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Effective single-electron treatment of ion collisions with multielectron targets without using the
independent-event model
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In ion-atom collisions involving multielectron targets the role of inner-shell electrons becomes important
with increasing collision energy. Usually, processes involving the outer-shell and inner-shell electrons are
treated using an independent-event model. However, the independent-event model becomes impractical when
the number of shells is more than two. We develop an effective single-electron approach to ion collisions
with multielectron atomic targets that overcomes this difficulty by treating all the atomic electrons on an equal
footing. The approach allows the calculation of single-ionization and single-electron transfer cross sections by
including the excitation of any one of the inner- or outer-shell target electrons. Accordingly, the approach does
not differentiate which one of the many target electrons is captured or ionized. This is a unique feature of
the proposed approach. The ground-state wave function for the target atom obtained in the multiconfiguration
Hartree-Fock approach is used to calculate the probability density for the whole atom. The latter is then averaged
over the spatial coordinates and spin variables of all of the target electrons except for the position of one electron
from the nucleus. The obtained single-electron probability density is then used to derive a pseudopotential
describing the interaction of one electron with an effective field produced by the target nucleus and the other
electrons. The procedure reduces the many-body Schrödinger equation governing the collision system effectively
into a three-body one. The reduced Schrödinger equation is solved using the two-center wave-packet convergent
close-coupling approach. As an illustrative example we calculate integrated cross sections for single-electron
transfer and ionization in proton collisions with lithium, sodium, and potassium. The results obtained agree
very well with available experimental data for electron transfer. However, we find significant discrepancies with
experiment for single ionization of Na and K, which warrant further experimental and theoretical investigations.
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I. INTRODUCTION

Ion-atom collisions represent one of the important top-
ics in atomic physics due to applications that benefit from
a quantitative understanding of such collisions. Solar wind
problems in astrophysics [1], plasma modeling for fusion
energy [2,3], and hadron therapy of cancer [4] are just some of
the examples. The recent progress in energetic ion-atom and
ion-molecule collisions has been given in Ref. [5].

From the viewpoint of theoretical studies of ion-atom col-
lisions, modeling bare ion-hydrogen collisions represents the
simplest, but still formidable, challenge since it is a gen-
uine three-body problem where the interactions between all
of the particles and the two-body bound-state wave func-
tions in the reaction channels are analytically known. For
this reason, it has served as a test bed for the development
of several theoretical models based on the molecular-orbital
close-coupling [6], atomic-orbital close-coupling [7–9], the
basis generator method [10], the numerical lattice method
[11–13], the continuum distorted-wave method [14–16], the
classical trajectory Monte Carlo method [17,18], and various
perturbative methods [19]. Recent developments in the field
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include quantum-mechanical and semiclassical implementa-
tions of the convergent close-coupling method [20–22].

The next collision system in a sequence of complexity
is fully stripped ion scattering on a two-electron target of
helium. This system is also considered to be the simplest one
which includes physics associated with the correlation of the
target electrons. The problem has been thoroughly studied in
a number of theoretical works, see, e.g., Refs. [23–25] and
references therein.

Collision systems with one- or two-electron targets can
be dealt with in an ab initio manner without significant ap-
proximations. However, as the number of target electrons
increases it becomes unavoidable to introduce approxima-
tions to the problem. Depending on the electronic structure
of the target there already exist several types of approxi-
mations. For instance, proton scattering on atomic targets
with only one electron in the valence shell (e.g., alkali-metal
atoms) is usually reduced effectively to the three-body prob-
lem by modeling the interaction potential of the target inert
core with the valence electron and the incident proton. With
these modifications, the formalism developed for the proton-
hydrogen collision problem can then be utilized. In collision
systems where the target atom has two valence electrons (e.g.,
alkaline-earth atoms) or a closed shell (e.g., inert gases), usu-
ally there is a strong influence of electron-electron correlation
and electron-exchange effects. Such collision systems can be
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treated using the models based on the formalism developed
for proton-helium collisions where there are the necessary
ingredients to take these effects into account.

The quality of modeling the effective potential plays a
crucial role in the accurate description of the collision system.
In collisions involving targets with more than one electronic
shell, excitation of inner-shell electrons can have a consider-
able effect on reaction cross sections even for single electron
processes, such as single electron excitation, and ionization
and single electron capture. However, models which assume a
frozen inert core of the target completely neglect this effect.

Despite significant progress in ion-atom collision theory,
due to the complicated electronic structure of multielectron
atoms, modeling proton collisions with such targets still re-
mains challenging. Many theoretical approaches resort to
empirical modeling of the interaction potentials between the
participants of the reaction. Such approaches are usually lim-
ited to the description of a specific collision process which
is being investigated. In particular, in ion-atom collisions in-
volving multielectron targets, the role of inner-shell electrons
becomes important with increasing collision energy. Usually,
the contributions of the outer and inner-shell electrons are
taken into account using an independent-event model, where
processes involving the outer-shell and inner-shell electrons
are artificially separated and treated independently. How-
ever, the independent-event model becomes cumbersome and
impractical when the number of shells is more than two. Fur-
thermore, often the independent-event model fails, e.g., when
it is applied to double ionization of He [23,25].

As an example of ion collisions with multielectron targets,
in this work we consider proton scattering on alkali-metal
atoms. A large amount of experimental data [26–41] for
proton scattering on Li, Na, and K has been collected for in-
tegrated electron-capture and excitation cross sections. These
measurements for single electron capture and single electron
ionization only detect an electron without specific information
whether it originated from the outermost or inner shells of the
target.

