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Implementation of a time-dependent multiconfiguration self-consistent-field method for coupled
electron-nuclear dynamics in diatomic molecules driven by intense laser pulses
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We present an implementation of a time-dependent multiconfiguration self-consistent-field method [R.
Anzaki, T. Sato, and K. L. Ishikawa, Phys. Chem. Chem. Phys. 19, 22008 (2017)] with the full configuration-
interaction expansion for coupled electron-nuclear dynamics in diatomic molecules subject to a strong laser field.
In this method, the total wave function is expressed as a superposition of different configurations constructed
from time-dependent electronic Slater determinants and time-dependent orthonormal nuclear basis functions.
The primitive basis functions of nuclei and electrons are strictly independent of each other without invoking the
Born-Oppenheimer approximation. Our implementation treats the electronic motion in its full dimensionality on
curvilinear coordinates, while the nuclear wave function is propagated on a one-dimensional stretching coordi-
nate with rotational nuclear motion neglected. We apply the present implementation to high-harmonic generation
and dissociative ionization of a hydrogen molecule and discuss the role of electron-nuclear correlation.
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I. INTRODUCTION

The rapid development of laser technology enables the
generation of coherent light sources that cover a broad fre-
quency range, from the midinfrared to the x-ray regime [1–5].
The emergence of these new light sources has opened up
new opportunities for many scientific fields, such as ultrafast
atomic and molecular physics [6–9], attosecond chemistry
[10,11], and material science [12–15], with a goal to visual-
ize, understand, and ultimately control electron and nuclear
dynamics in atoms, molecules, and solids. In particular,
when molecules are subject to ultrashort intense laser pulses,
the induced molecular dynamics is the simultaneous motion
of atomic nuclei and electrons forming a molecular entity
[16,17]. An accurate description of such processes requires
treating both electronic and nuclear degrees of freedom on
an equal footing. At present, ab initio theoretical description
of coupled electron-nuclear dynamics in molecules remains a
challenge.

For the investigation of multielectron dynamics in intense
laser fields, the multiconfiguration time-dependent Hartree-
Fock (MCTDHF) method has been developed [18–21]. In this
approach, the time-dependent total electronic wave function
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�(t ) is given in the configuration-interaction (CI) expansion,

�(x1, · · · , xn, t ) =
∑

I

CI (t )�I (x1, · · · , xn, t ), (1)

with x = {r, σ } being the spatial-spin variable of the electron.
The electronic configuration �I (x1, · · · , xn, t ) is a Slater de-
terminant constructed from spin orbital functions {ψ (r, t ) ×
s(σ )}, where {ψ (r, t )} and {s(σ )} are electronic spatial or-
bitals and spin functions, respectively. Both CI coefficients
{CI} and orbitals are simultaneously propagated in time,
which provides an adequate representation of the temporal
change of the wave function with a reduced number of deter-
minants compared to fixed orbital treatment. In the MCTDHF
method, the summation in Eq. (1) runs over all possible
configurations for a given set of spin orbitals, which are
conventionally referred to as full-CI expansion. In the full-CI
case, the computational cost due to CI coefficients is propor-
tional to the number of electron distributions among all spin
orbitals, which increases factorially with the number of elec-
trons, thus hindering its application beyond small molecular
systems. To subjugate this difficulty, variants that go beyond
the restriction to the full-CI expansion are now under active
development, which we refer to as time-dependent multicon-
figuration self-consistent-field (TD-MCSCF) methods [22,23]
in the general case. Representative examples include the time-
dependent complete-active-space self-consistent-field method
[24–26], the time-dependent occupation-restricted multi-
ple active-space method [27,28], and the time-dependent
restricted-active-space self-consistent-field method [29–31].
These methods are based on the truncated CI expansion
within the chosen active orbital space, which are computa-
tionally more efficient and at the same time provide compact
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representation of multielectron dynamics in a given physical
condition without sacrificing accuracy.

Efforts have been made to describe the coupled electronic
and nuclear dynamics of molecules within the framework
of the TD-MCSCF method by multiple groups and from
diverse perspectives. Nest developed the multiconfiguration
electron-nuclear dynamics (MCEND) method [32,33], where
the molecular wave function is represented as a sum over
products of determinants for the electrons and Hartree prod-
ucts for the nuclei. By introducing a set of atomic orbitals on
“ghost” centers along the internuclear axis of diatomic sys-
tems, this method is computationally effective to investigate
both electronic and vibrational photoexcitations. However,
the MCEND method fails to describe photoionization and
dissociation processes due to the use of Gaussian basis func-
tions as electronic bases and limited grid range of nuclear
bases [34]. These two processes are keys in understanding the
strong coupling of electronic and nuclear dynamics to strong
laser fields. Kato and Yamanouchi developed an extended
MCTDHF method [35] by using a basis of Slater determi-
nants with time-dependent nuclear orbitals for the fermionic
protons while keeping heavy nuclei fixed. This method has
been applied to calculate the ground-state properties of a
model one-dimensional hydrogen molecule [36], which shows
good agreement with the direct solution of the time-dependent
Schrödinger equation (TDSE). Very recently, this method
has also been adopted for real-time simulation of hydrogen
molecular ions (with one electron and one nuclear degree of
freedom) irradiated by an intense laser pulse [37]. In another
work, Haxton and McCurdy [38] developed a promising way
to include quantum treatment of nuclei into MCTDHF for the
special case of diatomic molecules. By introducing prolate
spheroidal coordinates for the electronic wave function, the
total wave function is expanded in terms of configurations of
orbitals which depend on the internuclear distance. Thus, the
trivial but strong correlation between the positions of the nu-
clei and electrons due to their Coulomb attraction is naturally
included and an efficient procedure for evaluating overlap and
Hamiltonian matrix elements is formulated. On one hand,
geometry-dependent electron orbitals satisfy the key phys-
ical condition for the inclusion of strong electron-nuclear
coupling. It is demonstrated that such treatment provides a
rapidly convergent representation of the vibrational states of
diatomics such as HD+, H2, HD, and LiH. On the other
hand, the parametric dependence of electron orbitals on the
nuclear geometry causes qualitative failure in calculating the
dissociative photoionization cross section of H+

2 [39]. Some
alternatives of the prolate spheroidal coordinates have been
suggested to resolve this issue. In a series of papers [40–43],
Alon et al. have formulated a multiconfiguration method to
describe systems consisting of different types of identical
particles with particle conversion taken into account. Stepping
forward in this direction, a fully general TD-MCSCF method
[44] has been developed in our group, which can describe the
dynamics of a many-body system comprising any arbitrary
kinds and numbers of fermions and bosons subject to an
external field. The equations of motion (EOMs) of CI coef-
ficients and spin orbitals are derived for general configuration
spaces, based on the time-dependent variational principle. In
particular, working equations for molecules subject to intense

laser fields are formulated in a very flexible manner, without
restriction to the full-CI case, and nuclei can been treated as
either classical or quantum particles.

In this paper, as the first step towards the numerical imple-
mentation of the general TD-MCSCF method [44], we report
our implementation specializing for diatomic molecules in
the full-CI case. By transforming to Jacobian coordinates and
neglecting the rotational motion of the nuclei, we have only
one degree of freedom for the nuclear motion. Thus nuclear
orbitals can be defined as functions of internuclear distance.
This treatment highly simplifies the underlying numerical
procedures and at the same time retains the electron-nuclear
correlation. For the electron motion, we use three-dimensional
curvilinear coordinates to effectively reduce the compu-
tational cost. We apply the present implementation to a
hydrogen molecule in intense laser fields. By comparing with
the fixed-nuclei case, we address the importance of electron-
nuclear correlation.

This paper is organized as follows. In Sec. II, we present
EOMs of the TD-MCSCF method specialized to diatomic
molecules. Numerical implementation is described in Sec. III,
and its applications to H2 and D2 are described in Sec. IV.
Section V concludes this paper. Atomic units are used
throughout unless otherwise stated.

