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Shell-confined atom and plasma: Incidental degeneracy, metallic character, and information entropy
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Shell-confined atoms can serve as a generalized model to explain both the free and confined conditions. In
this scenario, an atom is trapped inside two concentric spheres of inner (Ra) and outer (Rb) radii. The choice
of Ra and Rb renders four different quantum-mechanical systems. In hydrogenic atoms, they are termed (i) the
free hydrogen atom (FHA), (ii) the confined hydrogen atom, (iii) the shell-confined hydrogen atom (SCHA),
and (iv) the left-confined hydrogen atom (LCHA). By placing Ra and Rb at the location of radial nodes of
respective free n and � states, a new kind of degeneracy may arise. At a given n of the FHA, n(n+1)(n+2)

6 isoenergic

states with energy − Z2

2n2 exist. Furthermore, within a given n, the individual contribution of each of these four
potentials has also been enumerated. This incidental degeneracy concept is further explored and analyzed in
certain well-known plasma (Debye and exponential-cosine-screened) systems. Multipole oscillator strength f (k)

and polarizability α(k) are evaluated for systems (i)–(iv) in some low-lying states (k = 1 − 4). In excited states,
negative polarizability is also observed. In this context, the metallic behavior of H-like systems in the SCHA
is discussed and demonstrated. Additionally, analytical closed-form expression of f (k) and α(k) are reported
for 1s, 2s, 2p, 3d, 4 f , 5g states of the FHA. Finally, Shannon entropy and Onicescu information energies are
investigated in ground states in the SCHA and LCHA in both position and momentum spaces.

DOI: 10.1103/PhysRevA.104.042803

I. INTRODUCTION

The discovery and development of modern scientific tech-
niques have triggered intense interest in confined quantum
systems. Particularly, in such an environment, the rearrange-
ment of atomic orbitals and the increase in the coordination
number may lead to some fascinating, exceptional changes in
the physical and chemical characteristics [1], such as room-
temperature superconductivity [2], metallic behavior in the
ground state of H-like atoms [3], etc. These confined sys-
tems have profound applications in condensed-matter physics,
high-energy physics, astrophysics, and nanotechnology [4,5].
The idea of quantum confinement has been exploited in the
construction of an artificial atom or a quantum dot [6]. Such
systems typically consist of a group of electrons confined
within a potential well. Another important example is the
encapsulation of an atom or molecule in a fullerene cage or
zeolite cavity [7–9].

Atomic polarization plays a key role in explaining a num-
ber of processes in physics and chemistry. For example,
multipole polarizability of an atom reflects quantitative distor-
tion in the electronic charge distribution due to the presence
of an external electromagnetic field. A host of macroscopic
properties like the refractive index and dielectric constant can
be estimated via dipole polarizability [10]. The latter plays
an important role in the determination of physicochemical
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properties, like optical response, as well as atomic and molec-
ular interactions [11].

Originally, the confinement model was proposed to under-
stand changes in the static dipole polarizability of H atoms
due to the influence of effective pressure acting on a given sur-
face [12]. In this fundamental system, a H atom was trapped
inside an impenetrable spherical cavity. The results of the
designed model were utilized to gain knowledge about the
cores of planets like Jupiter and Saturn [13,14]. Of late, this
concept has been extended to a number of other physical,
chemical, and biological systems. A considerable amount of
theoretical work has been published, covering a large variety
of confining potentials [1,4], resulting in a vast literature.
A confined H atom (CHA) in a spherical enclosure [15–22]
represents a prototypical system whose Schrödinger equation
(SE) can be solved exactly [17,23] in terms of the Kummer
confluent hypergeometric function. A hydrogen atom under
the influence of several penetrable and impenetrable cavities
was explored with great enthusiasm, giving rise to several in-
teresting attractive properties from both chemical and physical
points of view. They offer some unique phenomena, especially
the rearrangement of atomic orbitals and simultaneous, inci-
dental, and interdimensional degeneracies [23]. Recently, a
virial-like theorem was also formulated for such a confine-
ment situation [24]. Moreover, various properties, such as the
hyperfine splitting constant, dipole shielding factor, nuclear
magnetic screening constant, static and dynamic polarizabili-
ties, information entropy, and Compton profiles [25–31], were
examined for a CHA. Further, information-theoretic measures
were investigated for H-like atoms in Debye plasmas [32]. A
recent study reported the influence of external electric field on
total Shannon entropy St [33]. Benchmark results for Rényi
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and Tsallis entropies and Onicescu information energy EO

for the ground state of a helium atom were studied using
Hylleraas’s method [34]. The static multipole polarizabilities
are estimated for H-like atoms using Hulthén’s potential un-
der both confined and free conditions [35] and for H atoms
in ring-shaped potentials [36]. Moreover, the generalized
pseudospectral (GPS) method was used to explore several
spectroscopic properties such as fine structure and hyperfine
splitting in a confined environment [37]. Photoionization in
H atoms in a fullerene cage was also reported for low-lying
s states [38]. However, an in-depth analysis of multipole os-
cillator strength and polarizability has yet to be done for H
atoms trapped inside a cage, which is one of the objectives of
this work.

A shell-confinement model provides a new, unique bound-
ary condition [3,39,40]. An appropriate choice of inner (Ra)
and outer (Rb) radii of the shell can describe all possible
radial boundary conditions reported so far in the literature.
For instance, when Ra = 0, Rb = rc (rc is a real finite num-
ber), the shell confined model reduces to the CHA. On the
other hand, for Ra = 0, Rb = ∞, a free H atom (FHA) is
achieved. When both Ra and Rb are nonzero and finite, the
atom is called a shell-confined H-like atom (SCHA). How-
ever, a finite Ra and infinite Rb indicate a left-confined H-like
atom (LCHA). All these four systems, in general, are referred
to as a generalized confined H atom (GCHA). The nodal
characteristics of orbitals of a FHA have played a signif-
icant role in the conceptual development of degeneracy in
the GCHA. Previously, an attempt was made to solve the
SE of the SCHA exactly [40], with limited success. Later,
an accurate numerical strategy [3,41] was prescribed to em-
phasize the occurrence of incidental degeneracy in a SCHA
[39]. This new degeneracy can also account for the pres-
ence of incidental and simultaneous degeneracy in a CHA.
The Kirkwood [42] and Buckingham [43] polarizabilities
were evaluated [39]. Sternheimer’s perturbation-numerical
method [44] was employed to calculate the dipole polariz-
ability in the ground state [39]. Buckingham’s results are
in good agreement with the polarizability obtained via the
perturbation-numerical procedure [3]. The higher value of
the dipole polarizability in the SCHA indicates metallic be-
havior of the H atom in the ground state [3]. Eigenvalues
and eigenfunctions of a D-dimensional SCHA were examined
recently [45].

In practice, a prototypical example of shell confinement
is the encapsulation of an atom or molecule in a fullerene
cage and zeolite cavity [46] or inside a metal-organic frame-
work [47,48]. Such an environment enhances the stability and
activity of noble-metal catalysts by inhibiting the sintering ef-
fect [48–52], amplifies photoluminescence in nanocrystals by
reducing nonradiative Auger processes [47,53], and removes
defects in polymer crystals [54,55]. Apart from these exam-
ples, shell confinement has potential applications in pollution
control [56,57], therapeutics [58], and energy storage [59–61].

In spite of having such versatile characteristics, the shell-
confinement model has been studied only sparingly. As a
consequence, literature on the topic is rather scarce. In this
article, our primary objective is to explore SCHAs sys-
tematically, mainly through energy and other characteristic

properties. Towards this goal, we consider incidental de-
generacy, multipole (2k-pole) oscillator strength f (k), and
polarizability α(k) (k = 1 − 4), as well as certain informa-
tion measures like S and EO in the ground and a few
low-lying states. Here, k = 1–4 represent dipole, quadrupole,
octupole, and hexadecapole moments, respectively. In the
GCHA model, the dependence of this degeneracy on principal
(n) and orbital (�) quantum numbers is analyzed. This helps us
to find the exact number of degenerate states (in the GCHA)
associated with a given FHA energy of the form − Z2

2n2 . Further,
we can also estimate the number of such degenerate states that
exist in the GCHA. The calculation of dipole polarizability
will guide us to examine the existence of the metallic character
in excited states. To this end, pilot calculations are performed
for ground and lower excited states by invoking the GPS
method. This article is constructed as follows: Sec. II provides
a brief description of the formalism employed in the present
work. Section III offers a detailed discussion of the results.
Finally, we conclude with a few remarks in Sec. IV.

II. THEORETICAL FORMALISM

The single-particle time-independent nonrelativistic radial
SE for a spherically confined system is expressed (atomic
units are employed unless otherwise stated) as[

−1

2

d2

dr2
+ �(� + 1)

2r2
+ Vc(r)

]
ψn,�(r) = En,� ψn,�(r), (1)

where Vc represents the desired confined potential [3,39]:

Vc(r) =
⎧⎨
⎩

v(r) for Ra � r � Rb,

∞ for 0 � r � Ra,

∞ for r � Rb.

