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Motivated by recent direct measurement of the forbidden 2 3S1 → 3 3S1 transition in helium [Thomas et al.,
Phys. Rev. Lett. 125, 013002 (2020)], where the ac Stark shift is one of the main systematic uncertainties, we
propose a dichroic two-photon transition measurement for 2 3S1 → 3 3S1, which could effectively suppress the
ac Stark shift by utilizing magic wavelengths: one magic wavelength is used to realize state-insensitive optical
trapping; the other magic wavelength is used as one of the two lasers driving the two-photon transition. Carrying
out calculations based on the no-pair Dirac-Coulomb-Breit Hamiltonian with mass shift operator included, we
report the magic wavelength of 1265.615 9(4) nm for 4He [or 1265.683 9(2) nm for 3He] can be used to design
an optical dipole trap; the magic wavelength of 934.234 5(2) nm for 4He [or 934.255 4(4) nm for 3He] can be as
one excitation laser in the two-photon process and the ac Stark shift can be reduced to less than 100 kHz, as long
as the intensity of the other excitation laser does not exceed 1 × 104 W/cm2. Alternatively, by selecting detuning
frequencies relative to the 2 3P state in the region of 82–103 THz, as well as adjusting the intensity ratios of the
two lasers, the ac Stark shift in the 2 3S1 → 3 3S1 two-photon transition can be canceled.

DOI: 10.1103/PhysRevA.104.042817

I. INTRODUCTION

High-precision absolute frequency measurements in he-
lium provide an ideal platform for testing QED theory and
determining fundamental constants, such as the fine-structure
constant and nuclear charge radius [1–8], which benefits from
the abundant laser accessible transition spectra of helium it-
self. Table I summarizes four transitions from the long-lived
metastable 2 3S1 state to other excited states in 4He. It is seen
that the most precise frequency measurement of helium has
reached ppt (10−12) level [8] for the 2 3S1 → 2 1S0 transition.
Compared with the other three transitions, the uncertainty
of 5 MHz [9] for the transition frequency of an ultraweak
2 3S1 → 3 3S1 transition in 4He, which has been measured
by single-photon transition, could be further reduced. One of
the main systematic uncertainties is due to the ac Stark shift
caused by the probe beam with a laser intensity at the focus
of 3.86 × 103 W/cm2, that is 6.9 MHz (exceeds the natural
linewidth of 4.43 MHz) [10]. In order to improve the mea-
sured precision for the 2 3S1 → 3 3S1 transition, suppressing
the ac Stark shift effectively becomes a major task in the future
experiment.

Reducing the ac Stark shift in a single-photon process for
the 2 3S1 → 3 3S1 transition might be challenging. The probe
laser wavelength 427.7 nm [9] has exceeded the wavelength
663.4 nm of the 3 3S1 state ionization energy, which will cause
the ionization and decrease the population distribution of the
3 3S1 state. Correspondingly, the detection efficiency of this
transition would be affected. We can reduce the frequencies of
probe beams through a two-photon process to avoid the ion-
ization, and the ac Stark shift in two-photon transitions can be

suppressed by utilizing two lasers with different wavelengths
λ1 and λ2, which has been described and realized in rubidium
[12–15], antiproton helium [16,17], and molecular hydrogen
ion [18,19]. In the present work of helium, we further propose
one of the two lasers (λ2 laser) is set to be a magic wavelength,
at which the 2 3S1 and 3 3S1 states have the same dynamic
polarizability; then we can minimize the total ac Stark shift
in the 2 3S1 → 3 3S1 two-photon transition only by carefully
controlling the intensity of the λ1 laser.

Furthermore, the single-photon process for the 2 3S1 →
3 3S1 transition, which is excited via the magnetic dipole (M1)
interaction, is an ultraweak transition since the Einstein A
coefficient is at the level of 10−9 to 10−8 s−1 [9,20,21]. The
ultraweak transitions can be detected in an optical dipole trap
(ODT); moreover, systematic uncertainties can be simultane-
ously reduced and characterized to the kHz level [11,22]. For
example, the most accurate measurement of the 4He double
forbidden 2 3S1 → 2 1S0 transition so far benefits from the use
of a magic wavelength ODT [8,23]. Based on this, we would
also expect to probe the 2 3S1 → 3 3S1 two-photon transition
in an ODT, preferably operated at a magic wavelength. On the
one hand, the lowest-order ac Stark shift of the trapping laser
can be canceled; on the other hand, it is helpful to reduce the
Doppler shift in the two-photon process.

