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Polarization rotation and near-Earth quantum communications
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We revisit polarization rotation due to gravity, known as the gravitational Faraday effect, with a view on its
role in quantum communications with Earth-orbiting satellites. In a static spherically symmetric gravitational
field Faraday rotation is purely a reference frame (gauge) effect. This is so also in the leading post-Newtonian
expansion of the Earth’s gravitational field. However, establishing the local reference frame with respect to
distant stars leads to the nonzero Faraday phase. In communications between a ground station and an Earth-
orbiting spacecraft this phase is of the order of 10−10. Under the same conditions the Wigner phase of special
relativity is typically of the order 10−4−10−5. These phases lead to the physical lower bound on communication
errors. However, both types of errors can be simultaneously mitigated. Moreover, they are countered by a fully
reference frame independent scheme that also handles arbitrary misalignments between the reference frames of
sender and receiver.
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I. INTRODUCTION

Space deployment of quantum technology [1–3] brings
it into a weakly relativistic regime. As a side effect, low-
Earth orbit (LEO) quantum communication satellites provide
new opportunities to test fundamental physics. Once these
tiny physical effects fall within the sensitivity range of these
devices, they may impose constraints on practical quantum
communications, time-keeping, or remote sensing tasks. This
dual relationship between quantum technology and relativistic
physics makes it important to study the relativistic aspects of
quantum information processing [4–6].

Qubits are routinely realized as polarization states of
photons [7]. The effects of special relativity (SR) on quantum-
informational tasks with massive and massless particles are
well understood [4,6]. On the other hand, effects of general
relativity (GR) in quantum-optical LEO experiments were
discussed primarily in the context of interferometry [5,8–10].

The dominant source of relativistic errors in this setting
is the Wigner rotation (or phase), a SR effect [4,6]. Gravi-
tational polarization rotation, also known as the gravitational
Faraday effect [11,12] occurs in a variety of astrophysical
systems, such as accretion disks around astrophysical black
hole candidates [13] or gravitational lensing [14]. This effect
was the subject of a large number of theoretical investigations,
first in the framework of geometric optics [11,12,14–16], and
recently in the post-eikonal approximation [17,18]. Interpreta-
tion of these results is sometimes contradictory, as the crucial
role of local reference frames and the ensuing introduction of
the standard polarization directions were not always treated in
a fully satisfactory manner.

The Faraday effect in quantum experiments was discussed
in [19]. Geometric optics approximation is sufficient to de-
scribe it in near-Earth environments. In this framework a
careful analysis of the local standard polarization directions

allows one to obtain transparent expressions for polarization
rotation [16]. In particular, it clarifies the statement about the
absence of polarization rotation in Schwarzschild space-time.
For an open trajectory this is true only for a particular choice
of local polarization directions (that we call the Newton gauge
and review below). For a closed (in phase space) trajectory the
net rotation disappears in any gauge. Given that the leading-
order corrections due to gravity result from the leading terms
in the post-Newtonian expansion of the Schwarzschild metric
[20,21], this result seems to indicate that the Faraday rotation
can be ignored. However, it was pointed out in Ref. [22] that in
realistic situations the closed spatial trajectories are not closed
in the phase space, as well as that enforcing the Newton gauge
is in general impractical. Hence, even if the gravitationally
induced polarization rotation in the near-Earth environment is
essentially a pure gauge effect, it cannot be simply dismissed.

We provide a simple estimation of this emitter- and
observer-dependent phase and give its explicit form in several
settings. The phase errors due to SR can be mitigated and, in
the limit of sharply defined frequencies, completely removed
by a simple encoding procedure [23]. The same techniques are
applicable to counter the Faraday rotation.