II. THEORY

A. The system Hamiltonian

We consider a neutral diatomic molecule with N electrons
exposed to a laser field linearly polarized parallel with the
molecular axis in the z direction. The motions of the two
nuclei [with mass and charge (M1, Z1) and (M2, Z2)] and
N electrons are characterized by their position vectors R1,
R2, and {r′

i : i = 1, 2, · · · , N}, respectively, in the laboratory
frame. Hiskes [45] has shown that it is possible to separate
the center-of-mass motion by choosing the center of mass of
the two nuclei as the origin (Jacobian coordinates [46]) and
introducing N + 2 new variables: a center-of-mass coordinate
Rc, a relative nuclear coordinate R, and N additional coordi-
nates {ri : i = 1, 2, · · · , N} representing the position vectors
of the ith electron from the center of mass of the two nuclei.
For aligned molecules, we neglect the nuclear rotation and
retain only vibrational motion. In this case, the internuclear
distance vector R can be simply expressed as R ≡ Rez, where
ez is the unit vector in the z direction. After several algebraic
manipulations (see, e.g., Ref. [35]), the Hamiltonian for the
internal motion reads

Ĥ (t ) = Ĥ (n)(t ) + Ĥ (e)(t ) + Ĥ (ne), (2)

where Ĥ (n)(t ), Ĥ (e)(t ), and Ĥne) are the nuclear part, elec-
tronic part of the Hamiltonian, and electron-nuclear Coulomb
interaction, respectively. Ĥ (n)(t ) describes the relative motion
of the two nuclei with the repulsive Coulomb potential and the
coupling with the laser field. Within the dipole approximation,
it is given by

Ĥ (n)
LG (t ) = − 1

2μn

∂2

∂R2
+ Z1Z2

R
− Z1M2 − Z2M1

M1 + M2
E (t )R, (3)
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in the length gauge (LG), and

Ĥ (n)
VG(t ) = − 1

2μn

∂2

∂R2
+ Z1Z2

R
− i

Z1M2 − Z2M1

M1M2
A(t )

∂

∂R
,

(4)

in the velocity gauge (VG), where μn = M1M2
M1+M2

is the reduced

nuclear mass, and E (t ) and A(t ) = − ∫ t
−∞ E (t ′)dt ′ are the

laser electric field and vector potential, respectively. The last
terms in Eqs. (3) and (4) vanish for homonuclear molecules
such as H2 because there is no dipole coupling with the laser
field for the nuclei. The electronic part of the Hamiltonian in
Eq. (2) reads

Ĥ (e)(t ) =
N∑

i=1

ĥ(e)(ri, t ) +
N∑

i=1

∑
j>i

Û (ee)(ri, r j )

+
N∑

i=1

∑
j>i

Û (MP)(ri, r j ), (5)

with the one-body electronic Hamiltonian either in LG or
in VG

ĥ(e)
LG(r, t ) = − 1

2μe
∇2 + E (t )z, (6)

ĥ(e)
VG(r, t ) = − 1

2μe
∇2 − i

(
1 + Z1 + Z2

M1 + M2

)
A(t )

∂

∂z
, (7)

the electron-electron Coulomb interaction

Û (ee)(r1, r2) = 1

|r1 − r2| , (8)

and the mass-polarization term

Û (MP)(r1, r2) = 1

M1 + M2
∇1 · ∇2, (9)

where μe = M1+M2
M1+M2+1 is the reduced electron mass. The

mass-polarization term Eq. (9) describes the deviation of the
center of mass of the nuclei from the center of mass of the
nuclei plus any N − 1 subset of the N electrons, which is a
minor term [47] and omitted in the present paper. Finally, the
last term in Eq. (2) represents the electron-nuclear interaction,
which has the form

Ĥ (ne)(r, R) = − Z1∣∣r + M2
M1+M2

R
∣∣ − Z2∣∣r − M1

M1+M2
R

∣∣ . (10)

It is worth noting that in the fixed-nuclei model the electron-
nuclear Coulomb interaction is trivially a time-independent
quantity which enters to the one-body electron Hamiltonian.
However, in the quantum-nuclei case, this term is a two-body
operator and needs to be propagated explicitly.

B. The TD-MCSCF method for the diatomic molecule

In this subsection, we present the TD-MCSCF method [44]
specializing for diatomics in the full-CI case. For a com-
pact representation, the formulation of the theory is given
in the second quantization formalism. Hereafter, we use or-
bital indices {μ, ν, λ, γ , δ} for electronic orbitals, {p, q, r}
for nuclear orbitals, and {i, j} for the general (electronic and
nuclear) occupied orbitals. For electrons, the Hamiltonian,

Eq. (5), can be rewritten as (the mass-polarization term is
neglected)

Ĥ (e) =
∑
μ,ν

(he)μν (Êe)μν + 1

2

∑
μ,ν,λ,γ

(ge)μλ
νγ (Êe)μλ

νγ , (11)

where (Êe)μν = ∑
σ â†

μσ âνσ and (Êe)μλ
νγ = ∑

σσ ′ â†
μσ â†

λσ ′

âγ σ ′ âνσ with {â†
μσ , âμσ : σ ∈↑,↓} being the fermionic

electron creation and annihilation operators, which change the
occupation of spin orbitals {ψμ × s(σ )} with Me orthonormal
electron spatial functions {ψμ}. The one- and two-electron
Hamiltonian matrix elements are defined as

(he)μν =
∫

drψ∗
μ(r)ĥ(e)(r)ψν (r), (12)

and

(ge)μλ
νγ =

∫∫
dr1dr2

ψ∗
μ(r1)ψ∗

λ (r2)ψν (r1)ψγ (r2)

|r1 − r2| . (13)

Similarly, the operators, Eqs. (3), (4), and (10), in the second
quantization notation are expressed as

Ĥ (n) =
∑
p,q

(hn)p
q (Ên)p

q, (14)

and

Ĥ (ne) =
∑

p,q,μ,ν

(gne)pμ
qν (Ên)p

q (Êe)μν , (15)

where (Ên)p
q = b̂†

pb̂q and b̂†
p(b̂p) is the nuclear creation (an-

nihilation) operator for the set of Mn nuclear spatial orbitals
{χp}. The matrix elements, (hn)p

q and (gne)pμ
qν , are defined as

(hn)p
q =

∫
dRχ∗

p (R)ĥ(n)(R)χq(R), (16)

and

(gne)pμ
qν =

∫∫
dRdrχ∗

p (R)ψ∗
μ(r)Ĥ (ne)(r, R)χq(R)ψν (r).

(17)

For the convenience of later discussion, we define the one- and
two-body reduced density matrix (RDM) elements as

(ρe)μν = 〈�| (Êe)νμ |�〉 , (18a)

(ρn)p
q = 〈�| (Ên)q

p |�〉 , (18b)

(ρee)μλ
νγ = 〈�| (Êe)νγ

μλ |�〉 , (18c)

(ρne)pμ
qν = 〈�| (Ên)q

p(Êe)νμ |�〉 , (18d)

where � is the total molecular wave function defined below
in Eq. (19).

In the TD-MCSCF method limited to full-CI expan-
sion, the total electron-nuclear wave function of a diatomic
molecule is expanded as

�(t ) =
∑
I,p

CI,p(t )�I (t )χp(t ), (19)

where {�I} denotes the N-electron Slater determinants con-
structed from electronic orbitals {ψμ}, and {χp} are nuclear
orbitals.
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The EOMs for the TD-MCSCF method have been derived
based on the time-dependent variational principle [48,49],
where the action integral S,

S =
∫

dt 〈�| Ĥ − i
∂

∂t
|�〉 , (20)

is made stationary with respect to any possible variations of
orbitals {ψμ} and {χp} as well as the CI coefficients {CI,p}.

