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Theory of rovibrational line intensities in allowed and collision-induced
absorption spectra of linear molecules
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A theoretical approach is developed for the Herman-Wallis factors describing the variation of the line
intensities caused by rovibrational interaction in a linear molecule. In the case of ν2 and ν3 fundamentals
and the ν1 + ν3/2ν2 + ν3 resonance combination band in a CO2 molecule, our theory is capable of generating
reliable numerical estimates for the linear Herman-Wallis coefficients without recourse to complicated algebra.
On the assumption of nearly free rotating monomers, an analog of the Herman-Wallis factors is introduced
for the dipole-forbidden ν2 + ν3 band, which manifests itself in CO2 collision-induced absorption (CIA). The
rovibrational perturbation is appropriate to explain a pronounced crossflow of intensity among rovibrational
branches in a virtually rotationally unresolved CIA envelope.
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I. INTRODUCTION

The interaction between rotational and vibrational degrees
of freedom is known to affect notably the intensities of ab-
sorption lines of molecules. Although the theoretical aspects
of this problem were largely formulated over the past hundred
years, it is still open for profound examination. In particular,
examination of the effect of rovibrational interaction on the
observed band shapes for collision-induced absorption (CIA)
spectra is lacking. In this paper we suggest a modified theory
of the Herman-Wallis factor for the fundamental and combi-
nation transitions in a CO2 molecule. We extend the theory
to the electric-dipole-forbidden ν2 + ν3 CIA band, whose un-
conventional band shape has remained enigmatic for a long
time. Whereas other CO2 CIA bands have a nearly perfect
slightly asymmetric bell-shaped form, the ν2 + ν3 band looks
almost like a triangle-shaped band, the maximum of which is
shifted by more than 10 cm−1 from its nominal band origin
[1]. It is noteworthy that no trace of true CO2 dimer structure
is discernible in the absorption profile of this band, a fact
that contrasts with reliable observation of dimeric structures
in several other CO2 CIA bands [2,3]. Baranov was the first
to remark [1] that the maximum of the absorption profile
miraculously coincides with the position of the maximum of
the then hypothetical R branch. The latter was long believed
forbidden in CIA [4]. A recent paper by the present authors [5]
showed that the selection rules for the CO2 ν2 + ν3 band must
be reconsidered so that the manifestations of R and P branches
are allowed. Nevertheless, the observations [1] require the
intensity of the R branch to be significantly greater than that
of the P branch, thus contradicting conventional Hönl-London
weights of the relevant subbands (Fig. 1).

In what follows we substantiate that the rovibrational in-
teraction is capable of strongly modifying the profile of the
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CIA band in question. We emphasize from the beginning that
our consideration of the CIA profile is based on a simplified
assumption of a nearly free rotation of CO2 monomers in the
course of their intermolecular interaction. This assumption
is not entirely valid because a notable portion of the CO2

molecules at ambient temperature is tightly bound together.
It seems reasonable to suggest that individual monomers of
which a true dimer is formed are unable to rotate freely.
According to [6], nearly 90% of CO2 molecules near room
temperature are in the form of either free or quasibound
species. For this reason, at least as far as the overall spectral
profile at not too low temperature is concerned, the contribu-
tion from nearly free rotating molecules can be considered to
dominate in the absorption.

The basic theory of rotation-vibration interaction in
molecules began to be developed by, e.g., Fowler [7], Dunham
[8], and Adel and Dennison [9–11]. Later, this topic was
the concern of many investigators, of which a spectacular
advance in the theory was due to Herman and Wallis [12] and
Watson [13]. Comprehensive details concerning intensity cal-
culations in rovibrational spectra of diatomics can be found,
e.g., in [14]. The theory of rovibrational molecular spectra
is conventionally constructed based on a first-approximation
assumption of virtually independent rotational and vibrational
movement of nuclei. The interaction between rotational and
vibrational degrees of freedom is then taken into account as a
perturbation. Several mechanisms can be considered to cause
this perturbation. The product of the moment of inertia and
the angular speed of rotation is an integral of the motion. As
the moment of inertia is modulated slightly by the vibrational
displacement of the nuclei, one can expect variations in the
angular speed to occur. The impact of this effect on the intensi-
ties of absorption lines in linear molecules was first considered
by Gallup [15]. Also centrifugal distortion results in a slight
change of molecular geometry that affects the intramolecular
potential that governs the vibrational movements of the nuclei.
The Coriolis effect modifies the force field of the rotating
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FIG. 1. Illustrative sketch showing the qualitative effect of the
Herman-Wallis correction on rovibrational line intensities of P and
R branches. The underlying intensity distribution (the histogram
in gray) is drawn according to respective Hönl-London weights,
whereas measurable intensities are shown by black solid sticks.

frame in which lengthwise displacements of atoms occur. The
relevant theory for linear molecules was first suggested by
Jacobi and Jaffe [16].

Our consideration below is based largely on an origi-
nal perturbative technique elaborated previously by Kazakov
[17–20]. This technique was applied [18–22] in the analysis
of the Herman-Wallis factors for diatomic hydrogen halides.
We show how the initial theory of rovibrational effects in
diatomic molecules must be modified to describe the electric-
dipole-permitted or -forbidden spectra of a linear polyatomic
molecule.

II. ANSATZ

The solution of a rovibrational problem is sought con-
ventionally on the assumption that the rotational quantum
numbers play the role of parameters in the vibrational Hamil-
tonian; such parametric quantum numbers in the Schrödinger
equation can be called extraneous quantum numbers. As-
suming that the vibrational wave functions are functions of
extraneous quantum numbers, the matrix elements should
contain vibrational wave functions with different rotational
quantum numbers, thus giving rise to a significant com-
putational complication. This effect can be overcome by
undertaking lengthy computations involving perturbation the-
ory. Otherwise, a solution is obtainable with the so-called
theorem of extraneous quantum numbers suggested in [19].

Let Schrödinger’s equation of a molecular system have the
form

[Hvib + ρu(J )]|nJ ) = EnJ |nJ ). (1)

Here Hvib is a vibrational Hamiltonian, n is a set of vibra-
tional quantum numbers, ρ is some function of vibrational
coordinates, and u is some function of extraneous quantum
number J . Hereafter, a vector designated with either a closing
or opening round bracket is used to characterize a perturbed
but otherwise exact rovibrational state

�(nJ ) = |nJ )

or vibrational state

�vib(n) = |n).

In contrast, the unperturbed vector, i.e., the harmonic state
vector, is defined with the respective angular bracket |n〉.