In this work, for the 2 3S1 → 3 3S1 transition spectral mea-
surement, we propose to use a magic wavelength ODT to
trap helium atoms, and use two different-wavelength lasers
to realize the two-photon excitation with one of them set
to be a magic wavelength. To validate the feasibility of the
present scheme, the required laser power for trapping helium
atoms and the scattering rate limiting the transition coherence

2469-9926/2021/104(4)/042817(8) 042817-1 ©2021 American Physical Society

https://orcid.org/0000-0002-9293-2037
https://orcid.org/0000-0002-8841-0463
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.104.042817&domain=pdf&date_stamp=2021-10-25
https://doi.org/10.1103/PhysRevLett.125.013002
https://doi.org/10.1103/PhysRevA.104.042817


ZHANG, TANG, AND SHI PHYSICAL REVIEW A 104, 042817 (2021)

TABLE I. Lifetime of the upper state τu, the theoretical natural linewidth �, the transition type, the transition rate A, and the current
experimental measurement precision for four transitions from the 2 3S1 state of 4He.

Transitions τu [10] � Type A (s−1) Uncertainty

2 3S1 → 2 3P 97.9 ns 1.63 MHz E1 107 1.4 kHz [7]
2 3S1 → 2 1S0 20 ms 7.96 Hz M1 6.1 × 10−8 0.2 kHz [8]
2 3S1 → 2 1P1 0.56 ns 287 MHz E1 1.442 0.5 MHz [11]
2 3S1 → 3 3S1 35.9 ns 4.43 MHz M1 6.48 × 10−9 5 MHz [9]

lifetime are evaluated; the ac Stark shift is analyzed by con-
trolling the intensity of λ1 when λ2 is a magic wavelength. We
find that the ac Stark shift in the 2 3S1 → 3 3S1 two-photon
transition can be suppressed to less than 100 kHz, which
paves the way for improving the measured precision of the
2 3S1 → 3 3S1 transition frequency. We also find that, with
appropriate detuning frequencies, the ac Stark shift in the
2 3S1 → 3 3S1 two-photon transition can be minimized to zero
by adjusting the laser intensity ratios. Atomic units (a.u.) are
used throughout this paper unless stated otherwise.

II. DETAILS OF THE CALCULATIONS

The relativistic energies and wave functions of helium
are obtained using the B-spline relativistic configuration
interaction (RCI) method that has been described in our
previous papers [24–26]. The RCI calculations are carried
out by solving the eigenvalue problem of the no-pair Dirac-
Coulomb-Breit (DCB) Hamiltonian with mass shift (MS)
operator included. The two-electron configuration-state func-
tions are constructed by the positive-energy single-electron
wave functions with the orbital angular momentums less than
the maximum partial wave �max. The single-electron wave
functions are acquired by solving the Dirac equation using
Notre Dame basis sets of N B-spline functions of order k = 7
[27,28]. The nuclear mass m0 of 4He and 3He are respec-
tively m0 = 7294.299 5361me and m0 = 5495.885 2754me

[29], where me is the electron mass.
Magic wavelengths are located by calculating the dynamic

dipole polarizabilities of two states involved in the atomic
transition and finding their crossing points. The dynamic
dipole polarizability of the magnetic sublevel |NgJgMg〉 under
the linear polarized light with laser frequency ω is given by
[25,30,31]

α1(ω) = αS
1 (ω) + 3M2

g − Jg(Jg + 1)

Jg(2Jg − 1)
αT

1 (ω), (1)

where the scalar dipole polarizability αS
1 (ω) is written as

αS
1 (ω) =

∑
n �=g

2|〈NgJg‖T (1)‖NnJn〉|2�Egn

3(2Jg + 1)
(
�E2

gn − ω2
) , (2)

and the tensor dipole polarizability αT
1 (ω) is defined as

αT
1 (ω) =

∑
n �=g

(−1)Jg+Jn

√
30(2Jg + 1)Jg(2Jg − 1)

(2Jg + 3)(Jg + 1)

×
{

1 1 2
Jg Jg Jn

}
2|〈NgJg‖T (1)‖NnJn〉|2�Egn

3(2Jg + 1)
(
�E2

gn − ω2
) , (3)

with �Egn = En − Eg being the transition energy between the
initial state |NgJg〉 and the intermediate state |NnJn〉 and T (1) =∑2

i=1 riC(1)(r̂i) being the electric dipole transition operator in
the length gauge.

