
PHYSICAL REVIEW A 104, 042423 (2021)
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We expand the quantum variant of the popular game Sudoku by introducing the notion of cardinality of a
quantum Sudoku (SudoQ), equal to the number of distinct vectors appearing in the pattern. Our considerations
are focused on the genuinely quantum solutions—the solutions of size N2 that have cardinality greater than N2,
and therefore cannot be reduced to classical counterparts by a unitary transformation. We find the complete
parametrization of the genuinely quantum solutions of a 4 × 4 SudoQ game and establish that in this case the
admissible cardinalities are 4, 6, 8, and 16. In particular, a solution with the maximal cardinality equal to 16
is presented. Furthermore, the parametrization enabled us to prove a recent conjecture of Nechita and Pillet [I.
Nechita and J. Pillet, Quantum Inf. Comput. 21, 781 (2021)] for this special dimension. In general, we proved
that for any N it is possible to find an N2 × N2 SudoQ solution of cardinality N4, which for a prime N is related
to a set of N mutually unbiased bases of size N2. Such a construction of N4 different vectors of size N yields a
set of N3 orthogonal measurements.

DOI: 10.1103/PhysRevA.104.042423

I. INTRODUCTION

Numerous classical concepts have their quantum counter-
parts. It is no different with Latin squares (LSs) [1], which are
N × N arrays of N distinct symbols, arranged so no two ele-
ments are the same in any row or column. Extension of these
to quantum Latin squares (QLSs) was proposed in Ref. [2].
These basic structures in quantum information play a central
role in quantum teleportation [3], dense coding [4], and other
quantum information protocols [5]. Moreover, two QLSs can
be entangled in such a way that they cannot be expressed as
two separated arrangements [6]. One of the recent generaliza-
tions of QLSs are block bistochastic matrices [7], later studied
in Ref. [8] under the name of quantum magic squares, in
which the same elements may appear in the same row or line.

For any LS, it is possible to create a QLS by association
to each number i = 1, . . . , N a vector from the computational
basis, i.e., i �→ |i〉. QLSs which can be obtained by such a
connection are called classical. On the other hand, there is
no canonical way to associate a LS to a generic quantum one.
Therefore, QLSs provide a richer structure than LSs; however,
not all of them are truly quantum, i.e., a variety of them can
be transformed into classical QLSs by a unitary action on all
vectors, which was noted by Musto and Vicary [9]. We call
such QLSs apparently quantum and, to quantify the contrast
between various classes of QLSs, we introduce the notion
of cardinality—the number of its vectors different up to a
phase. QLSs of cardinality larger than N cannot be unitarily
transformed into a classical solution, which is why they can
be called genuinely quantum.

The special kind of LSs are Sudoku, the designs which
admit additional constraints that no two elements repeat in
any out of N disjoint blocks. The name Sudoku is Japanese
abbreviation of �������� (Suuji wa dokushin
ni kagiru) for “numbers better be single!” [10]. Following
the idea of quantum LSs, Nechita and Pillet introduced a
quantum version of Sudoku [11], which was named SudoQ
by adding orthogonality constraints on each row, column,
and block on a given array of vectors. While the number
of possible Sudoku patterns of size nine is finite (and equal
to 6,670,903,752,021,072,936,960—see Refs. [12,13]), the
number of different SudoQ designs is infinite by construction.
Since SudoQ designs form a subset of QLSs, the definition of
cardinality holds without any modifications.

The aim of this paper is to study the cardinality of SudoQ,
as well as to explore its relationship to other quantum me-
chanical notions, such as mutually unbiased bases (MUBs).
Two bases are said to be unbiased if for a system prepared
in an eigenstate of one base, all outcomes of the measurement
with respect to the other base are predicted to occur with equal
probability [14]. MUBs are useful in various quantum infor-
mational tasks: in quantum state tomography [15] or quantum
cryptography [16], among many others. The number of MUBs
in dimension d cannot exceed d + 1. A complete set of d + 1
MUBs has been constructed for all prime power dimensions
[17], for instance, with the Heisenberg-Weyl method [18,19].
Vectors from a complete set of MUBs form a projective
2-design [20,21], which means that they faithfully approx-
imate the state space for any degree-2 polynomial in state
coefficients.
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To further motivate the importance of the study of quan-
tum combinatorial designs, notice that vectors from each row,
column, or block in such a SudoQ grid form a von Neumann
measurement. Therefore, by considering SudoQ, we address
the question concerning the existence of von Neumann mea-
surements in the Hilbert space of dimension N2, which are
determined by N4 pure states. Any SudoQ design provides
3N2 orthogonal measurements, related to columns, rows, and
blocks of the SudoQ design.

This paper is organized as follows. In Sec. II, we introduce
the definition of cardinality for QLSs along with apparently
and genuinely quantum solutions of QLSs. Section III dwells
on quantum Sudoku as a special case of QLSs. In Sec. III A,
we provide full characterization of cardinality for 4 × 4
SudoQ, along with the parametrization of the solutions of the
4 × 4 SudoQ. Furthermore, in Sec. IV we consider general
N2 × N2 grids and characterize properties of their quantum
solutions, especially those of the maximal cardinality N4.
Section V presents the standard Heisenberg-Weyl method of
constructing MUBs for prime power dimensions, as well as
adaptation of this technique in construction of SudoQ grids. In
addition, in Sec. VI, we show how to generalize this approach
for SudoQ cubes and hypercubes. Similarly to MUBs, vectors
from SudoQ grids form complex projective designs. Finally,
Sec. VII compares both designs against the Welch bound.
Moreover, we investigate the local structure of SudoQ vectors
belonging to the composed space HN ⊗ HN .

II. QUANTUM LATIN SQUARES

The domain of quantum designs has its roots in the classi-
cal combinatorial designs called Latin squares [1].

Definition 1. An LS is an N × N array of N distinct ele-
ments, arranged so no element repeats in any row or column.

Example. LS of size N = 3:

1 2 3
3 1 2
2 3 1

. (1)

The main goal of the paper is to investigate a special case
of QLSs [2,6]; therefore, let us revoke their definition.

Definition 2. A QLS is an N × N array of vectors from
N-dimensional Hilbert space HN , arranged in such a way that
each row and column forms an orthonormal basis of HN .

Example. QLS of size N = 3:

|1〉 1√
2
(|2〉 + |3〉) 1√

2
(|2〉 − |3〉)

1√
2
(|2〉 − |3〉) |1〉 1√

2
(|2〉 + |3〉)

1√
2
(|2〉 + |3〉) 1√

2
(|2〉 − |3〉) |1〉

. (2)

In this example, vectors

{|1〉 , 1√
2
(|2〉 + |3〉), 1√

2
(|2〉 − |3〉)}

form an orthonormal basis of a three-dimensional Hilbert
space.

QLSs form richer structures than LSs; thus, it is useful to
designate those QLSs which have their classical counterparts.

Definition 3. A QLS which consists of elements only from
the computational basis B = {|1〉 , ..., |N〉} is called classical.

Equivalence of classical QLSs and LSs can be visualized
by treating every element of QLS as a symbol from Definition
1. Let us note the remark which will be crucial for our paper,
since it motivates our investigation of QLSs and quantum
Sudoku.

Proposition 4. Any N × N QLS of N distinct entries is
unitarily similar to a classical one (with elements from com-
putational basis only). Such QLSs will be called apparently
quantum.

Proof. Validity of the above statement follows from the
existence of a unitary operator which transforms any orthonor-
mal basis to the computational one.

In particular, the QLS (2) is apparently quantum, since it
contains only three distinct elements, so it can be transformed
to the classical solution (1) by an orthogonal rotation in the
subspace spanned by |2〉 and |3〉.