(2)

Here, v(r) = − Z
r signifies the electron-nuclear Coulomb at-

traction potential (Z refers to the nuclear charge). Throughout
our work, Vc(r) will be referred to as the GCHA. Depending
upon the values of Ra and Rb, four distinct possibilities can be
envisaged:

(i) The case with Ra = 0, Rb = ∞ gives rise to the FHA.
(ii) The case with Ra = 0, Rb = rc, a finite number, corre-

sponds to the CHA.
(iii) The case with Ra �= 0, Rb �= ∞, with Ra and Rb being

finite, signifies the SCHA.
(iv) The case with Ra �= 0, Rb = ∞ refers to the LCHA.
So that we could calculate the energy, spectroscopic prop-

erties, and information entropy, the GPS method was invoked.
This provides a nonuniform, optimal spatial discretization that
retains high accuracy at both small and large distances. In
contrast to the standard finite-difference methods, a reason-
ably smaller number of grid point suffices, as this method
facilitates a denser mesh at small r but a coarser mesh at large
r. Further, by applying a symmetrization technique and a non-
linear mapping procedure, a symmetric eigenvalue equation is
achieved. It is computationally orders of magnitude faster than
finite-difference or finite-element methods. Thus, in essence,
it combines the simplicity of a direct finite-difference or
finite-element method with the fast convergence of finite-
basis-set approaches. Over time, it has successfully been used
to estimate various bound-state properties of several central
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potentials, including energy and other properties in CHAs and
confined many-electron atoms [24,25,29,62–66].

A. Multipole polarizability

By definition, the static multipole polarizability can be
conveniently written as

α
(k)
i = α

(k)
i (bound) + αk

i (continuum). (3)

Conventionally α
(k)
i is expressed in terms of a compact

sum-over-states form [67]. However, it can also be directly
estimated by employing the standard perturbation-theory
framework [68]. In the first procedure, Eq. (4) is modified to
[69]

α
(k)
i =

∑
n

f (k)
ni

(En − Ei )2

− c
∫ |〈Ri|rkYkq(r)|Rεp〉|2

(Eεp − Ei )
dε,

α
(k)
i (bound) =

∑
n

f (k)
ni

(�Eni )2
,

αk
i (continuum) = c

∫ |〈Ri|rkYkq(r)|Rεp〉|2
(Eεp − Ei )

dε. (4)

In Eq. (4), the summation and integral terms signify the bound
and continuum contributions, respectively, f (k)

ni represents the
multipole oscillator strength (k is a positive integer), and c is
a real constant depending only on quantum number �. q is an
integer. Here, f (k)

ni measures the mean probability of transition
between an initial state (i) and a final (n), which is normally
expressed as

f (k)
ni = 8π

(2k + 1)
�Eni|〈rkYkq(r)〉|2. (5)

Designating the initial and final states as |n�m〉 and |n′�′m′〉,
we can easily derive

f (k)
ni = 8π

(2k + 1)
�Eni

1

2� + 1

∑
m

×
∑

m′
|〈n′�′m′|rkYkq(r)|n�m〉|2. (6)

The application of the Wigner-Eckart theorem and sum rule
for the 3j symbol further leads to

f (k)
ni = 2

(2�′ + 1)

(2k + 1)
�Eni|〈rk〉n′�′

n� |2
{
�′ k �

0 0 0

}2

. (7)

The transition-matrix element is then given by the following
radial integral:

〈rk〉 =
∫ ∞

0
Rn′�′ (r)rkRn�(r)r2dr. (8)

Note that f (k)
ni depends on n and � but is independent of the

magnetic quantum number m. In this article, we compute f (k)

and α(k), with k = 1–4, for states with � = 1–4. It is necessary
to point out that the following multipole oscillator-strength

sum rule exists:

S(k) =
∑

m

f (k) = k〈ψi|r (2k−2)|ψi〉, (9)

where the summation includes all the bound and continuum
states.

B. Information entropy

Information-entropic measures are functionals of density,
and they quantify density in several complimentary ways.
They have potential applications in atomic avoided cross-
ing, the electron-correlation effect, quantum entanglement,
the orbital-free density functional theory, etc. [25,29]. S is
the arithmetic mean of uncertainty and is expressed as an
expectation value of the logarithmic density. Sr measures the
uncertainty in the localization of a particle in r space. A lower
Sr indicates higher accuracy in predicting the localization.
Similarly, Sp measures the uncertainty in predicting the mo-
mentum of a particle. Sr and Sp are expressed as

Sr = −
∫
R3

ρ(r) ln[ρ(r)] dr = 2π (Sr + S(θ,φ) ),

Sp = −
∫
R3

�(p) ln[�(p)] dp = 2π (Sp + S(θ,φ) ). (10)

Here, ρ(r) and �(p) signify r- and p-space densities, both
normalized to unity. Arguably, Sr and Sp provide the most
appropriate uncertainty relation [70]. Sr and Sp are the log-
arithmic functionals of density. As a consequence, the total
Shannon entropy is expressed as Sr + Sp,

St = Sr + Sp = 2π [Sr + Sp + 2S(θ,φ)] � 3(1 + ln π ). (11)

The quantities Sr, Sp, and Sθ are defined as [70]

Sr = −
∫ ∞

0
ρ(r) ln[ρ(r)]r2dr,

Sp = −
∫ ∞

0
�(p) ln[�(p)] p2d p,

ρ(r) = |ψn,l (r)|2, �(p) = |ψn,l (p)|2,

S(θ,φ) = −
∫ π

0
χ (θ ) ln[χ (θ )] sin θdθ, χ (θ ) = |
(θ )|2.

(12)

Another important measure studied in this work is EO, re-
ferring to the second-order entropic moment [31]. It is the
expectation value of density. It portrays behavior exactly op-
posite to S. It is also called disequilibrium, as it measures the
deviation of a distribution from equilibrium [71]. In r and p
space, the respective quantities are defined as

EO
r =

∫ ∞

0
[ρ(r)]2r2dr, EO

p =
∫ ∞

0
[�(p)]2 p2d p,

EO
θ,φ =

∫ π

0
[χ (θ )]2 sin θdθ,

EO
t = EO

r EO
p

[
EO

θ,φ

]2
, (13)

where EO
t is the total Onicescu information energy. Accurate

r-space wave functions are obtained by applying the GPS
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TABLE I. Incidental degeneracy in the GCHA associated with n = 4 for the FHA. See the text for details.

Serial No. of nodes State Ra Rb Energy FHA α(1) Sr

a 0 1s 0 1.87164450 −0.03125000 4s 0.27404101 2.22927677
b 0 1s 1.87164450 6.6108150 −0.03125000 4s 169.7527968 6.55734580
c 0 1s 6.6108150 15.51755 −0.03125000 4s 8609.5280939 9.15073565
d 0 1s 15.51755 100 −0.03125000 4s 322925.0793 12.14484806
e 1 2s 0 6.6108150 −0.03125000 4s −128.96450306 6.35223141
f 1 2s 1.87164450 15.51755 −0.03125000 4s 2265.40684074 9.10240049
g 1 2s 6.6108150 100 −0.03125000 4s 173868.83409 12.14272018
h 2 3s 0 15.51755 −0.03125000 4s 129.09470914 9.01151759
i 2 3s 1.87164450 100 −0.03125000 4s 80408.86663 12.09689745
j 3 4s 0 100 −0.03125000 4s 4992.00000000 12.07490387
k 0 2p 0 10-2

√
5 −0.03125000 4p 13.56524044 5.42877070

l 0 2p 10-2
√

5 10+2
√

5 −0.03125000 4p 1711.37938497 8.51079967
m 0 2p 10-2

√
5 125 −0.03125000 4p 84939.073612 11.63160747

n 1 3p 0 10+2
√

5 −0.03125000 4p −977.65896463 8.32046807
o 1 3p 10-2

√
5 105 −0.03125000 4p 40632.47423 11.61219021

p 2 4p 0 125 −0.03125000 4p 5107.1999999 11.53386387
q 0 3d 0 12 −0.03125000 4d 203.03802379 7.82189131
r 0 3d 12 120 −0.03125000 4d 18.72296856 11.37785020
s 1 4d 0 125 −0.03125000 4d 5760.000000 11.26209911
t 2 4 f 0 130 −0.03125000 4 f 6720.000000 10.86085521

method. The corresponding p-space wave function is gen-
erated by Fourier transforming its r-space counterpart. This
is accomplished quite efficiently by following the procedure
adopted in [25].