We consider the matrix elements of some function f of vi-
brational coordinates. We know already the matrix elements,
which are diagonal with respect to the extraneous quantum
number J and we seek the relevant nondiagonal matrix ele-
ments. The theorem of extraneous quantum numbers [19,20]
offers an opportunity to proceed as shown below. We formally
expand (nJ| f |n′J ′) with respect to �u = u′ − u:

(nJ| f |n′J ′) = (nJ| f exp

(
�u

∂

∂u

)
|n′J )

= (nJ| f |n′J ) + (nJ| f
∂

∂u
|n′J )�u

+ (nJ| f
∂2

∂u2
|n′J )

�u2

2
+ · · · . (2)

The first equality in (2) stems from an intuitive suggestion to
introduce the yet undefined shift operator exp(�u ∂

∂u ), as if u
were a continuous variable. The action of the shift operator
is suggested to result in a transition from J ′ to J . As shown
below, this formal operation is supported by a definition of
the action of the partial derivative on the wave function.

To define the action of the derivative ∂
∂u on the |nJ ) vector

we differentiate Eq. (1) with respect to u. We obtain then

ρ
∂

∂u
|nJ ) + (H + ρu)

∂

∂u
|nJ )

= ∂EnJ

∂u
|nJ ) + EnJ

∂

∂u
|nJ ).

Representing

∂

∂u
|nJ ) =

∑
m �=n

Omn|mJ ),

we arrive at

ρ|nJ ) = ∂EnJ

∂u
|nJ ) +

∑
m �=n

Omn(EnJ − EmJ )|mJ ).

After some algebra we obtain

∂EnJ

∂u
= (nJ|ρ|nJ )

and

Omn = (nJ|ρ|mJ )

EnJ − EmJ
.

The latter formula justifies an expansion of the matrix element
with respect to �u in (2) and allows us to enunciate the
theorem of extraneous quantum numbers in this closed form:

(nJ| f |n′J ′) = (nJ| f exp

(
�u

∂

∂u

)
|n′J ),

∂

∂u
|nJ ) =

∑
m �=n

(nJ|ρ|mJ )

EnJ − EmJ
|mJ ). (3)
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As an example we write the first-order correction

|n, 1〉 = ∂

∂u
|nJ )

∣∣∣∣
J=0

=
∑
m �=n

〈n|ρ|m〉
En − Em

|m〉, (4)

which appears in a general expansion

|nJ ) = |n, 0〉 + |n, 1〉�u + · · · .

Regarding the rovibrational line intensities, we assume that
J is the rotational quantum number so that u = J (J + 1)/2.
The problem of the rovibrational interaction in the spectra
of diatomic molecules is reduced to a determination of the
set of coefficients cnn′ , dnn′ , . . . in an expansion of the matrix
element of the dipole μ in powers of �u:

(nJ|μ|n′J ′) = (n|μ|n′)
(

1 + cnn′�u + dnn′
�u2

2
+ · · ·

)
. (5)

Here

�u = 1
2 [J ′(J ′ + 1) − J (J + 1)].

The coefficients just introduced are related to those used in the
theory of effective operators [13] according to

cnn′ = A1, dnn′ = 2A2.

In the case of the P branch �u = −J , whereas for the R
branch �u = J + 1. Setting ρ = h̄2I−1, in which I is the
moment of inertia, and applying the theorem of extraneous
quantum numbers (3), we obtain

cnn′ = 1

(n|μ|n′)

∑
m �=n′

(n|μ|m)
(m|ρ|n′)
En′ − Em

. (6)

In what follows we disregard centrifugal distortion because it
has a minor effect on the rovibrational line intensities. As a
result, we ignore the J dependence, if any, of the harmonic
frequencies or parameters of mechanical anharmonicity. Our
approach, which is based on the use of the theorem of ex-
traneous quantum numbers [20], differs substantially from
that conventionally used in the literature. The Herman-Wallis
coefficients are generally expressed in terms of an expansion
containing the dipole derivatives. The present consideration
permits the Herman-Wallis factors to be expressed via the
ratio of matrix elements (n|μ|m)/(n|μ|n′) with m �= n′. As a
result, the derivation of the sought coefficients becomes rou-
tine because all that we need is to have retained the pertinent
nonvanishing terms in the sum (6).

Raising (5) to the second power, we can establish how the
coefficients cnn′ , dnn′ , . . . relate to the well-known coefficients
Cnn′ , Dnn′ , . . . of the canonical Herman-Wallis series

|(nJ|μ|n′J ′)|2 = (n|μ|n′)2(1 + Cnn′�u + Dnn′�u2 + · · · ).
(7)

For instance,

Cnn′ = 2cnn′

and

Dnn′ = c2
nn′ + dnn′ .

III. ALLOWED BANDS OF A POLYATOMIC
LINEAR MOLECULE

In the case of polyatomic molecules, the Herman-Wallis
expansion must be performed separately for each component
of a dipolar moment. We represent the Schrödinger equation
for a CO2 molecule in the form(

Hvib + H0
rot

)
�(nJ ) = EnJ�(nJ ), (8)

in which n means a set of quantum numbers n1, n2x, n2y, and
n3. Without external perturbation, the rotational Hamiltonian
H0

rot is represented as

H0
rot = h̄2J (J + 1)

2I
.

The corresponding rotational wave functions are those of the
rigid rotor [5,23,24]

�rot (J, K, M ) =
√

2J + 1

4π
D(J )∗

M,K (φ, θ, 0). (9)

The vibrational Hamiltonian is

Hvib = H0
vib + �H free

anh ,

in which

H0
vib = h̄ω1

2

(
p2

1 + q2
1

) + h̄ω2x

2

(
p2

2x + q2
2x

)
+ h̄ω2y

2

(
p2

2y + q2
2y

) + h̄ω3

2

(
p2

3 + q2
3

)
(10)

represents a harmonic Hamiltonian. For each normal mode
dimensionless quantities qs and ps designate the coordinate
and conjugate momentum. Here ωs is a harmonic frequency.
Throughout this paper we use ω and ν to denote the angular
frequency and wave numbers, respectively. The subscripts
s = 1 and s = 3 label symmetric and antisymmetric stretching
vibrations, respectively, whereas s = 2 relates to the bending
vibration labeled supplementarily by x and y subscripts in
agreement with the respective Cartesian axes of the body-
fixed (BF) frame. Here and in the following the axes for the
BF reference frame are shown with lowercase letters, whereas
these values referring to a laboratory-fixed (LF) frame are
shown with respective capital letters. The z axis of the BF
frame coincides with the C∞ symmetry axis of the CO2

molecule.
In a harmonic representation, the vibrational wave function

�vib(n) is factorized as a product |n1〉|n2x〉|n2y〉|n3〉 of four
one-dimensional oscillator vectors, whereas in the general
case