Mitigated by the aforementioned proposition, we are able
to introduce a notion which is of central importance to our
results since it encompasses the core distinction between the
classical and the quantum case.

Definition 5. The cardinality c of a QLS is the number of
its vectors distinct up to a global phase.

Any classical LS is characterized by the smallest cardi-
nality c = N , while for any QLS its maximal cardinality is
cmax = N2.

Usefulness of the notion stems from its invariance under
unitary operations. This way it can be used to study non-
classicality of a given QLS since, similarly to entanglement
measures, it is not affected by free operations (unitaries as
opposed to the local unitaries in the case of local operations
and classical communication).

Analogously to Proposition 4, we are able to prove the
following statement.

Proposition 6. Any N × N QLS with the cardinality
greater than N is not unitarily similar to a classical one. Such
a QLS will be called genuinely quantum.

Note that this remark could be used to simplify the proof
of Proposition 13 on p. 6 in Ref. [9].

In the subsequent parts of this paper, we will denote vectors
that are linear combinations of vectors from computational
basis |i〉 and | j〉 as |ai j〉 , |bi j〉, where coefficients of these
combinations may be equal to zero.

Remark. There are no genuinely quantum 2 × 2 QLSs.
Proof. By contradiction, if there were more than two dis-

tinct vectors in a 2 × 2 lattice, then one of them must be
orthogonal to the two others, which is not possible in a two-
dimensional Hilbert space.

Remark. There are no genuinely quantum 3 × 3 QLSs.
Proof. Without loss of generality, let us consider a 3 × 3

grid with vectors from the computational basis B in the first
row and unknown vectors in the other two rows:

|1〉 |2〉 |3〉
|a23〉 |a13〉 |a12〉
|b23〉 |b13〉 |b12〉

. (3)

Observe that choosing one of the vectors in the second row
to belong to the computational basis B forces the others to be
such (as the scalar products of each two vectors in each row
must be zero). On the other hand, if we set all the vectors in
the second row not to belong to this basis, then they cannot
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be mutually orthogonal. Therefore, they must all be computa-
tional. The same holds for the vectors in the third row.

In the rest of the paper, we will deal with a special type of
QLSs, namely, the quantum Sudoku.

III. QUANTUM SUDOKU

Motivated by Ref. [11], we extend Definition 2, introduc-
ing the quantum Sudoku as a special case of QLSs.

Definition 7. A quantum Sudoku (SudoQ) is an N2 × N2

QLS with additional constraints that each of the N disjoint
blocks of size N (also called boxes or regions) forms an
orthonormal basis.

Let us proceed to investigate instances of partially filled
SudoQ, with the particular emphasis on its solvability.

Definition 8. A quantum grid is a SudoQ grid where some
entries can be blank. The remaining fixed entries are called
clues.

Example. Quantum grid of size 22 × 22 with six clues:

|1〉 |2〉 |3〉 |4〉
1√
2
(|1〉 + |2〉) 1√

2
(|1〉 − |2〉) . .

. . . .

. . . .

. (4)

We are particularly interested in a subclass of those grids
which can be filled by vectors without breaking the orthogo-
nality conditions.

Definition 9. A solution of a quantum grid is a completely
filled SudoQ grid with the clues from the original quantum
grid left unchanged.

Definition 10. A quantum grid is called solvable if it has
at least one solution.

Example. Solvable quantum grid with six clues:

|1〉 |2〉 |3〉 |4〉
. . 1√

2
(|1〉 + |2〉) 1√

2
(|1〉 − |2〉)

. . . .

. . . .

. (5)

One of the combinatorial problems concerning Sudoku is
the minimal number of clues admitting a unique solution;
therefore, we introduce a similar concept for its quantum
counterpart.

Definition 11. A quantum grid is called uniquely solvable
if it has a unique solution.

Example. Uniquely solvable quantum grid of size 22 × 22:

|1〉 |2〉 |3〉 |4〉
|3〉 |4〉 1√

2
(|1〉 + |2〉) 1√

2
(|1〉 − |2〉)

|2〉 |1〉 . .

. . . .

. (6)

Since SudoQ is a restriction of the QLS, by analogy we
introduce cardinality of a SudoQ, i.e., the number of its dis-
tinct entries (up to a phase), along with classical, apparently
quantum and genuinely quantum solutions, see Definitions 3
and 5 along with Propositions 4 and 6.

Quantum Sudoku 4 × 4

In this section, we present the main results of analysis of
a 4 × 4 SudoQ, that is, the list of all possible cardinalities of
such a design as well as its parametrization.

Theorem 12. The only admissible cardinalities of a 4 × 4
SudoQ read c = 4, 6, 8, and 16.

Proof of the above theorem is moved to Appendix A. Sub-
sequently, we provide the reader with the parametrization of
the SudoQ solutions with the maximal cardinality c = 16. We
present the derivation of this parametrization and show how
to obtain a parametrization of solutions with c = 6 and c = 8
in Appendix B.

The general form of the solution of a 4 × 4 SudoQ is the
following:

e1 e2 f1 f2

e3 e4 f3 f4

v1 v2 u1 u2

v3 v4 u3 u4

, (7)

where {ei}, { fi}, {vi}, and {ui} are the orthonormal bases of
the four-dimensional Hilbert space H4. Let us set {ei} to form
the computational basis B = {|i〉} and express other vectors in
terms of ei. It will be helpful to define unitary matrices Ue f ,
Uev , Ueu, such that

Ue f |ei〉 = | fi〉 , Uev |ei〉 = |vi〉 , Ueu |ei〉 = |ui〉 .

(8)
Then columns of the matrices Ue f , Uev , Ueu are vectors
from { fi}, {vi} and {ui}, respectively, expressed in terms
of the computational basis. If we consider the SudoQ with
c = 16, then

Ue f =

⎡
⎢⎢⎢⎢⎣

0 0 cα sα

0 0 eiφsα −eiφcα

cα sα 0 0

eiϕsα −eiϕcα 0 0

⎤
⎥⎥⎥⎥⎦,

Uev =

⎡
⎢⎢⎢⎢⎣

0 cγ 0 sγ

cγ 0 sγ 0

0 eiζ sγ 0 −eiζ cγ

eiηsγ 0 −eiηcγ 0

⎤
⎥⎥⎥⎥⎦,

Ueu =

⎡
⎢⎢⎢⎢⎣

sαsγ cαsγ sαcγ cαcγ

−eiφcαsγ eiφsαsγ −eiφcαcγ eiφsαcγ

−eiζ sαcγ −ei(ζ )cαcγ eiζ sαsγ eiζ cαsγ

ei(φ+η)cαcγ −ei(φ+η)sαcγ −ei(φ+η)cαsγ ei(φ+η)sαsγ

⎤
⎥⎥⎥⎥⎦, (9)

where sα denotes sin α and cα denotes cos α, respectively,
while four angle parameters are constrained by φ + η = ϕ +
ζ . For any values of the parameters, Eq. (9) give a valid
solution of a SudoQ. Moreover, for a different choice of
parameters, it yields cardinalities c = 4, 8, 16. As a particu-
larly symmetric construction, we provide Example 13, which
forms a proper SudoQ of the maximal cardinality, c = 16. For
clarity, we used here non-normalized vectors.

Example 13. Quantum SudoQ of the maximal cardinality
c = 16:
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|1〉 |2〉 |3〉 + |4〉 |3〉 − |4〉
|3〉 |4〉 |1〉 − |2〉 |1〉 + |2〉

|2〉 + |4〉 |1〉 − |3〉 |1〉 + |2〉 + |3〉 − |4〉 |1〉 − |2〉 + |3〉 + |4〉
|2〉 − |4〉 |1〉 + |3〉 |1〉 + |2〉 − |3〉 + |4〉 |1〉 − |2〉 − |3〉 − |4〉

.