The detailed derivation has been given in Ref. [44]. Here in
our notation, the resulting EOMs of the CI coefficients read

i
d

dt
CI,p =

∑
J,q

〈�Iχp| Ĥ − X̂ (n) − X̂ (e) |�Jχq〉CJ,q. (21)

The EOMs of the nuclear and electronic orbitals are given by

i
∂

∂t
|χi〉 = Q̂(n)

{
ĥ(n) |χi〉 +

∑
p,q

(
ρ−1

n

)p

i

∑
μ,ν

(ρne)qν
pμ(Ŵne)μν |χq〉

}
+

∑
j

|χ j〉 (Xn) j
i , (22)

i
∂

∂t
|ψi〉 = Q̂(e)

{
ĥ(e) |ψi〉 +

∑
μ,ν

(
ρ−1

e

)μ

i

[∑
λ,γ

(ρee)νγ

μλ(Ŵe)λγ +
∑
p,q

(ρne)qν
pμ(Ŵen)p

q

]
|ψν〉

}
+

∑
j

|ψ j〉 (Xe) j
i . (23)

In Eqs. (21)–(23), the operators Q̂(n) = 1 − ∑
p |χp〉 〈χp| and

Q̂(e) = 1 − ∑
μ |ψμ〉 〈ψμ| are projectors onto the orthogonal

complement of the occupied orbital space, which guarantee
the orthonormality of orbitals during time propagation. (Ŵe)μν ,
(Ŵne)μν , and (Ŵen)p

q are mean-field potentials, given, in the
coordinate space, by

(Ŵe)μν (r) =
∫

dr′ ψ
∗
μ(r′)ψν (r′)
|r − r′| , (24)

(Ŵne)μν (R) =
∫

drψ∗
μ(r)Ĥ (ne)(r, R)ψν (r), (25)

and

(Ŵen)p
q (r) =

∫
dRχ∗

p (R)Ĥ (ne)(r, R)χq(R). (26)

The operators, X̂ (n) and X̂ (e), the matrix elements of which are
defined by

(X̂n)p
q = i 〈χp| ∂

∂t
|χq〉 (27)

and

(X̂e)μν = i 〈ψμ| ∂

∂t
|ψν〉 , (28)

determine the components of the time derivation of the or-
bitals within the occupied orbital space. These two operators
impose constraints to the EOMs, which can be arbitrary Her-
mitian matrices. Depending on the choice of the constraint
operators, the EOMs have various equivalent forms. In the
present paper, we choose the natural-orbital constraint, i.e.,
the form of the constraint operators X̂ (n) and X̂ (e) that sat-
isfies the condition to diagonalize the one-body RDMs for
both electrons and nuclei [50]. In other words, electronic and
nuclear natural orbitals [51] are propagated directly during
the interaction with the laser pulse. This form is particularly
suited for our propagation scheme applied below. Explicit ex-
pressions for the natural-orbital constraint operators together
with their variants in imaginary-time propagation for ground-
state calculation are given in Appendix A. For completeness,
we also briefly summarize the working equations of TD-
MCSCF method for a pure multielectron system within fixed
nuclei in Appendix B.

III. IMPLEMENTATION

One of the important aspects for the implementation of TD-
MCSCF method using real-space grid-based techniques is the
choice of coordinate system. Many existing implementations
of TD-MCSCF method are optimized to efficiently study the
strong-field phenomena in atoms and diatomic molecules in
the presence of either linearly or elliptically polarized laser
pulses, exploiting the underlying symmetries of the system
Hamiltonian with, for instance, the spherical [25,26,28,52],
cylindrical [37], or prolate spheroidal coordinates [38]. To
retain the possibility of carrying out first-principle simulations
of the response of molecules to intense laser pulses without
assuming symmetry, we do not pursue this direction here.

The most straightforward way is using Cartesian coordi-
nates with an equal grid mesh. While this approach offers
better opportunities for parallel computing due to the highly
sparse and structured representation of the Hamiltonian, it
suffers from drawbacks of requiring small grid spacings to ac-
curately represent the electron-nucleus interaction and a large
number of grid points to sustain photoelectrons (or dissociated
nuclei). One way to overcome this problem is using mul-
tiresolution Cartesian grids [53], which has previously been
demonstrated for the implementation of MCTDHF method.
Alternatively, we can use curvilinear coordinates [54–56].
By choosing an appropriate coordinate transformation, it is
possible to achieve a high spatial resolution in the vicinity of
nuclei and, at the same time, a sufficiently large simulation
box. Furthermore, the coordinate transformation can be given
in analytical form. In addition, the EOMs can be analytically
transformed. The transformed EOMs are discretized using
higher-order finite difference methods on an equal grid mesh
in curvilinear coordinates. Such a treatment overcomes the
shortcomings of the equal grid mesh while retaining its advan-
tages. This scenario is demonstrated for the implementation of
the time-dependent Hartree-Fock (TDHF) method elsewhere.
In Sec. III A, we describe the coordinate transformation for
the present case.

Another important issue is the time propagation method.
The orbital EOMs Eqs. (22) and (23) consist of stiff linear
terms and nonstiff nonlinear terms. The stiffness of the lin-
ear part comes from the one-body kinetic-energy operators
while the nonlinear terms contain dependencies on the CI
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coefficients and the orbitals. For an efficient propagation
of the EOMs, we adopt the exponential time differencing
second-order Runge-Kutta scheme (ETDRK2) [57,58], as de-
scribed in Sec. III B.

A. Curvilinear coordinate

Here we mainly focus on the electron coordinate transfor-
mation and briefly mention the nuclear transformation at the
end of this subsection. Let us consider the physical space to be
described by Cartesian coordinates r = (x, y, z) = (r1, r2, r3)
and an analytical transformation r = f (ξ) to curvilinear co-
ordinates ξ = (ξ1, ξ2, ξ3) that act as the computational space.
This transformation is single-valued and at least twice con-
tinuously differentiable on a three-dimensional domain. The
Jacobian of the transformation J is defined as a 3 × 3 ma-
trix of which the (i, j) matrix element is Ji

j = ∂ri/∂ξ j , with
|J| = detJ being its determinants. The metric tensor gi

j in the
curvilinear coordinates is

gi
j =

3∑
k=1

(J−1)i
k (J−1) j

k =
3∑

k=1

∂ξi

∂rk

∂ξ j

∂rk
, (29)

and the Laplacian operator is given by

∇2 =
3∑

i=1

3∑
j=1

1

|J|
∂

∂ξi
|J|gi

j

∂

∂ξ j
. (30)

It is beneficial to transform the electron orbitals as

ψ̃μ(ξ) =
√

|J|ψμ[r(ξ)], (31)

such that the inner product obeys∫
drψ∗

μ(r)ψν (r) =
∫

dξψ̃∗
μ(ξ)ψ̃ν (ξ). (32)

Inserting Eq. (31) into Eq. (23), any electron operator ĥ in the
EOMs of transformed electron orbitals will change according
to ĥ −→ √|J|ĥ 1√|J| . The transformed Laplacian reads

√
|J|∇2 1√|J| =

3∑
i=1

3∑
j=1

1√|J|
∂

∂ξi
|J|gi

j

∂

∂ξ j

1√|J| . (33)

Special care must be taken to keep the resulting Laplacian
symmetric after applying the finite difference discretization
[56]. In our implementation, we rewrite Eq. (33) as

√
|J|∇2 1√|J| = 1

2

3∑
i=1

3∑
j=1

[
gi

j

∂2

∂ξi∂ξ j
+ ∂2

∂ξi∂ξ j
gi

j

]
+ M,

(34)

where

M = 1

4|J|2
[

gi
j

∂|J|
∂ξi

∂|J|
∂ξ j

− 2|J|2 ∂2gi
j

∂ξi∂ξ j

− 2|J|∂gi
j

∂ξi

∂gi
j

∂ξ j
− 2|J|gi

j

∂2|J|
∂ξi∂ξ j

]
. (35)

All the terms in Eq. (33) involving the first derivatives are
now rewritten so that they only involve the second derivatives
in Eq. (34). When applying the finite difference method, the

symmetry of the resulting Laplacian is preserved. Other oper-
ators are formulated in a similar way.