III. RESULTS AND DISCUSSION

In [39], all three models (CHA, SCHA, LCHA) were men-
tioned under the general SCHA heading. However, since they
have quite different energy characteristics, we discuss them
separately here. The demonstrative results are presented for
only H atoms (Z = 1). However, a similar outcome can also
be extracted for Z �= 1 cases. Thus, first, we shall analyze the
salient features of incidental degeneracy achieved by placing
the boundary at respective nodal positions of a FHA. Then we
present f (k)(Z ) and α(k)(Z ) (k = 1–4) for selected low-lying
states in these four potentials. Further, in the realm of the
Herzfeld criterion of metallic behavior, we have computed
α(1)(Z ) for the 1s, 2s, 2p, 3d, 4 f , and 5g states. As a bonus,
analytical closed-form expressions of f (k)(Z ) and α(k)(Z ) are
derived for all six states. Finally, we consider Sr, Sp, S as well
as EO

r , EO
p , E in the ground state involving these four poten-

tials. It is worth mentioning that, in the case of degeneracy,
radial boundaries are chosen specifically at the nodes of the
FHA to illustrate their role. However, for other properties
( f (k), α(k), information entropy), no such factor was taken into
consideration. Thus, they are selected to illustrate the essential
features related to an individual property.

A. Incidental degeneracy

Following [39], it may happen that the energy of a given
confined state becomes equal to that of an unconfined state
(here, it is − Z

2n2 ) when the radius of confinement is suitably
chosen at the location of radial nodes in latter state. Such a

phenomenon is termed incidental degeneracy. Equation (2)
showed that the shell-confined condition renders four different
systems. This degeneracy may provide a connection among
them.

1. H-like ion

It is known that, if Ra and Rb of a GCHA coincide with
certain specific radial nodes of the (n, �) state of a FHA,
then (n′ − � − 1) nodes exist between them. Furthermore, the
energy of such an (n′, �) GCHA state becomes degenerate to
that of a FHA state. First, we wish to determine the number of
degenerate states associated with a given FHA energy, − Z2

2n2 .
It is worth mentioning that in this part we shall discuss only
the states that arise as a result of placing the boundary at nodal
points of the FHA. For demonstrative purposes, we present
all 10 states belonging to n � 4 of the GCHA in Table I.
The corresponding boundaries are chosen from radial nodes
of 4s, 4p, 4d states of the FHA. Thus, as can be seen, a total
of 20 degenerate states exist in the GCHA, all having the
same energy of −0.031250 a.u., corresponding to n = 4 of
the FHA. Out of that, the numbers of s, p, d , and f states
are 10, 6, 3, and 1, respectively. It is also recognized that
there are 6 (a, e, h, k, n, q), 4 (b, c, f , l), 6 (d, g, i, m, o, r),
and 4 ( j, p, s, t) states belonging to the CHA, SCHA, LCHA,
and FHA, respectively. The last two columns tabulate the
respective α(1) (�� = 1) and Sr . One can see that in the SCHA
α(1) has a higher value compared to those in the CHA and
FHA counterparts.

It is well known that, in the FHA, the energies of all the �

states (0 to n − 1) within a given n are the same. Now, from
an observation of the results in Table I, it can be seen that
(n−�)(n−�+1)

2 isoenergic states appear in the GCHA. Thus, for a
given n state of a FHA, the total number of degenerate GCHA
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states works out to be

1

2

(n−1)∑
�=0

(n − �)(n − � + 1) = 1

2

(n−1)∑
�=0

(n − �)2 +
n−1∑
�=0

(n − �)

= n(n + 1)

2
+ n(n + 1)(2n + 1)

12

= n(n + 1)(n + 2)

6
. (14)

This result suggests that the number does not depend on �.
Now, we can determine the contribution of each of these four
categories in this degeneracy as follows.

(i) FHA. For a particular n, n degenerate states exist.
(ii) CHA. In this case, an � orbital contributes (n − � − 1)

degenerate states. Thus, the total number of degenerate states
is then given by

(n−1)∑
�=0

(n − � − 1) = n(n − 1)

2
. (15)

(iii) SCHA. In the s orbital, the first SCHA state occurs with
energy equal to n = 3 of the FHA [39]. Similarly, for the p
orbital, it has energy equal to n = 4 of the FHA. So for a given
�, the first degenerate SCHA state appears at n = (� + 3) with
energy − z2

2(�+3)2 . For a given n, such states can be achieved up

to � = (�max − 2) = (n − 3). Therefore, at a fixed n, a given �

state contributes as (n−�−2)(n−�−1)
2 , giving the total number as

(n−3)∑
�=0

(n − � − 2)(n − � − 1)

2
= n(n − 1)(n − 2)

6
(16)

(iv) LCHA. Similar to the CHA, here also, a particular �

orbital will contribute (n − � − 1) degenerate states, giving
the same total as in the CHA, namely,

∑(n−1)
�=0 (n − � − 1) =

n(n−1)
2 .
Next, we estimate the individual contribution of all four

systems in the above degeneracy. On the basis of the above
discussion and following Table I, we can find certain charac-
teristics. To facilitate this, we use n and � to denote principal
and orbital quantum numbers of the FHA, whereas nk and � j

signify the same for the other three systems (k, j are integers).
(i) Corresponding to the nth state of the FHA, there are

n(n+1)(n+2)
6 degenerate GCHA states, each having the same

energy − Z2

2n2 .
(ii) Each � state belonging to a certain n contributes

(n−�)(n−�+1)
2 GCHA states.

(iii) The number of incidental degenerate states increases
with n. However, at a fixed n, the number of such states
reduces with a rise in �.

FIG. 1. Energy as a function of Ra (in a.u.) in the SCHA for (I) �R = (Rb − Ra) = 1 and (II) �R = (Rb − Ra) = 5 for (a) circular and
(b) single-node states. See text for details.
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TABLE II. Incidental degeneracy in WCP and the ECSCP for λ1, λ2 = 0.01 a.u. See the text for details.

Serial No. of nodes State Ra Rb Energy Free state α(1) Sr

WCP
2a 0 1s 0 2.000390 −0.115293282 2s 0.34278641 2.39716825
2b 0 1s 2.000390 100 −0.115293282 2s 932.14066065 8.21415856
2c 1 2s 0 100 −0.115293282 2s 120.5848668 8.11443243

3a 0 1s 0 1.902698 −0.046198857 3s 0.28975431 2.27113719
3b 0 1s 1.902698 7.108762 −0.046198857 3s 208.23885866 6.75134003
3c 0 1s 7.108762 150 −0.046198857 3s 28579.047941 10.53960365
3d 1 2s 0 7.108762 −0.046198857 3s −207.14861496 6.56892996
3e 1 2s 1.9026980 150 −0.046198857 3s 12624.6506 10.48406780
3 f 2 3s 0 150 −0.046198857 3s 1033.70055187 10.44196440

4a 0 1s 0 1.8729343 −0.022356120 4s 0.27468622 2.23104252
4b 0 1s 1.8729343 6.6268050 −0.022356120 4s 170.96931921 6.56397087
4c 0 1s 6.6258050 15.6046240 −0.022356120 4s 8757.380222 9.16720124
4d 0 1s 15.6046240 150 −0.022356120 4s 337593.5180 12.18838925
4e 1 2s 0 6.6268050 −0.022356120 4s −131.07497378 6.35963966
4 f 1 2s 1.8729343 15.6046240 −0.022356120 4s 2309.54693312 9.11891006
4g 1 2s 6.6268050 150.0 −0.022356120 4s 182824.8322 12.18544076
4h 2 3s 0 15.6046240 −0.022356120 4s 131.30125522 9.02899807
4i 2 3s 1.8729343 150 −0.022356120 4s 85268.9345 12.14058812
4 j 3 4s 0 150 −0.022356120 4s 5294.641728 12.11924015

ECSCP
2a 0 1s 0 2.0000208 −0.115013458 2s 0.34257005 2.39669558
2b 0 1s 2.0000208 100 −0.115013458 2s 928.75702501 8.21114396
2c 1 2s 0 100 −0.115013458 2s 120.07106878 8.11127833

3a 0 1s 0 1.90200530 −0.045619079 3s 0.28939390 2.27020331
3b 0 1s 1.90200530 7.0994429 −0.045619079 3s 207.43129440 6.74776731
3c 0 1s 7.0994429 150 −0.045619079 3s 28215.90613 10.52774639
3d 1 2s 0 7.0994429 −0.045619079 3s −205.22594788 6.56497789
3e 1 2s 1.902000530 150 −0.045619079 3s 12430.91176 10.47209351
3 f 2 3s 0 150 −0.045619079 3s 1017.71439735 10.42967937

4a 0 1s 0 1.87185526 −0.021437465 4s 0.27414583 2.22956395
4b 0 1s 1.87185526 6.61372660 −0.021437465 4s 169.96865645 6.55854163
4c 0 1s 6.61372660 15.5362170 −0.021437465 4s 8639.641193 9.15424609
4d 0 1s 15.5362170 150 −0.021437465 4s 327409.3061 12.15969133
4e 1 2s 0 6.61372660 −0.021437465 4s −129.33805232 6.35357332
4 f 1 2s 1.87185526 15.5362170 −0.021437465 4s 2274.9433235 9.10593888
4g 1 2s 6.61372660 150.0 −0.021437465 4s 176835.0570 12.15740646
4h 2 3s 0 15.6046240 −0.021437465 4s 129.58544973 9.02879432
4i 2 3s 1.87185526 150 −0.021437465 4s 82114.5084 12.11197447
4 j 3 4s 0 150 −0.021437465 4s 5112.60426 12.09022342

(iv) The first occurrence of the degenerate SCHA state
takes place at n = 3.

