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Relativistic photoionization with elliptically polarized laser fields in the ultraviolet region
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We study relativistic effects in photoionization of a hydrogen atom exposed to an intense laser pulse of general
ellipticity. The frequency of the laser pulse resides in the ultraviolet region. To this end, the semirelativistic
approach introduced in Kjellsson Lindblom et al. [T. Kjellsson Lindblom, M. Fgrre, E. Lindroth, and S. Selstg,
Phys. Rev. Lett. 121, 253202 (2018)] is applied. We present in some detail how this approximation is derived
from the Dirac equation for elliptically polarized light within the so-called long-wavelength approximation.
The validity of the semirelativistic approach is confirmed by direct comparison with the solution of the Dirac

equation. It is found that the total ionization yield depends very weakly on ellipticity in the case of ionization
from the isotropic ground state. With the excited initial state n = 2, £ = m, = 1; however, pronounced ellipticity
dependence is seen—in particular at the stabilization peak. Albeit small, relativistic corrections to the ionization
probabilities are found. The correction is found to be largest for linear polarization. While relativistic effects
tend to reduce the total ionization probability for most intensities considered, we also report a slight relativistic

enhancement at comparatively modest field strengths.
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I. INTRODUCTION

In the last decade we have witnessed impressive progress
in laser technology—in terms of intensity, pulse shortness,
and photon energy (see, e.g., Refs. [1-3]). X-ray free-electron
lasers pave the way for unprecedented resolution in prob-
ing ultrafast microscopic phenomena. Also, at lower photon
energies, intensities are approaching the limit beyond which
leptons may be created from photons [4].

In order to describe phenomena involving matter exposed
to such extreme light sources, the theoretical description of the
light-matter interaction must encompass both magnetic and
relativistic effects. Such a description is, however, hindered
by several complications. The inclusion of magnetic interac-
tions, e.g., precludes the convenient cylindrically symmetric
description of the system. Also, the relativistic description
provided by the Dirac equation introduces several aspects,
which complicates the numerical implementation. Examples
of such are the inherent stiffness due to the mass energy term
and the problem of so-called spurious states contaminating the
spectrum of the numerical Hamiltonian.

Fortunately, we have seen several significant contributions
for overcoming all of these obstacles in recent years. For in-
stance, it has been demonstrated that magnetic interactions are
conveniently incorporated within the so-called propagation
gauge [5,6]. When it comes to solving the time-dependent
Dirac equation, the so-called generalized pseudospectral
method [7], and the method of Ref. [8], in which the matrix it-
eration method is applied, represent promising venues. As for
spurious solutions, which frequently appear in the spectrum
of the numerical representations of the Dirac Hamiltonian,
several remedies are presented (see, e.g., Refs. [7,9—-11]).
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The present paper is based on the semirelativistic formula-
tion of the interaction presented in Ref. [12], which, in turn,
is based on a relativistic formulation in the propagation gauge
[13]. Also here we will explain how relativistic effects in the
softly relativistic region may be accounted for by substituting
the rest mass in the dynamical equation with an effective
field-dressed mass. This allows for a relativistic description
of the dynamics within the framework of a slightly modified
Schrodinger equation in the intermediate region in which the
laser does not induce pair production. Not only does this evade
the complications inherent to the numerical solution of the
time-dependent Dirac equation; it also allows us to analyze
the resulting quantum state by more familiar and technically
simpler means than those pertaining to the relativistic four-
component wave function.

In Ref. [12] the derivation of this semirelativistic method
was outlined from three different starting points: from the
classical Hamiltonian function, from the relativistic Klein-
Gordon equation, and from the Dirac equation. In this paper
we will review the latter derivation in more detail. We will
assume that the external laser field is independent of spatial
variables. While this appears to be a rather restrictive approx-
imation, it does include the leading magnetic interaction for
strong fields. This is owing to the fact that the interaction is
formulated in the propagation gauge in the first place.

The resulting effective semirelativistic Hamiltonian is de-
rived in the next section. In addition to the semirelativistic
method, we have also solved the fully relativistic and non-
relativistic equations. We have done so in order to validate
the accuracy of the semirelativistic approach and in order to
identify relativistic corrections. Correspondingly, in Sec. II
we also briefly outline how the numerical solutions of these
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dynamical equations are implemented. In Sec. III we present
and analyze our results, while we summarize our findings
in Sec. IV. Atomic units (a.u.), defined by choosing 7%, the
elementary charge e, the electron mass m, and 4mwegg as the
unit of their respective quantities, are applied where stated
explicitly. This only applies to numerical parameters, not to
any general equations.