�vib(n) = |n1, n2x, n2y, n3). (11)

We recall that in an isolated CO2 molecule the bending
vibration is doubly degenerate, but under the action of an in-
termolecular perturbation the degeneracy of the bending mode
is lifted [5,25,26]. For the sake of generality, we leave pur-
posely in (10) the distinction between ω2x and ω2y. Our work
focuses in particular on consideration of the rovibrational in-
tensity effects in a collision-induced ν2 + ν3 absorption band
in interacting CO2 molecules, so retaining a distinction be-
tween ω2x and ω2y is justified. Before proceeding to the CIA
case, we demonstrate how our suggested approach works in
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the case of permitted fundamental and combination absorp-
tion bands of an isolated CO2 molecule.

We introduce the pertinent laboratory-fixed component of
the dipole moment as

μLF = �xμx + �yμy + �zμz, (12)

in which � j is the direction cosine of the Eckart BF j axis and

μ j =
∑

s

∂μ j

∂qs
qs + 1

2

∑
sr

∂2μ j

∂qs∂qr
qsqr + · · · (13)

is the BF component of the dipole, with j = x, y, z. We recall
that a linear molecule like CO2 having D∞h symmetry lacks a
permanent dipolar moment.

A. The ν3 band

1. Herman-Wallis factor determined by variation
of the moment of inertia

We begin from an evaluation of the first coefficient cnn′ for
an allowed ν3 rovibrational transition in a CO2 molecule. In
this case we involve only the z projection of a dipolar moment
in a BF frame, μz. According to (6), we obtain, for the first
coefficient in the series (5),

cν3 =
∑

m �=0001

(0000|μz|m)

(0000|μz|0001)

(m|ρ|0001)

E0001 − Em
. (14)

Quantum numbers in (14) correspond to the notation in (11).
We retain only the most significant terms in (14) containing,
with respect to m states, |1001), |0201), and |0021). All other
terms such as, e.g., |1000), |0100), |0010), |0101), and |2000)
vanish because of the symmetry requirements. The wave func-
tions that we retain are easily seen to be mixed by Fermi
resonance. We consequently introduce these normalized states

|F±〉 = |1001〉√
2

± |0201〉 + |0021〉
2

(15)

that correspond to the Fermi energies [27] E+ and E−, respec-
tively. As in a first approximation

〈0201|ρ|0001〉 = 0,

〈0021|ρ|0001〉 = 0,

〈1001|ρ|0001〉 = ∂ρ

∂q1
〈1|q1|0〉,

and

E0001 − E+ ≈ E0001 − E− ≈ −h̄ω1;

then

cν3 = − (0000|μz|F+) + (0000|μz|F−)

2h̄ω1(0000|μz|0001)

∂ρ

∂q1
. (16)

Here we take into account only the linear term in the expres-
sion of the moment of inertia as a function of the normal
coordinate q1, that is [10],

I = I0(1 + λ1q1)2,

in which

I0 = MO

2
r2

OO, λ1 = 1

rOO

√
2h̄

MOω1
=

√
2Be

ν1
,

with

Be = h̄2

2I0
.

The λ1 value just introduced has the meaning of a dimension-
less vibrational amplitude.

In a CO2 molecule Be = 0.3916 cm−1, the harmonic fre-
quency ν1 = 1353.714 cm−1 [28], the mass of atomic oxygen
is MO = 16 a.u., and the separation between oxygen atoms is
rOO = 2rCO = 2.32 Å. As a result we have

1

h̄ω1

∂ρ

∂q1
= −2λ3

1 = −2.8 × 10−5.

The matrix elements of least order vanish from the nu-
merator of (14), so the coefficient cν3 is proportional to
the matrix element of a combination band. For this reason
the absolute value of cν3 becomes small. Assuming values
(0000|μz|0001) = 0.473 D, (0000|μz|F+) = 3.38 × 10−2 D,
and (0000|μz|F−) = −2.74 × 10−2 D from [28], we achieve
the estimated value that we seek: cν3 = −1.88 × 10−7. This
value disagrees strongly with what was derived experimen-
tally [29]: cν3 = −1.432(82) × 10−4. In the next section we
show that the Coriolis effect largely determines the first
Herman-Wallis correction in this case.

The Coriolis contribution to the ν3 rotational energy was
first estimated by Nielsen [30]. The theory of the Herman-
Wallis correction terms in linear molecules was developed in
various publications, e.g., [13,16,28,31–33]. In the seminal
paper by Watson [13] the effect of a Coriolis interaction in lin-
ear molecules was thoroughly considered; taking the Coriolis
terms into account was shown to be crucial to achieve agree-
ment between the calculated and observed Herman-Wallis
factors for the fundamental bands.

2. Coriolis effect on the Herman-Wallis factor in the ν3 band

To examine how the Coriolis effect impacts rovibrational
line intensities we represent the Schrödinger equation in the
form (

Hvib + H0
rot + Tcor

)
�cor (nJ ) = EnJ�cor (nJ ), (17)

in which kinetic-energy term Tcor relevant to Coriolis in-
teraction consists of contributions that relate to the doubly
degenerate bending coordinate

Tcor = T x
cor + T y

cor. (18)

Here [23]

T x
cor = − h̄

I0
√

ω2ω3
(ω2q3 p2y − ω3q2y p3)Jx (19)

and

T y
cor = h̄

I0
√

ω2ω3
(ω2q3 p2x − ω3q2x p3)Jy. (20)

The Coriolis coupling parameter ζ is set to +1 in (19) and −1
in (20) because we are dealing with the case of a symmetric
triatomic molecule [13]. In this section we consider an iso-
lated monomer only, so we assume ω2x = ω2y = ω2. Besides
opposite signs, expressions (19) and (20) differ only by the
interchange of x and y coordinates. We hence consider below
only one term T y

cor in detail.
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According to the above relations, kinetic energy is
parametrized with components of angular momentum; the
theorem of extraneous quantum numbers is hence applicable.
In this case we apply the theorem as if it were valid not only
for the quantum numbers but also for the operators them-
selves. For the wave function we have

�cor (nJ ) = |nJ〉 + Jy|nJ, 1〉 + · · · .

