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Magnetic-field-inhomogeneity-induced transverse-spin relaxation of gaseous 129Xe
in a cubic cell with a stem
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We investigate the transverse-spin relaxations of 129Xe due to diffusion in the presence of magnetic-field
gradients in relation to the dimensions of a sub-cm sized cubiclike atomic gas cell with a stem. The transverse-
spin-relaxation rate (��B) of 129Xe is measured as a function of various magnetic-field gradients, ∂Bz/∂x,
∂Bz/∂y, ∂Bz/∂z, and ∂By/∂y. From the measured transverse-spin-relaxation rates in five atomic gas cells with
different stem sizes, the quadratic coefficients of ��B with respect to the magnetic-field gradients are extracted.
To investigate the effect of the dimensions of the stem, we calculate the ratio between the quadratic coefficients
in each atomic gas cell, which is invariant under scaling in the cell size and change in the diffusion coefficient.
We compare these ratios with those obtained analytically from a rectangular parallelepiped model for the atomic
gas cells and with those obtained numerically from a more precise model taking the stems directly into account.
Using a scaling argument, we provide a scheme for estimating the quadratic coefficient of a cubic atomic cell
with a stem. Finally, we determine the diffusion coefficient from the measured quadratic coefficient. Compared
to the analytical method for a rectangular parallelepiped, numerical analysis considering the stem provides the
diffusion coefficient as a value close to the value given by Fuller’s equation. We estimate the diffusion coefficients
of 129Xe in the gas mixture of nitrogen, 129Xe, and 131Xe as 0.13 cm2/s at the standard temperature and pressure
condition.

DOI: 10.1103/PhysRevA.104.042819

I. INTRODUCTION

Noble gas atoms have been widely applied to MRI [1–3],
gyroscopes [4], magnetometers [5], and even fundamental
symmetry tests [6,7], which rely on their long spin-relaxation
times. These usually range from minutes to hours, depend-
ing on the atom. Among noble gases, xenon is suitable
for gyroscopes because of its “Goldilocks” spin-exchange
cross section [8]. It has a moderate spin-relaxation time,
on the order of 100 s, which means that its spin can be
initialized after a relatively short time compared to other
noble gas atoms. Spin-relaxation times can be classified
into two categories, longitudinal-spin-relaxation time T1 and
transverse-spin-relaxation time T2. In this paper, T2 represents
the effective macroscopic transverse relaxation time including
the dephase effect due to the field inhomogeneity, referred to
as T ∗

2 in NMR literature [9]. The longitudinal-spin-relaxation
time T1 is related to the spin-exchange rate, determining the
initialization time. The transverse-spin-relaxation time T2 is
related to the duration of the macroscopic spin precession,
which determines the angular random walk of a gyroscope
which is proportional to 1/T2 [4].

The transverse relaxation time T2 is usually shortened by
magnetic-field gradients as well as interatomic collisions and
wall collisions. It can be written as the inverse of the trans-
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verse relaxation rate �tot, where �tot = �col + �wall + ��B.
�col is the relaxation rate due to collisions between atoms,
�wall is the relaxation rate due to collisions with walls, and
��B is the relaxation rate due to magnetic-field gradients
originating from coils and the optical pumping beam. Usually,
��B mainly contributes to the transverse-spin-relaxation rate;
the diffusive motion of noble gas atoms in magnetic-field
gradients causes spin phase decoherence and transitions be-
tween spin states [10]. Magnetic-field-gradient-induced spin
relaxation in highly symmetric cells, such as spherical cells
and cubic cells, previously has been studied [10–15]. In a
spherical cell of radius R, the transverse relaxation rate is
given by

��B,spherical ≈ 8γ 2R4

175D
|∇Bz|2, (1)

where γ is the gyromagnetic ratio of the noble gas atoms, D
is the diffusion coefficient, and ∂Bz/∂z is the magnetic-field
gradient of Bz along the longitudinal direction [10]. In a cubic
cell of side length L, the transverse relaxation rate is given
by [11]

��B,cubic ≈ γ 2L4

120D
|∇Bz|2. (2)

The diffusion coefficients of noble gas atoms have been mea-
sured using Eq. (1) in cm-sized atomic gas cells where the
effect of the stem is negligible [12,15].

In terms of miniaturization and low power consumption,
atomic gas cells in mm size have been increasingly used
in various devices and instruments [16]. Atomic gas cells
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for gyroscopes which are usually pinched off using a gas
torch, however, have their stems filled in with alkali-metal
atoms, noble gas atoms, and buffer gas. A recently developed
method of fabricating atomic gas cells for gyroscopes, which
combines glass blowing and micro-electromechanical systems
(MEMS) [17], also leaves a cylindrical reservoir for supplying
alkali-metal vapors. In small atomic gas cells, the effect of the
dimensions of the extra volume on ��B is not negligible, so
that Eq. (2) is insufficient to describe ��B. Additionally, in
order to determine the diffusion coefficient in a sub-cm sized
atomic gas cell by using the ��B measurement, it has to be
modified taking into account the dimension of the stem. We
have studied the effect of the dimensions of the stem on ��B.

In this paper, we investigate ��B as a function of magnetic
gradients ∂Bz/∂x, ∂Bz/∂y, ∂Bz/∂z, and ∂By/∂y in five differ-
ent atomic gas cells to determine the dependence of ��B on
cell dimension. The quadratic coefficients of ��B with respect
to magnetic-field gradients are extracted experimentally and
compared to the results of calculations based on a rectangular
parallelepiped model for the cells. A numerical analysis of
the spatial eigenmodes corresponding to a model which di-
rectly incorporates the stems is also performed. Based on this
numerical analysis and a scaling argument, we provide an esti-
mation for the quadratic coefficient of an atomic gas cell with
a stem. By considering the dimensions of the atomic gas cells,
the diffusion coefficients of Xe, on the order of sub-cm2/s, are
determined from the extracted quadratic coefficients.