Early investigations into proton collisions with alkali atoms
were conducted by Stary et al. [42] using an optical-potential
method. An alternative approach using a continuum-distorted-
wave eikonal-initial-state (CDW-EIS) model was developed
by McCartney and Crothers [43]. Both of these approaches in-
vestigated collision scenarios with projectile energies greater
than 1 keV. Dubois et al. [44] used the atomic-orbital close-
coupling approach to investigate differential cross sections,
alignment, and orientation effects for electron capture in
proton-Na collisions. More recently Lühr and Saenz [45]
investigated single electron loss by alkali atom targets for
a wide range of proton projectile energies ranging from
0.25 to 1000 keV. Their method involved a time-dependent
coupled-channel approach which treated the alkali targets as
one-electron atoms by generating a set of pseudostates for the
alkali’s valence electron. These pseudostates used a Klapisch
model potential [46] to simulate the interaction between the
atom’s active electron and its frozen-core pseudonucleus. The
pseudostates were then expanded using B-spline functions
to form a set of coupled equations. While good agreement
was found between the obtained results and those presented
by McCartney and Crothers, notable discrepancies were seen

when compared with the results of Stary et al. Lühr and Saenz
suggested that an underlying assumption or scaling factor had
incorrectly influenced the results of Stary et al. or that the
presented results had yet to reach full convergence. Another
time-dependent channel-coupling approach was developed by
Pindzola et al. [47]. Differing from Lühr and Saenz, this
investigation used frozen Hartree-Fock potentials to generate
the pseudostates. For the considered projectile energy range (1
to 100 keV), good agreement was found between their results
and those presented by Lühr and Saenz. However, all these
theoretical studies were not successful in producing accurate
total cross sections for single-electron capture at intermediate
to high collision energies. The conclusion was that, at these
energies, the incident proton is more likely to capture the
electron from the inner shells of the atom rather than the
valence electron.

Very recently, we have developed a simple method to cal-
culate electron-transfer cross sections based on one-center
close-coupling equations where only target-centered pseu-
dostates are used. The developed method was applied to
investigate proton scattering on the lithium atom [48]. The
obtained results for the total electron-capture and the 2s → 2p
excitation cross sections were found to be in good agreement
with available experimental data. However, this approach can-
not provide as much collision information as the genuine
two-center approach can. Specifically, there are two short-
comings of this approach. First, it is based on the frozen-core
approximation, meaning that the projectile can capture only
the valence electron. As mentioned above, in practice as the
projectile energy grows, capture of the core electrons gradu-
ally become dominant. The approach accounts for this process
using the independent-event model. This separation appears to
work well in this case but it is artificial and may not work for
other targets where the ionic core is not well separated and
the frozen-core approximation is not applicable. Additionally,
detailed differential studies of the processes occurring during
the collision are impossible within this approach.

In the present work our aim is to develop a general ap-
proach to fully stripped ion scattering on multielectron atom
(ion) targets that have a quasi-one-electron configuration.
The approach effectively takes into account the presence of
all the particles of the collision system but, at the same
time, maintains the number of degrees of freedom of the
system low to make calculations feasible. Time-dependent
density-functional theory (TDDFT) (see, e.g., Refs. [49–54]
and references therein) is another example of nonperturba-
tive approaches to ion collisions with multielectron targets.
Our method is an approximation and it is not as rigorous
as the time-dependent density-functional theory. However, it
can serve a simpler alternative to TDDFT in cases where our
approach is applicable.

As mentioned above, in order to demonstrate how the
developed approach works we consider proton scattering on
alkali atoms of lithium, sodium, and potassium. These atomic
targets contain a single valence electron well isolated from the
inner electronic shells. This fact is suggestive to consider the
target atom with one active electron in the field of the frozen
core. Several previous theoretical approaches used this ap-
proximation but they were only able to account for processes
involving the electron from the outermost shell. Typically,
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these approaches have built on methods proven to successfully
generate results that are in good agreement with experimental
data for proton collisions with H atoms.

The remaining sections of this paper can be outlined as fol-
lows: Section II describes the procedure which is used to treat
the electronic structure of multielectron atoms (ions) with a
quasi-one-electron configuration. The procedure reduces the
target to an effectively one-electron atom. Here we also briefly
recapitulate the formalism developed for proton-hydrogen
collisions, as well as discuss modifications required for that
work so it could be used here. The details of calculations and
the obtained results are given in Sec. III. Finally, concluding
remarks are given in Sec. IV.

II. FORMALISM

Before looking at collision processes we focus our atten-
tion on the description of multielectron targets. The formalism
described below is limited to quasi-one-electron (alkali atoms
and alkali-like ions) and quasi-two-electron (helium atom,
heliumlike ions, alkaline-earth atoms, and alkaline-earth-like
ions) targets with one or two electrons in their valence shell.
In addition, in this work we consider fully stripped projectiles.
The wave-packet continuum discretization for hydrogen-like
ions is described in Ref. [55].

A. Target description

In the description of an N-electron target atom with the
nuclear charge ZT = N we adopt the following conventions.
The spatial coordinate and the spin of one particular electron
are denoted by r and s, respectively. For convenience, we call
this electron an active electron, although, as will become clear
below, any one of the remaining N − 1 electrons could also
be taken as an active electron. An ensemble of N − 1 spatial
coordinates of the remaining N − 1 electrons is denoted by
r′ and their spins by s′. The target wave function satisfies the
following multielectron Schrödinger equation:

[HT − ET]�(r, r′, s, s′) = 0, (1)

where ET is the target state energy and

HT = − 1
2∇2

r − 1
2∇2

r′ + V (2)

is the full nonrelativistic target Hamiltonian. Here −∇2
r /2

represents the kinetic-energy operator of the active electron
while −∇2

r′/2 is just a short-hand notation for the sum of
the kinetic-energy operators of the remaining N − 1 electrons,
i.e.,

−1

2
∇2

r′ ≡ −1

2

N−1∑
i=1

∇2
ri
. (3)

The total interaction potential is given as

V = −
N∑

i=1

ZT

ri
+

N∑
i> j

1

|ri − r j | , (4)

where
∑N

i> j denotes summation over both i and j subject to
the condition i > j. We neglect spin-orbit interactions.