II. THEORY

We take the external, spatially dependent electromagnetic
field to be given by a vector potential of form

A(n) = %f(n)[ﬁu sin & sin(n + ¢)
+ 2 cos 8 cos(n + @)1, (D
where the variable
n=wt—k-r=wl—k-r/c). )

The unit vectors l:i, a;, and &, constitute a right-handed co-
ordinate system. The former is the propagation direction and
the latter two are orthogonal polarization directions. As the
propagation direction Kk is orthogonal to A at all times, the
field satisfies the Coulomb gauge restriction, V - A = 0. The
parameter § determines ellipticity; the field is circularly po-
larized for 6 = £45° and linearly polarized for § = 0, and
the envelope function f is typically slowly varying during
one optical cycle 27 /w. The phase ¢ is the so-called carrier
envelope phase.
The time-dependent Dirac equation may be written

d
ih—V =HY, 3
dt

where the Hamiltonian is usually given in terms of minimal
coupling:

Huc = ca - [p + eA]l + mc?B +V, 4)

where V (r) is the Coulomb potential, which may correspond
to a bare point charge or to some other effective potential. We
adopt the usual representation in terms of Pauli matrices for

o
(27

i=(5 ) ©)

The wave function of the Dirac equation is a four-component

bispinor:
d
g = ( X) (7)

For states with positive energy, the upper spinor ® typically
exceeds the lower one, X, by a factor ¢ in magnitude—and
vice versa for states with negative energy.

and

Within this formulation, we impose the following gauge
transformation [5,6,13]:

0
A —> A+ VE and (p—><p—55 with  (8a)

n
f) = 5 / [AGy )Py, (8b)
mow J_o

where ¢ is the scalar potential. The corresponding kinetic
momentum is now

2
d=p+eA+—Ak )
2mc

This momentum shift is such that a free, non-quantum-
mechanical electron starting at zero momentum remains at
zero momentum. Note that the same may not be said about
the minimal coupling formulation when magnetic interactions
are accounted for.

The gauge transformation of Egs. (8) leads to the propaga-
tion gauge formulation of the Dirac Hamiltonian:

2
H=ca-d+mdp+V — A2 (10)
2m

The much applied dipole approximation, in which the spa-
tial dependence of the vector potential A is neglected in the
minimal coupling formulation, Eq. (4), is in general not appli-
cable in regions where relativistic effects are expected [14].
As mentioned, such an approach is simply too crude as it
precludes any magnetic interaction. Within the propagation
gauge formulation of Eq. (10), however, the substitution

n— ot (11)

in Eq. (2) constitutes a far less restrictive approximation as
it preserves the leading magnetic interaction [5,6,13,15]. In
order to clarify this point, we consider the fully nonrelativistic
Hamiltonian within the propagation gauge formulation [5],

2 e €2A2
2m m

k-p, 12
e K P (12)
and compare it with the corresponding minimal coupling for-
mulation:

ve _ P ¢ e o

Hyg =—+V+—-A-p+—A". 13

N om m P 2m (13)
It is rather well documented that a first-order expansion in
the spatial variable of the last term in Eq. (13) constitutes the
leading magnetic contribution to the dynamics in the strong-
field regime [15-20]:

p’ e e’ .
HYy ~ —+V + —A(wt) - p+ —A(wt) - E(@)k -1,
2m m mc
(14
where the electric field E = —9,A. This first-order contri-
bution corresponds to the radiation pressure induced by the
combined action of the external electric and magnetic fields.
Now, if we impose the substitution (11) into the Hamilto-
nian of Eq. (12), we arrive at an interaction form which is
equivalent to that of Eq. (14). In the following, we will refer
to this formulation of the interaction as the long-wavelength
approximation (LWA). While mathematically equivalent to
Eq. (14), the LWA formulation is numerically favorable [5].
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This also applies to the corresponding relativistic formulation
of the LWA, i.e., Eq. (10) subject to the replacement (11) [13].

A. The transformed Hamiltonian

In a 1950 paper Foldy and Wouthuysen showed how the
Dirac equation for a free fermion may be cast into a form
which decouples the two spinors of Eq. (7) [21]. By imposing
the time-independent unitary transform

— 5 with S= ' (2
T =¢ with §= tan Ba - p (15)
2p mc

the field-free Hamiltonian
Hiree = cot - p + mc?B (16)
was cast into
S Hieee™ = By/m2c* + p2c2. 17

This is clearly a more intuitive formulation for the relativis-
tic energy than the original formulation, Eq. (16). Moreover,
some physical quantities seem to have a more natural inter-
pretation within the frame introduced by the transformation
of Eq. (15).