II. THEORY

To obtain the transverse relaxation rate resulting from a
magnetic-field inhomogeneity, we follow the theory described
in Ref. [10]. The Hamiltonian of the noble gas atom interact-
ing with the magnetic field is

H = gKμB �K · [ �Bh + �Binh(�r)] = H0 + H1, (3)

where gK is the g-factor of the noble gas atom (i.e., γ =
e

2mp
gK ), μB is the Bohr magneton, and �K is the nuclear spin

operator. We assume that the homogeneous magnetic field is
along the z direction, i.e., �Bh = B0ẑ. �Binh(�r) is the inhomo-
geneous fluctuation of the magnetic field, with a mean value
of nearly zero. Under the assumption that |B0| � | �Binh|, the
inhomogeneous term can be treated as a perturbation. The
time evolution of the system including diffusion is described
by the density matrix equation:

∂ρ

∂t
= 1

ih̄
[H, ρ] + D∇2ρ, (4)

where D is the diffusion coefficient which is nearly constant
in the cell. D depends on the temperature of the gas and is
usually on the order of sub-cm2/s at atmospheric pressure and
room temperature. For calculation, the density matrix can be
represented by the ansatz

ρ =
∑

i

PiRi(�r)e−�t . (5)

Here, the possibly complex constant � represents the decay
rate and the spatial functions Ri(�r) satisfy the boundary condi-
tion ∂R

∂n = �n · ∇R = 0 which corresponds to nonrelaxing walls
where �n is the outer unit normal. Pi are the eigenpolarizations

of the unperturbed Hamiltonian H0, i.e., [H0, Pi] = h̄�iPi. For
a K = 1/2 system (e.g., 129Xe), these are given by

P00 = 1√
2

(∣∣∣∣1

2

〉〈
1

2

∣∣∣∣ +
∣∣∣∣−1

2

〉〈
−1

2

∣∣∣∣
)

, �00 = 0, (6a)

P10 = 1√
2

(∣∣∣∣1

2

〉〈
1

2

∣∣∣∣ −
∣∣∣∣−1

2

〉〈
−1

2

∣∣∣∣
)

, �10 = 0, (6b)

P11 =
∣∣∣∣1

2

〉〈
−1

2

∣∣∣∣, �11 = gKμBB0

h̄
, (6c)

P1−1 =
∣∣∣∣−1

2

〉〈
1

2

∣∣∣∣, �1−1 = −gKμBB0

h̄
, (6d)

where Pi are orthonormalized.
The eigenvalue problem ∇2φ(�r) + k2φ(�r) = 0 with the

boundary condition ∂φ

∂n = 0 has an orthonormal spatial basis
(φ = φα, k = k(α) ) where α denotes the mode number of the
spatial modes and each k(α) � 0 is nondecreasing in α.

In order to solve the density-matrix equation approxi-
mately, we apply a perturbation as � = ∑

n �(n)ηn and Ri =∑
n R(n)

i ηn where η is a perturbation parameter. Substituting
these series expansions into (4) and equating the like powers
of η, we get a sequence of partial differential equation (PDE)
for each power of η. With a parameter g having one of the
polarization index i values, and each α, it can be shown that
the following ( f (0)

i;αg, �
(0)
αg ) satisfies the zeroth-order PDE:

f (0)
i;αg = φαδig, �(0)

αg = D(k(α) )2 + i�g. (7)

Calculating the higher-order terms upon these unperturbed
initial values we conclude �

(1)
0g = 0 from the fact that �Binh has

mean zero, and the second-order term is given as follows:

�
(2)
0g =

∑
β, j

〈0| H1
gj |β〉〈β|H1

jg|0〉
h̄2

(
�

(0)
β j − �

(0)
0g

) , (8)

where H1
i j = tr(P†

i [H1, Pj]) and the summation is over indices

β, j such that �
(0)
β j 
= �

(0)
0g . β denotes the mode number of the

spatial modes, j denotes the index of eigenpolarization, and
the bra-kets denote the spatial integration.

The above discussion shows that calculating the spa-
tial modes in an atomic gas cell is required to predict the
transverse-spin-relaxation rate. Our cell can be subdivided
into a cubic part (the primary component) and a rectangular
parallelepiped part (stem), as shown in Fig. 1(a). When the
inner widths of the stems d are comparable to the inner lengths
of the cubic parts L, we can regard an atomic gas cell as a
single rectangular parallelepiped with side lengths L, L + h,
and L, where the inner height of the stems is denoted by h.

For a rectangular parallelepiped [0, Lx] × [0, Ly] ×
[0, Lz] ⊆ R3, we have the following Neumann spatial
eigenmodes which are separable:

φ�α (�r) =
∏

j=x,y,z

√
2

Lj
cos

(
n jπr j

L j

)
, (9a)

k(�α) =
√√√√ ∑

j=x,y,z

(
n jπ

Lj

)2

, (9b)
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FIG. 1. (a) Model of the atomic gas cells. The solid line depicts the edges of the inner volume. The dimensions of the cubic part in the
atomic gas cell are 5 × 5 × 5 mm (L = 5 mm). The stem is modeled as a rectangular parallelepiped; h is the height and d is the width of the
stem. The inset shows a picture of an atomic gas cell used in our experiment. (b) Quadratic coefficient, azy, as a function of the ratio of the stem
width, d/L, and the ratio of the stem height, h/L, at D = 1 cm2/s and L = 5 mm. (c) Quadratic coefficient, azz, as a function of the ratio of the
stem width, d/L, and the ratio of the stem height, h/L, at D = 1 cm2/s and L = 5 mm. (d) Ratio of quadratic coefficients, yr = (azy/azz )1/4, as
a function of the ratio of the stem width, d/L, and the ratio of the stem height, h/L. We note that the results of (b), (c), and (d) are numerically
calculated.

where n j � 0 and �r = (x, y, z). The normalization constant√
2/Lj must be modified to

√
1/Lj in case n j = 0. We note

that the lowest mode is the uniform mode which is given by
φ0,0,0(�r) = 1/

√
LxLyLz.

We now specialize to the case of a linear variation, i.e.,
�Binh(�r) = (∇ �Binh)�r + �b for some constants ∇ �Binh and �b. Since
the real part of �

(2)
0,11 gives the transverse relaxation rate, we

get the following equation after applying the aforementioned
formula for the spatial modes:

��B = γ 2

120D

∑
j=x,y,z

L4
j

∣∣∣∣∂Bz

∂r j

∣∣∣∣
2

+
∑

j=x,y,z

∑
n: odd

4γ 2L4
j D

π2n2
(
n4π4D2 + γ 2B2

0L4
j

)
×

[∣∣∣∣∂Bx

∂r j

∣∣∣∣
2

+
∣∣∣∣∂By

∂r j

∣∣∣∣
2]

. (10)

We emphasize that the magnetic-field gradients are as-
sumed to be constant throughout the cell. The first term in

Eq. (10) is much larger than the other term so that we can
approximate ��B as

��B ≈ γ 2

120D

∑
j=x,y,z

L4
j

∣∣∣∣∂Bz

∂r j

∣∣∣∣
2

=
∑

j

az j

∣∣∣∣∂Bz

∂r j

∣∣∣∣
2

. (11)

This shows that ��B is a quadratic function of the Bz-field
gradients and is more sensitive to the derivatives along axes
corresponding to longer dimensions. Here, we defined the
quadratic coefficients for ∂Bz/∂r j as az j . We also define a
quantity yr as follows:

yr =
(

azy

azz

)1/4

. (12)

Note that this definition coincides with the length ratio Ly/Lz

in the case of the rectangular parallelepiped cell. In particular,
yr = 1 for cubic cells.