For a wide range of atomic elements in the periodic ta-
ble there already exist several approaches to compute the

multielectron wave function �(r, r′, s, s′). One of the most
elaborate and readily available methods is the multiconfig-
uration Hartree-Fock (MCHF) approach. In this work we
use the computational atomic structure package based on the
MCHF approach developed by Froese-Fischer et al. [56]. This
package can produce multielectron wave functions for the
ground and excited states of practically all the elements in
the periodic table. It constructs the total atomic wave function
using the configuration state functions, which are found by
numerically solving corresponding Hartree-Fock equations.
Unlike the methods based on the expansion into the linear
combination of Slater orbitals, this package allows us to accu-
rately compute the required configuration state functions for a
sufficiently long range of radial distances. This is particularly
useful for the purpose of the present work, where we need
only the ground-state wave function of a particular atom.

Let us denote the ground-state wave function of the
multielectron target as �0(r, r′, s, s′) and assume it is antisym-
metrized as necessary. We also assume that the wave function
is normalized:∑

s,s′

∫
|�0(r, r′, s, s′)|2drdr′ = 1. (5)

The total multielectron probability density in the ground state
is given by |�0(r, r′, s, s′)|2. If we integrate the total electron
density over all variables except for the spatial variable of the
active electron, then we get the single-electron density

∑
s,s′

∫
|�0(r, r′, s, s′)|2dr′ = ρ(r). (6)

This single-electron density function effectively represents the
probability density of finding the active electron at position r
from the target nucleus. Accordingly,∫

ρ(r)dr = 1. (7)

Equation (6) can be written as
∑
s,s′

∫
n(r, r′, s, s′)dr′ = 1, (8)

where we introduced the following notation:

n(r, r′, s, s′) ≡ |�0(r, r′, s, s′)|2
ρ(r)

. (9)

Note that the latter parametrically depends on the position
of the active electron. Now we assume that there are single-
electron and multielectron wave functions that respectively
define the aforementioned single-electron and multielectron
probability densities, i.e.,

ρ(r) = |ϕ0(r)|2, (10)

n(r, r′, s, s′) = |φ0(r, r′, s, s′)|2. (11)

Then we can write the target wave function in the following
form:

�0(r, r′, s, s′) = ϕ0(r)φ0(r, r′, s, s′). (12)

Thus, ϕ0(r) is an effective single-electron wave function and
φ0(r, r′, s, s′) is an effective N − 1 electron wave function
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that parametrically depends on r, the position of the active
electron. Due to Eqs. (5), (7), and (8) all three wave func-
tions involved in Eq. (12) are normalized to 1. Moreover, the
normalization condition (8) holds for any r. This imposes a
constraint on the functional dependence of φ0(r, r′, s, s′) on r.

Inserting the target wave function written in the factorized
form (12) into Eq. (1) leads to

− φ0(r, r′, s, s′) 1
2∇2

r ϕ0(r) + ϕ0(r)HTφ0(r, r′, s, s′)

− ∇rϕ0(r)∇rφ0(r, r′, s, s′) − ETϕ0(r)φ0(r, r′, s, s′)

= 0. (13)

Now we write the target state energy ET as a sum of the core
electron energy, εc, and the energy of the active electron, ε0,
i.e.,

ET = εc + ε0. (14)

Next we multiply Eq. (13) by φ∗
0 (r, r′, s, s′) from the left and

integrate over dr′ and sum over spins s and s′, taking into
account the normalization condition (8). This leads to

− 1
2∇2

r ϕ0(r) + U (r)ϕ0(r) − G(r)∇rϕ0(r) = ε0ϕ0(r), (15)

where we introduced the following short-hand notation:

U(r) =
∑
s,s′

∫
φ∗

0 (r, r′, s, s′)(HT − εc)φ0(r, r′, s, s′) dr′,

(16)

and

G(r) =
∑
s,s′

∫
φ∗

0 (r, r′, s, s′)∇rφ0(r, r′, s, s′) dr′. (17)

The quantity U(r) is an expectation value of the full-target
Hamiltonian HT over the spatial coordinates of the N − 1
electrons and the spin space of all N electrons. It represents
the collective field produced by the target nucleus and all the
target electrons except for the active electron. It takes into
account the possibility of excitations of not only the outermost
electron but also the electrons from the inner shells and has
a very different meaning than effective potentials commonly
used in DFT. Therefore, to avoid confusion with the usual
effective potential, we call U(r) a pseudopotential. As we
see below, our pseudopotential has very different functional
behavior than traditional effective potentials.

In the present work we employ the multiconfiguration
Hartree-Fock approach according to which

ρ(r) = |ϕ0(r)|2 =
∑ν

i=1 ωi|ψi(r)|2
N

, (18)

where ν is the total number of configurations in the ground
state of the atom, and ωi is the occupation number of the elec-
trons in the configuration state ψi(r). The configuration state
functions ψi(r) are obtained using the same computational
atomic structure package [56]. For the quasi-one-electron and
quasi-two-electron atoms considered in this work all con-
figuration state functions are s-wave ones. Therefore, the
multielectron wave function �0(r, r′, s, s′) and its compo-
nents ϕ0(r) and φ0(r, r′, s, s′) are all real functions. Therefore,

we can write

G(r) =
∑
s,s′

∫
φ0(r, r′, s, s′)∇rφ0(r, r′, s, s′) dr′

=1

2
∇r

∑
s,s′

∫
φ0(r, r′, s, s′)φ0(r, r′, s, s′) dr′

=1

2
∇r

∑
s,s′

∫
n(r, r′, s, s′) dr′ = 0. (19)

Above we took into account Eq. (8).
Thus, Eq. (15) reduces to the following effective one-

electron Schrödinger equation:

− 1
2∇2

r ϕ0(r) + U (r)ϕ0(r) = ε0ϕ0(r). (20)

Since in our case the solution of this equation ϕ0(r) does
not depend on the solid angle r̂, this indicates that the pseu-
dopotential is spherically symmetric. Hence, we arrive at the
following effective one-electron radial Schrödinger equation:[

−1

2

d2

dr2
− 1

r

d

dr
+ U (r)

]
ϕ0(r) = ε0ϕ0(r). (21)

One should note that the ground-state wave function ϕ0 does
not represent the state of the isolated valence electron. Rather,
it reflects the state of any one of the electrons of the atom in
the field of pseudopotential U (r). In other words the multi-
electron atom with inner and outer electrons is modeled as a
one-electron pseudo-atom.