This relation must be understood as that quantity Jy is by
no means a c number in the Dirac notation. Instead, it acts
directly on |nJ, 1〉 to obtain a correction due to a vibration-
rotation interaction. Applying the theorem (3) to the operator
Jy, we replace u by Jy and ρ by h̄

I0
√

ω2ω3
(ω2q3 p2x − ω3q2x p3).

As a result, in the first order with respect to Jy we obtain, in
agreement with (4),

|nJ, 1〉 = ∂�cor (nJ )

∂Jy

∣∣∣∣
Jy=0

= h̄

I0
√

ω2ω3

∑
m �=n

〈m|(ω2q3 p2x − ω3q2x p3)|n〉
En − Em

|mJ〉

= �rot (J, K, M )|n, 1〉, (21)

in which �rot is the wave function of a rigid rotor (9); the first-
order correction to the harmonic vibrational wave function
becomes

|n, 1〉 = [
√

(n2x + 1)(n3 + 1)|n1, n2x + 1, n2y, n3 + 1〉
+ √

n2xn3|n1, n2x − 1, n2y, n3 − 1〉]

× i

2I0
√

ω2ω3

(ω3 − ω2

ω2 + ω3

)
+ [

√
(n2x + 1)n3|n1, n2x + 1, n2y, n3 − 1〉

+
√

n2x(n3 + 1)|n1, n2x − 1, n2y, n3 + 1〉]

× i

2I0
√

ω2ω3

(ω2 + ω3

ω3 − ω2

)
. (22)

Thus, restricting to the first order, we obtain

�cor (nJ ) = |nJ〉 + Jy�
rot|n, 1〉, (23)

and the corresponding matrix element of a component of
dipolar moment (12) is

〈�cor (nJ )|μLF|�cor (n
′J ′)〉

= 〈nJ|μLF|n′J ′〉 + 〈
�rot

i

∣∣m∣∣�rot
f

〉 + · · · , (24)

in which

〈nJ|μLF|n′J ′〉 = 〈
�rot

i

∣∣〈n|μLF|n′〉∣∣�rot
f

〉
(25)

is the matrix element for the transition moment with no
vibration-rotation coupling,

m = 〈n, 1|Jy�xμx|n′〉 + 〈n|μx�xJy|n′, 1〉 (26)

is the operator that corresponds to the effective dipolar-
moment operator in Watson’s theory [13], and

�rot
i = �rot (J, K, M ), �rot

f = �rot (J ′, K ′, M ′).

Setting

Jy�x = 1
2 {Jy,�x} + 1

2 [Jy,�x]

and

�xJy = 1
2 {Jy,�x} − 1

2 [Jy,�x],

in which the anticommutator and commutator are denoted by
{. . . , . . .} and [. . . , . . .], respectively, we obtain

m = {Jy,�x}
2

(〈n, 1|μx|n′〉 + 〈n|μx|n′, 1〉). (27)

Only the terms containing anticommutators are retained in
expression (27) as only these terms in (26) depend on the rota-
tional operator Jy. The commutators are expressible via the BF
direction cosines, for instance, [Jy,�x] = ih̄�z. The commu-
tator terms hence are disregarded while calculating the first
Herman-Wallis correction factors; the relevant part of the
dipole-moment operator has a purely vibrational nature.

For band ν3 we have n′
3 = 1, whereas n1 = n2x = n2y =

n3 = n′
1 = n′

2x = n′
2y = 0. Using (22), we find

m = i

I0

√
ω2ω3

ω2
3 − ω2

2

〈0000|μx|0100〉{Jy,�x}. (28)

We proceed to find the m� component following the trans-
formations with T x

cor (19) analogous to what has been done
with T y

cor (20). Equation (23) transforms thus into

�cor (nJ ) = |nJ〉 + Jy�
rot|n, 1〉 − Jx�

rot|n, 1〉�. (29)

Here the starred vector |n, 1〉� is determined according to (22),
in which x is replaced with y. The corresponding complete
matrix element becomes of form

〈�cor (nJ )|μLF|�cor (n
′J ′)〉 = 〈nJ|μLF|n′J ′〉

+ 〈
�rot

i

∣∣(m + m�)
∣∣�rot

f

〉 + · · · ,

(30)

in which

m� = − i

I0

√
ω2ω3

ω2
3 − ω2

2

〈0000|μy|0010〉{Jx,�y}. (31)

Noting that

〈0000|μx|0100〉 = 〈0000|μy|0010〉,

ih̄({Jy,�x} − {Jx,�y}) = [
�z, J2

x + J2
y

]
,

and K = K ′, the element 〈�rot
i |(m + m�)|�rot

f 〉 is equal to
2h̄
I0

√
ω2ω3

ω2
3−ω2

2
〈0000|μx|0100〉Fz�u, in which

Fz = 〈
�rot

i

∣∣�z

∣∣�rot
f

〉
.

Summation of |Fz|2 with respect to M and M ′ yields a Hönl-
London factor that is accurate within a constant factor [24].
As h̄2

2I0
= Be and

〈nJ|μLF|n′J ′〉 = 〈0000|μz|0001〉Fz,

we find eventually

〈�cor (nJ )|μLF|�cor (n
′J ′)〉

= 〈0000|μz|0001〉Fz(1 + cν3�u), (32)
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in which

cν3 = 4Be

h̄

√
ω2ω3

ω2
3 − ω2

2

〈0000|μx|0100〉
〈0000|μz|0001〉 (33)

or

cν3 = 4Be

√
ν2ν3

ν2
3 − ν2

2

μ′
2

μ′
3

, (34)

in which μ′
2 and μ′

3 are the dipole derivatives with respect to
normal coordinates q2 and q3. The formula (34) is identical
to what Watson obtained [13]. To estimate numerically this
coefficient we insert the following values from [13]: ν1 =
1353.714 cm−1, ν2 = 672.743 cm−1, ν3 = 2396.445 cm−1,
μ′

2 = −0.169 D, and μ′
3 = 0.473 D. After substitution of

these values into (34) we obtain cν3 = −1.34 × 10−4, i.e., the
value reported previously in [13]. This value agrees satisfac-
torily with the experimental value

−1.432(82) × 10−4

obtained in [29].