This quantity is important since it is not affected by scaling
of the cells and changes in the diffusion coefficient. In order
to show the invariance of yr under the size scaling and the dif-
fusion coefficient change, we calculate Eq. (8) for the special
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case where the inhomogeneous fluctuation �Binh is linearized,
i.e., �Binh(�r) = (∇ �Binh)�r + �b where ∇ �Binh and �b are constants:

��B = g2
Kμ2

B

2h̄2 Re

[∑
β�1

(∇Bx · Iβ )2 + (∇By · Iβ )2

D(k(β ) )2 − i gK μBB0

h̄

+ 2
∑
β�1

(∇Bz · Iβ )2

D(k(β ) )2

]
, (13)

where we assume φβ are real-valued and Iβ = 〈0|�r|β〉 =∫
�rφ0(�r)φβ (�r)d3�r. Note that the constant offset vector �b does

not appear in the final result. The first sum typically has a
much larger denominator than the second term so that it can
be ignored:

��B �g2
Kμ2

B

Dh̄2

∑
β�1

(∇Bz · Iβ )2

(k(β ) )2
. (14)

Because our analysis treats magnetic-field-gradient-induced
interactions as perturbations, it describes the regime in which
the diffusion rate (inverse of the diffusion time τD) is much
larger than the perturbed Larmor frequency (inverse of the
perturbed Larmor period τL):

1

τD
≈ D

L2
D

� 1

τL
≈ γ |∇B|LD, (15)

where LD is the diffusion length, roughly LD ≈ L. Our ex-
periments are performed in this regime because the applied
magnetic-field gradients (|∇B|) are very small in the order of
nT/mm, and the size of the atomic gas cell (L) is also small in
the order of mm.

Now we assume that the atomic cell domain is scaled
with a factor of η > 0. The corresponding normalized spatial
eigenmodes are given by

φα′ (�r′) = φα (�r)/
√

η3, (16a)

k(α′ )2 = k(α)2
/η2, (16b)

where �r′ = η�r so that I ′
β = ηIβ . It leads to �′

�B = η4��B for
fixed diffusion coefficient D. Therefore, a′

z j = η4az j for j =
x, y, z so that yr is invariant under the size scaling. Moreover,
yr is independent of D because az j are inversely proportional
to D so that D is eliminated in azy/azz.

When the inner width of the stem is less than the dimen-
sion of the cube, i.e., d < L, yr deviates from Ly/Lz because
now the cell shape deviates from a simple rectangular par-
allelepiped so that the spatial eigenmodes are not separable.
In this case, a numerical approach is required to calculate yr

correctly. Numerically calculated yr values are given in the
Appendix. We numerically calculated 20 eigenvalues and the
corresponding eigenfunctions for various cell dimensions. By
substituting these eigenvalues and eigenfunctions into Eq. (8),
we can obtain the transverse relaxation rates.

In our numerical calculations, the dimension of the cubic
part was 5 × 5 × 5 mm, i.e., L = 5 mm. We calculated azz and
azy for varying values of d/L and h/L between 0 and 1. When
d ≈ L or zero, the numerically calculated results showed good
agreement with the ones obtained analytically using Eq (11).
For example, when d = 5 mm and h = 5 mm, the analytical

solution gives 4.6275 × 10−3 m2/(s μT2) and the numerical
calculation gives 4.6282 × 10−3 m2/(s μT2) at D = 1 cm2/s
for azy. Figures 1(b) and 1(c) show the numerically obtained
quadratic coefficients by considering the model of the cell
given in Fig. 1(a). Figure 1(d) shows the yr values. As the
width d of the stem increases, azy also increases; intuitively,
large d implies large effective “Ly” in Eq. (11).

Our numerical analyses show azz that deviates by up to
26.9% from the analytically obtained value γ 2L4

z /(120D) for
the rectangular parallelepiped model, due to the effect of a
stem on the spatial modes φα . From Eq. (14), we can deduce
azz ∝ ∑

β |〈0|z|β〉|2/(Dk(β ) )2. When d = L, the spatial func-
tions [see Eq. (9)] along the x and z directions in the cell are
exactly those for a cubic with inner lengths L. azz becomes,
therefore, the analytically obtained value γ 2L4

z /(120D).
When d < L, the spatial functions along the x and z direc-

tions are now coupled with that along the y direction, which
leads to a reduction in the contribution of ∂Bz/∂z and ∂Bz/∂x
to ��B. Interestingly, azz attains its minimum at d/L � 0.7, as
shown in Fig. 1(c), so that we could reduce azz to be smaller
than that of the cubic cell by adjusting the width of the stem.

In order to investigate the reduction of azz in the cell with a
stem, we compare the largest term of

∑
β |〈0|z|β〉|2/(Dk(β ) )2

in two cases: without a stem (d/L = 0) and with a stem
(d/L � 0.7). In the cell with a stem, the ∂Bz/∂z gradient
coupling between the diffusion mode β and zero, given by
|〈β|z|0〉|, is 1.4 times smaller than that in the cell without
a stem. The corresponding spatial frequency k(β ) in the cell
with a stem is only 1.03 times larger than that without a stem.
Therefore, the largest term of

∑
β |〈0|z|β〉|2/(Dk(β ) )2 in the

cell with a stem is about twice as small as the value in the cell
without a stem, where the main contribution is |〈β|z|0〉|2.

The coupling |〈β|z|0〉| can be understood as the diffusion
length LD of the atom along the z direction. According to
Eq. (15), as the diffusion length LD becomes shorter, the dif-
fusion rate D/L2

D becomes larger while the perturbed Larmor
frequency γ |�B|LD is getting smaller. As a result, motional
narrowing along the z axis is enhanced in the cell with a
stem. When the sum of higher spatial modes is considered,
azz with a stem is 1.37 times smaller than that without a stem,
corresponding to a deviation of 26.9%.