To compute the pseudopotential U(r) we first need to
calculate ϕ0(r). For the atoms considered in this work, the
radial probability density ρ(r) is a nodeless function, hence
its positive square root defines ϕ0(r). In Fig. 1(a) we present
the ground-state radial wave function ϕ0(r) multiplied by r for
the Li, Na, and K atoms. Here one can see features reflecting
the electronic structure of the corresponding targets: a number
of maxima are observed, each representing localized positions
of shell electrons. This is because these wave functions are
obtained by taking the square root from the probability den-
sity functions as in Eq. (10). As one can see, all presented
wave functions are nodeless, therefore there is no difficulty
in obtaining the wave function from the probability density
function.

Once ϕ0(r) is obtained the pseudopotential U(r) is found
by reverse solving Eq. (21), i.e.,

U(r) = ε0 + 1

ϕ0(r)

[
1

2

d2

dr2
+ 1

r

d

dr

]
ϕ0(r). (22)

The value of ε0 is found by ensuring that the U (r) becomes
−1/r in the asymptotic limit r → ∞. The results obtained
are then verified against the values of U(r) computed directly
using Eq. (16). In Fig. 1(b) we present the radial dependence
of the pseudopotential U(r) multiplied by r for the Li, Na,
and K atoms. Here U(r) is the potential which is felt by
any one of the electrons in the field produced by the nucleus
and the remaining electrons of the atom. We infer from the
figure that for all three atoms the pseudopotential tends to
the expected functional form of −ZT/r near the origin and
has the asymptotic −1/r tail at large distances. Generally,
the pseudopotential is attractive except in the intermediate
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FIG. 1. The ground-state radial wave function ϕ0(r) [panel (a)]
and pseudopotential U(r) [panel (b)] weighted by radius r as func-
tions of r for the Li, Na, and K atoms.

region where one can see an oscillatory behavior. This is
consistent with the electronic structure of the considered
atoms. In particular, for the Li atom with the 1s22s1 elec-
tronic configuration there is a region around 1.42 a.u. where
the pseudopotential becomes repulsive. This is due to the
occupied n = 1 shell. The states in this shell are on average
either unavailable or unlikely to be available for the active
electron. Similarly, for the Na atom with the 1s22s22p63s1

electronic configuration there are two regions, one around
0.23 a.u. and the other around 1.94 a.u., where the potential
is positive. The first peak is due to the complete n = 1 shell
and the second is due to the n = 2 shell. For the K atom
with the 1s22s22p63s23p64s1 electronic configuration there
are three regions (located around 0.12, 0.62, and 2.83 a.u.)
where the pseudopotential turns repulsive, corresponding to
the complete n = 1, n = 2, and n = 3 shells, respectively. It
is noteworthy to mention that no such oscillatory features in
the intermediate region are observed in the model effective
potential proposed by Klapisch [46] and employed in proton-
alkali atom scattering calculations by Lühr and Saenz [45].
The Klapisch potential based on multiple tuning parameters
accurately reproduces the −ZT/r behavior near the origin and
the asymptotic −1/r tail. However, it goes from one func-
tional behavior to the other smoothly and monotonically. Our
pseudopotentials appear to better reflect the physical situation
that the active electron should experience.

The presently calculated ionization potentials of the
ground-state Li, Na, and K atoms, |ε0|, are 5.34, 4.96, and
4.21 eV, respectively. They compare favorably to the corre-
sponding experimentally measured values of 5.39, 5.14, and
4.34 eV, respectively. This level of agreement with experiment
is consistent with the underlying multiconfiguration Hartree-
Fock approach used in the current model.

The radial wave functions and corresponding energies for
other bound and continuum states of the multielectron atom
are found by solving the following reduced radial single-
electron Schrödinger equation for each angular momentum l:

[
−1

2

d2

dr2
− 1

r

d

dr
+ l (l + 1)

2r2
+ U(r)

]
Rα (r) = εαRα (r),

(23)

where index α denotes the set of quantum numbers specifying
an atomic state. Specifically, α = {nl} for a bound state (εα <

0) and α = {κl} for the continuum (εα > 0), where κ = √
εα .

The pseudopotential U(r) is the one that results from reverse
solving Eq. (21) for a given ϕ0(r). Equation (23) is solved
using the Numerov method. The bound states are found by uti-
lizing a standard shooting method. The resulting states form a
set of negative-energy pseudostates approximately represent-
ing the target space, including the ground state. The latter, of
course, coincides with ϕ0(r) and is accurate by construction.
For the continuum states, Rα (r) is matched to the Coulomb
function at large r, which is also used to derive the continuum
phase shift ηl . The radial functions for the bound states are
normalized. The continuum wave function is normalized to
the δ function in momentum space.