The potential depth U of an ODT and the scattering rate
�sc of atoms can be written in terms of the dynamic dipole
polarizability α1(ω) [23,32,33],

U = 1

ε0c0
α1(ω)

2P

πw2
0

, (4)

�sc = 4

3hε2
0c4

0

ω3α2
1 (ω)I0, (5)

where ε0, c0, and h are the dielectric constant, the speed of
light in vacuum, and the Planck constant, respectively, P is the
power of the trapping laser beam, w0 is the beam waist, I0 =
2P/(πw2

0 ) is the laser intensity, and ω is the angular frequency
of the trapping light. For a magic wavelength ODT, ω is the
magic frequency. The physical quantities in Eqs. (4) and (5)
are in the International System of Units (SI).

The two-photon electric dipole (2E1) differential decay
rate of the upper state |e〉 (or |NeJeMe〉) to the lower state |g〉
is given by [34–36]

dA2E1

dω1
= 8

9π
α6ω3

1ω
3
2

∑
q1q2

∣∣M2E1
q1q2

∣∣2
, (6)

where α = 1/137.035 999 074 [29] is the fine-structure con-
stant, the photon frequencies obey energy conservation, ω1 +
ω2 = Ee − Eg, and the two-photon transition matrix element
M2E1

q1q2
can be expressed as

M2E1
q1q2

=
∑

n

[ 〈e|T (1)
q2

|n〉〈n|T (1)
q1

|g〉
En + ω2 − Ee

+ 〈e|T (1)
q1

|n〉〈n|T (1)
q2

|g〉
En + ω1 − Ee

]
,

(7)

with |n〉 designating intermediate states and T (1)
qi

(i = 1, 2)
being the qith component of the electric dipole transition
operator. Using the Wigner-Eckart theorem, we perform sum-
mations over q1, q2 and magnetic quantum numbers of Mg and
Me; then we obtain the following expression for the square of
transition amplitude |M2E1|2:

|M2E1|2 =
∑
nn′J

1

2J + 1
[TnJ (ω2)Tn′J (ω2) + TnJ (ω1)Tn′J (ω1)]

+ 2
∑
nJn

∑
n′Jn′

{
Jn′ 1 Je

Jn 1 Jg

}
(−1)Jn+Jn′ TnJn (ω2)

× Tn′Jn′ (ω1), (8)
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TABLE II. Convergence of the scalar and tensor components (in
a.u.), αS

1 (0) and αT
1 (0), and the total static dipole polarizabilities

(in a.u.) of α1(0)(M = 0) and α1(0)(M = ±1) for the 3 3S1 state in
4He and 3He from RCI calculations. The numbers in parentheses are
numerical convergence uncertainties.

(�max, N) αS
1 (0) αT

1 (0) α1(0)(M = 0) α1(0)(M = ±1)

4He
(9, 40) 7940.358 781 0.097 359 7940.164 062 7940.456 142
(10, 40) 7940.361 519 0.097 352 7940.166 815 7940.458 872
(10, 50) 7940.359 702 0.097 547 7940.164 608 7940.457 249
Extrap. 7940.361(4) 0.097(2) 7940.166(4) 7940.458(4)

3He
(9, 40) 7942.117 552 0.097 502 7941.922 548 7942.215 054
(10, 40) 7942.120 509 0.097 304 7941.925 900 7942.217 814
(10, 50) 7942.120 877 0.097 174 7941.926 530 7942.218 051
Extrap. 7942.121(6) 0.097(2) 7941.927(8) 7942.218(6)

where

TnJn (ω) = 〈NeJe‖T (1)‖NnJn〉〈NnJn‖T (1)‖NgJg〉
En + ω − Ee

. (9)

III. RESULTS AND DISCUSSIONS

A. Dipole polarizabilities

We use a complete set of configuration wave functions on
an exponential grid [37] generated using B splines constrained
to a spherical cavity. A cavity radius of 200 a.u. is chosen to
accommodate the initial state and the corresponding interme-
diate states, and it is also suitable for obtaining dynamic dipole
polarizabilities of the 2 3S1 and 3 3S1 states for ω < 0.068 a.u.,
which corresponds to the ionization energy of the He(3 3S1)
state. The basis set consists of N = 40, 45, and 50 splines for
each value of the partial wave that is less than �max = 10. The
numerical uncertainty is evaluated by doubling the maximum
difference between the extrapolated value and those given in
the last three larger basis sets of convergence tables.