In the following, we will apply the analogous transform
to the full Dirac Hamiltonian of Eq. (10), albeit within the
LWA. From now on and throughout we take this to be implicit,
i.e., “A” will mean “A(wt).” We apply the Foldy-Wouthuysen
transformation with the momentum p in Eq. (15) replaced by
the momentum d, Eq. (9):

— 56 ; — i -1 d .
Trg = ¢ with  Spg 2d tan Ba-d. (18)

mc

Now, by following the same derivation as in Ref. [21], the
transformation of the two first terms in Eq. (10) is analogous:
Tog(cor - d + mc*B) Ty, = py/m2c* +d2c2. (19)

The last term of Eq. (10) is unaltered by the transforma-
tion, while the Coulomb potential is affected. Moreover, since
the above transformation is time dependent, the transformed
Hamiltonian, H’', acquires an additional term:

d
H' = ToHT,; — ithGETPTG = BV m2c* + d*c?

2
€ 42 o d.
—%A + TPGVTPG - lhTPGETPG' (20)

In order to determine the last two terms above, we will expand

the exponential in the transformation to lowest order in ¢ L

o _ 1[4 1(4d 3+1 dy’
P6 =24 me ~ 3\ e 5\ mc
1
x Bo-d=— Ba-d+ O(c™?), (21)
2mce

and make use of the identity

(¢-a)-b)=a-b+io-(axb). 22)

With this, it is found that the last term of Eq. (20) reads

cod
_lhTPGETPGZ

. he , he , 3
—i—pfa-E+——=0-(E xd)+ 0(c™), (23)
2mce 4m?c?
where we have introduced
d e N
E’:——(A+—A2k>; 2
dt 2mc @4)
it may be seen as the effective electric field corresponding to
the external laser field in the propagation gauge.
When it comes to the transformed Coulomb potential,
Tp(3VTPTG, the emerging interaction terms are well known. We
will, however, briefly outline the transformation for complete-

ness. Using the Baker-Campbell-Haussdorff formula, we may
write

eV (r)e™ =V + [Spa, V1 + 3[Spc. [Spe, VI + O(c ™).
(25)
With this, Eq. (22), and Gauss’s law, we arrive at

K’e

.  he
TegVTpg =V — lz_mcﬂ“ -Ec + Mﬂc

f
+ - s Eexd)+0E  (26)
4m?c?

where
Ec(r) = éVV(r) 27

is the static electric field originating from the nucleus and
pc(r) =&V - Ec(r) (28)
is its charge distribution. In Eq. (26) it appears in the Darwin

term,

e

Hparwin = Seze e (r), (29)
0

while the spin-orbit interaction is contained in the last term of
Eq. (26).

Gathering all terms from Eqgs. (19), (23), (25), and (26), we
may approximate the transformed Hamiltonian Eq. (20) as

2
H' = BJ/mic* + @2 +V — —A?
2m

_he
—1 IBa : Elot + HDarWin
2mc

B
+ g Baxd)+0C).  (30)
4m?*c

Here we have introduced the “total” electric field:

e A
B =E+E=E+ (A -E)k+E. (D)

B. Decoupling and the semirelativistic approximation

The only term in Eq. (30) which couples the two com-
ponents ® and X of Eq. (7) is the fourth one—the one that
contains . We will show that this term is negligible in the
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softly relativistic region. To this end, we write the Dirac equa-
tion with transformed Hamiltonian, Eq. (30), in terms of &
and X [see Eq. (7)]:

d (d P .
lﬁdt( >=H<X) with

H vm2ct +d%c? — % —lZmCO’ Eo
=" ik B
2me tot
+V + Hparwin + am 5,9 (Bt x d) + O(C_3)
(32)

Following Ref. [12] we introduce the effective, field dressed
mass

2
_ 2
o= m(l + 2mzczA > (33)

and the momentumlike operator q with its square defined by
e .
> =p>+2A-p+—A’k-p. (34)
me

Note that the field dressed mass w differs from the rest mass
by a term corresponding to the ratio between the “instan-
taneous” ponderomotive energy U, i.e., the ponderomotive
energy with cycle averaging omitted, and the rest mass energy
mc”.

Finally, we shift the energy downwards by the rest mass
energy, which allows us to write the first term on the right-
hand side of Eq. (32) as

(14 % -

he
2mc

: _he
1) —l%(f . Etol

I= —,uc( 1+M“+1)

0 - Ei

With this, the lower component X, which is small for states
with positive energy, obeys the following equation:

d
ih—X =

. he _
i [’z—mc“ B+ 0 3)}"

q2
+ |- 1 + +1 +V+HDarwin

he 3
3550 (B x )+ 07 X (35)
The dominating term acting on X is

q2  , dq
( 1+ +1> 2uc? 2M+8M 302
(36)
Neglecting all other terms than the leading-order contribution
of Eq. (36),

2
|:MCZ <_ 1+ % - 1) +V +HDarwin

he d
+ 530 (Bt x d) + 0(c_3)—zha] ~ —2uc’X
(37)

Eq. (35) simplifies to
2 . he -3
2ucX = [i—a - E + O(c™7) | D, (38)
2mc

which, inserted into the equation for the upper component ®,
yields

o d 2 q?
lhECDZ Muc 1+W_1 +V+HDarWin

he
+m0 (B x d) + 0(0_3)1|<D

1
2uc?