B. The ν2 band

For the ν2 band we might have either n′
2x = 1 or n′

2y = 1,
whereas n1 = n2x = n2y = n3 = n′

1 = n′
3 = 0. In general, the

wave function of a degenerate bending mode is a mixture of
two wave functions relevant to individual vibrations in the xz
and yz planes. We consider first the case n′

2x = 1. Using the
formulas (12) and (22), we obtain

〈�cor (nJ )|μLF|�cor (n
′J ′)〉

= 〈nJ|μLF|n′J ′〉 + 〈
�rot

i

∣∣m(x)
∣∣�rot

f

〉 + · · · , (35)

in which

m(x) = i

I0

√
ω2ω3

ω2
3 − ω2

2

〈0000|μz|0001〉{Jy,�z}

= iμ′
3√

2I0

√
ω2ω3

ω2
3 − ω2

2

{Jy,�z}. (36)

We find analogously the pertinent effective dipole matrix
element for the case n′

2y = 1:

m(y) = − iμ′
3√

2I0

√
ω2ω3

ω2
3 − ω2

2

{Jx,�z}. (37)

To consider a general case we proceed as follows, introducing
a new operator

m(xy) = iμ′
3

I0

√
ω2ω3

ω2
3 − ω2

2

({q2xJy,�z} − {q2yJx,�z}) (38)

that yields exact expressions for both (36) and (37), re-
quired for the calculation of vibrational matrix elements
〈0000| · · · |0100〉 and 〈0000| · · · |0010〉, respectively. As

ih̄({q2xJy,�z} − {q2yJx,�z})

= −[
q2x�x + q2y�y, J2

x + J2
y

]
(39)

and 〈
�rot

i

∣∣[q2x�x + q2y�y, J2
x + J2

y

]∣∣�rot
f

〉
= 〈

�rot
i

∣∣(q2x�x + q2y�y)
∣∣�rot

f

〉
× [J ′(J ′ + 1) − K ′2 − J (J + 1) + K2], (40)

then〈
�rot

i

∣∣m(xy)
∣∣�rot

f

〉 = −2μ′
3

I0

h̄
√

ω2ω3

ω2
3 − ω2

2

�u

× 〈
�rot

i

∣∣(q2x�x + q2y�y)
∣∣�rot

f

〉 + · · · ,

(41)

in which we write explicitly only the term that contributes
to the first Herman-Wallis coefficient. To return to (35), in
which the corresponding vibrational matrix element is sug-
gested to be calculated, we must find the matrix element
from 〈�rot

i |m(xy)|�rot
f 〉 between the vibrational ground state

|n〉 = |0000〉 and excited state |n′〉 involved in the degenerate
bending vibration. Here we use the denotation n′ to emphasize
that the excited state relates to a combination of n′

2x and n′
2y

with phases that we do not define concretely. We rewrite (35)
as

〈�cor (nJ )|μLF|�cor (n
′J ′)〉

= 〈nJ|μLF|n′J ′〉 + 〈n|〈�rot
i

∣∣m(xy)
∣∣�rot

f

〉|n′〉 + · · · ,

(42)

in which for a perpendicular band μLF is reduced to �xμx +
�yμy or, in a harmonic approximation, μ′

2(q2x�x + q2y�y).
Combining (41), (42), and the quantity μ′

2〈n|〈�rot
i |(q2x�x +

q2y�y)|�rot
f 〉|n′〉, which is equal to 〈nJ|μLF|n′J ′〉, we obtain

〈�cor (nJ )|μLF|�cor (n
′J ′)〉

= 〈nJ|μLF|n′J ′〉(1 + cν2�u), (43)

in which

cν2 = −4Be

h̄

√
ω2ω3

ω2
3 − ω2

2

μ′
3

μ′
2

. (44)

Hence

cν2 = −4Be

√
ν2ν3

ν2
3 − ν2

2

μ′
3

μ′
2

. (45)

Substituting here the set of molecular parameters reported
at the end of the preceding section, we obtain the numeri-
cal value cν2 = 10.4 × 10−4. This value agrees satisfactorily
with the values cν2 = 10.52 × 10−4 and 9.64 × 10−4, cited in
[13,34], respectively. A comparison of (34) and (45) shows
that the latter is obtainable from the former (or vice versa) by
simply interchanging subscripts 3 ↔ 2.

C. The ν1 + ν3 and 2ν2 + ν3 bands

The linear term in the Herman-Wallis expansion largely
dominates over the quadratic and higher-order terms in the
case of fundamental transitions considered in the previous
sections. The bands associated with vibration-rotation reso-
nances were shown by Watson [35] to have a significantly
more important contribution from the quadratic dnn′�u2/2
part. The dominance of the quadratic term is evident from
an analysis of experimental data reported by Johns [29]. In
this section, despite the importance of quadratic factors, we
restrict ourselves to examine only linear terms in the Herman-
Wallis expansion for the Fermi-coupled bands ν1 + ν3 and
2ν2 + ν3. The reasons for this restriction are that we intend to
expand somewhat the presentation of our theoretical approach
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and that this example is instructive for further consideration of
the vibration-rotation intensity effect in the combination CIA
band.

Combination bands ν1 + ν3 and 2ν2 + ν3 originate from
the two states ν1 and 2ν2 coupled by Fermi resonance. The
relevant wave functions mixed by Fermi resonance are de-
noted by |F+) and |F−) to emphasize that, in contrast to (15),
these functions remain operative even beyond a harmonic
approximation. The matrix elements for both transitions are
expandable up to the first Herman-Wallis correction in the
form

(0000, J|μi|F±, J ′) = (0000|μi|F±)(1 + ci
F±�u). (46)

The dipolar moment μLF (12) has three components in the
LF frame. For a linear molecule we must consequently distin-
guish between a parallel absorption band, which is associated
with component μz, and a perpendicular band, which relates
to components μx and μy. We consider first the perpendicular
band issued from dipole projection μx. We have

cx
F± =

∑
m �=F±

(0000|μx|m)

(0000|μx|F±)

(m|ρ|F±)

E± − Em

= (0000|μx|0100)

(0000|μx|F±)

(0100|ρ|F±)

h̄(ω2 + ω3)
. (47)

Because

(0100|ρ|F±) ≈ 〈0100|ρ|0201〉√
2

,

the inverse moment of inertia ρ fails to comprise simul-
taneously both q2x and q3. In the harmonic approximation
(0100|ρ|F±) = 0 and cx

F± = 0.
To evaluate the influence of the vibration-rotational inter-

action on dipole matrix elements, it suffices to consider only
the parallel contribution. Equation (6) enables us to derive
directly the expressions for both Herman-Wallis coefficients

cz
F± =

∑
m �=F±

(0000|μz|m)

(0000|μz|F±)

(m|ρ|F±)

E± − Em

= (0000|μz|0001)

(0000|μz|F±)

1

2h̄ω1

∂ρ

∂q1

= − (0000|μz|0001)

(0000|μz|F±)
λ3

1, (48)

in which

(0001|ρ|F±) ≈ 〈0001|ρ|1001〉√
2

;

λ1 has the meaning of vibrational amplitude and has thus
a positive value. The qualitative effect of the rovibrational
correction depends on the signs of the matrix elements in
the numerator and denominator of (48). Provided the signs of
both matrix elements are the same, the correction causes line
intensities within the P branch to increase and those within
the R branch to decrease.

