[Eq. (9)] and for the asymmetry A(E , φ) [Eq. (8)]. While
minor differences of the order of less than 0.05π between
the different readouts of δ(E ) (via S+ or A) appear, the over-
all trends observed are independent of the particular readout
protocol demonstrating that unambiguous information on the
phase delay can be extracted.

For further analysis and interpretation of the results of
Fig. 7, two key points should be taken into account. First,
the experimental data for δ(E ) presented in [40] were relative
and set to coincide with the SFA value (δ = 0) at the highest
energy measured (E = 15 eV) (a similar renormalization was
used in [43]). However, we observe significant deviations in
δ(E ) from the SFA limit. Therefore, we instead renormalize
the experimental data to the full TDSE result at the high-
est experimental energy in order to preserve this additional
information on the absolute value of δ(E ). Accordingly, in

Figs. 7(a) and 7(b) the experimental results are set to coincide
with the TDSE phase shifts calculated by integration over
the energy windows around the peaks and all angles in the
forward hemisphere. Overall, the trend in the experimental
data is well reproduced by the simulations. The sharp rise
of the phase shift δ(E ) for the first ATI peak seen close to
threshold in both the experiment and simulations was recently
interpreted in terms of transient trapping of the electron in
Rydberg states by the ω-2ω field [43].

The second key feature is that the data in Fig. 7 were ex-
tracted at a moderately strong NIR probe field with Iω = 4 ×
1011 W/cm2. For the standard RABBIT protocol or attosec-
ond streaking field strengths Fω of that order of magnitude
were found to be weak enough to unambiguously extract
atomic continuum-continuum or Coulomb-laser coupling de-
lays which are independent of the particular value of Iω in
line with lowest-order perturbation theory [1]. However, in
the present MPSFI scenario the influence of the probe field
Fω beyond a lowest-order perturbation theory must be consid-
ered. Indeed, exploring the variation of the extracted δ(E ) at
fixed pump intensity I2ω as a function of the probe intensity Iω
(Fig. 8) reveals a surprisingly strong dependence. The experi-
mental value Iω = 4 × 1011 W/cm2 is obviously well beyond
the lowest-order perturbative regime, which precludes the di-
rect applicability of a RABBIT-type analysis. For sideband
peaks, phase shifts δ(E ) appears to converge to the perturba-
tive field-independent limit only for considerably lower fields
Iω � 1010 W/cm2. These converged values, however, differ
significantly from the SFA limit even at the highest energy
measured (E = 15.5 eV). Near ATI peaks, variations are
present even at such low intensities and the approach to con-
verged field-independent values is not yet obvious. It appears
that for the highest energies measured, e.g., E = 17.1 eV, and
at the lowest probe field Iω � 1010 W/cm2 the phase near the
ATI peak may approach the SFA limit δ(E ) � π . It should
be noted, however, that the interference contributions to
ATI peaks, which are responsible for the phase shift δ(E ),
result from (at least) a two-photon absorption or emission
event in the probe field [P′′

1 as depicted in Fig. 4(b)], which
becomes very weak at low Iω, rendering the phase extrac-
tion uncertain. The non-negligible probe field dependence of
the extracted MPSFI phase delays δ(E ), also indicated in
Eqs. (19) and (22), emerges as an important feature, absent
in standard RABBIT or streaking measurements, that remains
to be explored experimentally as well as theoretically.

VI. CONCLUSION

We have presented simulations and detailed analysis of the
phase delays δ(E ) in multiphoton ionization. They provide
information on the differences in ionization phases among
different pathways open in an ω-2ω scenario for atomic
ionization. We showed that δ(E ) is determined by quantum
path interferences between different sequences of photon ab-
sorption and emission events. In the SFA limit these phases
are given by δ(E ) = 0 at sideband energies and by δ(E ) =
π at the ATI peaks. We found that the solutions of the
time-dependent Schrödinger equation predict phases strongly
differing from these SFA limits even at relatively high electron
emission energies. We related these phase shifts to the inter-
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play between the strong ω-2ω field and the atomic force field
not accounted for by the SFA. We also pointed out the intrinsic
difficulties to relate the phase delays δ(E ) to time delays in
analogy to the standard RABBIT protocol for one-photon ion-
ization. A multitude of different interfering pathways provides
obstacles for a straightforward extraction of a spectral deriva-
tive of the phase delay. We found strong variation of δ(E )
with the intensities of the pump and probe fields. Our analysis
shows that further experimental insight into the multiphoton
ionization phase delay δ(E ) can be gained by exploring its
variation with both I2ω and Iω.
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