It is worth noting that we have kept the last term in Eq. (10),
which, within the LWA, could have been removed via a
trivial phase transformation. In deriving the semirelativistic
approximation, however, it is more natural to maintain it; it
facilitates the derivation and renders a simpler semirelativistic
Hamiltonian.

From Eq. (39) we see that the last term on the right-hand
side is in fact of order ¢*. The resulting effective, decoupled
Hamiltonian for ® including terms up to and including second
order in 1/c thus reads

2 fie 3 2
—i)N —0-Ex+0()) . (39)
2mc

2
ro_ 2 q
Hq,_;w( 1+u2c2

- 1) +V+ HDarWin

he
+Lﬁga«mmxm+0w4)
_ qz B q4

2 8uic?

+V+ HDaIWin

he -3
550 (B x )+ 07 (40)

Note that we here have expanded the kinetic-energy operator
and retained only the leading and the next-to-leading terms.
Following Ref. [21], the elimination of the term which
couples ® and X, i.e., —ifie/(2mc) Be - E in Eq. (30), could
also be performed by introducing additional unitary transfor-
mations.
The first term in the Hamiltonian of Eq. (40),

e p 2
w2 + A p+ e
contains the nonrelat1v1st1c kinetic energy, the usual dipole in-
teraction term, and a radiation term induced by the combined
electric and magnetic fields [5,6,15]. If we replaced w(¢) with
the rest mass m in Eq. (41), we would arrive at Eq. (12); we
see that in Eq. (41) the inertia is effectively increased by the
external laser field.
When the vector potential A of the external field van-
ishes, the next-to-leading-order term in the kinetic energy,

A’k -p, 41)

—q*/8u3c?, coincides with the structure correction:
4
P
Eyin = s (42)

The attentive reader may have noticed that there is one
familiar term missing in Eq. (40)—the interaction between
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spin and the external magnetic field. This absence is a direct
consequence of the LWA, in which V x A = 0. While this
obviously affects the ability to study spin dynamics, it does
not exclude magnetic interactions all together.

C. Implementation

In our semirelativistic calculations, we will neglect the
spin degree of freedom entirely for the semirelativistic cal-
culations. In addition to precluding any investigation of spin
dynamics, this could also affect other quantities in which the
spin is integrated out. Although we will direct our attention
towards ionization probabilities in this paper, it is not a priori
obvious that the neglect of spin is admissible. Moreover, we
will neglect the Darwin term, Eq. (29), and the effect the
kinetic-energy correction, Eq. (42), has on eigenstates of the
unperturbed Hamiltonian in the semirelativistic calculations.
The adequacy of these approximations will be checked by
direct comparison with solutions of the Dirac equation.

This comparison will also serve as a test of the semirel-
ativistic approximation itself. Specifically, it allows us to
gauge wether it is necessary to include the next-to-leading-
order term in kinetic energy, i.e., —q*/8u’c? in Eq. (40).
For linearly polarized fields, the leading-order term, q2 /21,
has proven sufficient in calculations pertaining to both the
ultraviolet [12] and the optical regions [22]. Another work
with fields in the x-ray regime, however, demonstrated the
need for also including the term proportional to q* [23].

Finally, we also solve the completely nonrelativistic
Schrddinger equation in order to identify relativistic correc-
tions. In summary, these are the dynamical equations we
solve:

d
ih—Wg = [cot - d+V + mc?B'1Wg,

43
dt (432)
iy L W (43b)
n— = _ ,

dr X 2u 8udc? SR

d q’
W = | o= + V | Wng, 43
ldt NR [2m+ j| NR (43¢)

where the Coulomb potential corresponds to a point charge of
infinite mass,
2
1

-, (44)
4 E r
d is defined in Eq. (9), q? is defined in Eq. (34), and u(t) is
given in Eq. (33). In the case of the Dirac equation, Eq. (43a),
it differs from Eq. (10) in that we now have removed the
purely time-dependent last term and shifted the energy down-
wards by mc?, which, in turn, corresponds to replacing 8 with

. (0 0
5:(0 —212>' “5)

Using a combination of spherical harmonics for the an-
gular part and b-splines for the radial part, we constructed
spectral bases by diagonalizing the unperturbed numerical
Hamiltonian—both for the relativistic and the nonrelativis-
tic case. Eigenstates with energies above a certain threshold
Ereshold Were removed from the basis for the nonrelativistic

V()= —

and semirelativistic calculations. In the case of fully relativis-
tic calculations, energies below —2mc? — Egpreshold Were also
removed.