(v) At a fixed �, n1 < n. This suggests that n1 takes val-
ues from (� + 1) to n − 1. If we choose n = 4, then E4 =
−0.03125. Therefore, for � = 0, n1 = 1, 2, 3; for � = 1, n1 =
2, 3; and when � = 2, n1 = 3.

(vi) Two arbitrary states (n1, �1) and (n2, �2) are degenerate
when n1 < n, �1 < n and n2 < n, �2 < n. Note that they may
belong to any of the systems in GCHA, except the FHA.

When both Ra and Rb are finite and nonzero (i.e., the
SCHA), the behavior of the particle is deeply influenced by
Ra, Rb, and �R = (Rb − Ra). However, controlling any two
parameters would also serve the purpose of the remaining
one. It is found that at a fixed Rb, the energy of a given state
progresses with Ra (smaller �R). Conversely, at a given Ra,

a reverse pattern is noticed with a rise in Rb (larger �R).
It is of interest to monitor the energy pattern for a fixed
�R, with modulations in both Ra and Rb, which is depicted
in Fig. 1. The bottom and top panels display energy as a
function of Ra at two selected �R, namely, 1 (panel I) and
5 (panel II). Figures 1(a) and 1(b) record the first five cir-
cular (1s, 2p, 3d, 4 f , 5g) and single-node (2s, 3p, 4d, 5 f , 6g)
states, respectively. A careful observation reveals that, in ei-
ther case, the energy of � = 0 states (1s, 2s) gradually rises
with Ra (squeezing of the box). In contrast, � �= 0 states
record a decay in the energy with growth in Ra, initially
at a quick pace and then slowing down until becoming flat
at sufficiently large Ra. However, for � > 0, there is har-
mony among the states with slight differences in the lower
Ra region.
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TABLE III. f (1) values for the 1s, 2s, 2p states in the CHA, SCHA, and LCHA. See the text for details.

Ra Rb 1s → 2p 1s → 3p 2s → 2p 2s → 3p 2p → 1s 2p → 2s 2p → 3d 2p → 4d

0 1 0.98455839 0.00772592 −0.60825789 1.56032656 −0.32818613 0.20275263 1.08482483 0.01857681
0.1 1 0.89910222 0.09117798 −0.54875155 1.26759877 −0.29970074 0.18291718 1.07826147 0.02579334
0.2 1 0.81158829 0.17664462 −0.46434643 1.01215223 −0.27052943 0.15478214 1.04448022 0.05966553
0.5 1 0.69746119 0.28964404 −0.35084205 0.73447901 −0.23248706 0.11694735 0.92955029 0.17316032
0.8 1 0.66991458 0.31699958 −0.32345071 0.67370461 −0.22330486 0.10781690 0.89321899 0.20918396

0 2 0.99105877 0.00000217 −0.61189926 1.57832558 −0.33035292 0.20396642 1.09062730 0.01308847
0.1 2 0.96414685 0.02875100 −0.60923016 1.46958646 −0.32138228 0.20307672 1.08969744 0.01424386
0.5 2 0.78114997 0.20643653 −0.43425912 0.93184418 −0.26038332 0.14475304 1.02245081 0.08147398
1 2 0.69749557 0.28958819 −0.35086313 0.73452648 −0.23249852 0.11695438 0.92959980 0.17310450
1.2 2 0.68355578 0.30344579 −0.33700278 0.70354791 −0.22785193 0.11233426 0.91134321 0.19119914
1.5 2 0.67205870 0.31486957 −0.32557999 0.67836486 −0.22401957 0.10852666 0.89607618 0.20634732
1.8 2 0.66739177 0.31950490 −0.32094504 0.66823564 −0.22246392 0.10698168 0.88985569 0.21252327

0 5 0.84879929 0.10827497 −0.45637469 1.42333674 −0.28293310 0.15212490 1.10303346 0.00102259
1 5 0.82132944 0.16452278 −0.47393100 1.02743235 −0.27377648 0.15797700 1.05560747 0.04906997
2 5 0.72015051 0.20643653 −0.37324792 0.78555850 −0.24005017 0.12441597 0.95825952 0.14467096
2.5 5 0.69759377 0.28958819 −0.35089758 0.73466209 −0.23253126 0.11696586 0.92974209 0.17292899
3 5 0.68357365 0.30344579 −0.33700060 0.70357230 −0.22785788 0.11233353 0.91136832 0.19116227
4 5 0.66991478 0.31486957 −0.32344989 0.67370488 −0.22330493 0.10781663 0.89321926 0.20918302
4.5 5 0.66739177 0.31950490 −0.32094500 0.66823564 −0.22246392 0.10698167 0.88985569 0.21252323

0 10 0.49203980 0.25817376 −0.07781857 0.96754959 −0.16401327 0.02593952 1.07006404 0.02801599
0.5 10 0.97045316 0.01437069 −0.62098640 1.56331874 −0.32348439 0.20699547 1.08623978 0.01685871
1 10 0.94767400 0.02402487 −0.58992446 1.36743381 −0.31589133 0.19664149 1.10659524 0.00041483
2 10 0.82883015 0.14973954 −0.47587757 1.03956806 −0.27627672 0.15862586 1.06686692 0.03701308
3 10 0.75955649 0.22459445 −0.41041279 0.87499038 −0.25318550 0.13680426 1.00438637 0.09839538
5 10 0.69774060 0.28903455 −0.35085740 0.73486495 −0.23258020 0.11695247 0.92995783 0.17260954
7 10 0.67494769 0.31198282 −0.32843445 0.68465713 −0.22498256 0.10947815 0.89992293 0.20251950
9.5 10 0.66683858 0.32005426 −0.32039568 0.66703853 −0.22227953 0.10679856 0.88911811 0.21325570

0 ∞ 0.41619672 0.07910156 0.00000000 0.43486544 −0.13873224 0.00000000 0.69578470 0.12179511
0.1 ∞ 0.61261825 0.08716313 −0.27197479 0.76653089 −0.20420608 0.09065826 0.69643208 0.12177348
0.5 ∞ 0.91228737 0.03992888 −0.50501203 1.34020061 −0.30409579 0.16833734 0.73703538 0.11966976
1 ∞ 0.95710827 0.00509331 −0.46634518 1.42628570 −0.31903609 0.15544839 0.84505124 0.10660158
2 ∞ 0.91518127 0.00537086 −0.38224386 1.32047405 −0.30506042 0.12741462 1.01517164 0.05572610
5 ∞ 0.82683246 0.05128960 −0.29816602 1.10002016 −0.27561082 0.09938867 1.08031802 0.00001907
7 ∞ 0.79907239 0.07217889 −0.27883906 1.02880135 −0.26635746 0.09294635 1.05975869 0.00511577
8 ∞ 0.78916499 0.08038843 −0.27256657 1.00309177 −0.26305500 0.09085552 1.04975557 0.00959527
9 ∞ 0.78094995 0.08751295 −0.26761185 0.98164753 −0.26031665 0.08920395 1.04067662 0.01429067
10 ∞ 0.77400929 0.09376540 −0.26360162 0.96343656 −0.25800310 0.08786721 1.03254711 0.01891643

2. H plasma

Now, an important question arises: is this special degen-
eracy a unique feature of one-electron Coulombic systems?
To examine it, we extend the calculations to two familiar
plasma models: (i) weakly coupled plasma (WCP) or Debye
plasma, governed by a potential, V (r) = − Z

r e−λ1r , and (ii)
the exponential-cosine-screened Coulomb potential (ECSCP),
given by V (r) = − Z

r e−λ2r cos λ2r. Here, λi is the inverse of
the Debye radius and represents the interaction between the

electron and ions in a plasma [72]. In particular, λ1 =
√

4πe2ne
kbT

(ne, kb, and T stand for ion density, Boltzmann’s constant, and

plasma temperature, respectively), while λ2 = kq√
2

=
√

neωpe

h̄

(kq is the electron plasma wave number related to the plasma
frequency and number density). Note that, in WCP, classical
interactions are considered, while the quantum effect in a

plasma can be added by invoking a cos λr term in WCP [73].
These two prototypical systems have been studied heavily, of-
fering a vast literature. Thus, the influence of screening on the
energy spectrum [72,74–76], the photoionization cross sec-
tion [77–79], and electron-impact excitations [80,81] has been
investigated with great interest. Generally speaking, plasma
systems have a finite number of bound states, which decreases
with the enhancement of λ.