The z component of the transformed momentum operator
is expressed as

−i
√

|J| ∂

∂z

1√|J| = − i

2

3∑
j=1

(
∂ξ j

∂z

∂

∂ξ j
+ ∂

∂ξ j

∂ξ j

∂z

)
. (36)

The electron mean-field potential Eq. (24) is evaluated by
solving the corresponding Poisson equation

∇2(Ŵe)μν (r) = −4πψ∗
μ(r)ψν (r). (37)

Defining (Ŵ ′
e )μν (ξ) = √|J|(Ŵe)μν [r(ξ)], in the same way as in

Eq. (31), the Poisson equation is transformed as√
|J|∇2 1√|J| (Ŵ ′

e )μν (ξ) = −4π
√

|J|ψ̃∗
μ(ξ)ψ̃ν (ξ). (38)

With all the transformed operators available, the trans-
formed EOMs can be discretized on the computational
space ξ = (ξ1, ξ2, ξ3) by equally spaced grids. The fifth-order
central finite difference is applied for spatial differential op-
erators. To incorporate the exterior complex scaling (ECS)
absorbing boundary [26,59–62], we use an orthogonal trans-
formation

ri = f (ξi ), i = 1, 2, 3, (39)

which smoothly scales the real ξi to complex ri. The explicit
expression for this transformation reads

f (ξ ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

�t eiθ (ξ + ξ (1) ) − ξ (2)

(ξ < −ξ (1) )

�sξ − ∑8
p=5 bp(ξ (1) − ξ (0) )8−p(ξ + ξ (0) )p

(−ξ (1) � ξ < −ξ (0) )
�sξ

(−ξ (0) � ξ � ξ (0) )

�sξ + ∑8
p=5 ap(ξ (1) − ξ (0) )8−p(ξ − ξ (0) )p

(ξ (0) < ξ � ξ (1) )
�t eiθ (ξ − ξ (1) ) + ξ (2)

(ξ (1) < ξ )

(40)

where the computational space along one direction is divided
into five regions: the inner region (−ξ (0) � ξ � ξ (0)), two in-
termediate regions (−ξ (1) � ξ < −ξ (0) and ξ (0) < ξ � ξ (1)),
and two outer regions (ξ < −ξ (1) and ξ (1) < ξ ). The param-
eters �s and �t are the scaling factors in the inner and outer
regions, respectively. The polynomials are used in the inter-
mediate regions, where parameters ap and bp = (−1)pap are
determined to satisfy the conditions of continuity of f (ξ ) and
its first and second derivatives at the boundaries. θ is the ECS
scaling angle.

Special care should be taken for solving the Poisson equa-
tion when analytic continuation is applied for the orbitals. In
this case, solving the Poisson equation in the complex-scaled
region (|ξ | > ξ (0)) turns out to be numerically unstable [26].
In the present paper, we approximately neglect the Coulomb
interaction between electrons in the scaled region and adopt
octupole expansion for the calculation of the electron mean-
field potential in the scaled region as well as the boundary
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condition of solving the Poisson equation in the unscaled
region.

The nuclear coordinate is transformed in a similar way
as that of electrons, i.e., R = f (ζ ), together with orbital
transformation χ̃p(ζ ) = √

f ′χp(ζ ). The transformed EOMs of
nuclear orbitals are numerically discretized on equally spaced
points in ζ and readily propagated. The same transformation
function in Eq. (40) is adopted except for the condition ζ > 0.

B. Time propagation scheme

We rewrite the electronic orbital EOMs Eq. (23) as a non-
linear differential equation

∂

∂t
u(t ) = −iĥu(t ) + N[t, u(t )], (41)

where ĥ is a stiff linear operator and N[t, u(t )] a nonstiff
nonlinear reminder. We first consider the stiff part to be time
independent, i.e., ĥ = − 1

2μe
∇2, and put the laser interaction

term into the nonlinear part. Equation (41) can be integrated
over a small time interval [tn, tn+1 = tn + �t] as

u(tn+1) = e−iĥ�t u(tn) +
∫ tn+1

tn

dt ′eiĥ(tn+1−t ′ )N[t ′, u(t ′)], (42)

which is exact for time-independent ĥ. This scheme is called
the exponential integrator [58]. By approximating N[t ′, u(t ′)]
in the integrand using second-order Runge-Kutta (RK2)
method, we obtain the expressions of ETDRK2 method

a(tn) = u(tn) + �tϕ1[−iĥ(tn)�t]

× {−iĥ(tn)u(tn) + N[tn, u(tn)]}, (43)

and

u(tn+1) = a(tn) + �tϕ2[−iĥ(tn)�t]

× {N[tn+1, a(tn)] − N[tn, u(tn)]}, (44)

where the ϕ functions are defined as

ϕ1(z) = ez − 1

z
, ϕ2(z) = ez − 1 − z

z2
. (45)

We use the EXPOKIT package [63] to efficiently calculate the
action of ϕ functions on the operand vectors in Eqs. (43)
and (44). The modification for time-dependent stiff operator
ĥ(t ) is given in Appendix C. The nuclear EOM Eq. (22) is
propagated in the same manner. For CI EOM Eq. (21), we
treat the totality of the right-hand side as a nonlinear term and
time propagation of the CI reduces to the RK2 scheme.

IV. NUMERICAL RESULTS AND DISCUSSIONS

A. Ground-state properties of H2

To assess the performance of the method and our imple-
mentation described in Secs. II and III, we first do a series of
ground-state calculations taking the H2 molecule as an exam-
ple, either with fixed-nuclei approximation or fully quantum
mechanically with nuclear motion (hereafter refer to as quan-
tum nuclei). We assume a H2 molecule is aligned along the
z axis. The imaginary-time propagation method is adopted to
obtain the ground state. The grid resolution is optimized for
ground-state calculations in order to have a better comparison

TABLE I. Fixed-nuclei H2 ground-state energies for different
numbers M of electron orbitals and the fraction of the covered
electron-electron correlation energy. The reference energy values
are taken from Ref. [53] calculated by the MCTDHF method using
a multiresolution Cartesian grid. The exact energy is taken from
Ref. [64] by directly solving the two-electron Schrödinger equation.
The equilibrium internuclear distance of H2 is R = 1.4 a.u. The
nuclear Coulomb repulsion energy is excluded in the ground-state
energy.

No. of Orbital Energy (a.u.) Correlation

orbitals M space This paper Ref. [53] (%)

1 (HF) 1σ −1.84792 −1.84123 0.00
2 2σ −1.86644 −1.85964 45.35
3 3σ −1.87390 −1.86723 63.61
5 3σ2π −1.88436 89.23
6 4σ2π −1.88488 −1.87756 90.50
7 5σ2π −1.88538 91.72
8 6σ2π −1.88566 92.41
Exact −1.88876 100.00

with the existing literature values of ground-state properties
such as ground-state energy and natural occupation number. In
the quantum-nuclei case, we use �ξ = 0.08 a.u. and box size
of ξmax = 8 a.u. for all the three directions of the electronic co-
ordinates, and �ζ = 0.05 a.u. and total length of ζmax = 6 a.u.
for nuclear coordinates. Curvilinear transformation is not used
in this subsection. In the fixed-nuclei case, the same spatial
grid is used for electrons, and nuclei are fixed at equilibrium
internuclear distance R = 1.4 a.u.

Let us first consider the case of the fixed-nuclei H2

molecule. In Table I, we present the ground-state energies for
different numbers M of electron orbitals. Up to eight orbitals
with six σ and two degenerate π orbitals are used. Clearly,
with increasing M, the ground-state energy consistently con-
verges to the exact value [64] obtained by the direct solution of
the two-electron Schrödinger equation, and only a few orbitals
are needed to obtain good agreement. The energy values in
this paper (third column) have a higher precision than those
from Ref. [53] (fourth column) due to finer spatial resolution.
For instance, the Hartree-Fock energy presented here is nearly
identical to that calculated using the finite-element discrete
variable representation basis set in Ref. [38]. In the fifth
column, we also give the fraction of the correlation energy
defined as Fc(M ) = [E (M ) − E (1)]/[Eexact − E (1)]. In the
most accurate case M = 8, 92.41% of the correlation energy
is recovered.

The total wave function �(t ) of the fixed-nuclei H2

molecule can be expressed by using different types of electron
orbitals. In the present paper, we use natural-orbital represen-
tation as explained in Appendix A, where the one-body RDM
is kept diagonal during the propagation. In this way, natural
orbitals and natural occupation numbers, defined as eigen-
vectors and eigenvalues of the one-body RDM, are directly
obtained after the propagation. Taking M = 8 for example,
we present the natural occupation numbers in Table II. The
natural occupation numbers represent the distribution of all
electrons among natural orbitals. Their sum is equal to the
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TABLE II. Natural occupation numbers of a fixed-nuclei H2

molecule for M = 8. The orbital space is 6σ2π . The results are listed
in descending order. The reference values from Ref. [38] are also
given for comparison. Note that there are typos for the occupation
numbers of 4σ and 5σ orbitals in Ref. [38], which have been cor-
rected in this table.