When solving the semirelativistic Schrodinger equation,
Eq. (43b), we have used the same spectral basis as the non-
relativistic one, i.e., we expand Wgr in the eigenstates ¥, ¢ n,
of the nonrelativistic Hamiltonian:

2
R =2 Ly, (46)

2m
The spectral basis in which the Dirac equation is solved con-
sists of the eigenstates of the time-independent Hamiltonian:

HR =ca-p+V +mc?p. 47)

Contamination of the spectral basis from spurious states is
avoided by using b-splines of order 7 for the radial part of
the upper component @ [see Eq. (7)] and order 8 for the lower
component X [10]. Within these bases, the coupling elements

(WnlAilYa), (48)

where i is x, ¥, and z and A is ce in the relativistic case and
p in the semi- and nonrelativistic cases, are needed in order
to calculate the action of the Hamiltonian on the state. The
determination of these couplings is facilitated by the Wigner-
Eckart theorem, which also enables a sparse representation of
the Hamiltonian matrix in our implementation. We maintain
the reduced matrix elements, which do not depend on pro-
jection quantum numbers, and Clebsch-Gordan coefficients
separately. With this, the memory cost scales proportionally
to £max as opposed to mex, where {.x 1S the maximum
¢ included in our truncated angular basis of spherical har-
monics. It also presents an excellent opportunity to utilize
heterogenous computers efficiently. The implementation is an
extension of the one outlined in Refs. [13,24,25]; we refer the
interested reader to these references for more details.

In addition to the interaction terms analogous to the non-
relativistic ones, the Hamiltonian of Eq. (43b) also features
interaction terms originating from the modified kinetic energy.
The semirelativistic Hamiltonian may be written

1 1 e
Hew — HYR 2\ s AL
SR f) +<2M 2m>P +M p
e . q*
A’k p———. 49
+2,umc P 8u3c? “9)

The coupling elements induced by the relativistic mass cor-
rection in kinetic energy, which is proportional to p?, are
calculated via the Coulomb potential as

(I/In’,é’,m; |P2|Wn,z,m£> = 2m<wn’,£’,mfd|(H(g\IR - V) hhn,l,mé)v
(50)

which is convenient since the H)'® operator is diagonal and
V (r) is spherically symmetric:

(wn’,f’,mz |H0|1//n.[,mg> - 811,(£8n,n’8Z,£’8m£,m} 5 (5121)
<¢n’,l/,m2 IV | I/In,ﬁ,nu) = (wn/,l/,mz |V | wn,i,m;g >3Z,Z’8m@,m2 . (Slb)

Here ¢, ; are the eigenenergies of the numerical representa-
tion of H'}; they include the energies of both bound states and
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box-normalized pseudocontinuum states. With the coupling
elements (48) of each momentum component, the dipole inter-
action ¢/ A - p and the radiation pressure e2/(2umc) A2k -
p are implemented. This also allows us to calculate the action
of q2 on the wave function, which, in turn, allows us to
determine the action of q* by applying q? to the wave function
twice. As mentioned, this approach imposes, in principle, an
error. In our semirelativistic calculations we take our initial
state to be a nonrelativistic bound state of H)®. Since the
kinetic-energy correction, Eq. (42), is part of the q* interac-
tion, it will impose a perturbation on the initial state which
prevails even when there is no external field. For the case
of hydrogen, however, it is reasonable to assume that this
error may be neglected. Numerical checks confirm that this is
indeed admissible. The issue would, however, be problematic
for highly charged ions.

The fact that we expand our wave function in eigenstates
of the unperturbed Hamiltonians renders the calculation of
ionization probabilities straightforward; it is simply 1 mi-
nus the sum of the populations of all bound states. The
populations of the box-normalized pseudocontinuum states,
in turn, can be used to interpolate the energy distribution
of the ionized electron. In doing so, the proper normal-
ization factor, i.e., the density of states, is imposed and
contributions from the various £, m, channels are added
incoherently.

The time propagation is achieved using a second-order
magnus propagator approximated by means of a Krylov sub-
space technique [26-28]. In our simulations we have applied a
sin? envelope function, and the carrier envelope phase ¢ = 0.
The laser field is polarized in the x,y plane, 4, =X and
a4, = ¥, which corresponds to propagation along the z axis,

A

k = 7 [see Eq. (1)].