The rest of this paper is organized as follows. In Sec. II we
review the SR effects. Polarization rotation in general station-
ary space-times is described in Sec. III. In Sec. IV we evaluate
the effects in communication with Earth-orbiting satellites. In
Sec. V we present a simple error-correcting scheme, discuss
the role of the relativistic errors (as well as errors due to
the reference frame misalignment) in quantum key distribu-
tion (QKD), and discuss the feasibility of the error-correcting
schemes. This is a fully reference frame independent (RFI)
scheme that may be useful not only for countering tiny rela-
tivistic effects in communications with the LEO satellites, but
also as the major source of the phase errors—frame misalign-
ment.
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We work with c = h̄ = G = 1. The constants G and c
are restored in a small number of expressions where their
presence is helpful. The space-time metric gμν has a signature
− + ++. The four-vectors are distinguished by the sans font,
k, kμ = (k)μ. The three-dimensional spatial metric is denoted
as γmn, and three-dimensional vectors are set in boldface, k, or
are referred to by their explicit coordinate form, km. The inner
product in the metric γ is denoted as k·f , and the unit vectors
in this metric are distinguished by the caret, k̂, k̂ · k̂ ≡ 1. Post-
Newtonian calculations employ a fiducial Euclidean space.
Euclidean vectors are distinguished by arrows, �k. Components
of the two types of vectors may coincide, (v)m = (�b)m, but
�b · �k = ∑3

k=1 vmkm. Accordingly, the coordinate distance is
the Euclidean length of the radius vector, r ≡ √

�x ·�x.

II. WIGNER ROTATION

Quantum states of a photon with a definite four-momentum
k = (|k|, k) can be represented either as Hilbert-space vectors
or as complex polarization vectors in the usual three-
dimensional space,

|�k〉 = f+|k,+〉 + f−|k,−〉 ⇔ f̂k = f+b̂+
k̂

+ f−b̂−
k̂
, (1)

with the transversal vectors b̂±
k̂

, k · b̂±
k̂

= 0. The correspon-
dence is rooted in the relationship between finite-dimensional
and unitary representations of the Poincaré group [24,25].

Unitary transformations U of states of elementary particles
are obtained via the induced representation of the Poincaré
group. Basis states that correspond to arbitrary momenta k are
defined with the help of the standard Lorentz transformation
L(k) that takes the four-momentum from the standard value
kS to k. The direction k̂ is determined by the spherical angles
(θ, φ). For massless particles, kμ

S = (1, 0, 0, 1) and

L(k) = R(k̂)Bz(ξ|k|), (2)

where R(k̂) = Rz(φ)Ry(θ ) rotates the z axis into the direc-
tion k̂ by performing rotations around the y and x axes by
the angles θ and φ, respectively. These rotations follow the
boost Bz(ξ|k|) along the z axis that brings the magnitude of
the momentum to |k| (the rapidity ξ|k| � 0 is determined by
sinh ξ + cosh ξ = |k|).

The states of an arbitrary momentum are defined via

|k,±〉 := U
(
L(k)

)|kS,±〉, (3)

while the standard right- and left-circular polarization vectors
are defined via

b̂±
k̂

:= R(k̂)(x̂ ± iŷ)/
√

2, (4)

while the linear polarization vectors are b̂1 := R(k̂)x̂ and
b̂2 := R(k̂)ŷ, respectively. Alternatively, these vectors can be
obtained as

b̂2 = ẑ × k̂

|ẑ × k̂| , b̂1 = b̂2 × k̂. (5)

The explicit form of the polarization four-vector fk, fk · k = 0
depends on the gauge [4,19,26].

The Wigner stability subgroup consists of all proper
Lorentz transformations that leave the standard four-

momentum kS invariant:

W (�, k) = L−1(�k)�L(k). (6)

For massless particles it is decomposed as

W = SRz(	 ), (7)

where S is a translation in the xy plane and Rz(	 ) is the rota-
tion around the z axis. As the translations S do not correspond
to physical degrees of freedom, the state transforms according
to

U (�)|k,±〉 = e±i	 |�k,±〉. (8)

There are no generic explicit expressions for 	 . Their
evaluation is not considerably simpler if � = R, where R
is a rotation (as there is no risk of confusion we use the
same designation for the four-dimensional matrices of spatial
dimensions and for their 3 × 3 blocks). However, as the trans-
formation law of f̂ can be obtained from the three-dimensional
form of the Lorentz transformations of the transversal electro-
magnetic wave, in this case [4,27]

U (R )|�k〉 ⇔ R f̂k. (9)

Moreover, an arbitrary rotation around the direction b̂2,
Rb̂2

(α), does not introduce a phase 	 [16]. This provides the
motivation for introduction of the so-called Newton gauge that
we review below.