Unlike bound states, which only exist at discrete levels of
the target energy spectrum, continuum states can be generated
by solving Eq. (23) for arbitrary electron ejection energies.
However, the non-normalizable nature of the atomic contin-
uum wave function makes it inapplicable for close-coupling
scattering models. To overcome this problem while keeping
the flexibility of generating a state for arbitrary continuum
energies, we use the wave-packet continuum-discretization
approach, which was recently applied to describe the structure
of atomic hydrogen [55]. To construct normalizable wave
packets, we first take the continuous spectrum of the active
electron with some maximum value of energy Emax, and then
subdivide the entire interval [0, Emax] into Nc nonoverlapping
but touching intervals (discretization bins) [εi−1, εi]

Nc
i=1 with

ε0 = 0 and εNc = Emax. Every such energy bin corresponds
to the interval [κi−1, κi] in momentum space, where κi = √

εi.
The wave packet (WP) corresponding to each bin is built from
the following integral of the continuum function [which is the
solution of Eq. (23)]:

RWP
il (r) =

∫ κi

κi−1

dκRκl (r). (24)

Then the reduced target atom wave function is defined as

ϕWP
α (r) = RWP

nα lα (r)Ylαmα
(r̂), (25)

where Ylm denote the spherical harmonics. As mentioned
above, the continuum functions are normalized to the
δ function. This condition ensures the orthogonality and
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normalization of the wave-packet pseudostates,〈
ϕWP

α′
∣∣ϕWP

α

〉 = δα′α. (26)

For a particular angular momentum l , Nc wave-packet
pseudostates representing the [0, Emax] region of the active
electron continuum, together with Nb bound states, form a
practically complete set of pseudostates, provided Nc and Nb

are sufficiently large. For the given maximum allowed angu-
lar momentum lmax, the total number of channels becomes
N = ∑lmax

l=0(2l + 1)(Nb − l + Nc). The number of negative-
and positive-energy states, as well as Emax, are increased until
adequate convergence is achieved in the predicted cross sec-
tions for the collision process that we are interested in.

B. Scattering equations

With the description of the multielectron target effectively
as a one-electron atom we can now apply the formalism
developed for proton-hydrogen collisions [22,57]. The total
scattering wave function can be expanded using the pro-
jectile and target bases. The projectile basis describes the
proton-active electron system, and, therefore, consists of
hydrogen eigenstates and hydrogen continuum wave-packet
pseudostates. The details of the basis describing atomic hy-
drogen are given in Ref. [55]. Consequently, the Schrödinger
equation is expressed as a system of differential equations
for unknown time-dependent expansion coefficients. In the
asymptotic region these time-dependent coefficients represent
the transition amplitudes for all processes including elastic
scattering, excitation, ionization, and electron capture depend-
ing on the final-state energy and the electron arrangement.

We gave extended details of the wave-packet convergent
close-coupling (WP-CCC) approach in our previous studies
of proton-hydrogen collisions [22,57]. Its extension to the
four-body proton-helium problems is presented in Ref. [25].
Here we generalize this approach to proton collisions with
multielectron atomic targets.

In the previous section we derived the procedure which
reduces the description of the multielectron atom to the effec-
tively two-body system consisting of a core ion and one active
electron. The mutual interaction of electrons, the electron-
exchange effects and the interaction of multiple electrons
with the atomic nucleus are all represented by one active
electron and the core ion. With this description of the tar-
get, the collision system reduces to an effectively three-body
scattering problem. Therefore, we can apply our existing WP-
CCC approach with slight modifications which involve only
introducing pseudopotentials representing interactions of the
target core ion with the active electron and the incident proton.
Scattering of the projectile with the target described by the
procedure derived above is governed by the following effec-
tive three-body Schrödinger equation for the total scattering
wave function �+

i :

(H − E )�+
i = 0, (27)

with the outgoing-wave boundary conditions. Here E denotes
the total energy and H denotes the Hamiltonian for the system
of the projectile, the target core ion, and the active electron.
The initial channel is denoted with index i and the total scat-
tering wave function develops from that state. We look for

the solution to Eq. (27) in the form of an expansion of �+
i

in a two-center basis of the target (ϕα) and projectile (ϕβ)
pseudostates as

�+
i ≈

NT∑
α=1

Fα (t, b)ϕα (rT)eiqα ·ρ +
NP∑

β=1

Gβ (t, b)ϕβ (rP)eiqβ ·σ,

(28)

where Fα and Gβ are expansion coefficients, and the numbers
of target and projectile basis functions are denoted with NT

and NP, respectively. We use the Jacobi coordinates. Here,
index α denotes a quantum state in a channel where the
projectile with relative momentum qα is incident on target
bound state α. A quantum state in the rearrangement chan-
nel, where the electron is transferred to state β of the atom
formed by the projectile has momentum qβ relative to the
target nucleus is denoted with index β. Vector ρ denotes the
position of the projectile relative to the center of mass of the
residual target ion-active electron system. The position of the
projectile-active electron system relative to the residual target
ion is denote as σ. The position of the projectile with respect to
the residual target ion is denoted as R. If we introduce impact
parameter b, then we can write R = b + vt , where v denotes
the velocity of the projectile. Vector rT denotes the position of
the active electron relative to the target proton. the position of
the active electron relative to the projectile is denoted as rP.

The set of basis states representing the H atom formed
when the projectile captures the electron is made of the
eigenstates corresponding to the H bound states and wave
packets corresponding to positive-energy bin states [22]. The
basis of target atom pseudostates is derived in the previous
section. Each of the sets of the target and projectile basis
functions are separately orthonormal. We emphasize that the
CCC approach is based on a different ansatz for �+

i than the
traditional close-coupling method (see, e.g., Ref. [58]). The
wave function given in Eq. (28) does not satisfy the semi-
classical Schrödinger equation. Therefore, we start from the
exact Schrödinger equation. However, subsequently, by using
the semiclassical approximation, we arrive at the same set of
equations for the expansion coefficients as that obtained in the
conventional close-coupling approach [58]. This is one of the
subtle differences between our approach and the conventional
atomic orbital close-coupling ones. See Ref. [22] for details.

It is worthwhile to emphasize the distinguishing features
of the present model from the approaches which are based
on the independent event model. In Eq. (28) the ground state
of the target ϕα=1(rT) ≡ ϕ0(rT) = ϕ0(rT)Y00(r̂T) is obtained
from the probability density function given in Eq. (18), which
contains all necessary information about the electrons in every
subshell of the target. Additionally, all other target pseu-
dostates of the expansion (28) also contain similar information
since they are obtained using the same pseudopotential which
was constructed to describe the ground state of the multi-
electron target. For this very reason the present approach is
capable of describing the fate of any one of the target electrons
on an equal footing. In contrast, the models which are based
on the independent electron approximation treat the target
atom as if it has a frozen core and one electron (which is in the
outermost shell of the atom), where the interaction potential
between them represents the collective field of all electrons in
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the frozen core. Therefore, the pseudostates representing the
active electron in those models by construction describe only
the fate of the electron in the outermost shell of the target.