As the numbers of the partial wave and B splines increased,
the convergence studies for the scalar and tensor polarizabili-
ties, αS

1 (0) and αT
1 (0), and the static dipole polarizabilities of

α1(0)(M = 0) and α1(0)(M = ±1) for the 3 3S1 state in 4He
and 3He are presented in Table II. For 4He, the present RCI
value of αS

1 (0) is 7940.361(4) a.u. with six convergent figures.
Compared with the static polarizability of 7937.58(1) a.u.
[38] for ∞He, it indicates that the static dipole polarizability
is increased by 2.78 a.u. due to the finite nuclear mass and
relativistic effects. These effects on 3He are more obvious
than 4He.

B. Determination of magic wavelengths

The magic wavelengths for the 2 3S1 → 3 3S1 transitions
need to be determined separately for the M = 0 and M = ±1
cases, since the total dynamic dipole polarizabilities for the
2 3S1 and 3 3S1 states depend upon the magnetic quantum
numbers M. Figure 1 is the dynamic dipole polarizabil-
ity in the range of 770–1300 nm for the 2 3S1(M = ±1)
and 3 3S1(M = 0) magnetic sublevels of 4He. There are five

FIG. 1. Dynamic dipole polarizabilities for the 2 3S1(M = ±1)
and 3 3S1(M = 0) states of 4He. The magic wavelengths are marked
with arrows. The positions of the resonances are indicated by vertical
dashed lines with small arrows on top of the graph.

resonances (2 3S1 → 2 3P2, 3 3S1 → 4 3P2, 3 3S1 → 5 3P2,
3 3S1 → 6 3P2, and 3 3S1 → 7 3P2) existing in this wavelength
region, which are indicated by vertical dashed lines with small
arrows on top of the graph. Three magic wavelengths of λm1,
λm2, and λm3 around 1265, 934, and 785 nm for the 2 3S1(M =
±1) → 3 3S1(M = 0) transition are all marked with arrows in
Fig. 1.

In previous work [39], the magic wavelengths for the
2 3S → 3 3S transition of ∞He have been determined based on
NRCI calculations. In the present RCI calculations, we take
account of the finite nuclear mass and relativistic effects on
magic wavelengths and dynamic dipole polarizabilities. The
updated results of 4He and 3He are shown in Table III.

Furthermore, for 3He, we consider the hyperfine in-
teractions on magic wavelengths and polarizabilities. The
dipole matrix elements between different hyperfine levels
are transformed from the present matrix elements using the
Wigner-Eckart theorem [40]. The hyperfine energy shifts
given in Table 7 of Ref. [41] are added to the present RCI
energies of 2 3S1, 3 3S1, and n 1,3P1,2,3 (n � 10) to obtain the
corresponding hyperfine energies. The dynamic polarizabil-
ities for different hyperfine magnetic sublevels |FMF 〉 are
calculated using Eqs. (1)–(3) by replacing J and M with F
and MF , respectively. Then polarizabilities and magic wave-
lengths for different hyperfine transitions can be determined.
Table IV shows magic wavelengths and the corresponding
dynamic polarizabilities for different hyperfine transitions of
3He. Compared with the RCI calculated results of Table III,
it is seen that magic wavelengths become shorter due to the
hyperfine interactions, and the dynamic dipole polarizabilities
at the corresponding magic wavelengths are increased.

C. 1265 nm magic wavelength to design an ODT

The magic wavelength with a positive dynamic dipole po-
larizability can be used to design an ODT referring to Eq. (4).
From Tables III and IV, it is seen that, among the magic
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TABLE III. Magic wavelengths (in nm) and the corresponding dynamic dipole polarizabilities (in a.u.) obtained from RCI calculations for
the 2 3S1 → 3 3S1 transition of 4He and 3He, and the numbers in parentheses are numerical convergence uncertainties. For each transition, the
first line refers to 4He and the second line to 3He.