III. FARADAY ROTATION

The equations of geometric optics are obtained by per-
forming the short-wave asymptotic expansion of the wave
equation in the Lorentz gauge. The four-vector potential is
represented as Aμ(x) = aμeiψ . The wave vector, kμ := ∂μψ ,
is by definition normal to hypersurfaces of constant phase
ψ ; in addition it is null, kμkμ = 0. Hence hypersurfaces of
constant ψ are null and their normals are also tangent vectors
to the null geodesics xμ(σ ) that lie in them [28]:

dxμ

dσ
= kμ, kμ∇μkν = 0. (10)

Here ∇μ is a covariant derivative compatible with the back-
ground metric g and σ is the affine parameter along a
geodesic.

The eikonal equation, which is a restatement of the null
condition, is given by

gμν ∂ψ

∂xμ

∂ψ

∂xν
= 0, (11)

which is the Hamilton-Jacobi equation for a free massless
particle on a given background space-time.

The polarization four-vector is defined as f μ :=
aμ/

√
aμa∗

μ. It is transversal to the null geodesic generated by
kμ and is parallel propagated along it:

f μkμ = 0, kμ∇μ f ν = 0. (12)

Thus we treat photons as massless point particles that move
on the rays prescribed by the geometric optics.

Stationary space-times allow a convenient three-
dimensional representation of the evolution of the polarization
vector [15,16]. Static observers follow the congruence of
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timelike Killing vectors that define a projection from the
space-time manifold M onto a three-dimensional space �3,
π : M → �3. In practice, this projection is performed by
dropping the timelike coordinate of an event, and vectors are
projected via a push-forward map: π∗k = k.

The metric gμν on M can be written in terms of a three-
dimensional scalar h, a vector g with components gm, and a
three-dimensional metric γmn on �3 as

ds2 = −h(dx0 − gmdxm)2 + dl2, (13)

where h := −g00, gm := −g0m/g00, and the three-dimensional
distance is dl2 := γmndxmdxn, with the three-dimensional
metric

γmn = gmn − g0mg0n

g00
, (14)

the inverse of which is gmn. The three-dimensional γmn-
compatible covariant derivative is denoted as Dm.

Using the relationships between the three- and four-
dimensional covariant derivatives, the propagation equations
(10) and (12) in a stationary space-time result in the following
three-dimensional expressions [15,16]:

Dk̂
dσ

= � × k̂, (15)

Df̂
dσ

= � × f̂, (16)

where σ is an affine parameter along the curve with tangent
vector k = dx/dσ . From Eqs. (15) and (16) we see that both
the propagation direction and polarization are rigidly rotated,
with an angular velocity given by [16]

� = 2ω − (ω·k̂)k̂ − Eg × k, (17)

with the vector (h, g)T playing the role of a vector potential
for gravitoelectric and gravitomagnetic field [28,29]:

Eg = −∇h

2h
, ω = − 1

2 k0∇ × g. (18)

In flat space-time this basis is uniquely fixed by Wigner’s
little group construction. However, on a general curved back-
ground the Wigner construction must be performed at every
point, i.e., absence of a global reference direction ensures that
the standard polarization triad (b̂1, b̂2, k̂) is different at every
location. Given such choice the net polarization rotation can
be found by starting with the initial polarization fin(xin ) =
b1(xin ), parallel propagating it according to Eq. (12), and
reading off the angle from the decomposition of ffin(xfin):

f = cos χb1 + sin χb2. (19)

Evaluation of the polarization rotation is much simpler in
stationary space-times. By setting f̂ = b̂1 at the starting point
of the trajectory, we have sin χ = f̂ · b̂2, so

dχ

dσ
= 1

f̂ ·b̂1

D(f̂ ·b̂2)

dσ

= ω· f̂ + 1

f̂ ·b̂1
f̂ · Db̂2

dσ
. (20)

In the Schwarzschild space-time ω ≡ 0 and polarization
rotation is a pure gauge effect. The phase remains zero if the

standard directions are set with the help of the local free fall
acceleration w of a stationary observer. At each point in the
space-time we choose the direction of the standard reference
momentum, or equivalently the z axis of our standard polar-
ization triad, to be ζ̂ := w. For a photon with momentum k
we choose the linear polarization vector b̂2 to point in the
direction ζ̂ × k̂, and finally we choose b̂1 := b̂2 × k̂ such that
it completes the orthonormal triad (b̂1, b̂2, k̂). This construc-
tion is known as the Newton gauge [16]. With this convention
� = −Eg × k ≡ �b̂2 and thus χ ≡ 0 along the trajectory.