The above example is especially interesting because it
has a maximum degree of superposition, i.e., the entropy of
states coefficients in the computational basis. As shown in
Appendix C, this solution is distinguished by attaining the
maximal value of the averaged entropy of components of the
vectors.

For any vector |ei〉 from the upper left block and any
normalized vector |u j〉 from the lower right block one has

|〈ei|u j〉|2 = 1
4 .

This means that bases {e1, . . . , e4} and {u1, . . . , u4} are
MUBs, i.e., every pair of vectors from both bases admits the
same scalar product [22,23]. The same holds true for the pair
of bases from the upper right and lower left blocks. Setting
two MUBs of order four in either diagonal or antidiagonal
blocks leaves no freedom for the other elements, i.e., it speci-
fies the entire structure uniquely.

As we show in Appendix D, Example 13 can be solved
given only four clues, which is also the minimal number of
clues in the classical case.

Theorem 14. For any 4 × 4 quantum square with c = 16,
the corresponding grid with four linearly independent clues,

e1

f3

v2

u4

, (10)

is uniquely solvable.
The authors of Ref. [24] investigated the issue of the mini-

mum number of clues in a classical 4 × 4 Sudoku and showed
that it is equal to 4. Motivated by Theorem 14, we pose a
conjecture.

Conjecture 15. Similarly to the classical Sudoku, there are
no 4 × 4 SudoQ with three clues that are uniquely solvable.

Using the parametrization presented in Appendix B, we are
able to prove in the case of 4 × 4 SudoQ the conjecture from
Ref. [11], which states that uniquely solvable Sudoku admits
only one solution also in the quantum regime.

Proposition 16. Uniquely solvable 4 × 4 classical Sudoku
is also uniquely solvable SudoQ.

Proof of the above statement is delegated to Appendix E.

IV. GENERAL QUANTUM SUDOKU

We present a general construction of SudoQ grids in di-
mension N2 × N2, with a particular emphasis on the existence
of the solutions of the maximal cardinality.

Quantum Sudoku is an N2 × N2 grid of vectors from
a complex projective Hilbert space H⊗2

N which satisfies
three orthogonality relations: vectors in each block, row, and
column form a basis. Entries of such a grid might be conve-
niently labeled by four indices i, j, k, � = 1, . . . , N referring
to the (N (i − 1) + k) row and (N ( j − 1) + �) column in the

grid. In such a way, indices i, j label consecutive blocks of
N × N vectors in a SudoQ grid, while indices k, � are rel-
evant to the consecutive rows and columns in each block.
With this notation at hand, we denote by |v〉i jk� ∈ HN2

the
vector located on the intersection of (N (i − 1) + k) row with
(N ( j − 1) + �) column in the SudoQ grid.

Remark 17. SudoQ is a collection of N4 vectors {|v〉i jk�} ∈
HN2

, such that the marginal sets of N2 vectors {|v〉i jk�} ∈ HN2

constitutes a basis for any fixed pairs of indices: i, j or i, k
or j, �.

The simplest construction of a classical Sudoku grid is
given by the cyclic permutation of rows and columns. In such
a Sudoku grid, the entry corresponding to i, j, k, � coordinates
has a value j + k − 1 + N (i + � − 2) mod N2. We slightly
change the notation, and instead of denoting entries as num-
bers 1, . . . , N2, we shall use pairs of numbers (p, q) where
p, q = 1, . . . , N . Therefore, an entry corresponding to indices
i, j, k, � is given by a pair of numbers ( j + k, i + �).

The standard construction of a Sudoku grid might be
canonically identified with the quantum SudoQ with all en-
tries taken from the computational basis B. Indeed, consider
the following grid of vectors:

|v〉i jk� := | j + k〉 ⊗ |i + �〉 ∈ H⊗2
N ,

where the addition is considered mod N . Observe that in this
particular type of SudoQ, all vectors |v〉i jk� in a given block
are determined by two indices i, j to form the computational
basis. Hence, such a SudoQ grid has cardinality equal to N2.

In fact, this particular classical Sudoku grid might be gen-
eralized to the quantum one in various different ways, where
bases of different blocks in general do not overlap.

Proposition 18. Consider two families of N unitary matri-
ces of dimensions N × N , denoted by {Ui}N

i=1 and {Vi}N
i=1. Let

|u(i)
s 〉 and |v(i)

s 〉 denote the sth column of the matrices Ui and
Vi, respectively. The following set of vectors:

|wi jk�〉 := |u(i)
j+k〉 ⊗ |v( j)

i+�〉 , (11)

where addition is considered modulo N , constitute the SudoQ
grid according to the notation in Remark 17.

Proof. Using Remark 17, we shall verify that vectors
|vi jk�〉 constitute a basis of H⊗2

N for any fixed pair of indices
i, j and i, k and j, �.

Note that for two fixed parameters i, j, the vectors |u(i)
j+k〉

are consecutive columns of a unitary operator Ui, and hence
form a basis in HN . Similarly, the vectors |v( j)

i+�〉 form a ba-

sis of HN , thus the tensor products |u(i)
j+k〉 ⊗ |v( j)

i+�〉 form a

basis of H⊗2
N .

Observe that for fixed parameters i, j, k, the vectors
|u(i)

j+k〉 ⊗ |v( j)
i+�〉 span N-dimensional subspace |u(i)

j+k〉 ⊗ HN .
Moreover, for fixed parameters i, k and different values j =
1, . . . , N , the vectors |u(i)

j+k〉 span the subspace HN . Therefore,
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for fixed parameters i, k, the corresponding vectors |u(i)
j+k〉 ⊗

|v( j)
i+�〉 span H⊗2

N , and hence form its basis. Similar analysis
might be performed with respect to fixed indices j, �.

Proposition 19. Consider the same family of matrices as
in Proposition 18, together with bases formed by treating
each column as a vector. Denote by c1 the number of distinct
vectors in the family {Ui}N

i=1 (c2 in the family {Vi}N
i=1, respec-

tively), where equality is considered up to a multiplication by
a phase factor. Then cardinality of the related SudoQ grid
reads c = c1c2. In particular, if in both families of unitary
matrices any column does not occur more than once (up to the
multiplication by a phase factor), the corresponding SudoQ
grid achieves maximal cardinality.

Proof. Observe that the set of vectors |v〉i jk� constituting
a SudoQ grid according to Eq. (11) is in fact of the tensor
product form

{|w〉i jk�}N
i, j,k,�=1 = {u(i)

k ⊗ v
( j)
� }N

i, j,k,�=1,

where |u(i)
k 〉is the kth column of Ui operator and |v( j)

� 〉 is the �th
column of Vj , respectively. Assuming that there are exactly c1

distinct vectors among u(i)
k (and c2 among v

( j)
� ), we conclude

the statement.
Corollary 20. Notice that the probability that two random

unitary matrices will share the same column up to the mul-
tiplication by a phase factor equals zero. Therefore, in any
dimension N , the SudoQ grid related to two families of ran-
dom unitary operators {Ui}N

i=1 is of the maximal cardinality
with probability 1.

V. HEISENBERG-WEYL SUDOQ

Consider the standard shift and phase operators defined on
the N-dimensional Hilbert space HN ,

X =
N∑

j=1

| j〉 〈 j + 1| , Z =
N∑

j=1

ω j | j〉 〈 j| ,

where ω = exp(2π i/N ) is an N th root of unity. Addition
| j + 1〉 is understood modulo N , so these operators can be
considered as generalizations of Pauli matrices σx and σz

corresponding to N = 2. Note that vectors constituting eigen-
basis of the product XZk might be written in a compact way,

| jk+1〉 = 1√
N

N∑
�=1

ωk�2+ j� |�〉 , (12)

while the eigenbasis {| j1〉} of the Z operator is simply the
computational basis [19]. For prime dimensions, N = p, the
eigenvectors of the Heisenberg-Weyl operators might be used
to construct a mutually unbiased basis [18,19,21].