Natural occupation number

Orbital This paper Ref. [38]

1σ 1.96330 1.96
2σ 2.09560 × 10−2 2.10 × 10−2

3σ 6.34418 × 10−3 6.34 × 10−3

1π 4.46415 × 10−3 4.46 × 10−3

2π 4.46415 × 10−3 4.46 × 10−3

4σ 2.03040 × 10−4 2.03 × 10−4

5σ 1.90875 × 10−4 1.91 × 10−4

6σ 8.36366 × 10−5 8.36 × 10−5

number of electrons (2 for a hydrogen molecule). As can
be seen, the first natural orbital is highly occupied with an
occupation number close to 2 while for higher orbitals the
occupation numbers decrease rapidly. The two degenerate π

orbitals have exactly the same occupation numbers, as ex-
pected. Our results are in excellent agreement with those in
Ref. [38] calculated by prolate spheroidal coordinate code,
validating our implementation. The two-dimensional slices of
natural orbitals are displayed in Fig. 1, where orbital sym-
metries can be clearly identified. The information of orbital
symmetries can guide us to study the time-evolution behavior
of the orbitals in the response to the laser field. For instance,
the two π orbitals in Figs. 1(d) and 1(e) will respond in the
same fashion to a laser field polarized parallel to the molecular
axis.

Next, we examine the ground-state properties of the
quantum-nuclei H2 molecule. In the present paper, we always

TABLE III. Quantum-nuclei H2 ground-state energies for differ-
ent numbers M of electronic and nuclear orbitals and the fraction
of the covered correlation energy. The exact energy is taken from
Ref. [65].

No. of Electronic Energy Correlation
orbitals M orbital space (a.u.) (%)

1 1σ −1.11519 0.00
2 2σ −1.13434 39.21
3 3σ −1.14746 66.07
5 3σ2π −1.15770 87.04
6 4σ2π −1.15937 90.46
7 5σ2π −1.16014 92.04
8 6σ2π −1.16062 93.02
Exact −1.16403 100.00

use the same number of electronic and nuclear orbitals, i.e.,
Me = Mn ≡ M, although this is not a necessary constraint
for this system [50]. The nuclear masses of H2 are set to
M1 = M2 = 1836.15 a.u. The ground-state energies with re-
spect to M are shown in Table III. Similar to the fixed-nuclei
case, the ground-state energy monotonically tends to the exact
value [65] with an increasing number of orbitals. We account
for 93.02% of the correlation energy at M = 8. The nuclear
and electronic natural occupation numbers for M = 8 are pre-
sented in Table IV, with reference values from Ref. [38] for
comparison. The corresponding electronic natural orbitals are
shown in Fig. 2. We see in Figs. 1 and 2 that the overall shapes
of the two sets of natural orbitals are remarkably similar,
although small differences can be viewed, for instance, in
the 4σ and 6σ orbitals. Unlike the treatment in Ref. [38],
where the electron orbitals have parametric dependence on
nuclear coordinate R through the prolate spheroidal coordi-
nate system, in our electron-nuclear wave-function expansion
Eq. (19), the electronic and nuclear primitive orbital functions
are strictly independent without parametric dependence. The
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FIG. 1. Electronic natural orbitals of ground state H2 with fixed nuclei. The orbital space is 6σ2π . The molecule is aligned along the z
axis. Except for panel (e), where the orbital slice is plotted in the xz plane, all the other orbitals are shown in the yz plane.
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TABLE IV. Electronic and nuclear natural occupation numbers
of a quantum-nuclei H2 molecule for M = 8. The electronic orbital
space is 6σ2π . The results are listed in descending order. The refer-
ence values of electronic natural orbitals are taken from Ref. [38].

Orbital Natural occupation number

Nuclear Electronic Nuclear Electronic Ref. [38]

1 1σ 9.968 × 10−1 1.953 1.95
2 2σ 3.166 × 10−3 2.348 × 10−2 2.35 × 10−2

3 3σ 1.034 × 10−5 1.407 × 10−2 1.46 × 10−2

4 1π 3.227 × 10−8 4.456 × 10−3 4.43 × 10−3

5 2π 7.108 × 10−10 4.456 × 10−3 4.43 × 10−3

6 4σ 7.098 × 10−11 5.990 × 10−4 6.18 × 10−4

7 5σ 2.382 × 10−11 3.496 × 10−4 3.47 × 10−4

8 6σ 3.575 × 10−12 2.832 × 10−5 1.82 × 10−4

similarity of the natural orbitals in Figs. 1 and 2 thus suggests
that the strong correlation between the positions of the nuclei
and electrons due to their Coulomb attraction is correctly
accounted for in our calculation.

B. Electron-nuclear dynamics of H2 in an intense laser field

In this subsection, we present numerical applications of
the implementation of our method to H2 subject to an intense
laser pulse linearly polarized along the molecular axis in the
z direction, both in the fixed-nuclei and quantum-nuclei case.
We adopt VG and assume the vector potential of the laser field
of the following form:

A(t ) =
√

I0

w
sin2

( πt

N0T

)
sin ωt, 0 � t � N0T, (46)

where I0 is the peak intensity, T the laser period, ω = 2π/T
the angular frequency, and N0 the total number of laser optical
cycles.

For time-dependent calculations, a grid width larger than
that used in the ground-state calculation is employed so that
the computational time falls in an affordable range. We use
grid spacing �ξ = 0.2 a.u. for all the three directions of the
electronic coordinates and �ζ = 0.08 a.u. for the nuclear co-
ordinate. The scaling factors in the curvilinear transformation
Eq. (40) are chosen to be �s = 1 and �t = 5 and the ECS
scaling angle is set to θ = 15◦. Other parameters in Eq. (40)
for the electronic and nuclear coordinates are listed in Table V.
The ETDRK2 method described in the previous section is
used to propagate EOMs with 10 000 time steps per optical
cycle. We have confirmed the convergence of the results with
respect to spatial and temporal resolutions.

We first simulate a fixed-nuclei H2 molecule subject to
a near infrared laser field with a wavelength of 800 nm,
3 × 1014W/cm2 intensity, and total duration of eight optical
cycles. For such a process, the direct exact numerical solu-
tion of the six-dimensional TDSE is still unavailable to our
knowledge, due to the unfavorable scaling of the problem size
with the laser wavelength. So we choose the result of the
largest configuration space considered in our time-dependent
simulation, M = 7, as a reference. The simulation results are
shown in Figs. 3 and 4. We present here the time evolution
of the n-electron ionization probability (Fig. 3) and the high-
harmonic generation (HHG) spectra (Fig. 4). The n-electron
ionization probability, Pn (n = 0, 1, 2), is conveniently de-
fined as a probability to find n electrons located outside a cube
with a side length of 10 a.u, which can be evaluated using
the method introduced in Ref. [24]. The HHG spectra are ob-
tained as the modulus squared of the Fourier transform of the
dipole acceleration, which, in its turn, is evaluated by double
numerical differentiation of the dipole moment with respect
to time. Figure 3 plots the survival probability P0, the single-
ionization probability P1, and double-ionization probability P2

with different number of orbitals, respectively. While P0 and
P1 are converged for M � 3, the results with M = 1 and 2
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FIG. 2. Electronic natural orbitals of ground-state quantum-nuclei H2. The same number of electronic and nuclear orbitals M = 8 is used
with electronic orbital space 6σ2π .

043104-8



IMPLEMENTATION OF A TIME-DEPENDENT … PHYSICAL REVIEW A 104, 043104 (2021)

TABLE V. Coordinate transformation parameters in Eq. (40) for electronic and nuclear coordinates.