However, such choice of standard polarization direction is
practically unfeasible. We will see the consequences of setting
the z axis with the help of a guide star in the next section.

IV. RELATIVISTIC PHASES IN THE NEAR-EARTH
QUANTUM COMMUNICATIONS

A. Setting

As a typical scenario we consider one round of communi-
cations between the ground station (GS) and a LEO spacecraft
(SC). The problem is most conveniently analyzed in the geo-
centric (Earth-centered inertial) system, the origin of which
coincides with the center of the Earth at the moment of emis-
sion. We direct the z axis of this system along the Earth’s
angular momentum. Then the three-dimensional velocity v
of the GS in this frame lies in the xy plane, while the initial
propagation direction vector k̂ and the velocity of the SC at
the time of detection u, both expressed in the global frame,
are arbitrary. Figure 1 represents this scenario.

The parametrized post-Newtonian approximation [20] is a
systematic method for obtaining corrections to the Newtonian
motions of a system of slowly moving bodies bound together
by weak gravitational forces. For a metric theory in question
the corrections are organized by the powers of in GM/rc2

and v/c. Typical velocities and gravitational potentials are re-
lated by GM/r ∼ v2. By estimating ε2 := GM/R⊕c2 ≈ 10−5,
where R⊕ is the Earth’s radius, we find that typical velocities
are of the order ε, and the upper bound on the gravitational
potential is of the order ε2. The order of expansion is conve-
niently labeled by the parameter ε, the formal powers of which
accompany the corresponding expressions and which is taken
to unity at the end of the calculation.

Hence the leading corrections that take into account the
effects of both SR and GR include the terms of up to the order
of ε2. In this approximation the gravitational field of the Earth
is spherically symmetric, and thus it follows from Eq. (20)
that the perceived polarization rotation results only due to
the reference frame choices by the communicating parties.
Moreover, at this level of precision the effects of SR and GR
can be treated separately, as the leading mixed term is of the
order ε3.

B. SR effects

It is easy to see that the SR effects dominate, resulting in
	 ∼ ε. It also should be noted that the freedom in choosing
the relative orientation of the reference frames allows one to
eliminate the Wigner phase for a fixed relative velocity v12

between the two frames 1 and 2, and any four-momentum
vector k1 (expressed, say, in frame 1). This is similar to the
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FIG. 1. Scheme of the communication round between the ground
station (GS) and the spacecraft (SC). The light ray is highlighted
in blue. All the vectors are indicated in the Earth-centered inertial
frame. In the flat space-time approximation the unit tangent vectors
to the ray k̂gs and k̂SC at the GS and the SC, as well as the direction
to an infinitely distant guide star, ζ̂gs and ζ̂SC, respectively, coincide.
Velocity of the GS at the emission of the signal is v and velocity of
the SC at the moment of detection is u.

two-frame invariant definition of spin of massive particles
[30]. Indeed, any proper Lorentz transformation that relates
these two frames has a form [25]

� = R(v̂12)Bz(ξv12 )R(α, β, γ )−1, (21)

where v12 = tanh ξv12 and R(α, β, γ ) is an arbitrary (four-
dimensional matrix of) rotation with the Euler angles α, β, γ .
By choosing R(α, β, γ ) = R(k̂) we have in Eq. (6) �L(k) =
L(�k), ensuring absence of the Wigner phase.

We use the setting of Fig. 1 and the conventions of Sec. II
(so the standard propagation direction is along the z axis of
the Earth-centered inertial frame). As we want to focus on the
effects of relative motion we assume that the global frame and
the GS and SC frames are related by pure boosts, B(v) and
B(u), respectively. Then the momenta in GS and SC frames
are related by

kSC = B(−u)B(−v)kGS, (22)

and thus the Wigner rotation is obtained by extracting the an-
gle 	 from the decomposition of the Lorentz transformation
� = B(−u)B(−v) via Eq. (7). We take the velocities of the
GS and SC in the global frame as

v = (v cos α, v sin α, 0), (23)

u = u(sin ϑ cos ϕ, sin ϑ sin ϕ, cos ϑ ), (24)

respectively, and the propagation direction

k̂ = (sin θ cos φ, sin θ sin φ, cos θ ). (25)

The first-order contribution to the Wigner phase is

	 = u cot θ sin ϑ sin(φ − ϕ) + v cot θ sin(φ − α) + O(ε2).
(26)

For the SC moving at the latitude of the GS coplanar the first-
order effect is absent.