Definition 21. Two orthonormal bases B = {bi}N
i=1 and

C = {ci}N
i=1 in N-dimensional Hilbert space HN are unbi-

ased iff the scalar product |〈bi|ci〉|2 = 1/N holds for any
bi ∈ B, ci ∈ C.

There are not more than N + 1 MUBs in dimension N
[22,23]. For any prime dimension N = p, the eigenstates of
the following N + 1 operators:

Z, X, XZ, XZ2, . . . , XZN−1 (13)

form a full set of (N + 1) MUBs, often called Heisenberg-
Weyl MUBs.

With a little effort, the above construction might be
extended to any prime power dimension N = pn. Uni-
tary mulitilocal generalized Pauli operators X k1 Z�1 ⊗ · · · ⊗
X kn Z�n , acting on a partitioned Hilbert space H⊗n

N , can be
partitioned into N + 1 commuting classes of operators in such
a way that common eigenvectors of operators in each class
form a basis, unbiased to any other one [19]. Among all such
bases, exactly p + 1 are local bases, i.e., constituting vectors
are separable with respect to the structure of a Hilbert space
H⊗n

N [25]. In fact, the number of unbiased local bases cannot
exceed p + 1 [23].

Eigenvectors of Weyl-Heisenberg operators might be suc-
cessfully used to construct SudoQ grids with maximum
cardinalities and exceptional orthogonality relations.

Proposition 22. The following collection of vectors:

|vi jk�〉 = |( j + k)i〉 ⊗ |(i + �) j〉 , (14)

in view of the notation introduced in Remark 17, forms a
SudoQ grid of size N2 with the maximal cardinality, where
| jk〉 are eigenvectors (12) of the Heisenberg-Weyl opera-
tors. Moreover, if N is prime, for each permutation σ of
N indices, the following N bases of N2 dimensional space
{|viσ (i)k�〉N

k,�=1}N
i=1 are mutually unbiased and local.

Proof. Notice that by setting the eigenvectors |sk〉N
s=1 of

the operators XZk in consecutive columns, we get a unitary
matrix of order N . Therefore, by Proposition 18, the con-
structed grid is indeed a SudoQ. Moreover, two vectors |si〉
and |s′

i′ 〉 are either orthogonal if i = i′ or unbiased if i 
= i′.
Since eigenvectors of XZk for different k are all different
(see Appendix F), |si〉 
= |s′

i′ 〉, except s = s′, i = i′. Therefore,
such a SudoQ grid is of the maximal cardinality. Notice that
for a fixed values i 
= i′, vectors |pi〉 and |p′

i′ 〉 are unbiased,
i.e., 〈pi|p′

i′ 〉 = 1/
√

N . Therefore, for fixed values i 
= i′ and
j 
= j′, the corresponding vectors are unbiased in a Hilbert
space HN ⊗ HN :

| 〈vi jk�|vi′ j′k′�′ 〉 |

= | 〈(i + k)i|(i′ + k′)i′ 〉 | · | 〈( j + �) j |( j′ + �′) j′ 〉 | = 1

N
.

Therefore, for any permutation σ , the bases
{|viσ (i)k�〉N

k,�=1}N
i=1 of N2-dimensional space are mutually

unbiased. Since all vectors in Eq. (14) are of tensor product
form, the corresponding bases are all local.

We present a simple construction of a 9 × 9 Heisenberg-
Weyl SudoQ grid. Notice that it achieves the maximal
cardinality, c = 81, and the bases formed by vectors in ap-
propriate blocks are unbiased.

Example 23. For N = 3, the Heisenberg-Weyl SudoQ con-
struction leads to a 9 × 9 solution of the maximal cardinality
81 constructed with three triples of MUBs of size 9 (in anal-
ogy to the two pairs of MUBs of order 4 applied for the 4 × 4
SudoQ from Example 13).

An N = 3 dimensional operator Z has the following eigen-
vectors:

|11〉 = |1〉 , |21〉 = |2〉 , |31〉 = |3〉 , (15)
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FIG. 1. The 9 × 9 SudoQ grid with the maximal cardinality, c = 81. Each entry is represented by the quantum state in a tensor product
form |ki〉 ⊗ |� j〉 ∈ H3 ⊗ H3. Constituting vectors |ki〉 , |� j〉 are ith and jth eigenvectors of Heisenberg-Weyl operators XZk−1 and XZ�−1,
respectively, see Eq. (12) for their explicit form. Notice that all vectors in a given block are common eigenvectors of two operators indicated
on the top and left sides of a grid. Moreover, vectors from two blocks (i, j) and (i′, j ′) are mutually unbiased for i 
= i′ and j 
= j ′.

while the eigenvectors of X, XZ are presented below, on the left and right sides, respectively:

|12〉 = 1√
3

(|1〉 + |2〉 + |3〉), |13〉 = 1√
3

(|1〉 + ω |2〉 + ω |3〉),

|22〉 = 1√
3

(|1〉 + ω |2〉 + ω2 |3〉), |23〉 = 1√
3

(|1〉 + ω2 |2〉 + |3〉),

|32〉 = 1√
3

(|1〉 + ω2 |2〉 + ω |3〉), |33〉 = 1√
3

(|1〉 + |2〉 + ω2 |3〉).

Note that the above eigenvectors of operators Z, X, XZ might be presented as columns of identity and the following two complex
Hadamard matrices: ⎡

⎣
1 0 0
0 1 0
0 0 1

⎤
⎦,

1√
3

⎡
⎣

1 1 1
1 ω ω2

1 ω2 ω

⎤
⎦,

1√
3

⎡
⎣

1 1 1
ω ω2 1
ω 1 ω2

⎤
⎦.

The corresponding SudoQ grid is presented in
Fig. 1.

VI. SUDOQ CUBES AND HYPERCUBES

Remark 17 presents exact orthogonality relations between
N4 vectors forming a SudoQ grid. We generalize the notion
of the SudoQ two-dimensional grid presented in Remark 17
into higher dimensions, following already existing implemen-
tations of classical Sudoku cubes [26].

Definition 24. A SudoQ cube is a collection of N6 vectors
{|v〉i1i2i3k1k2k3

} ∈ HN3
, such that the marginal sets of N3 vectors

{|v〉i1i2i3k1k2k3
} ∈ HN3

constitute a basis for any fixed triplets of
indices: i1, i2, i3 or k1, i2, i3 or i1, k2, i3 or i1, i2, k3.

The simplest construction of such a SudoQ cube comes
from the classical construction of a Sudoku cube,

|v〉i1i2i3k1k2k3
= |i1 + k1〉 ⊗ |i2 + k2〉 ⊗ |i3 + k3〉 ∈ H⊗3

N , (16)

where addition is considered modulo N . One may easily check
that conditions imposed in Definition 24 are satisfied. Notice,
however, that such a SudoQ cube achieves the minimal possi-
ble cardinality N3.

We adapt the method of constructing SudoQ grids with a
large cardinality to the three-dimensional setting.