Transition λm1 α1(λm1) λm2 α1(λm2) λm3 α1(λm3)

2 3S1(M = 0) → 3 3S1(M = 0) 1265.617 5(2) 1151.339(4) 934.243 5(2) −872.234(6) 785.327 4(2) −324.405(2)
1265.691 6(2) 1151.954(6) 934.270 1(6) −871.75(2) 785.366(2) −324.363(2)

2 3S1(M = 0) → 3 3S1(M = ±1) 1265.625 8(2) 1151.298(4) 934.245 0(2) −872.245(6) 785.329 5(2) −324.409(2)
1265.699 9(2) 1151.913(6) 934.271 6(6) −871.76(2) 785.369(2) −324.366(2)

2 3S1(M = ±1) → 3 3S1(M = 0) 1265.615 9(4) 1151.590(4) 934.234 5(2) −871.951(4) 785.326 8(2) −324.362(2)
1265.689 9(2) 1152.205(6) 934.261 2(4) −871.47(2) 785.366(2) −324.320(2)

2 3S1(M = ±1) → 3 3S1(M = ±1) 1265.624 2(2) 1151.549(4) 934.236 0(2) −871.962(4) 785.328 8(2) −324.366(2)
1265.698 2(2) 1152.164(6) 934.262 7(4) −871.48(2) 785.368(2) −324.323(2)

wavelengths λm1, λm2, and λm3, only the dynamic po-
larizability at the magic wavelength around 1265 nm
is positive. Including the finite nuclear mass and rel-
ativistic effects, the results of this particular magic
wavelength are given to be 1265.615 9(4) nm for
the 2 3S1(M = ±1) → 3 3S1(M = 0) transition of 4He and
1265.683 9(2) nm for the 2 3S1(F = 3/2, MF = ±3/2) →
3 3S1(F = 3/2, MF = ±1/2) hyperfine transition of 3He. The
corresponding dynamic dipole polarizabilities for 4He and
3He are 1151.590(4) and 1152.221(6) a.u., respectively. These
large dynamic dipole polarizabilities indicate that the magic
wavelength around 1265 nm might be useful for the design of
an ODT with further analysis.

On the one hand, the design of an ODT needs enough depth
to capture a certain number of atoms. Generally, a natural
scale for the minimum depth of an optical trap as required
for efficient loading is set to be a few 10Tr , where Tr = 2Er

is the recoil temperature and Er = h2/2mλ2
m is the photon

recoil energy [32]. The larger the photon recoil energy, the
deeper the trap depth and the higher the laser power required.
The photon recoil energy at the 1265 nm magic wavelength
is calculated to be Er = 1.493 μK for 4He and 1.982 μK for
3He. Supposing the trap depth to be as low as 20Er , to obtain
the required laser power for creating this supposed trap depth
conservatively, the focused laser beam with a large beam waist
of 100 μm is needed. According to Eq. (4), we obtain the
required laser powers for different transitions, that are listed
in the second to the last line of Table V. The required laser
powers are about 0.9 W for 4He and 1.2 W for 3He, which are
feasible under current advanced laser technology. Therefore,
we believe that, for the 2 3S1 → 3 3S1 transition, using the
magic wavelength at 1265 nm with the laser power around
1 W can create a trap depth of about 30 μK for 4He and 40 μK
for 3He.

On the other hand, the design of an ODT needs a small
atomic scattering rate, since the low scattering rate ensures
enough time for exciting the He atom from the 2 3S1 state
to the 3 3S1 state. Using the calculated trapping beam power
P that can create the supposed 20Er deep trap, we estimate
the scattering rates for 4He and 3He isotopes at the magic
wavelength around 1265 nm; then the trapping lifetimes are
also obtained, which are given in the last line of Table V. The
trapping lifetimes are about 4.6 s for 4He and 3.5 s for 3He,
which are long enough to perform spectral measurement of
the forbidden 2 3S1 → 3 3S1 transition.

D. Suppressing ac Stark shift in two-photon transition

It is seen from Sec. III C that, once we use the laser with
the magic wavelength around 1265 nm to build an ODT, the
ac Stark shift in the 2 3S1 → 3 3S1 transition caused by the
trapping beam can be minimized to zero. However, the ac
Stark shift caused by the probe laser has become the focus in
the spectroscopy measurement of the 2 3S1 → 3 3S1 transition.
In this subsection, we will propose a two-photon excitation
scheme to suppress the ac Stark shift in the probing process.
The two-photon transition of 2 3S1 → 3 3S1 in 4He is shown
graphically in Fig. 2. This two-photon transition is excited
by two different lasers with wavelengths of λ1 and λ2. The
detuning frequency of �ωd indicates the relative position of
the virtual state to the real 2 3P state.