When d � L, the stem effect becomes small so that azz

is recovered to the analytically obtained value γ 2L4
z /(120D)

for the rectangular parallelepiped model. Note that ��B also
includes cross-terms which are proportional to ∂Bz

∂x
∂Bz

∂y , ∂Bz

∂x
∂Bz

∂z ,

and ∂Bz

∂y
∂Bz

∂z [see Eq. (14)]. These cross-terms are negligible
since they were more than 500 times smaller than the main
terms in our calculations: they even vanish for the case of
rectangular parallelepipeds, as can be seen in Eq. (10).

The quadratic coefficients depend on temperature and pres-
sure because the diffusion coefficient D is a function of
temperature and pressure. Practically, the diffusion coefficient
for a gas consisting of two kinds of molecules is determined
by the following empirical equation developed by Fuller [18]:

D = 10−3T 1.75(1/MA + 1/MB)1/2

p
[( ∑

vA
)1/3 + ( ∑

vB
)1/3]2 . (17)

Here, p is the total pressure (atm), MA and MB are molec-
ular masses,

∑
vi is the diffusion volume for component
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FIG. 2. Schematic diagram of the experimental setup. DBR, dis-
tributed Bragg reflector laser diode; HWP, half-wave plate; QWP,
quarter-wave plate; PD, photodiode; LC, liquid crystal; WP, Wollas-
ton prism. The inset shows the upper envelope of the FID signal and
the exponential fitting, y = A exp(−t/T2) + B.

i, and T is the temperature (K). Relevant values are∑
vXe = 37.9 cm3/mol,

∑
vN2 = 17.9 cm3/mol, MXe =

131.29 g/mol, and MN2 = 28.014 g/mol. For our atomic gas
cells, we may use the ideal gas law because N2 and Xe are
nonpolar. Therefore, if the pressure during gas cell fabrication
was p0 at temperature T0, the pressure p at temperature T
is roughly given by p0

T0
T . As a result, the above-mentioned

formula can be written as

D = CT0T 0.75

p0
, (18)

where C = 10−3(1/MA+1/MB )1/2

[(
∑

A vA )1/3+(
∑

B vB )1/3]2 .

III. EXPERIMENTAL SETUP

The experimental setup is shown in Fig. 2. Details of the
setup are given in Ref. [19], except for the description of
the atomic gas cell. A four-layered magnetic shield (MS-2,
Twinleaf) is adopted to attenuate external magnetic fields such
as the Earth’s magnetic field. A z-bias coil and gradient coils
are built in on the inner surface of the magnetic shield. The
z-bias coil generates a nearly homogeneous magnetic field of
92.3 nT/mA and the gradient coils generate 0.28
nT/(mm mA) for ∂Bz/∂z, 0.253 nT/(mm mA) for ∂Bz/∂x,
0.256 nT/(mm mA) for ∂Bz/∂y, and 0.337 nT/(mm mA) for
∂By/∂y.

The atomic gas cell is mounted on a structure made of
polyether ether ketone and alumina (Al2O3). To heat up the
atomic gas cell for effective spin-exchange optical pumping,
an AC polyimide heater [20], which is designed to self-cancel
the emitted magnetic field, is attached to the atomic gas cell.
Moreover, a platinum resistor (PT1000) is also attached to the
cell to measure the temperature of the cell.

A circularly polarized pump beam propagates along the z
axis to polarize the Rb electron spins parallel to the z-bias
field, and a linearly polarized probe beam propagates along
the x axis, serving to detect the optical Faraday rotation. The

power of the pump beam was about 200 mW, and that of
the probe beam was about 13 mW. The laser sources are
795-nm DBR lasers (PH795-DBR-160, Photodigm), where
the frequencies were tuned to the D1 line of Rb.

To investigate the effect of stems, we prepared five different
atomic gas cells of different dimensions. The inset of Fig. 1(a)
is a photograph of an atomic gas cell used in our experiments.
The inner length of the cube was 5 mm for atomic gas cells 1,
2, 3, and 4, and 10 mm for atomic gas cell 5. The thickness
of the walls was 1.25 mm. Cells 1, 2, and 5 had stems with
inner diameter d = 4 mm. The inner diameters of the stems
were d = 2 mm in cell 3 and 4. Large d is advantageous for
cell fabrication because the stem easily transfers the gas atoms
into the cell. Although the stems are cylindrical, these are
approximated as rectangular parallelepipeds for our calcula-
tions. Table II summarizes the dimensions of the five gas cells
and the partial pressures of the gases in each cell. We note that
cell 1 and 2 were attached to the same glass manifold, which
was connected to a metallic atomic gas chamber during cell
fabrication. We pinched off cell 1 and then cell 2 sequentially.
Other cells were singly connected to the gas chamber. These
cells were filled with natural Rb, 129Xe, 131Xe, N2, and H2 of
varying gas pressures via our cell fabricating system. After the
gas-filling process, cells were pinched off manually with the
help of a gas torch.

We performed the free induction decay (FID) measurement
for five different atomic gas cells in the presence of various
magnetic-field gradients. The inset of Fig. 2 shows the upper
envelope of a normalized FID signal and the corresponding
curve-fitted plot. The transverse relaxation time T2 is obtained
by curve fitting. In the fast diffusion limit, as expressed in
Eq. (15), the fitting curve is given by the equation y(t ) =
Ae−t/T2 + B [11]. The transverse-spin-relaxation rate is given
by �2 = 1/T2.

IV. RESULTS AND DISCUSSIONS

A. Quadratic coefficients of the transverse relaxation rate
according to the magnetic-field gradients

Figure 3 shows the measured transverse relaxation rates as
a function of applied B-field gradients ∂Bz/∂x, ∂Bz/∂y, and
∂Bz/∂z at the temperature of 368 K. The transverse relaxation
rate can be written as �2 ≈ ��B + �col + �wall where the B-
field-gradient-induced transverse relaxation rate is given by
��B = ∑

j=x,y,z az j |dBres, j + ∂Bz/∂r j |2, where dBres, j is the
residual B-field gradient. The experimental data in Fig. 3 are
well fitted by the quadratic function y = a(x + xc)2 + b. As
shown in Fig. 3, the curvature of the transverse relaxation
rate graph as a function of ∂Bz/∂y is much larger than that
corresponding to ∂Bz/∂x and ∂Bz/∂z due to length extension
provided by the stem. On the other hand, the two graphs corre-
sponding to variables ∂Bz/∂x and ∂Bz/∂z are well overlapped
because Lx = Lz for the cell.