To evaluate the coefficients in question we apply the values
λ3

1 and (0000|μz|0001) cited in the preceding section and bor-
row the denominator of (48) from [29], i.e., (0000|μz|F±)2 =
0.001 084 D2 or 0.000 722 D2, for two values of matrix el-
ements, respectively. We hence evaluate the absolute values

cF± = 2.46 × 10−4 and 2.01 × 10−4. These values must be
compared with experimental data from [29] (see also [36]):
cF± = 1.02(14) × 10−4 and 0.37(18) × 10−4. Although both
sets of values appear to be somewhat overestimated in our
calculations compared to experiment, we bear in mind that
our estimate is made in a first approximation only. We thus
suggest that the correspondence between both calculated and
experimental coefficients is almost as satisfactory for the con-
sidered combination bands as it is for the fundamental bands.

IV. COLLISION-INDUCED CO2 ν2 + ν3 BAND

To interpret the phenomenon of rovibrational interaction in
the CIA spectrum of a linear molecule it suffices to examine
only one component of the induced dipolar moment in the
laboratory-fixed frame of reference. Choosing for this purpose
the Z component, in terms of spherical tensor operators for
which μLF

Z = μLF
0 we have [24]

μLF
0 =

∑
�′=0,±1

D(1)∗
0,�′ (φ, θ, 0)μBF

�′ . (49)

The corresponding BF components, represented through
Cartesian BF μind projections labeled with x, y, and z, are

μBF
0 = μind

z , μBF
±1 = 1√

2

( ∓ μind
x − iμind

y

)
.

The z axis of the BF frame coincides with the symmetry axis
C∞ of a CO2 molecule.

Note that in this section we choose to consider the CIA
rovibrational intensities expressed via the effective dipole
moment components (see [5] for details) in order to main-
tain consistency with the theory of allowed transitions as
developed in the precedent sections. In reality, the vector of
the permanent dipole transforms according to the irreducible
D(1) representation, whereas the induced dipole components
transform in agreement with their genesis from molecular
polarizability, which is the second-rank tensor. As a result,
the rotationally invariant component of the polarizability has
to transform in agreement with the fully symmetrical D(0)

representation, whereas other components have to follow the
D(2) representation. The above-mentioned distinction affects
somewhat the Hönl-London rotational factors [5], although it
is irrelevant to rovibrational Herman-Wallis factors, which are
considered in the present paper.

Using the rotational wave functions (9), we readily calcu-
late the rotational matrix elements

〈�rot (J, K, M )|D(1)∗
0,�′ |�rot (J ′, K ′, M ′)〉

= (−1)M−K
√

(2J + 1)(2J ′ + 1)

×
(

J ′ 1 J
M ′ 0 −M

)(
J ′ 1 J
K ′ �′ −K

)
. (50)

In general, two possibilities must be considered, which cor-
respond to �K = K ′ − K equal either ±1 or 0; we hence
have either perpendicular or parallel bands, respectively. Both
parallel and perpendicular subbands are capable of manifest-
ing themselves in the combination transition. In this respect
the CIA band ν2 + ν3 differs substantially from the allowed
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fundamental bands considered above, for which ν2 is a per-
pendicular band and ν3 is a parallel band.

Another distinction from the case of an allowed bands
arises because the intensity of a CIA band is entirely de-
termined by the perturbation caused by an intermolecular
interaction. The observed CIA intensity is hence a result of the
statistical average over a broad ensemble of pair states, no part
of which in general warrants neglect. We must consequently
bear in mind that the respective CIA matrix elements are
no longer considered in terms of static molecular parameters
characteristic of an isolated molecule; these values instead
vary as a function of coordinates describing the instantaneous
spatial positions of the interacting molecules. In what follows,
we assume that the matrix elements for CIA, as well as all
other values which vanish in the absence of an intermolecular
perturbation, are effective parameters that arise from a statis-
tical averaging over all available pair states.

A. Perpendicular contribution

We first consider a perpendicular contribution with its re-
spective selection rule �K = ±1. In this case we calculate
the vibrational matrix element from either μind

+1 or μind
−1, which

is parametrically affected by a rotational movement. As both
μind

+1 and μind
−1 include μind

x and μind
y , one might consider the

general expression

(nJ|μind
i |n′J ′)

= (n|μind
i |n′)

(
1 + ci

nn′�u + di
nn′

�u2

2
+ · · ·

)
, (51)

which is a natural extension of a Herman-Wallis series to
induced-absorption spectra. In this exotic case the analogs of
the Herman-Wallis coefficients are readily obtained with the
theorem of extraneous quantum numbers (3)

ci
nn′ = 1

(n|μind
i |n′)

∑
m �=n′

(n|μind
i |m)

(m|ρ|n′)
En′ − Em

(52)

and

di
nn′ = (nJ|μind

i
∂2

∂u2 |n′J )

(n|μind
i |n′)

. (53)

Higher-order terms can be obtained in a similar way, although
such an extension is superfluous for the sake of the present
work.

We consider the first ci
nn′ coefficient in (51) in detail tak-

ing the CO2 CIA band ν2 + ν3 as an example. We restrict
ourselves to consider only the x component of the bending
vibration involved in this combination band. In this case the
matrix elements for either μind

+1 or μind
−1 reduce obviously to the

matrix element for μind
x . We have

cx
ν2+ν3

= (0000|μx|0100)

(0000|μind
x |0101)

(0100|ρ|0101)

E0101 − E0100
. (54)

Here (0000|μind
x |0101) is the matrix element for an in-

duced dipole transition and (0000|μx|0100) is the matrix
element for a ν2 allowed transition. The matrix element of
ρ, (0100|ρ|0101), vanishes unless a molecule is subject to
an intermolecular perturbation. In a harmonic representation
it suffices to restrict the function ρ to

ρ = ∂ρ

∂q1
q1 = −4Beλ1q1.