Figure 2 illustrates the Wigner phase accrued between the
GS and the SC as a function of the SC passage time. As our
goal is to illustrate the relativistic effects in their simplest set-
tings we locate the ground station on the equator and assume
an exactly circular trajectory for the spacecraft. Except for the
coplanar motion where the first-order Doppler effect cancels,
the induced phase is of the order of v/c, where v is the relative
velocity between the GS and SC.

C. GR effects

Electromagnetic radiation and massless particles are not
affected by Newtonian gravity. The leading post-Newtonian
contributions (corrections to trajectories, time differences, and
phases) are of order ε2 in the parametrized post-Newtonian
expansion [20,21,28,29]; to take into account gravitomagnetic
effects we need contribution up to ε3.

The post-Newtonian expansion of the metric near a single
slowly rotating quasirigid gravitating body, assuming that the
underlying theory of gravity is GR [20,21,28], up to terms of
order ε3 is given by

ds2 = −V 2(r)c2dt2 + �R·d�x cdt + W 2(r)d�x ·d�x, (27)

where

V (r) = 1 − ε2 U

c2
, W (r) = 1 + ε2γ

U

c2
. (28)

The Newtonian gravitational potential −U =
−GMQ(r, θ )/r  −GM/r depends on the mass M and
higher multipoles [21,29], and

�R = −ε34
G

c3

�J × �x
r3

, (29)

where �J is the angular momentum of the rotating body. Hence
we see that the gauge-invariant polarization rotation is absent
in the leading order of the post-Newtonian expansion and the
Faraday phase at the order ε2 is a reference-frame effect. As
we are interested only in the leading contribution to the phase
we set Q = 1, and as it limits the precision at the level of 10−3

[29], γ = 1. In the remainder of the section we revert to the
units G = c = 1.

To obtain the leading contributions to the phase and po-
larization rotation, the photon trajectories only need to be
expanded up to ε2,

�x(t ) =: �x(0)(t ) + ε2�x(2)(t ), (30)

where the zeroth-order Newtonian trajectory is determined by
the initial position �x(t0) ≡ �x0 and the initial direction �n, �n ·
�n = 1. The leading-order corrections are decomposed into the
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( (
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FIG. 2. Wigner phase in one round of the GS to SC communication as a function of the passage time. The GS is located on the equator
(rGS = R⊕ = 6.38 × 106m) and the SC has a circular orbit (rSC = 7.00 × 106m). The time origin corresponds to the SC in the zenith. Left:
The SC moves on a constant celestial meridian and crosses the equator at t = 0. The inset shows the Wigner phase when the SC is close to the
zenith. Right: The SC rotates in the equatorial plane in the same sense as the Earth. For the coplanar motion the first-order effect vanishes, and
the Wigner phase is of the same order of magnitude as the Faraday phase of Sec. IV C.

tangential and transversal components,

�x(2)(t ) = �nx‖(t ) + �x⊥(t ), (31)

with �x⊥(t ) · �n = 0 and the initial conditions �x(2)(t0) = 0. The
initial tangent vector satisfies [21]

�k(t0) := d�x
dt

∣∣∣∣
t0

= [1 − 2ε2U (�x0)]�n, �n· �n = 1. (32)

Since γmnkmkn = W 2V 4, then with a slight abuse of notation
in leading post-Newtonian order we have

k̂0 = W0�k0. (33)

The post-Newtonian corrections are obtained either from
the evolution of the unit Euclidean vector �v or from the equa-
tions

d2�x⊥
dt2

= 2[ �∇U − �n(�n· �∇U )], (34)

dx‖
dt

= −2U . (35)

With the origin at the center of the Earth the integration
results in the tangent vector

�k = �n − ε2 2M�n
r(t )

− ε2 2M �d
d2

( �x(t ) · �n
r(t )

− �x0 · �n
r0

)
, (36)

where it is enough to take the Newtonian equation of the
trajectory to obtain the leading post-Newtonian correction,

�x(t ) · �n = �x0 · �n + t − t0 + O(ε2), (37)

and

�d := �x0 − (�x0 · �n)�n (38)

is the vector joining the center of the Earth and the point of
the closest approach of the unperturbed ray.