III. RESULTS AND DISCUSSION

As mentioned, the semirelativistic approach has previously
been tested by direct comparison with solutions of the Dirac
equation for cases involving linear polarization [12,22,23].
We will here demonstrate its adequacy for the present case,
which involves elliptic polarization. The results presented in
Fig. 1 display the total ionization yields for a hydrogen atom
in the ground state exposed to a short, intense laser pulse in the
ultraviolet region. Specifically, the central angular frequency
of the field is w = 3.5 a.u. and the pulse duration T cor-
responds to 15 optical cycles; T = 15 x 2w /w. The photon
energy corresponding to this @ value, which pertains to the
extreme ultraviolet region, allows a single photon to promote
the electron to the continuum—well beyond the ionization
threshold.

Converged results were obtained using an expansion in
500 b-splines extending up to rp,x = 150 a.u. The expan-
sion in partial waves was truncated at €, = 40, and the
energy truncation was set to Epreshoid = 200 a.u. In the case
of fully relativistic calculations, a numerical time step corre-
sponding to 2000 steps per optical cycle was applied at the
highest field intensities. A somewhat longer time step was
sufficient in the case of semirelativistic and nonrelativistic
calculations.

o
o

lonization probability
o o
£ »

o
o

40

><10-‘3

Relativistic correction

60 80 100 120
E0 (a.u.)

FIG. 1. The upper panel shows the total ionization probability
for a hydrogen atom as a function of peak electric-field strength E,
and ellipticity §. The system is initially prepared in the ground state
and the laser pulse has a central frequency of w = 3.5 a.u. and a
duration corresponding to 15 optical cycles. A very weak dependence
on the ellipticity is seen. The lower panel displays the relativistic
correction to the ionization yield. Here, the full curves show the
difference in ionization probability as predicted by the Dirac and
the Schrodinger equation. The dashed curves show the relativistic
correction as predicted by the semirelativistic approach with trunca-
tion at lowest order in the kinetic-energy operator, Eq. (52), while
the circles corresponds to calculations in which the next-to-leading
order is retained [see Eq. (43b)].

The upper panel shows the ionization probability as a
function of peak electric-field strength E, for various ellip-
ticities 8 [see Eq. (1)]. It is clearly seen that the ionization
probability is very weakly dependent on ellipticity, which is
hardly surprising given the isotropic shape of the ground-state
wave function. The relativistic correction to the ionization
probability is more interesting in this regard. The difference
between the ionization probability as predicted by relativistic
Dirac equation, Eq. (43a), and the nonrelativistic results of the
Schrodinger equation, Eq. (43c), are shown in the lower panel
of Fig. 1. We have also included the corresponding relativis-
tic correction obtained using the semirelativistic Schrédinger
equation (43b) instead of the Dirac equation. We see a small
but noticeable relativistic correction. We also see quantitative
agreement between the relativistic corrections provided by
the fully relativistic calculations and the semirelativistic ones.
Albeit weaker, the agreement is still reasonable when only
the leading order in kinetic energy is retained, i.e., when we
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FIG. 2. The ionization probability as a function of peak electric-
field strength E, and ellipticity § [see Eq. (1)]. The initial state has
(nonrelativistic) quantum numbers n = 2, { = m, = 1, and the laser
pulse has @ = 1 a.u. and a duration of 15 optical cycles.

approximate

2 2
e 1+(%> —1 m;—ﬂ. (52)

This approximation corresponds to the omission of the inter-
action term proportional to q* in Egs. (40) and (43b). Note
that this does not preclude relativistic corrections all together
as the expression still features the effective field dressed mass
w(t) rather than the rest mass m. Since w(t) increases with
increasing field strength, we expect the approximation of
Eq. (52) to become increasingly justified in this limit.

The relativistic correction is seen to be negative for all
intensities studied here. This is in agreement with previous
works [12,22,24], and it can be understood from the fact
that the increased inertia acquired by the electron renders it
slightly more stable against ionization.

The lower panel of Fig. 1 shows that the overall relativistic
correction is larger for linear polarization (6 = 0); it tends to
decrease with increasing ellipticity towards circular polariza-
tion (8 = 45°). This is not surprising considering the fact that,
while the average velocity imposed on the electrons by the
external field is independent of ellipticity, the peak velocity is
higher for linear polarization. Thus, a linearly polarized field
pushes the electron deeper into the relativistic region than a
circularly polarized field of the same intensity would.

Having validated the semirelativistic approximation we
will resort to this approach in the remainder of this paper, i.e.,
we will consistently solve Eq. (43b) instead of Eq. (43a). As
mentioned, this is convenient since the numerical solution of a
Schrddinger-type equation such as this one is far less involved
than the corresponding Dirac equation.