Let us recall that, in contrast to a FHA, the plasma
models, WCP and ECSCP, are devoid of accidental degen-
eracy. Table II illustrates the incidental degeneracy for these
models, with n = 2–4 in s (or � = 0) states. Like in the
GCHA, here also, Ra and Rb are placed at the nodal po-
sitions of respective s states in free plasmas. In WCP, at
n = 2 (energy = −0.1152930 a.u.), a threefold degeneracy
exists with one confined (2a), one left-confined (2b), and one
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FIG. 2. Plot of f (k) as a function of rc (in a.u.) for (I) 1s and (II) 2p states in the CHA. The first two transitions are shown; (a), (b), and
(c) have k = 2, 3, 4, respectively. See the text for details.

free (2c) WCPs. This degeneracy in the shell-confined WCP,
however, arises at n = 3 at an energy of −0.04619881 a.u.
Thus, at n = 3, six degenerate states survive in the general-
ized confined WCP, namely, confined (3a, 3d ), shell-confined
(3b), left-confined (3c, 3e), and free (3 f ) WCPs. Further,
at n = 4 (energy = −0.0223561 a.u.), there are 10 degener-
ate states belonging to confined (4a, 4e, 4h), shell-confined
(4b, 4c, 4 f ), left-confined (4d, 4g, 4i), and free (4 j) WCPs,
respectively. Moving to the ECSCP system, we encounter
a pattern of degeneracy exactly identical to that in WCP,
with obvious energy differences between the two. This am-
ply displays the existence of incidental degeneracy in these
two plasma systems, implying that such a degeneracy is not
necessarily limited to FHAs and may occur in other quantum
systems as well. The last two columns in Table II show α(1)

and Sr . It may be mentioned here that WCP and ECSCP were
invoked to establish the existence of incidental degeneracy
in plasma potentials. We have not gone beyond this point
to undertake an elaborate study of incidental degeneracy in
these two or other systems, and that may be explored in the
future.

B. Multipole oscillator strength and polarizability

Unlike in the previous section on energy, here, we split the
discussion of f (k) and α(k)(k = 1 − 4) in confined H-like ions
and their free counterpart in some low-lying states. Except for

α(1) of 1s in a SCHA, no such results have been reported so
far for any of the other GCHA models. Wherever possible,
our results are compared with the available literature. As an
offshoot, analytical closed-form expressions for f (k) and α(k)

(considering the bound-state contribution) are presented in the
Appendix for k = 1, 2, 3, 4 in the case of a FHA.

At the outset, we note that the oscillator-strength sum rule,
Eq. (9), is verified for all states in the CHA, SCHA, and LCHA
for k = 1–4. By definition, f (k) determines the probability of
a transition from an initial to a final state. For absorption and
emission it is positive and negative respectively.

The selection rule for f (1) is �� = ±1. Note that, from an
s state, only a transition to a p state can take place. However,
from p, a transition can be to both s and d states. Table III
gives the calculated f (1) for 1s, 2s, 2p for n, � → n′, (� + 1)
(n = 1, 2; n′ = 2, 3, 4) transitions. In this context, SCHA re-
sults are offered for four Rb, namely, 1,2,5,10; for each Rb,
Ra lies between zero and Rb. The bottom part shows results
for the LCHA, which has 10 separate Ra (including 0, lead-
ing to the special case of the FHA), for Rb = ∞. Further,
one recovers a CHA situation when Ra = 0, while rc = Rb =
1, 2, 5, 10. It is noticed that f (1)

1s→2p in the CHA increases
with rc to attain a maximum and then falls to merge to the
FHA. In the SCHA, for Rb � 5, it decreases with a rise in Ra,
but at Rb = 10, it slowly reaches a maximum before finally
decreasing. In contrast, in the LCHA, it grows with Ra to
attain a maximum and then decays. The behavior of f (1)

1s→3p
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FIG. 3. Plot of f (k) as a function of Ra (in a.u.), keeping Rb fixed at 5, for (I) 1s and (II) 2p states in the SCHA. The first two transitions
are shown; (a), (b), and (c) have k = 2, 3, 4, respectively. See the text for details.

is, however, somehow different from f (1)
1s→2p; for example, a

reverse trend is recorded in the case of the CHA. However, at
rc → ∞, eventually, it converges to the FHA. In the SCHA,
the pattern generated for a given Rb for various Ra generally
differs with a change in Rb. However, in the LCHA it travels
through a maximum and then a minimum and again increase.
In the case of the 2s → 2p transition, f (1) is always (−)ve,
which implies that, except in the FHA (where they are degen-
erate), the former has higher energy than latter. As usual, in the
CHA f (1)

2s→2p approaches the FHA limit for Ra → 0, Rb → ∞.
In the SCHA, at Rb = 1 (and 2), it increases with Ra, but for
Rb = 5 (and 10), it reaches a minimum and then increases.
A similar pattern is also noticed in the LCHA for Rb = 5 (and
10). In the case of the 2s → 3p transition, f (1) in the CHA and
LCHA imprint resembling nature, i.e., decay after attaining a
maximum. But the trend in the SCHA differs from Rb � 5 (it
decreases as Ra progresses). At Rb = 10, a reverse trend is
recorded. In contrast to 1s and 2s, the behavior of f (1) in 2p
is not straightforward. Nevertheless, a few comments can be
made: (i) at the rc → ∞ limit, the CHA results converge to
the FHA, (ii) f (1) in the SCHA (at Rb = 10) and the LCHA
display analogous characters, although in particular cases this
pattern alters, and (iii) f (1)

2p→3d and f (1)
2p→4d have opposite fea-

tures.
Now, the focus is on higher-order f (k), for which results

are depicted graphically for the cases of k = 2–4, related

to quadrupole, octupole, and hexadecapole transitions. The
corresponding selection rules are �� = 0,±2, �� = ±1,±3,
and �� = 0 ± 2,±4, respectively. In Fig. 2, the bottom and
top rows represent transitions from the 1s and 2p states for the
respective maximum �� values, with k = 2, 3, 4 in Figs. 2(a),
2(b) and 2(c), respectively. For each k, the first two transitions
from these two states are exhibited in terms of f (k) versus
rc in the CHA. In the case of the 1s → (3d, 4 f , 5g) and
2p → (4 f , 5g, 6h) transitions, respective f (k) pass through a
distinct maximum. But for the remaining six transitions, viz.,
1s → (4d, 5 f , 6g) and 2p → (5 f , 6g, 7h), a shallow maxi-
mum appears, followed by a prominent one. Figure 3 exhibits
the variation of f (2), f (3), and f (4) in the left, middle, and
right panels, respectively, as a function of Ra in the SCHA,
keeping Rb stationary at 5. The same two states generating the
same transitions as in Table III are considered. In this instance,
f (k) always advances with Ra. Figure 4 plots f (k) against Ra,
keeping �R = (Rb − Ra) fixed at 1, in the SCHA. The presen-
tation strategy is similar to that in Figs. 2 and 3. In all cases,
f (k) progress with Ra. Likewise, Figs. 5(a)–5(c) depict f (2) for
1s → 3d, 2p → 4 f ; f (3) for 1s → 4 f , 2p → 5g; and f (3) for
1s → 5g, 2p → 6h transitions in the LCHA, respectively. We
find that, like in Fig. 4, here also, f (k) grow with Ra; the y axis
dramatically increases as k goes from 2 to 4.

Now we move to investigate α(1) in the GCHA by means of
sample calculations for 1s, 2s, 2p, 3s, 3d, 4s states. For the p
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FIG. 4. Plot of f (k) (in a.u.) as a function of Ra for �R = (Rb − Ra) = 1 in (I) 1s and (II) 2p states in the SCHA. First two transitions are
shown; (a), (b), and (c) have k = 2, 3, 4, respectively. See the text for details.

and d states, allowed transitions occur in final states with � of
(0,2) and (1,3), respectively. The results collected in Table IV
include contributions from both � for the same numerical
values of Ra and Rb as in Table III. The third column provides
the volume of a ring (V = R3

b − R3
a) with inner and outer radii

Ra and Rb. Note that (Ra, Rb) = (0, 1), (0, 2), (0, 5), (0, 10)
represent CHA cases. The LCHA results are tabulated at the
bottom, while the first row corresponds to a FHA. Some of the

results for the CHA and SCHA were reported in [3] and are
duly quoted in the footnotes. Our calculated α(1) values show
excellent agreement with these results. A careful analysis of
Table IV uncovers several interesting features, some of which
are as follows:

(i) CHA. In a FHA, α(1) is a (+)ve quantity. At a given
�, it increases in n, while at a fixed n, it progresses with �.
However, in the CHA, the pattern behavior is not as consistent,

FIG. 5. Plot of f (k) (in a.u.) as a function of Ra for 1s and 2p states in the LCHA. (a), (b), and (c) have k = 2, 3, 4, respectively. See the
text for details.
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TABLE IV. α(1) values for the 1s, 2s, 3s, 4s, 2p, 3d states in the GCHA. See the text for details.