Proposition 25. Consider three families of N × N dimen-
sional unitary operators: {Ui}N

i=1, {Vi}N
i=1, and {Wi}N

i=1. Denote
by |u(i)

s 〉 the sth column of Ui operator (|v(i)
s 〉 from Vi and |w(i)

s 〉
from Wi respectively). The following collection of vectors:

|xi1i2i3k1k2k3〉 := ∣∣u(i2+i3 )
k1+i1

〉 ⊗ ∣∣v(i1+i3 )
k2+i2

〉 ⊗ ∣∣w(i1+i2 )
k3+i3

〉 ∈ H⊗3
N ,

constitute the SudoQ cube.
Proof. We shall verify that vectors |xi1i2i3k1k2k3〉 constitute a

basis of a Hilbert space H⊗3
N for four fixed triplets of indices

specified in Definition 24.
For three fixed parameters i1, i2, i3, vectors |u(i2+i3 )

k1+i1
〉 are

simply consecutive columns of a unitary operator Ui2+i3 , and
hence form a basis of HN . Similarly, vectors |v(i1+i3 )

k2+i2
〉 and

|w(i1+i2 )
k3+i3

〉 form a basis of HN , thus their tensor products form
a basis of H⊗3

N .
Observe that for fixed parameters i1, i2, i3, k1, the vectors

∣∣u(i2+i3 )
k1+i1

〉 ⊗ ∣∣v(i1+i3 )
k2+i2

〉 ⊗ ∣∣w(i1+i2 )
k3+i3

〉
(17)

span the N2-dimensional subspace, |u(i2+i3 )
k1+i1

〉 ⊗ H⊗2
N . More-

over, for fixed parameters i2, i3, k1 and different values i1 =
1, . . . , N , the vectors |u(i2+i3 )

k1+i1
〉 span the subspace HN . There-

fore, for fixed parameters i2, i3, k1, corresponding vectors (17)
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span H⊗3
N , and hence form its basis. Similar analysis might be

performed with respect to fixed indices i1, k2, i3 and i1, i2, k3.
Although provided construction is in analogy to the con-

struction of a 2-dimensional SudoQ grid in Proposition 18, it
does not achieve the maximal cardinality even for the appro-
priate choice of unitary matrices {Ui}N

i=1, {Vi}N
i=1, and {Wi}N

i=1
for all values of N . Indeed, the set of vectors |vi1i2i3k1k2k3〉
constituting a SudoQ cube is in fact of the tensor product form

{|xi1i2i3k1k2k3〉}N
i1,i2,i3,k1,k2,k3=1

= {
u( j1 )

�1
⊗ v

( j2 )
�2

⊗ w
( j1+ j2−2 j3 )
�3

}N

j1, j2, j3,�1,�2,�3=1,

which for even number N contains exactly N6/2 different
vectors.

In fact, the construction presented in Proposition 25 might
be slightly modified,

|xi1i2i3k1k2k3〉 := ∣∣u(i2+i3 )
k1+i1

〉 ⊗ ∣∣v(i1+i3 )
k2+i2

〉 ⊗ ∣∣w(i1+2i2 )
k3+i3

〉 ∈ H⊗3
N ,

for even values of N . The change in the upper index of the last
product does not violate conditions imposed on the SudoQ
cube. On the other hand, such a SudoQ cube achieves the
maximal cardinality N6 for three families of unitary matrices
{Ui}N

i=1, {Vi}N
i=1, and {Wi}N

i=1, such that in each family of matri-
ces columns do not repeat (up to the multiplication by a phase
factor).

Notice that Definition 24 of the SudoQ cube might be
generalized for an arbitrary D-dimensional hypercube. Fur-
thermore, the construction presented in Proposition 25 can be
generalized for construction of D-dimensional SudoQ hyper-
cubes, with the maximal cardinality of N2D.

VII. PROJECTIVE t-DESIGNS

We shall investigate the problem of evenly spreading a set
of unit vectors in a vector space. Let X be a set of unit vectors
in the Hilbert space Hd . In general, vectors from any set X
satisfy the Welch bound [20]

Wt := 1

|X |2
∑

x,y∈X

|〈x|y〉|2t � 1(d+t−1
t

) (18)

for any integer number t � 0. Observe that the following
bound holds true:

St := 1(d+t−1
t

)
Wt

� 1 (19)

for any set of vectors. Sets of vectors which for a given inte-
ger t saturate the bound above are called complex projective
t-designs. There is a remarkable feature of t-designs, namely,
the integration over the entire set of pure states, equivalent
to the complex projection space CPd−1, of any polynomial
function f of degree t in state coefficients might be replaced
by sampling over the states forming a t-designs. Indeed, for
a t-design X and any polynomial function f ∈ Hom(t, t ) of
degree t in both states and their conjugates, the following
equality holds:

1

μ(CPd−1)

∫
CPd−1

f (x)dμ(x) = 1

|X |
∑
x∈X

f (x),

FIG. 2. Welch quantity Wt for various projective designs as a
function of degree t in Welch inequality for different projective
designs: MUB, SIC-POVM, and SudoQ in dimensions d = 4 on
top and d = 9 on bottom. MUBs and SIC-POVMs are 2-designs,
therefore the Welch bound is saturated for t = 1, 2. SudoQs are
1-designs. All the figures in this paper are prepared in dimensionless
units.

where the integration is understood with respect to the Haar
measure on a complex projective plane CPd−1 [21]. For in-
stance, any basis of Cd space forms a 1-design. For a given set
X , we define its angle set by all possible scalar products, i.e.,
{|〈x|y〉|2i, j∈X }.

Complex projective t-designs are used in many branches
of quantum information theory: quantum state tomography,
quantum fingerprinting, or quantum cryptography. In general,
the larger t , the better given design approximates the state
space. Except for the case t = 1, 2 the problem of constructing
t-designs is not simple and no general construction is known.

A complete set of d + 1 MUBs, or d2 SIC-POVMs in
dimension d , comes with a rich combinatorial structure. Both
are complex projective 2-designs with an angle set {0, 1

d } for
MUBs and { 1

d+1 } for SIC-POVMs, respectively.
In fact, the presented Heisenberg-Weyl SudoQ exhibits a

particular combinatorial structure. Notice that three orthog-
onality relations are possible, and the angle set is given by
{0, 1√

d
, 1

d }, where d = N2. Figure 2 shows the value Wt of the
left-hand side of the Welch inequality (18) as a function of the
degree t of a design.

Table I compares the Heisenberg-Weyl SudoQ against
MUBs. Contrary to the MUB design, the SudoQ design does
not saturate Welch inequality for t = 2. Nevertheless, in the
Heisenberg-Weyl SudoQ design, all vectors are separable.
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TABLE I. Features of two projective designs formed by SudoQ
vectors and MUB vectors in squared dimension d = N2 are com-
pared, in particular, saturation of the Welch bound.

SudoQ MUB

Total number of states d2 d (d + 1)
Maximal number of

separable states
d2

√
d + 1

Angle set {0, 1√
d
, 1

d } {0, 1
d }

Welch quantity Wt
(
√

d
t + d − √

d )
2

dt+1

1 + d−t

d (1 + d )

Considering only local vectors from both designs, the SudoQ
design is closer to saturate Welch inequality with t = 2 than
the design related to separable MUBs—see Fig. 3.

VIII. CONCLUSIONS

Sudoku is a very well-known classical game with inter-
esting applications in science, i.e., in the study of dynamical
systems and transient chaos [27]. Following recent introduc-
tion of a quantum version of Sudoku [11], we have expanded
this idea, defined the genuinely quantum SudoQ, and ana-
lyzed its properties. More specifically, we found it useful to
characterize any SudoQ solution by its cardinality, being the
number of its vectors different up to the global phase. We have
determined all admissible cardinalities, the parametrization
of the solutions, and a proof of a conjecture from Ref. [11]
in the 4 × 4 case. In the general case of N2 × N2 SudoQ,
we have found solutions of the maximal cardinality, c = N4,
together with genuinely quantum solutions of intermediate
cardinalities.