Nucleus Electron

Parameter ζ → R ξ1 → x ξ2 → y ξ3 → z

ξ (0) 20 10 10 60
ξ (1) 30 18 18 80
ξ (2) 49.15 + 6.47i 33.32+5.18i 33.32+5.18i 118.30+12.94i
a5 (2.68 + 0.91i) × 10−6 (1.27 + 0.43i) × 10−5 (1.27 + 0.43i) × 10−5 (2.09 + 0.71i) × 10−8

a6 (−5.36 − 1.81i) × 10−6 (−2.56 − 0.86i) × 10−5 (−2.56 − 0.86i) × 10−5 (−4.19 − 1.42i) × 10−8

a7 (3.83 + 1.29i) × 10−6 (1.83 + 0.62i) × 10−5 (1.83 + 0.62i) × 10−5 (2.99 + 1.01i) × 10−8

a8 (−9.57 − 3.24i) × 10−7 (−4.57 − 1.54i) × 10−6 (−4.57 − 1.54i) × 10−6 (−7.48 − 2.53i) × 10−9

show strong underestimations, which indicates the electron
correlation plays a non-negligible role during the interaction
with the laser pulse. For the double ionization probability,
in great contrast, we can see from Fig. 3(c) that it is not
fully converged even with M = 7 and still varies after the end
of the laser pulse (t > 8T0). This observation indicates that
the double ionization is much more sensitive to the electron-
electron correlation than single ionization and HHG (see
below) [66,67]. The high-harmonic spectra calculated with
different numbers of orbitals are shown in Fig. 4. The TDHF
(M = 1) result already provides the correct cutoff position
but underestimates the harmonic intensity in the plateau re-
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FIG. 3. Time evolution of (a) survival probability, (b) single-
ionization probability, and (c) double-ionization probability of a
fixed-nuclei H2 molecule exposed to an infrared laser pulse with a
wavelength of 800 nm, an intensity of 3 × 1014W/cm2, and a foot-
to-foot duration of eight optical cycles. Results of the TD-MCSCF
(or MCTDHF) method are obtained with different numbers M of
electron orbitals.

gion. As the number of orbitals is increased, the TD-MCSCF
method provides improved description of electron-electron
correlation, and thus the harmonic spectrum displays a fairly
rapid convergence with respect to M. In particular, HHG spec-
tra with M = 6 and 7 show remarkable agreement with each
other on the scale of the figure.

Next, let us turn to the quantum-nuclei case. The laser
parameters are the same as in the fixed-nuclei case. We
first analyze the time-dependent nuclear probability density,
defined as the modulus squared of the total wave function
integrated over the electronic coordinates. Figure 5 shows
the logarithmically scaled, time-dependent nuclear probability
density. The simulations are continued for 20 optical cycles
in order to fully record the time evolution of the nuclear
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FIG. 4. High-harmonic spectra of a fixed-nuclei H2 molecule
irradiated by an infrared laser pulse with a wavelength of 800 nm,
an intensity of 3 × 1014W/cm2, and a foot-to-foot duration of eight
optical cycles. The result of TD-MCSCF (or MCTDHF) method
with seven (5σ + 2π ) orbitals works as a reference. Other results
with different numbers of orbitals are compared to it. The curves are
vertically shifted for clarity.
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FIG. 5. Time-dependent nuclear probability density of a
quantum-nuclei H2 molecule upon interaction with an infrared laser
pulse with a wavelength of 800 nm, an intensity of 3 × 1014W/cm2,
and a foot-to-foot duration of eight optical cycles. The same number
of electronic and nuclear orbitals M is used: (a) M = 1, (b) M = 2,
(c) M = 5, and (d) M = 7.

wave packet. In the case of M = 1, only vibrational motion
around the equilibrium internuclear distance shows up. In the
TD-MCSCF calculation with M = 2, higher-order vibrational
components appear. For M = 5, even stronger vibration is
seen, whereas the dissociation is still scarce. Finally, as shown
in Fig. 5(d), the calculation with M = 7 leads to a much
improved result: both the vibrational motions and the jetlike
dissociation components are clearly observed. Our results in-
dicate that including more orbitals leads to a better description
of electron-nuclear correlation, and thus molecular vibrations
as well as the dissociative ionization can be well described by
the TD-MCSCF method with a sufficient number of orbitals.

Figure 6 shows n-electron ionization probabilities of a
quantum-nuclei H2 molecule. For this calculation, we have
confirmed that the simulation box is large enough to hold
the nuclear density, thus the nuclear coordinate can be safely
integrated out. The results converge to that with M = 7 (taken
as a reference) as the number of orbitals increases. However,
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FIG. 6. Time evolution of (a) survival probability, (b) single-
ionization probability, and (c) double-ionization probability of a
quantum-nuclei H2 molecule exposed to an infrared laser pulse with
a wavelength of 800 nm, an intensity of 3 × 1014W/cm2, and a foot-
to-foot duration of eight optical cycles. Results of the TD-MCSCF
method are obtained with different numbers of orbitals and the same
number of electronic and nuclear orbitals M is used.

quantitatively, the ionization probability differs from that of
the fixed-nuclei model (Fig. 3) under the same laser condition.
In Fig. 7, we show the single ionization probability of fixed-
nuclei H2, quantum-nuclei D2, and quantum-nuclei H2 with
M = 7. It is found that the single ionization probability of
quantum-nuclei H2 is higher than that of D2, and both of them
are higher than that of fixed-nuclei H2. This result suggests the
effect of enhanced ionization due to nuclear motion [68,69].

Figure 8 presents the TD-MCSCF HHG spectra from the
quantum-nuclei H2 molecule. The results show an improve-
ment with increasing number of orbitals as in the fixed-nuclei
case. However, the harmonic spectrum is not fully converged
even with M = 7. A similar trend with quantum treatment of
nuclei has previously been reported for reduced-dimensional
H+

2 [44]. Nevertheless, the quantitative agreement is already
sufficient to address the effects of nuclear motion during the
HHG process.

While the present TD-MCSCF method treats the nu-
clear dynamics in a full quantum way, Saenz and coworkers
[70–74] have proposed to take nuclear vibration into account
by the “frozen-nuclei approximation,” where the nuclear wave
function is frozen to the vibrational ground state χ (R) of
the electronic Born-Oppenheimer ground-state potential dur-
ing the time propagation. Within this approximation, the
R-integrated ionization probability can be calculated as the
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FIG. 7. Time evolution of the single-ionization probability for a
fixed-nuclei H2 molecule, quantum-nuclei D2, and quantum-nuclei
H2. Results of the TD-MCSCF method are obtained with M = 7.

sum of fixed-nuclei signals weighted by the vibrational nu-
clear density [74],

P(t ) =
∫

dRPFN(t ; R)|χ (R)|2, (47)

where PFN(t ; R) is the fixed-nuclei time-dependent ionization
probability. We calculate PFN(t ; R) using fixed-nuclei MCT-
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FIG. 8. High-harmonic spectra of a quantum-nuclei H2 molecule
exposed to an infrared laser pulse with a wavelength of 800 nm,
an intensity of 3 × 1014W/cm2, and a foot-to-foot duration of eight
optical cycles. The same number of electronic and nuclear orbitals
M is used. The HHG spectra with different numbers of orbitals are
compared to that with M = 7.
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FIG. 9. (a) Survival probability, (b) single-ionization probability,
and (c) double-ionization probability obtained by no-coherent av-
erage of the fixed-nuclei ones compared to the fixed-nuclei results
at equilibrium internuclear distance and quantum-nuclei results. The
laser parameters are the same as in Fig. 6.

DHF method with M = 7 for a range of internuclear distances
where the vibrational wave function χ (R) is nonvanishing,
i.e., R = 1.0–2.5 a.u. The averaged ionization probability is
compared with the quantum-nuclei and fixed-nuclei results
in Fig. 9. On one hand, the averaged single-ionization prob-
ability is slightly higher than the fixed-nuclei one at the
equilibrium internuclear distance, reflecting ionization en-
hanced at larger values of R. On the other hand, quantitatively,
there is a substantial discrepancy between the averaged results
and those from the full quantum calculation. This observation
indicates that the dynamical aspects of the electron-nuclear
correlation play an important role during the interaction with
the laser pulse.