Table I shows the quadratic coefficients obtained from
the curve fitting for five atomic gas cells at 365 K. To see
the effect of the stems, we also showed the experimentally
obtained y(E )

r which is defined as in Eq. (12). y(E )
r shows

better agreement with the length ratios Ly/Lz for cases where
d ≈ L (d/L = 0.8), as anticipated in the remark following
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TABLE I. The measured quadratic coefficients for �2 of 129Xe in atomic gas cells at 365 K. Cell 1 and 2 were torn off by a blowtorch from
the same glass branch, hence the asterisks. The numbers in round brackets represent the standard deviations. The (inner) length ratio Ly/Lz

equals (L + h)/L for the cell depicted in Fig. 1(a). y(E )
r (resp. y(N )

r ) denotes the experimentally (resp. numerically) obtained values of yr .

Cell
azz

[ s−1/(μT/m)2 ]
azy

[ s−1/(μT/m)2 ]
ayy

[ s−1/(μT/m)2 ]
d
L

Ly

Lz
y(E )

r y(N )
r

1∗ 2.89 × 10−4

(3.43 × 10−6)
5.72 × 10−3

(2.26 × 10−5)
3.83 × 10−5

(2.25 × 10−6)
0.8 2 2.12 2.14

2∗ 4.88 × 10−4

(7.50 × 10−6)
2.76 × 10−3

(4.46 × 10−5)
8.13 × 10−5

(2.56 × 10−6)
0.8 1.5 1.54 1.50

3
4.18 × 10−4

(4.06 × 10−6)
5.64 × 10−3

(1.81 × 10−4)
0.4 2 1.86 1.81

4
5.40 × 10−4

(3.24 × 10−6)
1.97 × 10−3

(1.15 × 10−4)
0.4 1.6 1.38 1.33

5
7.91 × 10−3

(8.63 × 10−5)
2.35 × 10−2

(1.41 × 10−3)
0.4 1.58 1.31 1.31

Eq. (12). As shown in Table I, y(E )
r deviates from Ly/Lz when

d/L = 0.4 because the spatial modes are not separable. In this
case, y(E )

r can be described by the numerical analysis based on
the spatial modes in the cubic cell having the stem, instead of
using the analytic formula Ly/Lz. The numerically calculated
y(N )

r shows good agreement with y(E )
r .

Comparing cell 4 and cell 5 gives some insight into the
“scalability” of our results. These cells had similar d/L and
h/L values: d/L = 0.4 and h/L ≈ 0.6. On the other hand, the
cube width L for cell 5 was 10 mm, which is two times larger
than that of cell 4 so that all the length scales for cell 5 were
two times larger than those of cell 4, i.e., η = 2. Therefore, the
quadratic coefficients for cell 5 were expected to be η4 = 24 =
16 times larger than those for cell 4. The measured value of
a(cell 5)

zz /a(cell 4)
zz was 14.6. This gap is reduced when the effect

of the diffusion coefficients is considered. We note that the
diffusion coefficient in cell 5 was slightly larger than that in
cell 4 due to the difference in p0. (See Table II) If we estimate
the diffusion coefficients by the Fuller formula, the theoretic
ratio, which is given by η4[D(cell4)/D(cell5)], is 14.04.

In our analysis, we neglected terms originating from gra-
dients of the transverse magnetic fields, i.e., ∂Bx/∂r j and
∂By/∂r j . Assuming a typical value of D = 0.6 cm2/s, L =
Lx = Ly = Lz = 5 mm, and B0 = 10 μT, we compare the two
terms given in Eq. (10). The quadratic coefficient az j of the
Bz-related terms and the quadratic coefficient ax j = ay j of the
Bx,y-related terms are as follows ( j = x, y, z):

az j = γ 2L4

120D
= 4.80 cm2/μT2, (19)

ax j =
∑
n: odd

4γ 2L4D

π2n2
(
n4π4D2 + γ 2B2

0L4
)

= 0.002 75 cm2/μT2.

The latter is 1745 times smaller than the former, which vali-
dates our approximation.

The measured ayy in our experiments are, however, only
about 5.25–6 times smaller than azx (or azz). This discrepancy
is explained by the fact that ∇ · �B must vanish, so that a
gradient ∂By/∂y necessarily induces the gradients, ∂Bx/∂x

TABLE II. Characteristics of the atomic gas cells at temperature 365 K. DF is calculated according to Eq. (17), whereas Da is calculated
using the relation D = γ 2L4

z /(120azz ). Dn is the diffusion coefficient estimated from the numerical analysis of the cells, including the stem
effect. Partial pressures of relevant gas species are given in the fifth column. For example, 8/48/150 indicates that 8 Torr of 129Xe, 48 Torr of
131Xe, and 150 Torr of N2-H2 mixture are injected into the cell at fabrication time. Cell 1 and 2 were torn off from the same glass branch by a
fire torch. The numbers in round brackets represent the standard deviations.

Cell
L

(mm)
d

(mm)
h

(mm)
Pressures (p0)

(Torr)
DF

(cm2/s)
Da

(cm2/s)
Dn

(cm2/s)

1∗ 5 4 5
8/48/150
(4%H2)

0.526
0.986

(0.012)
0.752

(0.005)

2∗ 5 4 2.5
8/48/150
(4%H2)

0.526
0.584

(0.009)
0.498

(0.008)

3 5 2 5
6/36/150
(4%H2)

0.565
0.682

(0.007)
0.589

(0.006)

4 5 2 3
8/48/200
(4%H2)

0.423
0.528

(0.003)
0.482

(0.003)

5 10 4 5.75
6/36/183
(14%H2)

0.482
0.577

(0.006)
0.529

(0.006)

042819-6



MAGNETIC-FIELD-INHOMOGENEITY-INDUCED … PHYSICAL REVIEW A 104, 042819 (2021)

FIG. 3. Measured transverse relaxation rates (�2 = 1/T2) as a
function of magnetic-field gradients, ∂Bz/∂z (blue squares), ∂Bz/∂x
(black triangles), and ∂Bz/∂y (red circles) in cell 2. The dashed
lines depict the quadratic curve fitting for the experimental data.
The graphs were horizontally shifted so that the zero-point of the
horizontal axis is on the axes of the quadratic curves.

and in particular ∂Bz/∂z. We measured the magnetic-field
gradients originating from our ∂By/∂y coil; −0.13
nT/(mm mA) for ∂Bz/∂z and −0.21 nT/(mm mA) for
∂Bx/∂x were induced when ∂By/∂y was applied with an
efficiency of 0.34 nT/(mm mA) in the magnetic shield. As a
result, ∂Bz/∂z � −0.38 ∂By/∂y in our setup so that effectively
we had ayy ≈ 0.382 azz = 0.1444 azz in the experiments. We
got ayy ≈ 0.19 azz in cell 1 and ayy ≈ 0.17 in cell 2, which
seems reasonable. Similarly, ∂Bz/∂x (or ∂Bz/∂y) also induces
∂Bx/∂z (or ∂By/∂z) since ∇ × �B = 0 in the cells. Again,
contributions from this effect are typically small so that we
can safely neglect them.