An external perturbation breaks the initial symmetry of an
isolated linear molecule so that harmonic frequencies of a
perturbed molecule slightly alter; a harmonic vibrational po-

tential can thus be written as h̄ω′
1

2 q′2
1 + h̄ω′

2x
2 q′2

2x + h̄ω′
2y

2 q′2
2y +

h̄ω′
3

2 q′2
3 . The new vibrational coordinates are related to the

initial variables through the linear combinations with the per-
tinent expansion coefficients bs′,s:

q′
s′ = bs′,1q1 + bs′,2xq2x + bs′,2yq2y + bs′,3q3.

For the potential energy expressed in the initial, i.e., un-
perturbed, coordinates we hence have h̄ω1

2 q2
1 + h̄ω2x

2 q2
2x +

h̄ω2y

2 q2
2y + h̄ω3

2 q2
3 + �H ind

anh, in which

�H ind
anh = a12q1q2x + a13q1q3 + a23q2xq3 + · · · . (55)

We focus on only the x component of the bending vibra-
tion for the perpendicular subband and on the z component
for the parallel subband. We consequently consider only this
part a12q1q2x + a13q1q3 of �H ind

anh, because the former and the
latter make (0001|ρ|0101) and (0100|ρ|0101) not vanish. To
find a first-order correction to a vibrational wave function
we apply the perturbation theory in its formalism of poly-
nomials of quantum numbers, which is described in detail in
[17,20,22]. As a result we have

|n1, n2x, n2y, n3) = |n1, n2x, n2y, n3〉 + a12

2h̄

( √
n1n2x

ω1 + ω2x
|n1 − 1, n2x − 1, n2y, n3〉 +

√
(n1 + 1)n2x

−ω1 + ω2x
|n1 + 1, n2x − 1, n2y, n3〉

+
√

n1(n2x + 1)

ω1 − ω2x
|n1 − 1, n2x + 1, n2y, n3〉 +

√
(n1 + 1)(n2x + 1)

−ω1 − ω2x
|n1 + 1, n2x + 1, n2y, n3〉

)

+ a13

2h̄

( √
n1n3

ω1 + ω3
|n1 − 1, n2x, n2y, n3 − 1〉 +

√
(n1 + 1)n3

−ω1 + ω3
|n1 + 1, n2x, n2y, n3 − 1〉

+
√

n1(n3 + 1)

ω1 − ω3
|n1 − 1, n2x, n2y, n3 + 1〉 +

√
(n1 + 1)(n3 + 1)

−ω1 − ω3
|n1 + 1, n2x, n2y, n3 + 1〉

)
. (56)
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Consequently,

(0100|ρ|0101) = ω1a13√
2h̄

(
ω2

3 − ω2
1

)
and

cx
ν2+ν3

= −2
√

2
a13Beω1λ1

h̄2ω3
(
ω2

3 − ω2
1

)
(
0000

∣∣μx

∣∣0100
)

(0000|μind
x |0101)

(57)

or

cx
ν2+ν3

= −2
√

2
a13Beν1λ1

ν3
(
ν2

3 − ν2
1

) (0000|μx|0100)

(0000|μind
x |0101)

. (58)

In the latter expression the quantities a13, Be, ν1, and ν3 are in
cm−1.

The pronounced skewness between P and R branches is
obviously expected because the matrix element for a weakly
induced transition in the denominator of (58) is significantly
less than that of a dipole-allowed transition in the respective
numerator. We pay attention, however, to the smallness of the
a13 mixed derivative, which is strictly equal to zero in the
absence of an external perturbation.

B. Parallel contribution

For the parallel contribution �K = 0. We take into account
the z component of the dipole moment to find the matrix
element

(nJ|μind
z |n′J ′) = (n|μind

z |n′)
(
1 + cz

nn′�u
)
, (59)

with

cz
ν2+ν3

= (0000|μz|0001)

(0000|μind
z |0101)

(0001|ρ|0101)

E0101 − E0001
. (60)

Here, only the term a12q1q2x in �H ind
anh makes (0001|ρ|0101)

not vanish. Applying (56), we obtain

(0001|ρ|0101) = − ω1a12√
2h̄

(
ω2

1 − ω2
2x

) .

As a result,

cz
ν2+ν3

= 2
√

2
a12Beω1λ1

h̄2ω2x
(
ω2

1 − ω2
2x

) (0000|μz|0001)

(0000|μind
z |0101)

(61)

or

cz
ν2+ν3

= 2
√

2
a12Beν1λ1

ν2x
(
ν2

1 − ν2
2x

) (0000|μz|0001)

(0000|μind
z |0101)

, (62)

in which a12, Be, ν1, and ν2x are expressed in cm−1. Here
again we emphasize the opportunity of an important distortion
between the line intensities within P and R branches, which
is likely to exceed significantly the effect of conventional
Hönl-London factors. Also, analogously to the case of per-
pendicular transitions, the smallness of the a12 derivative is
able to mitigate somewhat the effect of the enhanced ratio of
allowed and induced matrix elements.

V. DISCUSSION

In this work we consider how the rovibrational interaction
in linear molecules affects the distribution of the intensi-
ties of absorption lines within P and R rotational branches.

These line intensities are known to be determined primarily
by the respective selection rules and thermal populations of
initial and final states of a rovibrational transition. In a first
approximation the distribution of intensity is governed by
the Hönl-London factors that are functions of the quantum
numbers for angular momentum and its projection. Herman
and Wallis [12] first suggested that taking into account the
rovibrational interaction, which modifies the intensity distri-
bution, can be implemented on multiplying the vibrational
transition matrix element by a factor which can be cast into
a series against increasing powers of �u. Only the first two
terms in this series suffice conventionally to achieve desirable
agreement with the measured data. The effect of the correction
of the unperturbed intensity distribution is thus determined
by the magnitude of the first two coefficients in the Herman-
Wallis expansion.

We have reformulated the existing theory to calculate the
Herman-Wallis factors through the so-called theorem of extra-
neous quantum numbers [19]. The advantage of this approach
consists in making the calculations significantly easier, to such
an extent that the derivation of the Herman-Wallis factors
becomes routine.