The leading-order post-Newtonian metric is spherically
symmetric. The rest of the calculations are considerably

simplified if we note that the initial polarization that is per-
pendicular to the propagation plane remains perpendicular
to it, which is an immediate consequence of Eqs. (16)–(18).
Therefore we select the reference frame differently from that
of Fig. 1. As the effects of SR contribute at least one additional
factor of ε, here we focus only on the gravitational effects and
treat them separately from the effects of rotation and relative
motion. Hence take as z = 0 the plane where the ray from the
GS to the SC lies, set their velocities to zero, and consider the
(constant Euclidean) polarization vector

�f = (0, 0, 1) = const. (39)

The gauge-dependent Faraday phase results from the changes
in the definitions of the standard polarization directions along
the trajectory. In turn, these follow from the changes in the
standard polarizations. At each point they are defined via
Eqs. (5) where the unit vector ζ̂ pointing to a distant reference
star takes the role of ẑ and the local unit tangent k̂.

The local propagation direction at the GS and the SC is
conveniently represented:

�ki = �n
(

1 − ε2 2M

ri

)
− ε2 2M �d

d2

( �xi · �n
ri

− �xGS · �n
rGS

)

=: �n + ε2�κi, i = GS, SC. (40)

The reference directions ζ̂i, i = GS, SC are obtained from
the tangents to the rays from the fixed guide star that arrive
to the GS and SC, respectively, and rGS = R⊕. We assume that
the star is infinitely far, so in the Newtonian limit ζ̂

m
i → lm,

where −�l is the flat space direction from the infinitely distant
star to the observers, �l · �l = 1. Approximating differences in
the local directions as arising solely from the gravitational
field of the Earth, we have

�ζi = �l
(

1 − ε2 2M

ri

)
− ε2 2M �di

d2
i

( �xi ·�l
ri

− 1

)
=: �l + ε2 �ςi.

(41)
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Then the standard polarization vectors at the GS and the SC
are

b̂2i = �ζi × �k
|�ζi × �k| =: �e2 + ε2 �β2i, b̂1i = b̂2i × k̂ =: �e1 + ε2 �β1i.

(42)
In the Newtonian limit,

b̂2i → �e2 := �l × �n
|�l × �n| , (43)

and to ensure |b̂2| = 1 the post-Newtonian terms satisfy �e2 ·
�β2i + M/ri = 0, with analogous expressions for b̂1i. Explic-
itly,

�e2 = �l × �n√
1 − (�l ·�n)2

, (44)

�β2i = �l × �n (�l ·�n)(�n· �ςi + �l · �κi ) + �l × �κi − �n × �ςi√
1 − (�l ·�n)2

. (45)

As a result, the leading-order Faraday phase that is accrued
between the GS and the SC is obtained from

sin(χ + �χ ) − sin χ = f̂SC ·b̂2SC − f̂GS ·b̂2GS

= �χ cos χ = �χ �f · �e1 + O(ε3). (46)

Substituting the explicit expressions into the above equation
results in

�χ = ez
2M

ez
1

(
1

rGS
− 1

rSC

)
+ βz

2SC − βz
2GS

ez
1

, (47)

where we assume that ez
1 � ε2, which is the validity condition

for this expression for the Faraday rotation.
If we choose the x axis to pass through the GS, then

�n = (cos φ, sin φ, 0), − 1
2π < φ < 1

2π, (48)

and

�l = (cos α, sin α sin β, sin α cos β ), (49)

where the altitude of the guide star is 1
2π − α, 0 � α � 1

2π .
Some useful auxiliary expressions are given in the Appendix.

When the reference direction ζ̂ and the propagation di-
rection k̂ are collinear, the standard polarization directions
are undefined. If ζ̂ lies in the plane determined by the GS,
SC, and center of the Earth, then the Faraday phase is zero.
Moreover, the post-Newtonian expansion of Eq. (47) fails in
the ε2 vicinity of α = 0 or β = 1

2π, 3
2π .