To further examine the importance of dynamical electron-
nuclear correlations, let us calculate the coherently averaged
HHG spectrum. We first obtain the time-dependent dipole
acceleration averaged over internuclear distance,

a(t ) =
∫

dRaFN(t ; R)|χ (R)|2, (48)

where aFN(t ; R) denotes the fixed-nuclei dipole acceleration,
calculated with the TD-MCSCF method with M = 7. Then,
the averaged harmonic spectrum is obtained as the modu-
lus squared of the Fourier transform of a(t ). The averaged
spectrum is clearly different from the full quantum result
and close to the fixed-nuclei result (Fig. 10), due to nuclear
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FIG. 10. The coherently averaged HHG spectrum compared
to the fixed-nuclei result at equilibrium internuclear distance and
quantum-nuclei result. The laser parameters are the same as in Fig. 8.

dynamics during the quiver motion of the electron. These
results unambiguously demonstrate the importance of dynam-
ical electron-nuclear correlations and the significance of our
full quantum treatment.

Experimentally, it has been observed that high-harmonic
emission is stronger in D2 than that in H2 due to the faster
nuclear motion in the lighter H2 molecule [75,76]. We will
show that the present TD-MCSCF method, which allows full
quantum treatment of nuclei, can well reproduce the experi-
mental results. We consider an 800-nm laser field with a peak
intensity of 2 × 1014W/cm2. The laser parameters are similar
to those in the experiments. In order to reveal the odd order
harmonic peaks, we use a multicycle laser pulse with total
duration of 30 periods. The HHG spectra of quantum-nuclei
H2 and D2 are calculated with M = 7, as shown in Fig. 11(a).
Up to the 29th harmonics can be well resolved in the spectra.
In Fig. 11(b), the spectra of H2 and D2 in the plateau region
are plotted on a linear scale. It can be clearly seen that the
harmonic signal is stronger in D2 than that in H2. Figure 11(c)
shows the intensity ratio between D2 and H2 as a function
of harmonic order. The ratio is calculated by using the peak
values of odd order harmonics. The ratio is larger than unity
at all orders and increases with the harmonic order. Our cal-
culation shows quantitative agreement with the experimental
measurement in Ref. [76] under the same laser condition. The
experimental result from Ref. [75] using a few-cycle laser
pulse also exhibits a similar trend, albeit with relatively small
values compared to our calculation possibly because of the
difference in the laser parameters. The present calculation
using the TD-MCSCF method nicely reproduces the experi-
mentally observed isotope effects on HHG, emphasizing the
importance of dynamical electron-nuclear correlation during
the HHG process.

V. SUMMARY

We have presented the numerical implementation of the
recently formulated TD-MCSCF method [44] for diatomic
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FIG. 11. (a) HHG spectra of quantum-nuclei H2 (yellow solid
line) and D2 (red solid line) exposed to an infrared laser pulse with
a wavelength of 800 nm, an intensity of 2 × 1014W/cm2, and a
foot-to-foot duration of 30 optical cycles. The HHG spectrum of
the fixed-nuclei H2 model (blue light line) is also presented for
comparison. All of the results are calculated by TD-MCSCF method
with M = 7. In the calculation of D2, the nuclear mass is set to
3670.48 a.u. (b) HHG spectra in the plateau region of quantum-nuclei
H2 and D2, plotted on a linear scale. (c) The intensity ratios of
ID2/IH2 as a function of harmonic order. Experimental data taken
from Ref. [75] (yellow open circles) and Ref. [76] (red open squares)
are also included.

molecules in the full-CI expansion. By full quantum treat-
ment of the nuclei, the present implementation allows one to
investigate coupled electron-nuclear dynamics of molecules
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subject to intense laser fields. As a first numerical test, we
have applied this method to the ground state as well as the
laser-driven dynamics of the H2 molecule. The ground-state
properties, including ground-state energy, natural orbitals,
and natural occupation numbers, show remarkable agree-
ment with benchmark data [38] available in the literature,
which indicates the correctness of our implementation. For
laser-driven dynamics, we have shown that the method can
systematically improve the accuracy for describing the highly
nonlinear HHG phenomenon by increasing the number of
electronic and nuclear orbital functions. Furthermore, the TD-
MCSCF method with a sufficiently large number of orbitals
has been applied to study the isotopic effects of HHG to jus-
tify experimental observations. Our results indicate that HHG
is sensitive to the laser-induced nuclear vibrational motion.
The harmonic emission is more intense in heavier isotopes
and the role of nuclear motion in suppressing the intensity
of high harmonics is increased with increasing harmonic
order.

While the present paper has been mainly focused on the
electron-nuclear dynamics in HHG, we have also shown that
the TD-MCSCF method is capable of describing photoion-
ization and dissociation [37,77,78] of molecules interacting
with a laser field. In order to properly explain experimental re-
sults such as electron-ion coincidence measurements [79,80]
during molecular dissociation, extending the functionality of
the present implementation to calculate momentum distribu-
tion of ionized electrons and the joint electron-nuclear-energy
spectrum will be further aspects.
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APPENDIX A: DERIVATION OF NATURAL-ORBITAL
CONSTRAINTS

In the TD-MCSCF method, a typical feature is the invari-
ance of the total wave function with respect to time-dependent
unitary transformations among the subspace spanned by
the occupied orbitals. These unitary transformations give
rise to the constraint operators, i.e., X̂ (n) and X̂ (e), appear-
ing in the EOMs. The natural-orbital representation is one
special case, where the one-body RDMs are kept to be
diagonal during the time propagation. Taking X̂ (e) for exam-
ple, the natural-orbital constraint matrix can be derived by
considering the time derivative of the one-body RDM for

electrons:

d

dt
(ρe)μν =

∑
I,p

dC∗
I,p

dt
〈�Iχp| (Êe)νμ |�〉

+
∑
I,p

〈�| (Êe)νμ |�Iχp〉 dCI,p

dt
. (A1)

Substituting the CI EOMs Eq. (21) into Eq. (A1) and using
the Hermiticity of X̂ (e) and X̂ (n), we get

d

dt
(ρe)μν =

∑
I,p

i 〈�| Ĥ − X̂ |�Iχp〉 〈�Iχp| (Êe)νμ |�〉

−
∑
I,p

i 〈�| (Êe)νμ |�Iχp〉 〈�Iχp| Ĥ − X̂ |�〉 ,

(A2)

where notation X̂ = X̂ (n) + X̂ (e) is used. In the case of full-
CI expansion, the configuration projector

∑
I,p |�Iχp〉 〈�Iχp|

can be omitted. The time derivative of the one-body RDM can
be rewritten in a compact form employing the commutator
[â, b̂] = âb̂ − b̂â:

d

dt
(ρe)μν = −i 〈�| [(Êe)νμ, Ĥ − X̂

] |�〉
= −i 〈�| [(Êe)νμ, Ĥ − X̂ (e)

] |�〉 . (A3)

In the natural-orbital representation, d (ρe)μν /dt = 0 for μ �=
ν, and consequently,

〈�| [(Êe)νμ, X̂ (e)] |�〉 = 〈�| [(Êe)νμ, Ĥ
] |�〉 . (A4)

After some algebraic manipulations to evaluate the commuta-
tors, we have

(Xe)μν = [
(Fe)μν − (F ∗

e )νμ
] (ρe)μμ − (ρe)νν[

(ρe)μμ − (ρe)νν
]2 + ε2

, (A5)

with

(Fe)μν =
∑

λ

(he)μλ (ρe)λν +
∑
λpq

(gne)pμ
qλ (ρne)qλ

pν

+
∑
λγ δ

(gee)μγ

λδ (ρee)λδ
νγ , (A6)

for off-diagonal matrix elements μ �= ν, where ε is a small
regularization parameter. The constraint does not fix the val-
ues of diagonal elements of operator X̂ (e), which can be simply
set to zero. The same procedures can be applied to the nuclear
constraint operators X̂ (n); the results are