In the first part of our work we focused on the calculation
of the Herman-Wallis factors for allowed absorption bands
in a CO2 molecule. The opportunity has arisen to apply the
theorem of extraneous quantum numbers to operators instead
of quantum numbers themselves. The theorem was initially
developed in [18–20,22] to calculate vibrational matrix ele-
ments parametrized by a rotational quantum number (called at
that time extraneous). In the present work we showed that the
theorem is valid also provided that vibrational matrix elements
are parametrized with an operator. In the case we consid-
ered, the angular momentum, which is involved in a Coriolis
interaction, plays the role of such an operator. As a result,
we obtained the first Herman-Wallis coefficients arising from
Coriolis interaction. The contribution from the modulation of
the moment of inertia by the vibrational movement is shown
to have an almost negligible effect on the Herman-Wallis
coefficients. Our obtained expressions coincide with those
derived earlier by Watson [13]. The corresponding factors
agree satisfactorily with observations.

In the second part of this work we extended our theory to
the case of a collision-induced absorption band. We remark
that the effect of rovibrational interaction on the line inten-
sities was considered in a number of publications (see, e.g.,
[14]) dedicated to analysis of the diatomic Raman spectra,
for which the rotational selection rules are similar to the CIA
case. However, this effect was never investigated in much
detail and relevant analytic theory is worth improving. An
extension of our theory to CIA might seem somewhat ill-
grounded because the CIA spectra, beyond minor exclusions,
do not demonstrate the traces of individual rovibrational lines.
The envelope of a CIA rovibrational band is known to be
roughly decomposable into individual rotational branches, in
agreement with convention for the CIA selection rule �J =
0,±2. Baranov [1] first suggested that the band ν2 + ν3 of
CO2 has a pronounced contribution from the lines obeying
�J = ±1 selection rules, thus forming P and R branches. This
ad hoc idea was supported theoretically in [5] by presupposing
a virtually free rotation of CO2 molecules interacting with
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each other. Although this assumption obviously is not entirely
justified, we adopted it in terms of a reasonable hypothesis,
which is valid at least in the vicinity of room temperature. We
have introduced a series (51) which is an analog of a conven-
tional Herman-Wallis expansion. We suggested further that
the vibrational wave functions are affected by the rotational
movement via a variation of the moment of inertia of a CO2

molecule. As a result, we concluded that the first coefficient of
Herman-Wallis type for the CIA band ν2 + ν3 is proportional
to the ratio of two rovibrational transition matrix elements as it
occurs for allowed transitions. In this case, however, we have
a weak matrix element of the CIA transition in the denom-
inator, whereas the matrix element for an allowed transition
appears in the numerator. As a result, we expect a pronounced
distortion of the line intensities in the P and R branches. We
emphasize, however, that the final effect is mitigated by small
force constants a13 and a12 in (58) and (62).

In contrast to induction in diatomic molecules, the effect
of an externally applied perturbation might have multifarious
consequences in the case of polyatomic molecules. Besides
the direct effect that gives rise to an induced dipole, there
is a somewhat indirect effect, which stems from the viola-
tion of the initial molecular symmetry. For a linear molecule
of symmetry D∞h an expansion of the potential energy and
induced dipole against normal coordinates has some zero el-
ements because the respective terms fail to satisfy symmetry
requirements [9–11]. The application of an arbitrarily oriented
external field might eliminate this restriction, as shown, e.g.,
in [5]. The matrix element for μind

x can be expressed in the
form

(0000|μind
x |0101) = ∂μind

x

∂q2x

a223ω2x

h̄ω3(ω3 + 2ω2x )
+ 1

2

∂2μind
x

∂q2x∂q3
.

(63)

The terms on the right-hand side of Eq. (63) contain the

parameters a223 and ∂2μind
x

∂q2x∂q3
that arise because of the broken

symmetry of a CO2 molecule and vary as functions of an ex-
ternal perturbation. The analogous formula for μind

z becomes

(0000|μind
z |0101) = ∂μind

z

∂q3

a233ω3

h̄ω2x(ω2x + 2ω3)
+ 1

2

∂2μind
z

∂q2x∂q3
.

(64)

The greater the strength of an applied external field is, the
more important these newly induced terms become. At zero
perturbation these terms vanish.

Both harmonic force coefficients a12 and a13 and anhar-
monic coefficients, such as a223, a233, ∂2μind

x
∂q2x∂q3

, and ∂2μind
z

∂q2x∂q3
, are

ensemble-averaged values; they vanish completely in an iso-
lated CO2 molecule, i.e., in the case when an intermolecular
or other external perturbation is absent. In the case of CIA

we state intuitively that the magnitude of these parameters is
related to the gaseous density. Moreover, we speculate that
the density dependence of the “indirect” force coefficients and
dipole derivatives are the same, so the factor cν2+ν3 is inde-
pendent of the gas density. This effect means that the analog
of the Herman-Wallis factor we introduced can be regarded
as a true molecular characteristic which does not depend on
the strength of an external perturbation. Regarding (58) and
(62), we speculate further on the possible signs of factors
cx
ν2+ν3

and cz
ν2+ν3

. Because the sign of the matrix element for
the ν1 allowed transition is known to be positive, we have
several options, which can be verified by comparison with an
as yet tentative representation of the CIA band shape from
[1]. From the simulation performed in [1], the lines in the R
branch seem to gain significant intensity, whereas the lines in
the P branch lose intensity in comparison to that prescribed
by Hönl-London factors only. If so, we state that the effective
force coefficient a12 has the same sign as the matrix element
(0000|μind

z |0101), whereas the force coefficient a13 has an
opposite sign with respect to (0000|μind

x |0101).

VI. CONCLUSION

A theoretical approach was developed to calculate the
Herman-Wallis factors for rovibrational spectra of symmet-
rical linear molecules. This approach relies largely on the use
of the theorem of extraneous quantum numbers [19]. Taking
allowed bands ν3 and ν2 and resonances ν1 + ν3 and 2ν2 + ν3

as examples, we demonstrated the validity of our approach.
The first Herman-Wallis factor was shown to be largely due to
a Coriolis interaction in the case of a fundamental transition.
In contrast, for a combination band the variation of inertia
moment determines the Herman-Wallis linear factors. Using a
simplifying assumption of free rotation of CO2, we considered
the impact of rovibrational interaction on the shape of the
collision-induced absorption band ν2 + ν3. After introducing
an analog of the Herman-Wallis expansion, we found expres-
sions for the effective cν2+ν3 coefficients for both parallel and
perpendicular constituents of the induced P and R branches.
The possibility for these branches to manifest themselves in
CIA spectra was initially suggested ad hoc by Baranov [1]
and then proved theoretically in [5]. Regarding the cν2+ν3

CIA profile as simulated [1], we speculated about the relative
signs of the effective force coefficients and transition matrix
elements, which are involved in collision-induced absorption.
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