While for a general configuration an expression for the
Faraday phase is rather cumbersome, some special cases are
quite simple. For | tan β| � ε−2 and the SC at the zenith
(φ = 0) the Faraday phase is

	F = GM

c2

rSC − rGS

rSCrGS
tan β, (50)

while for the guide star close to the zenith the resulting phase
is

	F = −GM

c2

rSC − rGS

rSCrGS

1

cos β

(
sin φ

α
− cos φ sin β + O(α)

)

(51)
for ε2 � α � 1.

Figure 3 shows the leading-order (gauge-dependent) Fara-
day phase for different reference and propagation directions.
As discussed above, to isolate the gravitational contribution
to the phase it is enough to consider a fictitious scenario
of the GS and SC being in fixed positions in the global
reference frame. Unless the first-order Doppler effect can-
cels, the Faraday phase is ε times smaller than the Wigner
phase.

V. ERRORS AND THEIR MITIGATION

Regardless of the basis that is used to encode polarization
qubits the relativistic phases lead to errors in distinguishing
the signals. For small phases the fidelity loss, 1 − F , F :=
|〈�SC|�GS〉|, scales as 	 2. The SR and GR effects appear
jointly and can be countered using the same techniques. As the
phases are opposite for the opposite helicities, for the states
with sharply defined momenta the phase errors can be easily
countered [23].

Consider two entangled well-separated and therefore dis-
tinguishable wave packets, with the same momentum profile
centered on k. For example, the two-photon states

|�±
k 〉 = 1√

2
(|k,+〉1|k,−〉2 ± |k,−〉1|k,+〉2) (52)

have a zero helicity and are thus insensitive to the Wigner and
Faraday phase rotations.

The two states |�±
k 〉 are orthogonal to each other and

thus perfectly distinguishable. Hence using them one logical
qubit can be encoded with two physical qubits (photons). If
multiphoton states can be resolved then the asymptotically
efficient encoding scheme of using N photons to transmit
N − 2−1 log2 N qubits can be employed.

The relative importance of the relativistic noise and, there-
fore, necessity of using this invariant encoding depend on the
specific task and its performance requirements. Consider for
definiteness a QKD protocol with discrete variables [31,32],
where qubits are realized as polarization states of photons
with well-defined momenta. Let the protocol be a version of
Eckert’s protocol E91, where the entangled state is prepared
onboard of the SC and is sent to the communicating parties on
the ground.

The measured qubit error rates were reported to be 1–
3% [1] for the SC-GS link, raising to 4.5–8.1% for the
entanglement-based QKD that enabled secure communica-
tions between two GSs [33]. Weather is the main source of
the bit rate variability [1]. In situations like this, where the
protocol operates close to the maximal allowed error rate
of approximately 11% [31], the relativistic phase is neg-
ligible and should be ignored. Moreover, a nonrelativistic
effect—misalignment of the reference frames—is a much
more serious problem that potentially may prevent the estab-
lishment of a secure key.

As all such misalignments (both relativistic and nonrel-
ativistic) introduce the phase error |k±〉 → e±iφ |k′±〉, we
consider their correction by the RFI protocol of Ref. [34]. The
protocol is based on the assumption of a shared (logical) z axis
by the communicating parties. We denote the logical Pauli op-
erators σx ≡ X , σy ≡ Y , and σZ ≡ Z of the two parties (Alice

042610-6
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FIG. 3. The Faraday phase depends on the choice of the reference direction �ζ (α, β ) and the initial propagation direction �n(φ). The angles
are defined in Eqs. (48) and (49). Left: β = 0. Center: β = 7π/16. Right: β = π .

and Bob) as XA,B, YA,B, and ZA = ZB, and the logical qubits are
realized as |0〉 := |k+〉 and |1〉 := |k−〉, respectively.

Taking the ideal entangled state that is to be shared between
the parties as |�−〉, in the absence of other sources of noise
the actual state is

|�−〉AB = 1√
2

(eφ|k1+〉A|k2−〉B − e−iφ|k1−〉A|k2+〉B),

(53)
where the relative phase 2φ depends on the momenta of
the two photons and the Lorentz transformation between the
frames (we discuss weaker gravity effects shortly).