It is to be expected that with a nonisotropic initial state,
the ionization probability will feature a much stronger § de-
pendence than the one seen in ionization from the ground
state. Figure 2 demonstrates that this is indeed the case when
we take our initial state to be the excited state with n = 2,
£ = m; = 1. The figure shows the ionization yield as a func-
tion of Ey and §. In this case, the central angular frequency

%10
0
S 04
©
£ 5- 5
8
£ -10-
.Q
S 10
© -15
Jo)
o 20
) 0> 45 -15
20
45 -4
E, (a.u.) § (degrees) <1°

FIG. 3. The relativistic correction to the ionization probability
displayed in Fig. 2 as a function of peak electric-field strength Ey and
ellipticity §. Specifically, it shows the difference between the ioniza-
tion probability predicted by the semirelativistic approach, Eq. (43b),
and the nonrelativistic one, Eq. (43c¢).

of the external field is w = 1 a.u. while the pulse duration
remains 15 optical cycles. Converged results were achieved
with £y.x = 25, 2000 b-splines per angular symmetry, and
rmax = 1000. Weaker fields allowed for a slightly lower value
for rmax. We propagated the wave function using 200 steps per
optical cycle, and the energy truncation was Ereshola = 100
a.u.

The ionization probability is seen to feature a pronounced
stabilization peak around Ey ~ 2.5 a.u. [29]. The § depen-
dence is particularly strong at this peak. As in the case of
Ref. [30], the ionization yield tends to be lowest for cir-
cularly polarized fields rotating opposite to the z axis (§ =
45°), i.e., against the angular momentum of the initial state,
and highest for corotating circular fields (§ = —45°). Beyond
the stabilization peak, however, the § dependence is much
weaker—in particular as the system approaches saturation.
Moreover, it appears to be more or less symmetric in § in the
stabilization region. This observation is consistent with theory
presented in, e.g., Ref. [29]. Here it is argued that, in the
stabilization region, the dynamics may be studied by replacing
the Hamiltonian with an effectively time-independent one in
which the interaction has first been formulated in the Kramers-
Henneberger frame and then averaged over an optical cycle. In
such a picture, the sign of § in Eq. (1) becomes immaterial.

Also in the case pertaining to Fig. 2, we do see certain
relativistic corrections. These are demonstrated in Fig. 3. As
in the case showed in the lower panel of Fig. 1, the correction
is highest in magnitude for linear polarization. Beyond the
stabilization peak, it tends to be slightly higher for contrarotat-
ing than corotating polarization. This may appear somewhat
counterintuitive; one would typically expect to see higher
relativistic corrections in the case of a corotating field.

For all ellipticities, the relativistic correction is largest in
magnitude for E, values in the vicinity of 15 a.u., and also
here it decreases as the system approaches saturation.

It is interesting to note that the relativistic correction shown
in Fig. 3 is not strictly negative. In fact, for comparatively
moderate field strengths, Ey between 2 and 10 a.u., relativ-
ity tends to provide a slight enhancement of ionization. The
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FIG. 4. As in Fig. 3, this plot shows the relativistic correction to
the total ionization yield. In this case it is only displayed for three
ellipticities, namely, corotating circular polarization (§ = —45°), lin-
ear polarization (§ = 0), and contrarotating circular polarization (§ =
45°). As in the lower panel of Fig. 1, the dashed curves correspond
to relativistic corrections predicted with only the leading term in the
kinetic-energy operator retained [see Eq. (52)]. The dotted vertical
lines indicate the respective intervals in which the ionization proba-
bility is a decreasing function of intensity.

regions in which the relativistic correction is positive do, to a
large extent, coincide with the regions in which the ionization
probability is decreasing with intensity. This is illustrated in
Fig. 4.

This coincidence suggests that relativity amounts to an
effective reduction in field strength at these intensities. This,
in turn, is concordant with the fact that the dipole interaction
term e/m A - p is replaced by ¢/ A - p in the semirelativistic
approximation. However, for these field strengths, the reduc-
tion in effective field strength, Ey — m/uEy, is too small to
account for the full correction. Instead, we consider the full
Hamiltonian of Eq. (43b) written out explicitly:

2 4 2

p |Y e
Hgp = — — \%
SR™om — 8m3c2 TV 2m2c

242 2
+£ l_ﬁ A
m 2m?c?
2

e
4m3c?

A’k-p

[A’D® +2(A - p)*] + O(c™). (53)

This expression is identical to Eq. (13) of Ref. [31]—apart
from the anticommutators between p and A imposed in the
latter expression, which is not restricted to the LWA. We
identify an additional term which also supports the notion of
an effective reduction in field strength, namely, the relativistic
correction term —ep?/(2m>c?) A - p. As this term is linear in
A, it is reasonable to assume that also this term constitutes
a significant correction at these comparatively moderate field
strengths, as supported by a comparison between the dashed
and the full curves in Fig. 4.

0.01

— 6 =-45°
0.005

-0.005

-0.01

(dP/dE), -(dP/dE) g, (a.u.)

-0.015 1

0 0.2 0.4 0.6
Energy (a.u.)