To discuss the feasibility of the proposed scheme men-
tioned above, we first calculate the two-photon transition
amplitudes at different detuning frequencies. Figure 3 plots
the transition amplitudes |M2E1| of the 2 3S1 → 3 3S1 two-
photon transition in 4He at different detuning frequencies
�ωd , and several selected values of |M2E1| are listed in
Table VI. As seen from Fig. 3, the curve of |M2E1| is sym-
metric with respect to �ωd = 73.73 THz, corresponding to a

TABLE IV. Magic wavelengths (in nm) and the corresponding dynamic polarizabilities (in a.u.) for the hyperfine transition of 2 3S1, F =
3/2, → 3 3S1, F = 3/2 of 3He. The numbers in parentheses are numerical convergence uncertainties.

Transition λm1 α1(λm1) λm2 α1(λm2) λm3 α1(λm3)

2 3S1(MF = ±1/2) → 3 3S1(MF = ±1/2) 1265.685 1(2) 1152.037(6) 934.261 9(4) −871.65(2) 785.363(2) −324.347(2)
2 3S1(MF = ±1/2) → 3 3S1(MF = ±3/2) 1265.682 0(2) 1152.053(8) 934.256 8(6) −871.61(2) 785.361(2) −324.343(2)
2 3S1(MF = ±3/2) → 3 3S1(MF = ±1/2) 1265.683 9(2) 1152.221(6) 934.255 4(4) −871.44(2) 785.362(2) −324.316(2)
2 3S1(MF = ±3/2) → 3 3S1(MF = ±3/2) 1265.680 7(2) 1152.236(6) 934.250 3(6) −871.40(2) 785.361(2) −324.312(2)

042817-4



PROPOSAL FOR SUPPRESSING THE AC STARK SHIFT … PHYSICAL REVIEW A 104, 042817 (2021)

TABLE V. 1265 nm magic wavelengths of 4He (2 3S1, M =
±1 → 3 3S1, M = 0) and 3He (2 3S1, F = 3/2, MF = ±3/2 →
3 3S1, F = 3/2, MF = ±1/2), dynamic dipole polarizabilities, and
the photon recoil energies for 4He and 3He. Supposing that a 20Er

trapping depth is created and the focused laser has a beam waist of
100 μm, the required laser beam power P and the corresponding
trapping lifetime τsc = 1/�sc are given in the last two lines. The
numbers in parentheses are numerical convergence uncertainties.

Units 4He 3He

λm nm 1265.615 9(4) 1265.683 9(2)
α1(λm ) a.u. 1151.590(4) 1152.221(6)
Er μK 1.493 1.982
P W 0.905 1.201
τsc s 4.596 3.459

conventional single-color case where the two-photon tran-
sition absorbs two equal-frequency photons. From this
symmetry position, with the decrease (or increase) of �ωd ,
i.e., the virtual state is increasingly near to (or far away
from) the real 2 3P state, the transition amplitude is enhanced
significantly. For �ωd = 42.46 THz and �ωd = 103.31 THz
marked by magenta diamond and red solid circle, respectively,
in Fig. 3, both of the two-photon transition amplitudes are over
1.5 × 103 a.u., which are 192 times larger than the transition
amplitude of 7.8 a.u. for the H(1s → 2s) two-photon transi-
tion at λ1 = λ2 = 243 nm [42]. In addition, the nonresonant
two-photon decay rate is estimated to be 0.065 s−1, that is, at
least six orders of magnitude larger than the magnetic dipole
transition rate [9]. These calculations provide a theoretical
support for the feasibility of two-photon spectroscopy mea-
surement of the He(2 3S1 → 3 3S1) transition.

We next evaluate the ac Stark shift in the 2 3S1 → 3 3S1

two-photon transition. While the two lasers with wavelengths
λ1 and λ2 drive the two-photon transition, to the leading order
in laser intensity and the fine-structure constant, the ac Stark
shift can be calculated according to the following formula:

�Eac = − 1

c0ε0
[�α1(λ1)I1 + �α1(λ2)I2], (10)

FIG. 2. Energy-level diagram indicating the 2 3S1 → 3 3S1 two-
photon transition of 4He excited by two lasers with wavelengths of
λ1 and λ2. The detuning frequency of �ωd represents the relative
position of the virtual state to the real 2 3P state. The single-photon
transition wavelength of 2 3S1 → 3 3S1 is 427.7 nm. Other relevant
transition wavelengths are indicated.