Ra Rb V α
(1)
1s α

(1)
2s α

(1)
3s α

(1)
4s α

(1)
2p α

(1)
3d

0 1 1 0.02879202a 0.00441401 0.00188747 0.00105362 0.01715126 0.00894345
0.1 1 0.999 0.04759422a 0.02720296 0.02357306 0.02219162 0.01004334 0.00815930
0.2 1 0.992 0.07284697a 0.05487311 0.05124972 0.04988689 0.00583028 0.00565908
0.5 1 0.875 0.20188347a 0.19133640 0.18923265 0.18848057 0.00083203 0.00083480
0.8 1 0.488 0.43528355 0.43282926 0.43236928 0.43220786 0.00002109 0.00002109

0 2 8 0.34255811b −0.0168850 −0.00436115 −0.00163080 0.30828166 0.15185462
0.1 2 7.999 0.51258523b 0.22332074 0.19042816 0.17549582 0.21885819 0.149192555
0.5 2 7.875 1.37743250b 1.14984366 1.09461376 1.07278640 0.07037524 0.07079627
1 2 7 3.22129727b 3.0635182 3.02914678 3.01659244 0.01330690 0.01335487
1.2 2 6.272 4.25881264 4.1404792 4.11614071 4.10740597 0.00542262 0.00542936
1.5 2 4.625 6.20198032 6.1449042 6.13390400 6.13002002 0.00082430 0.00082441
1.8 2 2.168 8.67861281 8.6676719 8.66563354 8.66491917 0.00002106 0.00002108

0 5 125 3.42245422 −21.10657309 −5.69164044 −2.65407833 18.08924616 7.21196971
1 5 124 38.3097689 34.92837261 32.75186815 31.71727294 3.57857074 3.72434520
2 5 117 90.3835855 85.34545419 83.48828979 82.73474712 1.08353807 1.09660163
2.5 5 109.375 124.798441 119.92301897 118.49342276 117.94158361 0.51897086 0.52129425
3 5 98 165.908991 161.85822945 160.86291102 160.49304359 0.21171092 0.21200753
4 5 61 272.010054 270.53059396 270.23821589 270.13447254 0.01317982 0.01318049
4.5 5 33.875 339.006228 338.58155287 338.50168038 338.47363247 0.0008232 0.00082310

0 10 1000 4.49681419c 37.23973625 −376.86905909 −143.24860953 793.3231266 171.8366872
0.5 10 999.875 57.8605712 87.17950256 107.31693132 110.54059768 107.3856268 152.9035064
1 10 999 163.642519 277.6753968 254.03479328 238.63416165 80.69486982 113.7656686
2 10 992 485.283240c 583.9858189 540.82756495 518.84632115 52.316849 60.8621082
3 10 973 900.888347c 936.7193051 895.52440838 876.03156272 31.4884761 33.2715571
5 10 875 1969.35287c 1925.755087 1900.38211125 1889.89454238 8.2726984 8.32191160
7 10 657 3430.37098c 3390.605514 3380.46513160 3376.69265692 1.0688590 1.06926410
9.5 10 142.625 6023.026447 6021.229170 6020.89385098 6020.77626011 0.0008310 0.000836

0 ∞ 4.50000000d 120.0000000d 1012.5000000d 4992.0000000d 176.0000000d 1863.0000000d

0.1 ∞ 11.0436170 −832.82391 −19470.0124 −157741.0999 551.13773744 1862.6259940
0.5 ∞ 62.0058551 1191.23431 6853.5900 20163.4888 300.6834286 24243.2503
1 ∞ 206.890953 3978.47424 29050.9501 131865.02 311.4948323 7601.124077
2 ∞ 928.385427 13601.4303 89661.9116 389708.7 466.836635 3831.84946
5 ∞ 10180.1611 90653.1600 458038.2 1685829.4 1425.94246 3701.13787
7 ∞ 27077.8811 199530.231 900453.4 2448.04066 4859.03373
8 ∞ 40427.5127 276691.870 3080.4164 5613.81181
9 ∞ 57889.5118 371559.069 1538454.7 3797.0113 6473.34645
10 ∞ 80147.5187 486116.385 1941232.3 4600.2812 7434.64009

aLiterature results [3] for α
(1)
1s (Rb = 1) at Ra = 0, 0.1, 0.2, 0.5 are 0.0284, 0.0473, 0.0716, 0.2000.

bLiterature results [3] for α
(1)
1s (Rb = 2) at Ra = 0, 0.1, 0.5, 1.0 are 0.3405, 0.5095, 1.3588, 3.2041.

cLiterature results [3] for α
(1)
1s (Rb = 10) at Ra = 0, 2, 3, 5, 7 are 4.4851, 474.3865, 880.0750, 1962.3385, 3394.0953.

dLiterature results [82] for α
(1)
1s , α

(1)
2s , α

(1)
3s , α

(1)
4s , α

(1)
2p , α

(1)
3d in the FHA are 4.5, 120, 1012.5, 4992, 176, 1863.

showing distinct changes with rc, offering both (+)ve and
(−)ve values. A straightforward inference is that, with the
growth in rc, α(1) in a given state with an arbitrary � increases
as rc proceeds towards the respective FHA limit. At rc = 2, 5,
the 2s, 3s, 4s states offer (−)ve polarizability; the same is also
found for latter two states at rc = 10.

(ii) SCHA. In this situation, the characteristics of α(1)

change with �. For s-wave states, (at a fixed Rb) it increases
with Ra. A resembling nature in α(1) is also achieved by vary-
ing Rb while keeping Ra fixed. These two outcomes suggest
that it depends on the (Ra, Rb) pair, but not on their difference,
�R. In contrast, for � �= 0 states, at a specific Rb, it decreases

with Ra, but for a given Ra, it increases with Rb. Thus, in
this scenario, α(1) is controlled by all three quantities, Ra, Rb,
and �R.

(iii) LCHA. In � = 0 states, it grows with Ra, but a zigzag
pattern is seen for 2p and 3d .

Table IV shows that, for s waves, at a fixed Rb, α(1) pro-
gresses with Ra. However, after some characteristic Ra, it
prevails over volume, given in the third column. According to
the Herzfeld criterion [3,83], an insulator → metal conversion
occurs under the condition

4π

3
V �

(
4π

3

)
α(1), V = (

R3
b − R3

a

)
� α(1). (17)
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TABLE V. Estimated Ra = Rm at 10 selected Rb for the 1s, 2s, 3s, 4s states in the SCHA. See the text for details.

Ra = Rm

Rb 1s 2s 3s 4s

1 0.81776350 0.81844574 0.818572206 0.818616480
2 1.380547989a 1.386963908 1.388196667 1.388631630
3 1.78705451a 1.806803958 1.810946733 1.812435703
4 2.091846379a 2.130115046 2.139377180 2.1427985178
5 2.329536517a 2.385985164 2.40275065 2.4091529423
6 2.524110980a 2.591789087 2.618502823 2.629078449
7 2.692788378a 2.758505970 2.7976385904 2.813701635
8 2.847829929a 2.893365851 2.9474474821 2.9704167040
9 2.997651615a 3.00123877 3.0729537329 3.104343080
10 3.147719215a 3.08540221 3.177732377 3.219149730

aFor Rb = 2, 3, 4, 5, 6, 7, 8, 9, 10, literature results [3] for Rm are 1.73,2.08,2.34,2.54,2.71,2.87,3.01,3.15,3.29, respectively.

Now, applying the above criterion, one can easily discern that
in the SCHA a metallic character can be observed in all the s
states. This feature was reported before [3] for the ground state
of a SCHA. This work, however, shows that it can also be ex-
tended to excited states with � = 0. The threshold Ra at which
α(1) surpasses V (symbolized as Rm) is produced in Table V
for four s states at 10 selected Rb (1,2,3,4,5,6,7,8,9,10). For a
given α(1), Rm tends to assume larger values with the growth
of Rb. Moreover, with an increase of Rb, the metallic zone
(Rb − Rm) is extended. Results from the literature are quoted
in the footnote, which shows decent qualitative agreement.

We present a cross section of the results for 2k-pole polar-
izabilities (k = 2, 3, 4) of the 1s state in the CHA, SCHA, and
LCHA in Fig. 6. Figures 6(a), 6(b) and 6(c) represent them for
quadrupole, octupole, and hexadecapole polarizabilities. The
bottom row (with panels labeled I), for the CHA, indicates
that, for all k, α(k) sharply increases with rc before finally
merging to the respective FHA limit. Parallel results for the
SCHA against Ra are depicted in the panels labeled II, with
Rb fixed at 5, reflecting a steady monotonic growth. Similarly,
the panels labeled III offer the SCHA results while varying
both Ra and Rb but �R = 1 constant. However, here also, the
monotonic increasing trend is maintained for all k, as in the
previous SCHA situation. Finally, the topmost panels (labeled
IV) show the respective plots in the case of the LCHA and
bear a close resemblance to the SCHA scenario.

C. Information entropy

Now we will present some results for information entropy.
A few points are worth noting first. The net information mea-
sure in r and p space in a central potential may be separated
into two parts, viz., (i) radial and (ii) angular contributions, as
mentioned in Eq. (10). The latter remains unchanged in the
two conjugate spaces in these systems; furthermore, the same
is true for different confinement situations of the GCHA, mod-
eled with various boundary conditions. Moreover, we have
opted to set the magnetic quantum number m to zero, unless
stated otherwise. In all reported cases, Sr + Sp = St satisfy the
lower bound: 3(1 + ln π ).