The SudoQ problem has profound consequences for
designing generalized quantum measurements, since each
SudoQ pattern of order N2 consisting of N4 distinct vec-

FIG. 3. Saturation S2 of the Welch bound with t = 2 as a function
of the design parameter N for different projective designs. Vec-
tors from MUBs saturate the Welch bound with t = 2. Among all
local designs (SudoQ, local MUBs, and any distinguished basis),
the Heisenberg-Weyl SudoQ design is closer to saturate the Welch
inequality with t = 2.

tors of size N2 determines 3N2 orthogonal measurements,
corresponding to N2 rows, N2 columns, and N2 blocks of
the pattern. Despite our general construction of the maximal
cardinality, the full characterization of the admissible car-
dinalities in the case of an arbitrary dimension N2 is still
missing. The existence of SudoQ of different cardinalities
provides an insight into bounds on a number of different
measurements achievable from a given set of vectors.

To successfully construct SudoQ grids, we adapt the
Heisenberg-Weyl method for constructing a complete set of
(d + 1) MUBs. Our method is analogous to construction of
MUBs in squared dimensions d = N2. What is more, we have
shown how to generalize this approach for SudoQ cubes and
hypercubes.

Similarly to MUBs, vectors from the Heisenberg-Weyl
SudoQ grid form a projective design. We compared both
designs against the Welch bound, both of them saturating
Welch inequality with t = 1. In contrast to MUBs, vectors
from the SudoQ grid do not saturate Welch inequality for
t = 2, and hence form only 1-design. Nevertheless, a SudoQ
grid might be constructed in such a way that all related vectors
are separable. Taking into account only local vectors from
both designs, the SudoQ-related design is closer to meet the
Welch inequality for t = 2 than the separable MUB related
design. Moreover, we show that SudoQ design outperforms
any basis-related design. Therefore, the SudoQ-related design
approximates the structure of Hilbert spaces best among all
aforementioned local designs.
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APPENDIX A: PROOF OF THEOREM 12

We present the proof of Theorem 12 concerning all
possible cardinalities of 4 × 4 SudoQ, which are c =
4, 6, 8, or 16.

Proof. Without loss of generality, we may consider grids
with the upper left block composed of elements from the
computational basis. To fulfill the orthogonality relations in
the first two rows and columns, the vectors in the upper right
and lower left blocks must be of the form

|1〉 |2〉 |a34〉 |b34〉
|3〉 |4〉 |a12〉 |b12〉

|a24〉 |a13〉 . .

|b24〉 |b13〉 . .

. (A1)

Let us start by noting that the above grid must contain an
even number of distinct vectors, since if we set any |ai j〉 to
be an element of the basis B, then |bi j〉 also must belong
to B and vice versa. Consider all possible options of setting
|ai j〉 and |bi j〉 pairwise to belong to B. Since there are four
pairs, we have five distinct possibilities {0, 1, 2, 3, 4} of pairs
not in B.
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If we set all four pairs to be beyond B, then the grid is either
uniquely solvable or unsolvable. To illustrate this fact, let us
choose the set of vectors {|a12〉 , |a34〉 , |a13〉 , |a24〉} and notice
that we cannot write any of them as a linear combination of
only two others. Therefore, the space spanned by this set is
at least three-dimensional. Since a vector orthogonal to the
three-dimensional subspace spanned vectors not in B cannot
belong to B, the only possibility not yet disproven is that all
the missing vectors are noncomputational and are superpo-
sitions of all {|1〉 , |2〉 , |3〉 , |4〉}, otherwise it would not be
orthogonal to some of the already filled elements. To sum up,
the only case left are four new vectors, which form a base and
thus the entire solution has cardinality c = 16.

To disprove the possibility of three pairs outside of B, let
us choose without losing generality that |a12〉 = |1〉. Then
the upper left element from the missing block must be a
superposition of {|2〉 , |3〉 , |4〉}. However, since |a13〉 /∈ B, the
superposition narrows down to {|2〉 , |4〉}, and so it cannot
be simultaneously orthogonal to |a24〉 , |a34〉 /∈ B. Reasoning
holds for all three pairs of vectors not from B; thus, there are
no solutions in the case of three pairs.

There are two distinct cases when two pairs of vectors
/∈ B, either they are in the same block or in different ones.
If we choose them from different blocks, then there exists an
element in the missing block which should be orthogonal to
two different computational basis’ vectors. We can set it to
be once again the left upper element, with |a12〉 = |1〉 and
|a13〉 = |3〉, as all the other combinations follow the same
chain of reasoning. Consequently, this element must be a
superposition of {|2〉 , |4〉} but then it cannot be orthogonal
to |a24〉 and |a34〉 at the same time (since both are nontrivial
superpositions), which shows that no solutions follow from
this case.

If, on the other hand, two pairs of vectors not belonging
to B are in the same block (and the vectors from the second
one belong to B), the grid might be solvable with c = 8. To
make it visible, let us set the vectors from the upper right
block |vi〉 /∈ B, and these from the lower left block to belong to
B. Without loss of generality we can assume that |a24〉 = |2〉
and |b24〉 = |4〉. Then choosing |a13〉 = |3〉 and |b13〉 = |1〉,
one gets an unsolvable grid—from orthogonality in rows,
it follows that the upper left element of the missing block
must be a superposition of {|1〉 , |4〉} but such a superposition
cannot be orthogonal to |a12〉 and |a34〉 /∈ B. However, if we
set |a13〉 = |1〉 and |b13〉 = |3〉, the considered element of the
missing block must be a superposition of {|3〉 , |4〉} and be or-
thogonal to both |a12〉 and |a34〉. There is only one normalized
vector satisfying these conditions—it is |b34〉. Considering
other elements of the missing block, we conclude that the
grid is uniquely solvable, and the solution has eight distinct
vectors, and that the lower right block contains exactly the
same vectors as the upper right one.

To check the possibility of a single pair of vectors beyond
B, consider the unsolvable grid from the last paragraph and as-
sume that two of the vectors from the upper right block belong
to B. Then the grid is still unsolvable—we can always find an
entry of the missing block that cannot be filled. Nevertheless,
if we make this change in the uniquely solvable grid, the grid
is still uniquely solvable. The considerations similar to these
from the last paragraph lead to the conclusion that c = 6 in

this case and, again, the vectors in the lower and upper right
blocks are the same.

Finally, if we set all vectors from the upper right and lower
left blocks to belong to B, the solution has c = 4. It can be
concluded from the fact that choosing two or four vectors in
one of these blocks to be noncomputational implies the oc-
currence of the same vectors in the missing block. Therefore,
vectors |vi〉 /∈ B cannot occur in a single block, and in this
situation vectors from the missing block must belong to B.

APPENDIX B: PARAMETRIZATION OF 4 × 4 SudoQ

Let us recall the form of a general 4 × 4 SudoQ solution
given in Eq. (7):

e1 e2 f1 f2

e3 e4 f3 f4

v1 v2 u1 u2

v3 v4 u3 u4

. (B1)

We consider the grid with three blocks filled (Eq. (A1)),

|1〉 |2〉 |a34〉 |b34〉
|3〉 |4〉 |a12〉 |b12〉

|a24〉 |a13〉 . .

|b24〉 |b13〉 . .

, (B2)

and analyze all the options of setting |ai j〉 and |bi j〉 to belong
to the computational basis B that are allowed for in the proof
of Theorem 12. Comparing (B1) with (B2), we conclude that
the matrices Ue f and Uev (8) are of the following forms:

Ue f =

⎡
⎢⎢⎢⎣

0 0 . .

0 0 . .

. . 0 0

. . 0 0

⎤
⎥⎥⎥⎦, Uev =

⎡
⎢⎢⎢⎣

0 . 0 .

. 0 . 0

0 . 0 .