With the expansion (28) and using the semiclassical ap-
proximation, the Schrödinger equation (27) can be expressed
as a system of the following first-order differential equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

iḞα′ + i
NP∑

β=1

ĠβK̃α′β =
NT∑

α=1

FαDα′α +
NP∑

β=1

GβQ̃α′β,

i
NT∑

α=1

ḞαKβ ′α + iĠβ ′ =
NT∑

α=1

FαQβ ′α +
NP∑

β=1

GβD̃β ′β,

α′ = 1, 2, . . . , NT, β ′ = 1, 2, . . . , NP,

(29)

where time derivatives are denoted with dots over Fα and Fβ .
Overlap integrals Kβ ′α are written as

Kβ ′α (R) = 〈ϕβ ′ | exp [−iv · rT]|ϕα〉
× exp [iv2t/2 + i(εβ ′ − εα ) t], (30)

K̃α′β (R) =〈ϕα′ | exp [iv · rT]|ϕβ〉
× exp [−iv2t/2 + i(εα′ − εβ ) t]. (31)

Here the energy of the target atom in state α is denoted as εα ,
while the energy of the H atom formed in state β after electron
transfer is denoted as εβ . Matrix elements Dα′α representing
direct scattering are given as

Dα′α (R) =〈ϕα′ |V α|ϕα〉 exp [i(εα′ − εα )t], (32)

D̃β ′β (R) =〈ϕβ ′ |V β |ϕβ〉 exp [i(εβ ′ − εβ )t], (33)

where V α = ZT/R − 1/rP and V β = ZT/R + U(rT). Matrix
elements Qβ ′α corresponding to electron capture are written
as

Qβ ′α (R) = 〈ϕβ ′ | exp [−iv · rT](Hα + V α − εα )|ϕα〉
× exp [iv2t/2 + i(εβ ′ − εα ) t], (34)

Q̃α′β (R) = 〈ϕα′ | exp [iv · rT](Hβ + V β − εβ )|ϕβ〉
× exp [−iv2t/2 + i(εα′ − εβ ) t], (35)

where Hα and Hβ are the target (effective) and projectile atom
Hamiltonians. In this work they are defined as

Hα = − 1
2∇2

rT
+ U(rT), (36)

Hβ = − 1

2
∇2

rP
− 1

rP
. (37)

We note that Eqs. (29)–(35) are identical to the correspond-
ing equations emerging in the conventional semiclassical
approach if the plane-wave electron translational factors are
used [21]. The complete details of these derivations can be
found in Ref. [22].

At t → ∞ the time-dependent coefficients Fα (t, b) and
Gβ (t, b) describe the impact-parameter amplitudes for tran-
sitions into the various excited states of the target and
projectile-electron system. At t → −∞ the following initial

boundary conditions are satisfied:
{

Fα (−∞, b) =δα1, α = 1, 2, . . . , NT,

Gβ (−∞, b) =0, β = 1, 2, . . . , NP.
(38)

The calculation details of the direct-scattering and rear-
rangement matrix elements are described in Ref. [20].

Once the set of differential equations (29) are solved, the
cross sections for the individual direct-scattering (denoted as
di) and electron-capture (denoted as ec) transitions can be
found as

σ di
α = 2π

∫ ∞

0
dbbPdi

α (b), (39)

σ ec
β = 2π

∫ ∞

0
dbbPec

β (b), (40)

respectively, where the transition probabilities are

Pdi
α (b) = N |(Fα (+∞, b) − δαi )|2, (41)

Pec
β (b) = N |Gβ (+∞, b)|2. (42)

Here we need to emphasize that since the normalization
of the total scattering wave function (28) is conserved to unity
throughout the entire collision time from t → −∞ to t → ∞,
any one of |(Fα (+∞, b)|2 and |Gβ (+∞, b)|2 can never be
greater than 1. In the definition of the transition probabilities
[Eqs. (41) and (42)] the factor N indicates that any one of N
target electrons can be involved in the transition with an equal
probability. Then the total electron-transfer cross section is
the combination of all partial cross sections corresponding to
the included negative-energy hydrogen states on the projectile
center. The total single-ionization cross section is the sum of
the partial cross sections for excitation of the pseudostates
corresponding to positive energies on the target center and
electron transfer into the pseudostates corresponding to the
continuum of hydrogen.

III. RESULTS AND DETAILS OF CALCULATIONS

In this section we apply the developed method to calculate
the total electron capture and the total ionization cross sections
in proton collisions with alkali atoms. An accurate calculation
of various collision processes occurring in proton collisions
on alkali atoms of Li, Na, and K require a sufficiently large
two-center basis of target and projectile pseudostates. The
convergence of the results has been investigated by increas-
ing several target and projectile dependent parameters. The
parameters which are tested in convergence studies are the
maximum orbital quantum number lmax, the number Nb of
bound (negative-energy) states and the number Nc of con-
tinuum bin states per orbital angular momentum l . Also, we
verify that the maximum energy Emax of the electron contin-
uum covered by wave-packet bins is sufficiently large. For
all incident energies of the projectile studied in this work the
two-center basis with lmax = 4, Nb = 5 − l , Emax = 400 eV,
and Nc = 20 is found to be sufficient. Thus, the total num-
ber of projectile and target channels is 2 × 555. This allows
one to calculate the total single-electron transfer and to-
tal single-ionization cross sections with acceptable accuracy.
Also, during the solution of the set of differential equations
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FIG. 2. Total cross section for single electron transfer in p-Li
collisions. The results of the present WP-CCC approach are shown
in comparison with the experimental data by D’yachkov [26], Il’in
et al. [27], Grüebler et al. [28], Aumayr et al. [29,30], Varghese et al.
[31], Shah et al. [33], DuBois [61], and DuBois and Toburen [34] and
theoretical calculations by Mančev et al. [62], Labaigt and Dubois
[63] and our previous calculations for single-electron capture from
the K and L shells of the Li target and the aggregate of capture from
the K and L shells [48].