Alice and Bob perform at each step one of the three ran-
domly selected measurements X,Y , Z . For simplicity we take
them as equiprobable. At each instance when both of them
have selected a shared Z Alice and Bob generate a shared
bit of the raw key. For the state of Eq. (53) this shared bit is
generated error free (assuming the absence of eavesdropping
and other sources of noise), which results in the raw key
bit generation rate per communicated pair that is (bounded
by) Prfi = 1/9. Four of the eight other possible measurement
combinations that involve X and Y tests are used to generate
the correlator:

C = 〈XAXB〉2 + 〈XAYB〉2 + 〈YAXB〉2 + 〈YAYB〉2. (54)

For an arbitrary but constant φ it is independent of the phase
and is used to monitor the eavesdropper’s knowledge.

As a matter of principle, the scheme relies on the suf-
ficiently good knowledge of one direction and fails when
this is corrupted. This direction is shared by having some
physical token. Without active feedback and correction the
ideally maintained local directions will lead to the errors of
the order of the linear Doppler effect, i.e., ε ∼ 10−5 with the
LEO satellites. However, preservation of this token on its own
is unrealistic even in purpose-built systems such as the Gravity
Probe B [35]. On board of the spacecraft torques proportional
to the angle between the gyro spin vector and the spacecraft
roll axis needed to be constantly monitored. A more practical
bound is given by the specifications of the CubeSat project,
where the systems aligning the transmitting telescope with

the optical ground station during quantum transmission are
expected to operate at the level of percents [3].

As long as two-photon measurements are resource inten-
sive, there is no justification in using the two-to-one scheme
of Eq. (52). On the other hand, once such operations become
inexpensive, and increase of the bit rate becomes a priority,
the scheme (52) will clearly have an advantage, as by being
incorporated in the standard E91 protocol it allows one raw
bit per four physical photons, even without using the many-
particle encoding.

VI. SUMMARY

Describing propagation of electromagnetic waves in vac-
uum in terms of rays that follow null geodesics is a very
good approximation in the high-frequency regime. Observ-
able deviations from the geometric optics approximation are
expected only in ultrastrong gravitational fields. Within this
approximation the polarization rotation in the Schwarzschild
metric, and as a result in the leading post-Newtonian approx-
imation, is a purely gauge effect.

This phase will be present as a consequence of practical
methods of setting up reference frames in the Earth-
to-spacecraft communications. However, these effects are
typically about 10−5 weaker than the SR effects. If these small
errors need to be countered this can be done using the same
encoding scheme. Finally, we note that this scheme can serve
as a basis of a true RFI protocol that does not assume any
shared reference frame information.
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APPENDIX: EXPLICIT EXPRESSIONS

The zeroth-order standard directions are

�e1 =
(

sin φ
(
tan

(
α
2

)
sin β cos φ + cos α

(
tan

(
α
2

)
sin β cos φ − sin φ

))
√

(sin α sin β cos φ − cos α sin φ)2 + sin2 α cos2 β
,

− cos φ
(
tan

(
α
2

)
sin β cos φ + cos α

(
tan

(
α
2

)
sin β cos φ − sin φ

))
√

(sin α sin β cos φ − cos α sin φ)2 + sin2 α cos2 β
,− (cos α + 1) tan

(
α
2

)
cos β√

(sin α sin β cos φ − cos α sin φ)2 + sin2 α cos2 β

)

(A1)

and

�e2 =
(

− (cos α + 1) tan
(

α
2

)
cos β sin φ√

(sin α sin β cos φ − cos α sin φ)2 + sin2 α cos2 β
,

(cos α + 1) tan
(

α
2

)
cos β cos φ√

(sin α sin β cos φ − cos α sin φ)2 + sin2 α cos2 β
,

cos α sin φ − (cos α + 1) tan
(

α
2

)
sin β cos φ√

(sin α sin β cos φ − cos α sin φ)2 + sin2 α cos2 β

)
. (A2)

The first post-Newtonian term of �kGS readily follows from Eq. (32), while the leading correction to the propagation direction at
the SC is

κSC = 2M

rGSrSC
(−L + cos φ(rSC − 2rGS), cot φ[cos φ(rGS − rSC) + L] − rGS sin φ, 0). (A3)

Finally, we quote the deviation of the line of sight to the guide star:

�ςGS = 2M

rGS

(
2 cos α − 1, (2 cos α + 1) tan

1

2
α sin β, (2 cos α + 1) tan

1

2
α cos β

)
. (A4)
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