. 0 . 0

⎤
⎥⎥⎥⎦,

where dots represent nonzero entries.
First, let us consider the case when all vectors |ai j〉 and

|bi j〉 from the upper right and lower left blocks of (B2) do not
belong to B. Since |ai j〉 and |bi j〉 belong to the same subspace
and are orthogonal to each other, they can be represented
by antipodal points on the Bloch sphere. Therefore, we must
search for the matrices Ue f and Uev of the form

Ue f =

⎡
⎢⎢⎢⎢⎣

0 0 cos β

2 sin β

2

0 0 eiφ sin β

2 −eiφ cos β

2

cos α
2 sin α

2 0 0

eiϕ sin α
2 −eiϕ cos α

2 0 0

⎤
⎥⎥⎥⎥⎦,

Uev =

⎡
⎢⎢⎢⎢⎣

0 cos δ
2 0 sin δ

2

cos γ

2 0 sin γ

2 0

0 eiξ sin δ
2 0 −eiξ cos δ

2

eiη sin γ

2 0 −eiη cos γ

2 0

⎤
⎥⎥⎥⎥⎦.

If the grid is solvable, then each set { f1, f3, v1, v2}, { f2, f4,
v1, v2}, { f1, f3, v3, v4}, { f1, f3, v1, v2} from (B1) must span
a space that is at most three-dimensional. In our case, it is
equivalent to the condition that vectors in each set are linearly
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dependent. Let us break it down for the set:

f1 =

⎡
⎢⎢⎢⎢⎣

0

0

cos α
2

eiϕ sin α
2

⎤
⎥⎥⎥⎥⎦, f3 =

⎡
⎢⎢⎢⎢⎣

cos β

2

eiφ sin β

2

0

0

⎤
⎥⎥⎥⎥⎦, v1 =

⎡
⎢⎢⎢⎢⎣

0

cos γ

2

0

eiη sin γ

2

⎤
⎥⎥⎥⎥⎦, v2 =

⎡
⎢⎢⎢⎢⎣

cos δ
2

0

eiξ sin δ
2

0

⎤
⎥⎥⎥⎥⎦.

If these vectors are linearly dependent, there exist such ci, i = 1, 2, 3, 4 that

c1 f1 + c2 f3 + c3v1 + c4v2 = 0

holds, and at least one of ci is nonzero. This equation leads to the condition

tan
α

2
tan

δ

2
− ei(φ+η−ϕ−ξ ) tan

β

2
tan

γ

2
= 0.

Consideration of the other sets { fi, f j , vk , vl} implies the system of equations

tan α
2 tan δ

2 − ei(φ+η−ϕ−ξ ) tan β

2 tan γ

2 = 0

cot α
2 tan δ

2 − ei(φ+η−ϕ−ξ ) cot β

2 tan γ

2 = 0

tan α
2 cot δ

2 − ei(φ+η−ϕ−ξ ) tan β

2 cot γ

2 = 0

cot α
2 cot δ

2 − ei(φ+η−ϕ−ξ ) cot β

2 cot γ

2 = 0,

with the solution

ei(φ+η−ϕ−ξ ) = 1, α = β, γ = δ.

Therefore, we can rewrite matrices Ue f and Uev in the form

Ue f =

⎡
⎢⎢⎢⎢⎣

0 0 cos α
2 sin α

2

0 0 eiφ sin α
2 −eiφ cos α

2

cos α
2 sin α

2 0 0

eiϕ sin α
2 −eiϕ cos α

2 0 0

⎤
⎥⎥⎥⎥⎦,

Uev =

⎡
⎢⎢⎢⎢⎣

0 cos γ

2 0 sin γ

2

cos γ

2 0 sin γ

2 0

0 ei(φ+η−ϕ) sin γ

2 0 −ei(φ+η−ϕ) cos γ

2

eiη sin γ

2 0 −eiη cos γ

2 0

⎤
⎥⎥⎥⎥⎦.

Since appropriate sets of vectors from the upper right and lower left block span a three-dimensional space, the grid is either
uniquely solvable or unsolvable. Choosing the following matrix Ueu, we obtain a proper solution:

Ueu =

⎡
⎢⎢⎢⎢⎣

sin α
2 sin γ

2 cos α
2 sin γ

2 sin α
2 cos γ

2 cos α
2 cos γ

2

−eiφ cos α
2 sin γ

2 eiφ sin α
2 sin γ

2 −eiφ cos α
2 cos γ

2 eiφ sin α
2 cos γ

2

−ei(φ+η−ϕ) sin α
2 cos γ

2 −ei(φ+η−ϕ) cos α
2 cos γ

2 ei(φ+η−ϕ) sin α
2 sin γ

2 ei(φ+η−ϕ) cos α
2 sin γ

2

ei(φ+η) cos α
2 cos γ

2 −ei(φ+η) sin α
2 cos γ

2 −ei(φ+η) cos α
2 sin γ

2 ei(φ+η) sin α
2 sin γ

2

⎤
⎥⎥⎥⎥⎦.

Since for every SudoQ with c = 16 all of the vectors |ai j〉 and |bi j〉 from the corresponding grid (B2) do not belong to B, this is
the full parametrization of the above case. Note that if we set either α or γ to be 0 or π , we obtain a solution with c = 8. If we
set both of them to be such, we get a solution with c = 4.

Now let us consider another case allowed by Theorem 12, when the vectors from the lower left block of (B2) belong to B
while the vectors from the upper right block do not. In this situation, the grid (B2) transforms to one of the following grids:

|1〉 |2〉 |a34〉 |b34〉
|3〉 |4〉 |a12〉 |b12〉
|2〉 |1〉 . .

|4〉 |3〉 . .

,

|1〉 |2〉 |a34〉 |b34〉
|3〉 |4〉 |a12〉 |b12〉
|4〉 |3〉 . .

|2〉 |1〉 . .

,

|1〉 |2〉 |a34〉 |b34〉
|3〉 |4〉 |a12〉 |b12〉
|2〉 |3〉 . .

|4〉 |1〉 . .

,

|1〉 |2〉 |a34〉 |b34〉
|3〉 |4〉 |a12〉 |b12〉
|4〉 |1〉 . .

|2〉 |3〉 . .

. (B3)
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However, observe that the lower two of the above grids are unsolvable—it is sufficient to check that the set
{|2〉 , |3〉 , |a34〉 , |a12〉} spans a four-dimensional space, and therefore there is at least one entry in the lower right block that
cannot be filled.

On the other hand, the first two grids are either uniquely solvable or unsolvable, since each of the sets {|2〉 , |1〉 , |a34〉 , |a12〉},
{|2〉 , |1〉 , |b34〉 , |b12〉}, {|4〉 , |3〉 , |a34〉 , |a12〉}, and {|4〉 , |3〉 , |b34〉 , |b12〉} spans a three-dimensional space. To show that these
grids are solvable, it is enough to write down their solutions, which are, respectively,

|1〉 |2〉 |a34〉 |b34〉
|3〉 |4〉 |a12〉 |b12〉
|2〉 |1〉 |b34〉 |a34〉
|4〉 |3〉 |b12〉 |a12〉

,

|1〉 |2〉 |a34〉 |b34〉
|3〉 |4〉 |a12〉 |b12〉
|4〉 |3〉 |b12〉 |a12〉
|2〉 |1〉 |a34〉 |b34〉

. (B4)

Since |ai j〉 and |bi j〉 are represented by antipodal points on the Bloch sphere, the matrices Ue f , Uev , and Ueu must be of the form