Representative Sr and EO
r for the 1s state in the GCHA are

given in Table VI. The SCHA results provided for four Rb

(1,2,5,10) show that Sr progresses with Ra to reach a plateau
and then declines. That means that, for each Rb, there is a
range of Ra where Sr grows with a decrease in �R. However,
the changes in Sp are not so straightforward. At Rb = 1, it
increases with a rise in Ra, while at Rb = 2, 5, or 10, it passes
through a shallow minimum. Thus, with a reduction in the
shell radius (�R), Sr and Sp increase and decrease, signifying
a gain and loss in uncertainty in the r and p spaces. This
trend is the reverse of what is observed in the CHA [25],
where a shortening of rc causes a fall and rise in Sr and
Sp. However, at a fixed Ra, their sum, Sr + Sp = St , always
increases with the growth of Rb. As usual, EO

r and EO
p show

an opposite trend with respect to Sr and Sp. At a fixed Rb, EO
r

collapses to a flat minimum, and EO
p increases up to a shallow

maximum. Moreover, EO
t always declines with an increase in

Ra. This pattern complements the outcome of S. The bottom
of Table VI provides results for the LCHA. Unlike the SCHA,
here, the trend of Sr and Sp is very straightforward; with the
growth in Ra, the former increase, while the latter decreases.
In contrast, EO

r reduces, and EO
p advances with a change in

Ra. Further, St decays and reaches a shallow minimum, and
EO

t approaches a flat maximum.
The above results for the SCHA and LCHA in the ground

state drive us to extend the study to � �= 0 states. Thus, we
present Sr for the first five circular (nodeless) states in the
SCHA and LCHA in Fig. 7. Rows I, II, and III correspond
to the SCHA, the SCHA with fixed �R = 1, and the LCHA;
Figs. 7(a)–7(e) show states with � = 0–4, respectively. Like
the previous plots for f (k) and α(k), here also, SCHA graphs
are presented in two separate forms. First, Sr is plotted against
Ra while keeping Rb fixed at 5 in the bottom row. For 1s, a
distinct dome-shaped structure appears, while for the remain-
ing states, the initial shape is partially lost, retaining the sharp
decay at large Ra. Second, in the middle row, Sr is shown
as a function of Ra while keeping �R constant at 1. In all
five states Sr firmly progresses with Ra. The top row displays
the respective plot for the LCHA. For 1s [Fig. 7(a)], it grows
uninterruptedly. For other states, in the beginning, there is a
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FIG. 6. (a)–(c) Plots of α(k) (k = 2–4) in the 1s state in the GCHA. In the CHA (panel I) they are plotted as a function of rc (in a.u.).
In panels (II) and (IV) they are shown against Ra for the SCHA and LCHA. In panel (III), they are given for the SCHA, considering
�R = (Rb − Ra) = 1. See the text for details.
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TABLE VI. S and EO for the ground state in the GCHA. See the text for details.

Ra Rb Sr Sp St = Sr + Sp EO
r EO

p EO
t = EO

r EO
p

0 1 0.52903053 6.0114 6.5404 0.84791729 0.00364537 0.00309098
0.1 1 0.77666759 6.040785 6.817452 0.56908172 0.004180 0.002378
0.2 1 0.89751313 6.23932 7.13683 0.47934610 0.004133 0.001981
0.5 1 0.93965484 7.35022 8.28987 0.43687955 0.0025784 0.0011264
0.8 1 0.40237874 9.9389 10.3412 0.73903793 0.00056417 0.00041694

0 2 2.39666961 4.09171 6.48837 0.14785297 0.0254120 0.0027572
0.1 2 2.66321083 3.93985 6.60306 0.09448635 0.030017 0.002836
0.5 2 3.00050972 4.30210 7.30261 0.05789843 0.03171950 0.00183651
1 2 3.01785556 5.28370 8.30155 0.05469677 0.020779 0.001136
1.2 2 2.93197744 5.88332 8.81529 0.05923939 0.014951 0.000885
1.5 2 2.64748816 7.20552 9.85300 0.07834727 0.0068029 0.0005329
1.8 2 1.89807736 9.88472 11.78280 0.16543757 0.00124238 0.0002055

0 5 4.01744418 2.5243610 6.5418051 0.04217574 0.16706123 0.00704593
1 5 5.63473499 1.4621 7.0968 0.00432817 0.490356 0.002122
2 5 5.78652038 2.06176 7.84828 0.00347700 0.404385 0.001406
2.5 5 5.76289185 2.52188 8.28477 0.00351784 0.321734 0.001131
3 5 5.67961160 3.12263 8.80224 0.00379731 0.231656 0.000879
4 5 5.23062327 5.0882 10.3188 0.00591282 0.071235 0.000421
4.5 5 4.64694680 7.1204 11.7673 0.01058804 0.01925812 0.00020390

0 10 4.14461075 2.42193665 6.5665474 0.03978966 0.20886414 0.00831063
0.5 10 6.22396712 0.317019 6.540986 0.00339560 1.3629551 0.00462805
1 10 6.96632717 −0.31664 6.64968 0.00140630 2.47609 0.00348
2 10 7.56814293 −0.5044 7.0637 0.00065283 3.5697296 0.0023304
3 10 7.77837713 −0.3423 7.4360 0.00049254 3.621882 0.001783
5 10 7.83556437 0.4567 8.2922 0.00044356 2.561340 0.001136
7 10 7.59776142 1.8617 9.4594 0.00055562 1.154784 0.000641
9.5 10 6.08547241 7.057 13.142 0.00251172 0.040427 0.000101

0 ∞ 4.14472988 2.42186234 6.56659222 0.03978873 0.20897494 0.00831484
0.1 ∞ 4.90515587 1.6122737 6.51742957 0.01564470 0.41905958 0.01912784
0.5 ∞ 6.26312315 0.28264261 6.54576576 0.00333958 1.48254647 0.00495108
1 ∞ 7.15077757 −0.521160 6.629617 0.00126846 3.4015178 0.00431468
2 ∞ 8.21112685 −1.436799 6.774327 0.00040908 9.1531967 0.0037443
5 ∞ 9.84346840 −2.789102 7.054366 0.00007410 41.251854 0.0030567
7 ∞ 10.49963587 −3.29565 7.20398 0.00003758 72.517286 0.002725
8 ∞ 10.76761132 −3.4717 7.2959 0.00002851 88.50086 0.002523
9 ∞ 11.00741529 −3.60159 7.40582 0.00002228 102.82136 0.002290
10 ∞ 11.22460206 −3.91190 7.31270 0.00001782 146.1012 0.0026

resistance to change. In other words, it remains invariant up to
a certain Ra and then increases.

IV. FUTURE AND OUTLOOK

The incidental degeneracy, multipole oscillator strength,
multipole polarizability, Shannon entropy, and Onicescu in-
formation energy were investigated for the GCHA model,
with special emphasis on the SCHA. The proposed model
can explain both free and confined systems effectively. An
in-depth analysis revealed several fascinating features in such
systems. The possibility of this degeneracy in Debye and
exponential-cosine-screened plasma environments has been
established. In the GCHA with an increase in n the number
of these degenerate states increases, while at a fixed n, with
a growth in �, their count declines. In the confined condi-

tion, negative polarizability is encountered in the ground and
several excited states, which, in agreement with the Herzfeld
criterion, suggests a metallic character. Simplified analytical
expressions for f (k) and α(k) in the FHA were reported. The
impact of Ra, Rb, and �R on the spectroscopic and density-
dependent properties was examined. Similar calculations for
other central potentials are highly desirable. Particularly, it
is necessary to verify the existence of such degeneracy by
imposing shell confinement on other quantum chemical sys-
tems. Investigation of the Hellmann-Feynman theorem in the
context of a SCHA is desirable. Further, an exploration of
the two-photon transition amplitude, photoionization cross
section, and relative information in the GCHA model would
provide critical insight. Apart from that, it would be interest-
ing to extend the shell-confinement model to many-electron
atoms.
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FIG. 7. Plot of Sr as a function of Ra (in a.u.) for 1s, 2p, 3d, 4 f , 5g states in (I) the SCHA with Rb = 5 and (II) the SCHA with �R fixed
at 1 a.u. (III) LCHA. See the text for details.

ACKNOWLEDGMENTS

Financial support from BRNS, India (Sanction Order
No. 58/14/03/2019-BRNS/10255), is gratefully acknowl-
edged. Partial financial support from SERB, India (Grant

No. CRG/2019/000293), is also appreciated. N.M. thanks
CSIR, New Delhi, India, for support through a senior research
associateship (Pool No. 9033A). The authors acknowledge
valuable discussion with Prof. K. D. Sen. The authors thank
two anonymous referees for their constructive comments.

APPENDIX: MULTIPOLE OSCILLATOR STRENGTH AND POLARIZABILITY IN FHA

Here, we present the first transition corresponding to the respective selection rule for k = 1, 2, 3, 4. The remaining results are
provided in the Supplemental Material [84].

1. Dipole oscillator strength and polarizability

The selection rule is �� = ±1. In s states, it changes to �� = 1. However, in � �= 0 states, α
(1)
n� = α

(1)
n� (� − 1) + α

(1)
n� (� + 1).