(29) we always make sure that the normalization of the total
wave function (28) is 1 at every time step.

In our calculations we found the lowest energy region
(1–10 keV) to be the most challenging. In this region we
encountered ill-conditioning problems due to norm unity
violation. However, these issues have been successfully elim-
inated by significantly increasing the number of Runge-Kutta
time steps (e.g., at 1 keV it had to be increased to 10 000)
and the accuracy of the overlap and electron-transfer matrix
elements which are computed in spheroidal coordinates. The
accuracy of the latter is controlled by increasing the number of
integration quadrature points for calculating the transition ma-
trix elements. In the worst case of 1 keV we used 500 points
for each spheroidal coordinate. The computational code that
solves Eq. (29) runs on GPU-based supercomputers, which
reduces the computational time tremendously. We utilize the
OpenACC directives of Fortran [59] to offload calculations
of direct and rearrangement matrix elements to GPUs. For
solving the system of equations which emerge at every step
of the Runge-Kutta propagation, we use the CUDA library
cuSolverDn [60].

In Fig. 2 we show the total single-electron-capture cross
section as a function of incident energy in proton-lithium col-
lisions. Our results (the solid line) are displayed in comparison
with the experimental data [26–31,33,34,61] and theoretical
results of Mančev et al. [62] and Labaigt and Dubois [63].
As seen from the figure, agreement with experimental data
is good in the entire range of impact energies considered
in this work. At the energy region of 30 keV and above,
the measured total electron-capture cross sections display a
shoulder-like structure. Our previous calculations [48] (rep-
resented by the dotted green line) showed that this behavior
cannot be explained by taking into account only the capture
of the outer 2s electron of the target lithium. At high impact

FIG. 3. Total cross section for single-electron transfer in p-Na
collisions. The results of the present WP-CCC approach are shown
in comparison with the experimental data by Müller et al. [32],
DuBois and Toburen [34], Aumayr et al. [35], Ebel and Salzborn
[36], O’Hare et al. [37], Morgan et al. [38], Anderson et al. [39],
Wang et al. [40], and Zapukhlyak et al. [64], and theoretical results by
Avakov et al. [65], Kimura et al. [66], Fritsch [67], and Zapukhlyak
et al. [64].

energies incident protons can go deeper into the lithium atom
and interact with its inner electrons which leads to the capture
of K-shell electrons. In our recent work [48] we modeled this
process by considering it as a collision of protons with the
heliumlike Li+(1s2) target with the charge of 3. That model
neglected the effect of the valence L-shell electron. This is a
widely used approximation. The sum of the capture cross sec-
tions of the L- and K-shell target electrons indeed displayed
good agreement with experiment. Analyzing the results one
can see that at energies above 100 keV the electron capture
from the K shell is significantly more pronounced than that
from the L shell. At the same time, at low energies the L-shell
electron capture is the main contributor. In a similar way the
three-body boundary-corrected continuum intermediate-state
(BCIS) method of Mančev et al. [62] also considered the
capture of K- and L-shell electrons of the lithium target as
two independent processes. The BCIS results are in overall
good agreement with experimental data at intermediate and
high-energy regions. However, due to the perturbative nature
of the BCIS method their results are systematically lower than
the measured data below 30 keV.

In our present calculations the Li target is treated using
a pseudopotential in a way which takes into account the
possibility of K- and L-shell electron excitations. Therefore,
the final electron-capture cross section already includes their
aggregate effect. Also presented are the results of Labaigt
and Dubois [63], which are obtained using the semiclassical,
nonperturbative approach which takes into account all three
electrons of the collision system. We should note that these
results are reproduced from Ref. [63] by summing the cross
sections representing transfer from the valence and inner elec-
trons. Similar to the present approach these calculations are
not based on the independent-event model.

In Figs. 3 and 4 we present our results of the total single-
electron capture cross sections for proton collisions on atomic
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FIG. 4. Total cross section for single-electron transfer in p-K col-
lisions. The results of the present WP-CCC approach are displayed
in comparison with the experimental data by Ebel and Salzborn [36],
Morgan et al. [38], and Gieler et al. [41], and theoretical results by
Kimura et al. [66], Fritsch [67], and Avakov et al. [65].

targets targets of Na, and K, respectively. Here also the
obtained results are in good agreement with available ex-
perimental measurements [32,34–41] across a wide energy
range displayed. If considered separately, similarly to the Li
case, the contribution of electron capture from the inner shells
would dominate over capture from the outermost shell at the
incident energies above 30 keV. These figures demonstrate a
clear advantage of the present method over the independent-
event model. The latter would require combination of the
cross sections for three independent events for the Na target
and four independent events for the K target. Clearly, the
independent-event model becomes very cumbersome and im-
practical for targets with several shells. In addition, it neglects
the effect of coupling between the shells of the target to the
final results. Instead the independent-event model introduces
several screening parameters corresponding to each target
shell. This leads to the final results becoming too sensitive to
the choice of these parameters. At the same time we note that
the results of Zapukhlyak et al. [64] obtained by considering
three independent events show good agreement with experi-
ment.

Figure 5 presents the total single-ionization cross section
a function of incident energy in proton-lithium collisions.
One can see that the obtained results are in excellent agree-
ment with the measurements of Shah et al. [33] and DuBois
[61], but significantly overestimate the measurements of
D’yachkov [26] at collision energies below 70 keV. At the
same time, at energies above 100 keV the measurements of
D’yachkov [26] are larger than the present calculations and
the measurements of Shah et al. [33]. One should note that
these single-ionization cross sections include also the contri-
bution of inner-shell electrons, as in the case with electron
capture. The results of CDW-EIS calculations of McCartney
and Crothers [43] are generally lower than the present results
and in better agreement with the measurements of D’yachkov
[26] at 30 and 40 keV. Measurements of DuBois [61] are
for multiple ionization where single ionization is expected to
dominate.