FIG. 3. Transition amplitude |M2E1| of the 2 3S1 → 3 3S1 two-
photon transition of 4He as a function of the detuning frequency
�ωd . The two-photon transition is excited by two different lasers
with wavelengths of λ1 and λ2. Three positions marked by arrows
from left to right indicate the cases with �ωd = 42.46, 73.73, and
103.31 THz. For �ωd = 42.46 and 103.31 THz, λ2 are respectively
the 785.3 and 934.2 nm magic wavelengths and, for �ωd = 73.73
THz, two lasers have equal wavelengths.

where the units are in SI, �α1(λi ) is the difference of the
electric dipole polarizabilities between the 3 3S1(M = 0) and
2 3S1(M = ±1) states, and the laser intensity Ii = cε0F 2

i /2,
with Fi being the electric-field amplitude and i = 1, 2. Com-
pared to the E1 contribution, the next-order dynamic electric
quadrupole (E2) and magnetic dipole polarizabilities are re-
spectively suppressed by a factor of (αω)2 and a factor of α2

[33,43], and there are no resonant contributions for the E2 and
M1 polarizabilities at the frequencies of interest, so contribu-
tions from other multipole polarizabilities are neglected under
the present calculations.

At different detuning frequencies, the laser wavelengths
λ1 and λ2 exciting the 2 3S1 → 3 3S1 two-photon transition
and the corresponding differences of dynamic polarizabilities
between the 3 3S1(M = 0) and 2 3S1(M = ±1) states of 4He

TABLE VI. Detuning frequency �ωd , the two-photon transition
amplitudes |M2E1|, the laser wavelengths λ1 and λ2 exciting the
two-photon transition, and the differences of dynamic dipole polar-
izabilities, �α1(λi ), between the 3 3S1(M = 0) and 2 3S1(M = ±1)
states of 4He at different laser wavelengths λi, i = 1, 2.

λi (nm) �α1(λi ) (a.u.)

�ωd (THz) |M2E1| (a.u.) (λ1, λ2) �α1(λ1) �α1(λ2)

103.31 1534.0 (788.8, 934.2) −108.51 0
73.73 1185.7 (855.4, 855.4) 70.45 70.45
42.46 1583.5 (939.2, 785.3) −220.54 0
100 1450.5 (795.8, 924.4) −152.99 108.24
10 6347.5 (1045.5, 723.8) 3548.4 −1122.6
1 63 804 (1079.4, 708.4) 4.15 × 104 −1.08 × 104

0.1 6.79 × 105 (1082.9, 706.9) 4.25 × 105 −1.23 × 105

0.01 6.7 × 106 (1083.3, 706.7) 4.8 × 106 −5.46 × 105
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FIG. 4. ac Stark shifts in the 2 3S1 → 3 3S1 two-photon transition
of 4He at different intensities of the λ1 laser. Imax indicates the maxi-
mum intensity of the λ1 laser when the ac Stark shift equals 100 kHz.
The two-photon transition is excited by two lasers with wavelengths
of λ1 and λ2. The ac Stark shifts are estimated using dynamic dipole
polarizabilities of 2 3S1(M = ±1) and 3 3S1(M = 0).

are given in Table VI as well. We can see that, with �ωd

decreasing from 100 THz to 0.01 THz, the difference of
polarizabilities between the 3 3S1 and 2 3S1 states increases by
three to four orders of magnitude, which will result in a large
variation of the ac Stark shift in the two-photon transition
when �ωd varies. For �ωd = 73.73 THz, the total ac Stark
shift will be twice that of the Stark shift in the λ1 laser field.
For �ωd = 42.46 and 103.31 THz, the total ac Stark shift is
only related to the λ1 laser field, and the ac Stark shift induced
by the λ2 laser will vanish since λ2 is a magic wavelength
given in Sec. III B.