FIG. 5. The upper panel shows the energy differential ionization
probability for corotating (§ = —45°), linear (§ = 0), and contraro-
tating (6 = 45°) polarization for the same system as in Fig. 2. The
peak electric-field strength is Ey = 20 a.u. The spectra are plotted
with a logarithmic y axis. The lower panel shows the relativistic cor-
rections to the spectra, i.e., the difference between results obtained
using Egs. (43c) and (43b), on a linear scale. The dashed curves
corresponds to lowes-t order truncation in kinetic energy, Eq. (52).

In Fig. 5 we display photoelectron spectra obtained with
peak electric-field strength Ey = 20 a.u. These calculations
require higher resolution in terms of partial waves than what
is needed for calculating total ionization probabilities. In this
particular case, convergence was achieved with £,,,x = 35.
Moreover, we have imposed a complex absorbing potential
near the edge of the numerical grid for these calculations.
Fully relativistic calculations indicated that the semirela-
tivistic calculations indeed produced the correct relativistic
modifications also in this case. However, convergence is-
sues related to the numerical solution of the Dirac equation,
Eq. (43a), hindered establishing a fully quantitative agree-
ment.

The field strength Ey = 20 a.u. corresponds to an intensity
well beyond the stabilization peak, in which the multiphoton
peaks are not expected to be prominent [32-34]. Thus, it
should come as no surprise that the spectra are dominated
by low-energy photoelectrons. Still, we may make out some
multiphoton peaks for circular polarization. For Ey = 20 a.u.,
the relativistic correction tends to reduce the total ionization
yield. Accordingly, the overall relativistic correction is nega-
tive, as demonstrated in the lower panel of Fig. 5. However, it
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is not negative for all energies; as it turns out, relativistic cor-
rections impose a slight enhancement just above threshold for
circular polarizations. And it does so to a larger extent in the
case of corotating polarization than for a contrarotating field.
In other words, there seem to be two competing relativistic
corrections: one which enhances ionization at low energies
and another which diminishes it at higher photoelectron en-
ergies. The latter is consistent with the discussion pertaining
to Fig. 4. Supported by the expression for the modified dipole
interaction, i.e., the second to last term in Eq. (53), increased
inertia may, to some extent, be seen as an effective reduction
in field strength.

Thus, it would seem reasonable to attribute the relativistic
enhancement seen for low-energy photoelectrons exposed to
circular polarization to the last term in Eq. (53). This interac-
tion term features a modification of the kinetic-energy term,
A% /(2m3c?) p>. As (p?) typically is larger for corotating
than contrarotating circular polarization, this may explain why
the enhancement is more pronounced in the former case. Note
that both effects, the enhanced ionization probability near
zero energy and reduced ionization at higher energies, are
more pronounced for corotating than contrarotating fields. In
light of this, the fact that relativistic corrections to the fotal
ionization probability tend to be smaller in magnitude in the
corotating case than the contrarotating case appears less coun-
terintuitive. Although both the relativistic effects discussed
above are stronger for corotating polarization, they add up to
a total correction which is more moderate than what is seen
for contrarotating polarization.

IV. CONCLUSIONS

We have validated the semirelativistic approach to pho-
toionization for strong electromagnetic fields of general
ellipticity in the ultraviolet region and applied it to study pho-
toionization of a hydrogen atom initially excited to the n = 2,
£ = m,; = 1 state. A strong dependence on ellipticity near the
stabilization peak was found; corotating circular polarization

provided significantly higher ionization than contrarotating
polarization.

Certain relativistic corrections were also observed. In gen-
eral, the magnitude of the correction was highest for linear
polarization, for which the peak electric-field strength pen-
etrates deeper into the relativistic region. For most field
strengths, relativity tends to stabilize the system slightly
against ionization—in accordance with the notion of increased
inertia induced by the laser pulse. However, in the regions
in which ionization probability is decreasing with increasing
intensity, a relativistic enhancement of ionization was seen.
This enhancement was also interpreted as a consequence of
an effective reduction in the laser intensity.

We also presented photoelectron spectra for an intensity
well beyond stabilization. These spectra demonstrated that
multiphoton ionization is suppressed at these intensities and
that photoelectrons, for all ellipticities, tend to come out with
very low energy. While relativistic effects overall tend to
stabilize the atom against ionization, a certain enhancement
was seen for low-energy photoelectrons exposed to circularly
polarized fields.

The present paper elucidates the benefit of the semiclassi-
cal approach as it demonstrates how relativistic corrections
may be found using an equation of Schrodinger type—as
opposed to the Dirac equation. This benefit is not limited
to laser fields in the ultraviolet region. While the relativistic
corrections found in this particular study are rather small, we
hope that future works will confirm the applicability of the
semirelativistic approach also for systems in which relativistic
corrections are more prominent.
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