FIG. 5. Total cross section for single ionization in p-Li col-
lisions. The results of the present WP-CCC approach for p-Li
collisions are shown in comparison with the experimental data by
D’yachkov [26], Shah et al. [33], and DuBois [61], and theoretical
calculations of McCartney and Crothers [43].

The total single-ionization cross section for p-Na collisions
as a function of incident proton energy is shown in Fig. 6.
The obtained results for p-Na collisions are in reasonable
agreement with the measurements of Zapukhlyak et al. [64]
but significantly underestimate the measurements of O’Hare
et al. [37] and DuBois [68]. Again, measurements of DuBois
[68] are for multiple ionization. We should also note overall
the good agreement of the present results with the classical
trajectory Monte Carlo calculations of Lundy and Olson [69].
In general, all the calculations appear to agree in shape but can
differ in magnitude up to 60%.

Figure 7 presents the total cross section for single ion-
ization in p-K collisions. Our results disagree with the
measurements of O’Hare et al. [37] except at 100 keV where

FIG. 6. Total cross section for single ionization in p-Na col-
lisions. The results of the present WP-CCC approach are shown
in comparison with the experimental data by O’Hare et al. [37],
Zapukhlyak et al. [64], and DuBois [68] and the theoretical results of
Lundy and Olson [69], Jain and Winter [70], and Zapukhlyak et al.
[64].
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FIG. 7. Total cross section for single ionization in p-K collisions.
The results of the present WP-CCC approach are displayed in com-
parison with the experimental data by Elliott et al. [71] and O’Hare
et al. [37].

they merge. Above 100 keV our results agree well with the
measurements of Ref. Elliott et al. [71]. To our best knowl-
edge, for the K target there are no other theoretical studies of
this process.

Discrepancies between theory and experiment for single
ionization of Na and K around the peak region are striking.
Zapukhlyak et al. [64] speculated that the experimental p-Na
ionization cross sections might be higher than the theoretical
ones possibly due to contributions from autoionizing doubly
excited states, which were ignored in their calculation. Our
effective single-electron approach also neglects such contribu-
tions. At the same time, Zapukhlyak et al. [64] estimated these
contributions to be about two orders of magnitude smaller
than the net ionization cross section over the whole range of
impact energies. Indeed this makes sense. We also notice that
the disagreement appears to worsen as the projectile energy
falls from 100 down to 20 keV. This is counterintuitive as
the likelihood of exciting an inner-shell electron to form an
auto-ionizing state should fall with energy. This is because
the probability of the projectile penetrating deeper into the
target atom is smaller at lower energies. Thus, not only do the
discrepancies for single-electron ionization in p-Na collisions
above E = 20 keV still remain unexplained but a similar issue
also exists for p-K collisions. This situation warrants further
experimental and theoretical investigations.

IV. CONCLUSIONS

An effective single-electron approach to proton collisions
with multielectron atoms is developed. The method allows
the calculation of single-ionization and single-electron cap-
ture cross sections taking into account the effect of all the
inner and outer shell target electrons. The ground-state wave
function obtained in the multiconfiguration Hartree-Fock ap-
proach is used to calculate the probability density averaged
over spins and all the configuration-space variables except for
the position of one electron from the nucleus. The obtained
single-electron probability density is then used to derive a

pseudopotential describing the interaction of one electron
with the collective field produced by the target nucleus and
the other electrons. This pseudopotential is also used to con-
struct the effective three-body Schrödinger equation of the
scattering system. The total wave function is expanded using
a two-center basis built from wave-packet pseudostates. This
allows us to convert the Schrödinger equation into a set of
coupled differential equations for the expansion coefficients.
In the asymptotic region these time-dependent coefficients
represent transition amplitudes for all processes including
elastic scattering, excitation, ionization, and electron capture.
The approach allows calculating single-ionization and single-
electron capture cross sections by considering the possibility
of excitation of any one of the inner or outer shell target
electrons. Accordingly, the approach does not differentiate
which one of the many target electrons is captured or ionized.
As an illustrative example we have calculated the total cross
sections for single ionization and single electron transfer in
proton collisions with lithium, sodium, and potassium. The
obtained results are in very good accord with available experi-
mental measurements on electron transfer for all three targets,
however, considerable disagreement for single ionization of
sodium and potassium has been found. The developed method
has a clear advantage over the widely used independent-event
model.

We emphasize that our effective single-electron approach
is an approximation. It is not as rigorous as the time-dependent
density-functional theory. We also accentuate that it is not
a general-purpose approach at least in its current stage of
development. However, our approach can serve a simpler
alternative to TDDFT in cases where it is applicable. As
demonstrated in this work it works very well for alkali
atoms with one valence electron outside closed shells. Re-
cently, we have tested the approach on the proton-helium
differential-scattering problem [72]. The results obtained us-
ing the effective single-electron approach show very good
agreement with the results from the method based on the
correlated two-electron description of the helium target. All
this indicates that the approach presented here should also
work for quasi-one-electron alkali-like ions and quasi-two-
electron alkaline-earth atoms and alkaline-earth-like ions with
one or two electrons in their valence shell. Applications to
such atoms are straightforward and constitute a possible av-
enue for future research. We are investigating further to see
if the effective single-electron approach developed here can
be generalized to other types of atomic targets. Transitioning
from quasi-one- and quasi-two-electron atoms to atoms with
a partially or fully filled valence shell is not straightforward
and poses certain challenges. We are currently working on the
extension of the method to other noble gas atoms. Whether
the approach is suitable for these atoms remains to be seen.
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