The expressions for f (1)
(1s→np)(Z ) and f (1)

(2p→ns)(Z ) are found as

f (1)
(1s→np)(Z ) = 28

3Z7
n5 (n − 1)(2n−4)

(n + 1)(2n+4)
, f (1)

(2p→ns)(Z ) = 213

27Z7
n7 (n − 2)(2n−5)

(n + 2)(2n+5)
(n �= 2). (A1)

Now, using Eq. (A1) in Eq. (4), we easily get α
(1)
1s (p)(Z ) and α

(1)
2p (s)(Z ) of the FHA. They are obtained as

α
(1)
1s (p)(Z ) =

n∑
j=2

210

3Z9
j9 ( j − 1)(2 j−6)

( j + 1)(2 j+6)
, α

(1)
2p (s)(Z ) =

n∑
j=1
j �=2

219

27Z9
j11 ( j − 2)(2 j−7)

( j + 2)(2 j+7)
. (A2)

2. Quadrupole oscillator strength and polarizability

In this case, the selection rule is �� = 0,±2. In s states it is �� = 2. Similarly, in p states � = 0, 2. Hence, α
(2)
n�=1 =

α
(2)
n� (�) + α

(2)
n� (� + 2). Moreover, for � � 2, α

(2)
n� = α

(2)
n� (� − 2) + α

(2)
n� (�) + α

(2)
n� (� + 2).
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The closed-form expressions of f (2)
(1s→nd )(Z ), f (2)

(2p→np), and f (2)
(3d→ns)(Z ) are obtained as

f (2)
(1s→nd )(Z ) = 212

5Z9
n7 (n2 − 4)

(n − 1)(2n−6)

(n + 1)(2n+6)
, f (2)

(2p→np)(Z ) = 222

75Z9
n9 (n2 − 1)

(n − 2)(2n−7)

(n + 2)(2n+7)
,

(2)(3d→ns)(Z ) = 21737

125Z9
n13 (n2 − 6)2 (n − 3)(2n−9)

(n + 3)(2n+9)
. (A3)

Now, applying Eq. (A3) in Eq. (4), we easily get α
(2)
1s (d )(Z ), α(2)

2p (p)(Z ), and α
(2)
3d (s)(Z ) of the FHA. They take the following

forms:

α
(2)
1s (d )(Z ) =

n∑
j=3

212

5Z11
j11 ( j2 − 4)

( j − 1)(2 j−8)

( j + 1)(2 j+8)
, α

(2)
2p (p)(Z ) =

n∑
j=3

228

75Z11
j13( j2 − 1)

( j − 2)(2 j−8)

( j + 2)(2 j+8)
,

α
(2)
3d (s)(Z ) =

n∑
j=1
j �=3

219311

53Z11
j17( j2 − 6)2 ( j − 3)(2 j−11)

( j + 3)(2 j+11)
. (A4)

3. Octupole oscillator strength and polarizability

The selection rule is �� = ±1,±3. For � = 0, �� = 3. For � = 1, α
(3)
n� = α

(3)
n� (� + 1) + α

(3)
n� (� + 3). Next, for � = 2, the

relation is α
(3)
n� = α

(3)
n� (� − 1) + α

(3)
n� (� + 1) + α

(3)
n� (� + 3). Further, for � � 3, α

(3)
n� = α

(3)
n� (� − 1) + α

(3)
n� (� − 3) + α

(3)
n� (� + 1) +

α
(3)
n� (� + 3).

Now, f (3)
(1s→n f )(Z ), f (3)

(2p→nd )(Z ), f (3)
(3d→np)(Z ), and f (3)

(4 f →ns)(Z ) are written as

f (3)
(1s→n f )(Z ) = 9 212

7Z11
n9 (n2 − 4)(n2 − 9)

(n − 1)(2n−8)

(n + 1)(2n+8)
,

f (3)
(2p→nd )(Z ) = 227

49Z11
n13 (n2 − 1)(n2 − 16)2 (n − 2)(2n−10)

(n + 2)(2n+10)
,

f (3)
(3d→np)(Z ) = 218313

52 72 Z11
n13 (n2 − 1)(4n2 − 9)2 (n − 3)(2n−12)

(n + 3)(2n+12)
,

f (3)
(4 f →ns)(Z ) = 234

245Z11
n15 (141n4 − 3008n2 + 18 176)2 (n − 4)(2n−13)

(n + 4)(2n+13)
. (A5)

Putting Eq. (A5) in Eq. (4), we easily get α
(3)
4 f (s)(Z ), α(3)

1s ( f )(Z ), α(3)
2p (d )(Z ), α(3)

3d (p)(Z ), and α
(3)
4 f (s)(Z ). They have the following

forms:

α
(3)
1s ( f )(Z ) =

n∑
j=4

9 214

7Z13
j13 ( j2 − 4)( j2 − 9)

( j − 1)(2 j−10)

( j + 1)(2 j+10)
,

α
(3)
2p (d )(Z ) =

n∑
j=3

233

49Z13
j17( j2 − 1)( j2 − 16)2 ( j − 2)(2 j−12)

( j + 2)(2 j+12)
,

α
(3)
3d (p)(Z ) =

n∑
j=1
j �=3

220317

52 72Z13
j17( j2 − 1)(4 j2 − 9)2 ( j − 3)(2 j−14)

( j + 3)(2 j+14)
,

α
(3)
4 f (s)(Z ) =

n∑
j=2
j �=4

244

245 Z13
j19(141 j4 − 3008 j2 + 18 176)2 ( j − 4)(2 j−15)

( j + 4)(2 j+15)
. (A6)

The expression for α
(4)
n� changes with alteration of the � values. These expressions are

� = 1, α
(4)
n� = α

(4)
n� (� + 2) + α

(4)
n� (� + 4),

� = 2, α
(4)
n� = α

(4)
n� (�) + α

(4)
n� (� + 2) + α

(4)
n� (� + 4),

� = 3, α
(4)
n� = α

(4)
n� (� − 2) + α

(4)
n� (�) + α

(4)
n� (� + 2) + α

(4)
n� (� + 4),

� = 4, α
(4)
n� = α

(4)
n� (� − 4) + α

(4)
n� (� − 2) + α

(4)
n� (�) + α

(4)
n� (� + 2) + α

(4)
n� (� + 4). (A7)
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f (4)
(1s→ng)(Z ), f (4)

(2p→n f )(Z ), f (4)
(3d→nd )(Z ), f (4)

(4 f →np)(Z ), and f (4)
(5g→ns)(Z ) are written as

f (4)
(1s→ng)(Z ) = 218

9Z13
n11 (n2 − 16)(n2 − 9)(n2 − 4)

(n − 1)(2n−10)

(n + 1)(2n+10)
,

f (4)
(2p→n f )(Z ) = 233

35Z13
n13 (n2 − 1)(n2 − 9)(7n2 + 68)2 (n − 2)(2n−12)

(n + 2)(2n+12)
,

f (4)
(3d→nd )(Z ) = 220315

35Z13
n17 (n2 − 1)(n2 − 4)(n2 − 21)2 (n − 3)(2n−13)

(n + 3)(2n+13)
,

f (4)
(4 f →np)(Z ) = 243

8505Z13
n17 (n2 − 1)(31n4 − 4768n2 + 43 776)2 (n − 4)(2n−15)

(n + 4)(2n+15)
,

f (4)
(5g→ns)(Z ) = 221511

7 36Z13
n19 (187n6 − 9350n4 + 20 4625n2 + 1 743 750)2 (n − 5)(2n−17)

(n + 5)(2n+17)
. (A8)

Now, applying Eqs. (A8) in Eq. (4), we easily obtain α
(4)
1s (g)(Z ), α(4)

2p ( f )(Z ), α(4)
3d (d )(Z ), α(4)

4 f (p)(Z ), and α
(4)
5g (s)(Z ). They take

the following forms:

α
(4)
1s (g)(Z ) =

n∑
i=5

220

9Z15
i15 (i2 − 16)(i2 − 9)(i2 − 4)

(i − 1)(2i−12)

(i + 1)(2i+12)
,

α
(4)
2p ( f )(Z ) =

n∑
j=4

239

35Z15
j17( j2 − 1)( j2 − 9)(7 j2 + 68)2 ( j − 2)(2 j−14)

( j + 2)(2 j+14)
,

α
(4)
3d (d )(Z ) =

n∑
j=3

222319

35Z15
j21( j2 − 1)( j2 − 4)( j2 − 21)2 ( j − 3)(2 j−13)

( j + 3)(2 j+13)
,

α
(4)
4 f (p)(Z ) =

n∑
j=2
j �=4

253

8505 Z15
j13(31 j4 − 4768 j2 + 43 776)2 ( j − 4)(2 j−13)

( j + 4)(2 j+13)
,

α
(4)
5g (s)(Z ) =

n∑
j=1
j �=5

227519

7 36 Z15
j23(187 j6 − 9350 j4 + 204 625 j2 − 1 743 750)2 ( j − 5)(2 j−19)

( j + 5)(2 j+19)
. (A9)
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