B. Diffusion coefficients of 129Xe

We can extract the diffusion coefficient of 129Xe in our
cell from the measured azz by using Eq. (11), i.e., Da =
γ 2L4/(120azz ). In a large atomic gas cell where the volume of
the stem is relatively very small, the diffusion coefficient can
be determined by using Eq. (11) [12,15]. However, Da in a
small cell can deviate from the real value because of the effect
of the stem. In order to more precisely estimate the diffusion
coefficient, we calculate Eq. (8) by substituting the diffusion
coefficient of 1 cm2/s to obtain azz where the effect of the
stem is incorporated. We can obtain Dn after dividing the
measured azz by the calculated azz. We note that the diffusion
coefficient estimated based on numerical eigenmode analysis,
Dn, is smaller than Da due to the effect of the stem. For
comparison, we also estimated the diffusion coefficients using
Fuller’s equation Eq. (17), results of which are denoted as
DF . We neglected the effect of H2 when applying Fuller’s
equation.

Table II summarizes our results. The pressures in Table II,
p0, were measured at room temperature T0 = 293 K. For cell
1 and cell 2, the measured diffusion coefficients are not in

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Pressure (Torr)

190 200 210 220 230 240 250 260

D
if

fu
si

o
n
 c

o
ef

fi
ci

en
t 

(c
m

2
/s

) D
n

D
a

D
F

(a)

(b)

0.40

0.45

0.50

0.55

0.60

0.65

0.70
D

n

D
a

D
F

D
if

fu
si

o
n
 c

o
ef

fi
ci

en
t 

(c
m

2
/s

)

355 360 365 370 375 380 385

Temperature (K)

FIG. 4. (a) Diffusion coefficient as a function of total gas pres-
sure. The red-filled squares denote diffusion coefficients estimated
from the numerical analysis, Dn, and the blue-filled circles denote
diffusion coefficients using the parallelepiped approximation, Da.
The black dashed line is the curve from Fuller’s equation, D =
108.4/p, where D is in cm2/s, and p is in Torr. The dashed rectangle
indicates the excluded data in the fitting. The red shaded area (resp.
blue shaded area) represents D = (113 ± 14)/p [resp. D = (128 ±
9)/p], which is the result of the D = a/p fitting. (b) Diffusion coef-
ficient as a function of cell temperatures in cell 2. The black dashed
line is the curve from Fuller’s equation, D = 0.0063T 0.75 where D
is in cm2/s and T is in K. The red shaded area (resp. blue shaded
area) represents D = (0.0060 ± 0.0002)T 0.75 [resp. D = (0.0070 ±
0.0002)T 0.75], which is the result of the D = bT 0.75 fitting.

accord with the calculation even though cell 1 and cell 2 were
attached to the main gas chamber together. The measured
diffusion coefficient of cell 1 was larger than the estimated
value, while that of cell 2 was smaller than the estimated
value. The pinch-off process using a gas torch locally heats
the atomic gas cell, momentarily expanding the gas so that the
precise determination of p0 is disturbed. Moreover, an addi-
tional ambiguity may occur since the pressure gauge monitors
the pressure in the main chamber, not the pressure in the
atomic gas cell.
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TABLE III. y(N )
r as a function of h/L and d/L. 0.05 � d/L � 0.5.

�������h/L
d/L

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1 1.00037 1.00153 1.00356 1.00646 1.01021 1.01478 1.02015 1.02614 1.03267 1.03961
0.15 1.00059 1.00244 1.00565 1.01025 1.0162 1.02342 1.0319 1.04137 1.05166 1.0625
0.2 1.00086 1.00354 1.0082 1.01483 1.02337 1.03371 1.04572 1.05904 1.07343 1.08846
0.25 1.00119 1.00491 1.01132 1.02043 1.03208 1.04606 1.06218 1.0797 1.09857 1.11802
0.3 1.0016 1.00658 1.0152 1.02731 1.04267 1.06093 1.08161 1.10387 1.12747 1.15143
0.35 1.00212 1.00871 1.02001 1.03578 1.05554 1.07869 1.10449 1.13201 1.16048 1.1893
0.4 1.00276 1.01135 1.02596 1.04611 1.07098 1.09969 1.13111 1.16416 1.19773 1.23108
0.45 1.00356 1.01463 1.0333 1.05862 1.08937 1.12423 1.16162 1.2003 1.23887 1.2766
0.5 1.00458 1.01872 1.04218 1.07357 1.11099 1.15244 1.19628 1.24047 1.28395 1.32629
0.55 1.00584 1.02368 1.05291 1.09118 1.13589 1.1844 1.23469 1.28456 1.333 1.3794
0.6 1.00738 1.02972 1.06561 1.1117 1.16427 1.22003 1.27686 1.33213 1.38554 1.43592
0.65 1.00928 1.03698 1.08059 1.13513 1.19598 1.25916 1.32258 1.38328 1.44127 1.49487
0.7 1.01156 1.04558 1.09792 1.16166 1.23119 1.30173 1.37166 1.43765 1.4999 1.55681
0.75 1.01431 1.05571 1.11763 1.19128 1.26948 1.3477 1.42359 1.49451 1.56074 1.62073
0.8 1.01758 1.06742 1.14002 1.22383 1.31093 1.3964 1.47834 1.55404 1.62398 1.68638
0.85 1.02137 1.08087 1.16492 1.2592 1.35515 1.44783 1.53542 1.6158 1.6889 1.75401
0.9 1.0259 1.09615 1.19236 1.29742 1.40205 1.50171 1.5947 1.67935 1.75572 1.82315
0.95 1.03115 1.11334 1.22224 1.33804 1.45134 1.55756 1.65598 1.74492 1.82414 1.89358
1 1.03732 1.13249 1.25469 1.38108 1.50293 1.61589 1.71888 1.81166 1.89333 1.96513

To see if Dn is more accurate than Da, we use Fuller’s
equation as a benchmark. We rewrite Fuller’s equation as
Eq. (18), where C is an absolute constant and T0 = 293 K.
In particular, D = D(T, p0) ∝ 1/p0 for fixed T . In Fig. 4(a),
we analyze the Dn-versus-p0 and the Da-versus-p0 results
tabulated in Table II by the fitting curve D = a/p0. This gives
us a = 113 ± 14 for the Dn values and a = 128 ± 9 for the Da

values. On the other hand, from Fuller’s formula we obtained
a = 108.4, i.e., D = 108.4/p0 at T = 365 K. We see that Dn

is more accurate than Da. This suggests that our numerical
analysis incorporating the effect of the stem leads to better
results. Here, we excluded the diffusion coefficients for cell 1

from the curve fitting process since these data points seem to
be outliers.