The ac Stark shifts in the 2 3S1 → 3 3S1 two-photon
transition of 4He as the λ1 laser intensity changed are plotted
in Fig. 4. The maximum laser intensity Imax is given for
suppressing the total ac Stark shift to be 100 kHz. We can
see that, to suppress the ac Stark shift at the same level, the
laser intensity for �ωd = 103.31 THz (corresponding to
λ1 = 788.8 nm and λ2 = 934.2 nm) is largest, which will
make it easier to drive the two-photon transition. Moreover,
for �ωd = 103.31 THz, as long as the λ1 laser intensity
does not exceed 1 × 104 W/cm2, the total ac Stark shift
caused by probe beams will be less than 100 kHz, which
would be about 70-fold smaller than the single-photon
measurement [9]. With this laser intensity, the collision
heating caused by the probe beam is about 0.5 μK s−1,
which will not destroy the stability of the ODT. Also
the laser intensity within the proposed maximum limit of
1 × 104 W/cm2 is high enough to drive the two-photon
transition, since the laser intensity in the 2 3S1 → 3 3S1

single-photon transition experiment is 3.86 × 103 W/cm2

[9] and we mentioned earlier that the two-photon transition
rate is much larger than the single-photon M1 transition
rate. Therefore, we suggest using these two lasers with
wavelengths of λ1 = 788.8 nm and λ2 = 934.2 nm that

FIG. 5. Ratios of −�α1(λ2)/�α1(λ1) at different detuning
frequencies �ωd . �α1(λ1) and �α1(λ2) are the differences of po-
larizabilities between the 3 3S1(M = 0) and 2 3S1(M = ±1) states of
4He at the wavelengths of λ1 and λ2, respectively. The red dashed
line is a horizonal zero line.

are also well detuned from electric dipole transition
frequencies, to realize the two-photon transition. The values
for the λ2 magic wavelength are 934.234 5(2) nm and
934.255 4(4) nm for 4He(2 3S1, M = ±1 → 3 3S1, M = 0)
and 3He(2 3S1, F = 3/2, MF = ±3/2 → 3 3S1, F =
3/2, MF = ±1/2), respectively.

In addition, from Eq. (10) we see that, when
−�α1(λ2)/�α1(λ1) is a positive value, the ac Stark shift can
be canceled by adjusting the laser intensity ratio I1/I2 equal to
−�α1(λ2)/�α1(λ1). Gerginov and Beloy have demonstrated
this method on the 5s 2S1/2 → 5d 2D5/2 two-photon transition
in 87Rb [14]. Considering comprehensively the two-photon
transition amplitude and the residual first-order Doppler
broadening due to the unequal laser wavelengths, for the
2 3S1 → 3 3S1 two-photon transition of helium, the ratios of
−�α1(λ2)/�α1(λ1) only at �ωd = 40–105 THz are shown
in Fig. 5. It is seen that, for �ωd in the region of 82–103
THz, the ratios are positive and less than one, so the ac
Stark shift cancellation method with an appropriate intensity
ratio can also be used in the He(2 3S1 → 3 3S1) two-photon
transition. For example, driving the two-photon transition
with the intensity ratio of I1/I2 = 0.707 will achieve zero ac
Stark shift for �ωd = 100 THz given in Table VI and a 0.1%
intensity ratio change leads to a 1.2-fold increase in the total
ac Stark shift.

IV. CONCLUSION

We have determined magic wavelengths for the 2 3S1 →
3 3S1 forbidden transition in 4He and 3He isotopes and pro-
posed an experimental scheme for suppressing the ac Stark
shift in the 2 3S1 → 3 3S1 transition frequency measurement.
For 4He, the 1265.615 9(4) nm magic wavelength can be used
to design an optical dipole trap, which can create a 20Er trap
depth with the laser power of 0.9 W and a 4.6 s trapping
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lifetime. Furthermore, the 934.234 5(2) nm magic wavelength
is suggested as the λ2 laser to excite the two-photon pro-
cess for the 2 3S1 → 3 3S1 transition, and the ac Stark shift
would be reduced to about 70-fold smaller compared to the
single-photon transition, as long as the intensity of the λ1

laser does not exceed 1 × 104 W/cm2. Similarly, for 3He, the
1265.683 9(2) nm magic wavelength can be used to design an
ODT and the 934.255 4(4) nm magic wavelength can be as
the λ2 laser to realize the 2 3S1 → 3 3S1 two-photon transition
process. Alternatively, for detuning frequencies relative to the
2 3P state in the region of 82–103 THz, driving the two-photon
transition with appropriate intensity ratios will achieve zero ac
Stark shift. We expect that our proposal can improve the mea-
sured precision of the He(2 3S1 → 3 3S1) transition frequency.
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