(Xn)p
q = [

(Fn)p
q − (F ∗

n )q
p

] (ρn)p
p − (ρn)q

q[
(ρn)p

p − (ρn)q
q
]2 + ε2

, (A7)

with

(Fn)p
q =

∑
r

(hn)p
r (ρn)r

q +
∑
rμν

(gne)pμ
rν (ρne)qμ

rν , (A8)

for p �= q.
One should note that the above derivations are only valid

for real-time propagation. There are differences for the pres-
ence of constraint operators between real- and imaginary-time
propagation. While the constraint operators are Hermitian
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in real-time EOMs, they are anti-Hermitian in the imagi-
nary time ones. In the following, we derive the expressions
of constraint operators which are suitable for imaginary-
time propagation. We use notations Ŷ (e) and Ŷ (n) as the
imaginary-time counterparts for X̂ (e) and X̂ (n), respectively.
By employing a pure imaginary time t = −iτ with τ being a
real variable, the matrix elements of operators Ŷ (e) and Ŷ (n)

are defined as

(Ŷn)p
q = −〈χp| ∂

∂τ
|χq〉 , (A9)

and

(Ŷe)μν = −〈ψμ| ∂

∂τ
|ψν〉 . (A10)

Based on the time-dependent variation principle in imaginary
time, we obtain the same EOMs for both CI coefficients and
orbitals [Eqs. (21)–(23)], except for a replacement i ∂

∂t → − ∂
∂τ

on the left-hand side of these equations. For instance, the
imaginary-time CI EOMs Eq. (21) read

− d

dτ
CI,p =

∑
J,q

〈�Iχp| Ĥ − Ŷ (n) − Ŷ (e) |�Jχq〉CJ,q. (A11)

Utilizing the anti-Hermiticity of the constraint operators, the
complex conjugate of Eq. (A11) is obtained as

− d

dτ
C∗

I,p =
∑
J,q

〈�Jχq| Ĥ + Ŷ (n) + Ŷ (e) |�Iχp〉C∗
J,q. (A12)

Substituting Eqs. (A11) and (A12) into the time deriva-
tive of electronic one-body RDM Eq. (A1) and setting the
off-diagonal matrix elements to zero, we obtain a relation
for Ŷ (e) as

〈�| [(Êe)νμ, Ŷ (e)
] |�〉 = 〈�| {(Êe)νμ, Ĥ

} |�〉 , (A13)

where the anticommutator {â, b̂} = âb̂ + b̂â is used. Similarly,
for nuclear constraint operator Ŷ (n), we have

〈�| [(Ên)q
p, Ŷ (n)

] |�〉 = 〈�| {(Ên)q
p, Ĥ

} |�〉 . (A14)

It is thus interesting to compare Eq. (A13) for imaginary-
time propagation with Eq. (A4) for real-time propagation: the
only difference is the replacement of the commutator to the
anticommutator on the right-hand side of these two equations.
The explicit expressions of Ŷ (e) Ŷ (n) involve the third-order
RDMs, which are tedious and omitted here. The computation
of third-order RDMs constitutes a bottleneck for numerical
calculations, which needs further investigations. Nevertheless,
for a hydrogen molecule with only two electrons and one
nuclear degree of freedom used in the present paper, the
computational effort is affordable.

APPENDIX B: THE TD-MCSCF FORMALISM FOR
FIXED NUCLEI

In this Appendix, we briefly describe the TD-MCSCF
method for a multielectron system within the fixed-nuclei
model. In the full-CI case, it is equivalent to MCTDHF
method. We consider an N-electron diatomic molecule with
fixed nuclei in an external laser field. The dynamics of

the electronic system is described by the time-dependent
Hamiltonian

Ĥ (t ) = Ĥ1(t ) + Ĥ2, (B1)

with Ĥ1 = ∑N
i ĥ(ri, t ) and

ĥ(r, t ) =
(

−∇2

2
−

2∑
a=1

Za

|r − Ra| + V̂ext

)
, (B2)

Ĥ2 =
N∑

i=1

∑
j>i

1

|ri − r j | , (B3)

where laser-electron interaction V̂ext within the dipole approx-
imation either in the LG or in the VG is given by

V̂ LG
ext (r, t ) = E(t ) · r, (B4)

V̂ VG
ext (r, t ) = −iA(t ) · ∇. (B5)

In the TD-MCSCF method, the N-electron wave function is
expressed by a linear combination of Slater determinants as

�(t ) =
∑

I

CI (t )�(t ), (B6)

where the Slater determinant �I (t ) is built from M occu-
pied orbitals {ψμ(t )}. Both the CI coefficients {CI} and the
occupied orbitals are time dependent. By use of the time-
dependent variational principle, the EOMs are derived to
describe the time evolution. The resulting EOMs for the CI
coefficients read

i
d

dt
CI (t ) =

∑
J

〈�I | Ĥ − X̂ |�J〉CJ (t ). (B7)

The EOMs for the orbitals are given by

i
∂

∂t
|ψi〉 = Q̂

{
ĥ |ψi〉 +

∑
μ,ν,λ,γ

(D−1)μi Pνγ

μλŴ λ
γ |ψν〉

}

+
∑

j

|ψ j〉 (X ) j
i , (B8)

where Q̂ = 1 − ∑
μ |ψμ〉 〈ψμ| is the projector against the

occupied orbital space, D and P the one- and two-electron
RDMs, Ŵ μ

ν the mean-field potential with the same defini-
tion as in Eq. (24), and X̂ the constraint operator defined in
Eq. (28). Here we also use the natural-orbital constraint X̂ as
derived in Appendix A.

APPENDIX C: MODIFICATION OF ETDRK2 METHOD
WITH A TIME-DEPENDENT STIFF PART

Following Ref. [58], it is possible to generalize the ETD
method to treat

∂

∂t
u(t ) = −iĥ(t )u(t ) + N[t, u(t )], (C1)

where the operator ĥ(t ) is time dependent and chosen to be
the one-electron Hamiltonian ĥ(t ) = ĥ(e)(t ). Within the time
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interval [tn, tn+1], we rewrite the operator ĥ(t ) as

ĥ(t ) = ĥ(tn) + ˙̂h(tn)(t − tn) + [ĥ(t ) − ĥ(tn)]

− ˙̂h(tn)(t − tn), (C2)

where ˙̂h(t ) = ∂ ĥ(t )/∂t . By introducing an auxiliary vector
U (t ) = [t − tn, u(t )]T and employing Eq. (C2), we can rewrite

Eq. (C1) coupled with ṫ = 1 as

∂

∂t
U (t ) = −iHU (t ) + N (t ), (C3)

with

H =
[

0 0
˙̂h(tn)u(tn) ĥ(tn)

]
, N (t ) =

[
1

N ′[t, u(t )]

]
, (C4)

where

N ′[t, u(t )] = N[t, u(t )] − i[ĥ(t ) − ĥ(tn)]u(t ) + i ˙̂h(tn)(t − tn)u(tn). (C5)

It is obvious that H is now time independent, thus the ETD method with the time-independent linear operator can be applied to
Eq. (C3). The ϕ functions of H are give by

ϕk (−iH�t ) =
[

ϕk (0) 0

−i�tϕk+1[−iĥ(tn)�t] ˙̂h(tn)u(tn) ϕk[−iĥ(tn)�t]

]
. (C6)

The final expressions for ETDRK2 method are

a(tn) = u(tn) + �tϕ1[−iĥ(tn)�t]{N[tn, u(tn)] − iĥ(tn)u(tn)} − i�t2ϕ2[−iĥ(tn)�t] ˙̂h(tn)u(tn), (C7)

and

u(tn+1) = a(tn) + �tϕ2(−iĥ(tn)�t ){W [tn+1, a(tn)] − W [tn, u(tn)] − i{ĥ(tn+1) − ĥ(tn)}a(tn) + i�t ˙̂h(tn)u(tn)}. (C8)

[1] M. Hentschel, R. Kienberger, C. Spielmann, G. A. Reider, N.
Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher,
and F. Krausz, Nature (London) 414, 509 (2001).

[2] P.-M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Augé, P. Balcou,
H. G. Muller, and P. Agostini, Science 292, 1689 (2001).

[3] M. Chini, K. Zhao, and Z. Chang, Nat. Photonics 8, 178 (2014).
[4] I. Pupeza, D. Sánchez, J. Zhang, N. Lilienfein, M. Seidel, N.

Karpowicz, T. Paasch-Colberg, I. Znakovskaya, M. Pescher, W.
Schweinberger et al., Nat. Photonics 9, 721 (2015).

[5] T. Popmintchev, M.-C. Chen, D. Popmintchev, P. Arpin, S.
Brown, S. Ališauskas, G. Andriukaitis, T. Balčiunas, O. D.
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