In a similar vein, we also estimated the diffusion coefficient
for cell 2 as a function of temperature. Figure 4(b) indicates
that the diffusion coefficient increases with temperature, as
one can easily expect. In view of Eq. (18), we expect that
the diffusion coefficient is roughly proportional to T 0.75 for
a fixed atomic gas cell so that the result was curve-fitted with
D = bT 0.75. We obtained b = 0.0060 ± 0.0002 by fitting the
Dn values, whereas the Da values gave us b = 0.0070 ±
0.0002. On the other hand, we got b = 0.0063 from the Fuller
equation Eq. (17). Again we see that DF is closer to Dn than

TABLE IV. y(N )
r as a function of h/L and d/L. 0.55 � d/L � 0.95.

�������h/L
d/L

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

0.1 1.04677 1.05401 1.06118 1.0683 1.075 1.08119 1.08683 1.09189 1.09622
0.15 1.07364 1.08484 1.09591 1.10657 1.11635 1.12532 1.13301 1.1399 1.14549
0.2 1.10385 1.11905 1.13381 1.14784 1.16066 1.17216 1.18143 1.18965 1.1955
0.25 1.13754 1.15686 1.17523 1.19242 1.208 1.2209 1.23173 1.24028 1.24655
0.3 1.17537 1.19851 1.22021 1.24025 1.25805 1.27236 1.28423 1.29266 1.29796
0.35 1.21743 1.24401 1.26885 1.2915 1.31091 1.3264 1.33805 1.34586 1.34985
0.4 1.26309 1.29326 1.32089 1.34556 1.36612 1.38204 1.39334 1.40002 1.40221
0.45 1.31267 1.34615 1.37608 1.40232 1.42359 1.43954 1.44992 1.45501 1.45497
0.5 1.36599 1.40202 1.43407 1.46152 1.48303 1.4985 1.5076 1.51071 1.50806
0.55 1.42236 1.46104 1.49459 1.52274 1.54423 1.55884 1.56626 1.567 1.56142
0.6 1.48151 1.52234 1.55721 1.58587 1.60697 1.62016 1.62573 1.62382 1.61501
0.65 1.54323 1.58584 1.62185 1.65057 1.67097 1.68263 1.6859 1.68104 1.6688
0.7 1.60753 1.65157 1.68821 1.71667 1.73599 1.74603 1.74665 1.7386 1.72275
0.75 1.67354 1.71878 1.75583 1.78393 1.80205 1.81001 1.80781 1.79644 1.7768
0.8 1.7413 1.78756 1.82477 1.85226 1.8689 1.87458 1.8694 1.8545 1.83093
0.85 1.81052 1.8575 1.8949 1.92142 1.93641 1.93959 1.93132 1.91275 1.88516
0.9 1.88109 1.92869 1.9658 1.99128 2.00448 2.00488 1.99349 1.97112 1.93941
0.95 1.95261 2.00088 2.03755 2.06181 2.073 2.0708 2.05589 2.02963 1.99373
1 2.02533 2.07376 2.10999 2.13289 2.14191 2.13685 2.11842 2.08817 2.04806
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TABLE V. azz as a function of h/L and d/L. azz is in 10−3 s−1/(μT/m)2 units. 0.05 � d/L � 0.5.

�����h/L
d/L

0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

0.1 0.289111 0.288799 0.288208 0.287331 0.286186 0.284776 0.283147 0.281462 0.279791 0.278149
0.15 0.289081 0.288663 0.287884 0.286731 0.285199 0.283319 0.281114 0.278766 0.276413 0.274087
0.2 0.289036 0.288516 0.287559 0.286159 0.284286 0.281995 0.279269 0.27638 0.273461 0.270548
0.25 0.288996 0.288367 0.287233 0.285585 0.2834 0.280723 0.277525 0.274221 0.270755 0.267305
0.3 0.288969 0.288236 0.286914 0.285027 0.282532 0.279481 0.2759 0.272138 0.268203 0.264266
0.35 0.288926 0.288079 0.286589 0.284455 0.281665 0.27826 0.274315 0.269998 0.265628 0.261154
0.4 0.288892 0.287931 0.286264 0.2839 0.280799 0.277047 0.272673 0.267933 0.26317 0.258363
0.45 0.288854 0.287787 0.285947 0.28334 0.279955 0.275853 0.271074 0.265984 0.261003 0.255802
0.5 0.28882 0.287642 0.28563 0.282776 0.279099 0.274653 0.269351 0.264091 0.258667 0.253079
0.55 0.288783 0.287505 0.285303 0.282219 0.278268 0.273485 0.267824 0.262262 0.256382 0.250425
0.6 0.288749 0.287363 0.284999 0.281673 0.277424 0.272306 0.266347 0.260483 0.25411 0.247745
0.65 0.288715 0.287215 0.284685 0.281115 0.276587 0.271137 0.264849 0.258626 0.251867 0.245353
0.7 0.288681 0.287076 0.284373 0.280575 0.27577 0.269987 0.26337 0.256774 0.249634 0.242802
0.75 0.288645 0.286938 0.284049 0.280029 0.274925 0.268853 0.261917 0.254912 0.247592 0.240433
0.8 0.288607 0.286789 0.283742 0.27949 0.274116 0.267719 0.260499 0.25312 0.24547 0.238086
0.85 0.288575 0.286647 0.283427 0.278942 0.273293 0.266603 0.259071 0.251321 0.24349 0.235815
0.9 0.288537 0.286505 0.283113 0.278406 0.272491 0.265488 0.25768 0.249632 0.241539 0.233601
0.95 0.288497 0.286362 0.282801 0.277869 0.271684 0.26438 0.256313 0.247826 0.23946 0.231427
1.0 0.288345 0.286223 0.282368 0.27723 0.270704 0.263104 0.254967 0.246149 0.237764 0.229286

Da, which suggests that the stem effects must be taken into
account.

In order to compare Dn with the diffusion coefficients
obtained from the previous studies, we compensated the Dn

values according to the pressure and temperature conditions
given in Refs. [12,15]. By curve-fitting Dn in Fig. 4(a), we
obtained C = 0.0046 ± 0.0006 in Eq.(18) where T0 = 293 K.
Now, by substituting C = 0.0046 into Eq. (18), we obtain
D = 0.11 cm2/s at the standard temperature and pressure
(STP) condition (760 Torr, 273 K). After the correction in-

cluding the diffusion coefficient of Xe in Xe gas [15], D =
0.13 cm2/s is deduced. It shows a good agreement with the
value in Ref. [12], 0.12 cm2/s. At 760 Torr and 353 K,
Ref. [15] reported D = 0.21 cm2/s. At the same condition,
D = 0.22 cm2/s is obtained from Eq. (18). We note that a
temperature gradient within the mounted cell exists because
our cell heater is in partial contact with the surface of the
atomic gas cell. This nonuniformity of cell temperature, which
induces convection, may have affected the diffusion coeffi-
cient measurements.

TABLE VI. azz as a function of h/L and d/L. azz is in 10−3 s−1/(μT/m)2 units. 0.55 � d/L � 0.95.

�������h/L
d/L

0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95

0.1 0.276671 0.275515 0.274805 0.274564 0.274947 0.276063 0.277969 0.280701 0.284471
0.15 0.271979 0.270235 0.26903 0.268622 0.26915 0.270596 0.273405 0.277158 0.282436
0.2 0.267751 0.265548 0.264021 0.263466 0.263913 0.265516 0.269066 0.273654 0.280579
0.25 0.264128 0.261374 0.259531 0.258788 0.259093 0.261398 0.265185 0.270874 0.27858
0.3 0.260611 0.257587 0.255433 0.254509 0.254781 0.257293 0.261327 0.267881 0.276953
0.35 0.257138 0.25393 0.251491 0.250333 0.25071 0.253235 0.258017 0.265342 0.275504
0.4 0.254058 0.250442 0.247785 0.246468 0.246937 0.249695 0.254935 0.262979 0.274155
0.45 0.251003 0.24691 0.244157 0.242791 0.243388 0.246364 0.252043 0.260763 0.272895
0.5 0.247903 0.243734 0.240708 0.23927 0.240015 0.243236 0.249323 0.258692 0.271719
0.55 0.24503 0.240457 0.237382 0.23594 0.236779 0.240246 0.246761 0.256744 0.27062
0.6 0.242144 0.237471 0.234236 0.232755 0.23369 0.237394 0.244324 0.254904 0.269581
0.65 0.239469 0.234585 0.231096 0.229703 0.230742 0.234688 0.24201 0.253162 0.268603
0.7 0.23666 0.231605 0.228126 0.226767 0.227914 0.232112 0.239811 0.25151 0.267676
0.75 0.234062 0.228851 0.225324 0.223938 0.225211 0.229647 0.237719 0.249942 0.266804
0.8 0.231533 0.226169 0.222585 0.221211 0.222612 0.227286 0.235722 0.248452 0.265977
0.85 0.229069 0.223552 0.219882 0.218579 0.220113 0.22502 0.233819 0.247033 0.265185
0.9 0.226662 0.221029 0.217341 0.216034 0.217705 0.222834 0.232001 0.245685 0.264446
0.95 0.224286 0.218573 0.214849 0.213605 0.215391 0.220765 0.230253 0.244399 0.263734
1.0 0.221995 0.216189 0.212427 0.211227 0.213152 0.218765 0.228585 0.24317 0.263057
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In order to precisely measure the frequency shift origi-
nating from the spin-spin interaction, the rotation, and the
magnetic field, we need to maximize T2. For this, we may
adjust ∂Bz/∂y and the temperature of the atomic gas cell. This
is because ��B is particularly sensitive to the partial derivative
along the y axis (stem axis), as described in our theoretical
analysis and experimental results (Fig. 3). Since there always
exists a residual B-field gradient over the cell due to nonideal
experimental conditions, we observe an increase in T2 when
the external ∂Bz/∂y is adequately applied to cancel this.

We also expect T2 to increase with higher atomic gas cell
temperatures since the diffusion coefficient increases with
temperature. However, since the density of Rb gas increases
with temperature, a larger Rb polarization-induced magnetic-
field gradient due to optical pumping is generated [21–23].
Therefore, the effect due to diffusion competes with the effect
of the Rb polarization-induced magnetic-field gradient, so that
optimization of temperature is required to maximize T2.

V. CONCLUSION

We investigated the magnetic-field-gradient-induced
transverse-spin relaxations of 129Xe in sub-cm sized cubiclike
atomic gas cells having stems. They were modeled as
cubic cells on which rectangular parallelepiped stems are
attached, where numerical eigenmode analyses are utilized to
analyze the density-matrix equation with diffusion term. We
compared the experimentally obtained quadratic coefficients

of the transverse-spin-relaxation rate from five different cells
with the numerically calculated results.

We determined the ratio of quadratic coefficients yr [see
Eq. (12)], which is invariant under length scaling, and also
determined the quadratic coefficients for ��B at conditions
L0 = 5 mm and D0 = 1 cm2/s (see the Appendix). One can
estimate the quadratic coefficients in a cubic atomic gas cell
with a rectangular parallelepiped stem by scaling our results
(L/L0)4(D/D0) times. In addition, we determined the diffu-
sion coefficient of 129Xe, on the order of sub-cm2/s, using the
experimentally obtained quadratic coefficients. The diffusion
coefficient of 129Xe at the STP condition was estimated to be
D = 0.13 cm2/s.
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APPENDIX

We provide y(N )
r and azz for conditions D0 = 1 cm2/s and

L0 = 5 mm in Tables III–VI, which are calculated from our
numerical eigenmode analyses. The quadratic coefficients of
��B in an atomic gas cell with a stem can be estimated by
scaling the provided results (L/L0)4(D/D0) times, where all
the (inner) length scales are scaled by the factor of L/L0

compared to the L0 = 5 mm case.
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