Ue f =

⎡
⎢⎢⎢⎢⎣

0 0 cos β

2 sin β

2

0 0 eiφ sin β

2 −eiφ cos β

2

cos α
2 sin α

2 0 0

eiϕ sin α
2 −eiϕ cos α

2 0 0

⎤
⎥⎥⎥⎥⎦, Uev =

⎡
⎢⎢⎢⎣

0 1 0 0

1 0 0 0

0 0 0 1

0 0 1 0

⎤
⎥⎥⎥⎦,

Ueu =

⎡
⎢⎢⎢⎢⎣

0 0 sin β

2 cos β

2

0 0 −eiφ cos β

2 eiφ sin β

2

sin α
2 cos α

2 0 0

−eiϕ cos α
2 eiϕ sin α

2 0 0

⎤
⎥⎥⎥⎥⎦ (B5)

in the first case, and

Ue f =

⎡
⎢⎢⎢⎢⎣

0 0 cos β

2 sin β

2

0 0 eiφ sin β

2 −eiφ cos β

2

cos α
2 sin α

2 0 0

eiϕ sin α
2 −eiϕ cos α

2 0 0

⎤
⎥⎥⎥⎥⎦, Uev =

⎡
⎢⎢⎢⎣

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎤
⎥⎥⎥⎦,

Ueu =

⎡
⎢⎢⎢⎢⎣

sin β

2 cos β

2 0 0

−eiφ cos β

2 eiφ sin β

2 0 0

0 0 sin α
2 cos α

2

0 0 −eiϕ cos α
2 eiϕ sin α

2

⎤
⎥⎥⎥⎥⎦ (B6)

in the second one.
The situation, in which the vectors from the lower left block of (B2) are noncomputational, and the upper right block

contains only the elements of the computational basis, is analogous to the one examined above. In this case, the two possible
solutions are

|1〉 |2〉 |3〉 |4〉
|3〉 |4〉 |1〉 |2〉

|a24〉 |a13〉 |b24〉 |b13〉
b24 |b13〉 |a24〉 |a13〉

,

|1〉 |2〉 |4〉 |3〉
|3〉 |4〉 |2〉 |1〉

|a24〉 |a13〉 |b13〉 |b24〉
|b24〉 |b13〉 |a13〉 |a24〉

. (B7)

The corresponding matrices Ue f , Uev , and Ueu are, respectively,

Ue f =

⎡
⎢⎢⎢⎣

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

⎤
⎥⎥⎥⎦, Uev =

⎡
⎢⎢⎢⎢⎣

0 cos β

2 0 sin β

2

cos α
2 0 sin α

2 0

0 eiφ sin β

2 0 −eiφ cos β

2

eiϕ sin α
2 0 −eiϕ cos α

2 0

⎤
⎥⎥⎥⎥⎦,

Ueu =

⎡
⎢⎢⎢⎢⎣

0 sin β

2 0 cos β

2

sin α
2 0 cos α

2 0

0 −eiφ cos β

2 0 eiφ sin β

2

−eiϕ cos α
2 0 eiϕ sin α

2 0

⎤
⎥⎥⎥⎥⎦, (B8)
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and

Ue f =

⎡
⎢⎢⎢⎣

0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

⎤
⎥⎥⎥⎦, Uev =

⎡
⎢⎢⎢⎢⎣

0 cos β

2 0 sin β

2

cos α
2 0 sin α

2 0

0 eiφ sin β

2 0 −eiφ cos β

2

eiϕ sin α
2 0 −eiϕ cos α

2 0

⎤
⎥⎥⎥⎥⎦,

Ueu =

⎡
⎢⎢⎢⎢⎣

sin β

2 0 cos β

2 0

0 sin α
2 0 cos α

2

−eiφ cos β

2 0 eiφ sin β

2 0

0 −eiϕ cos α
2 0 eiϕ sin α

2

⎤
⎥⎥⎥⎥⎦. (B9)

Setting α or β equal to 0 or π (points on the poles of the
Bloch sphere) allows us to obtain solutions with c = 6. Notice
that by this procedure we can attain every solution whose
corresponding grid (B2) has exactly one pair of noncomputa-
tional vectors. Moreover, analyzing the form of the solutions
(B4), we conclude that it is impossible to have vectors outside
B in a single block of the SudoQ. Therefore, if all vectors |ai j〉
and |bi j〉 from the grid (B2) are computational, the vectors
from the lower right block must also be computational.

To sum up, we analyzed all the configurations of the grid
(B2), and parametrized its genuinely quantum solutions (c >

4). By the action of a unitary matrix on all vectors, it is
possible to obtain all genuinely quantum solutions of a 4 × 4
SudoQ.

APPENDIX C: SHANNON ENTROPY OF SUDOQ DESIGNS

Definition 26. The Shannon entropy of a normalized vec-
tor |ψ〉 represented in the computational basis B = {|i〉} reads

S(|ψ〉) = −
∑

i

|〈i|ψ〉|2 log2(|〈i|ψ〉|2).

The entropy of a SudoQ is defined as the sum of entropies of
all normalized vectors forming the pattern.

The Shannon entropy of the 4 × 4 solution of cardinality
16 parametrized in Appendix B equals

S(p, q) = 2h2(p) + 2h2(q) + 4h4(p, q),

where p = cos2( α
2 ), q = cos2( γ

2 ), h2(x) is the binary
entropy, and

h4(x, y) = − xy log2(xy) − x(1 − y) log2 (x(1 − y))

− (1 − x)y log2 ((1 − x)y)

− (1 − x)(1 − y) log2 ((1 − x)(1 − y)).

This entropy has its maximum at p = 0.5 and q = 0.5. There-
fore, Example 13, which is in relation to two pairs of unbiased
bases of size 4, is the one admitting the maximal entropy.

APPENDIX D: PROOF OF THEOREM 14

In the following Appendix, we shall prove Theorem 14,
which states:

For any 4 × 4 quantum square with c = 16, it is possi-
ble to construct a corresponding uniquely solvable grid with
four clues.

Proof. Consider the general form of the Sudoku solution:

e1 e2 f1 f2

e3 e4 f3 f4

v1 v2 u1 u2

v3 v4 u3 u4

. (D1)

We will prove that the following grid is uniquely solvable:

e1

f3

v2

u4

. (D2)

First, we conclude from the parametrization included in
Appendix B that e1, f3, and u4 are linearly independent, and
therefore span a three-dimensional subspace (the same holds
true for e1, v2, and u4). Hence, we can fill the upper right
corner of the grid uniquely,

e1 f2

f3

v2

u4

, (D3)

where f2 is orthogonal to the subspace spanned by e1, f3, and
u4. Since f2 is orthogonal to e1 and f3, these three vectors also
span a three-dimensional subspace, which leads to the unique
f1. The same holds true for f4:

e1 f1 f2

f3 f4

v2

u4

. (D4)

Consequently, e2 and f4 are unique:

e1 e2 f1 f2

f3 f4

v2 u2

u4

. (D5)

By an analogous chain of reasoning, we can fill in all the
elements below diagonal:

e1 e2 f1 f2

e3 f3 f4

v1 v2 u2

v3 v4 u3 u4

.
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Obviously, the last two entries are also given uniquely:

e1 e2 f1 f2

e3 e4 f3 f4

v1 v2 u1 u2

v3 v4 u3 u4

.

APPENDIX E: PROOF OF PROPOSITION 16

Suppose that a classical 4 × 4 Sudoku grid has a unique
classical solution. By associating vectors i �→ |i〉 to the clues
in an initial Sudoku grid, we obtain a SudoQ grid. We shall
show that it is uniquely solvable by proving that no gen-
uinely quantum solutions exist. According to Theorem 12,
any SudoQ solution of size 22 = 4 has one of the cardinalities
c = 4, 6, 8, 16.

First, let us assume that the solution is of cardinality c =
16. Notice that by applying a unitary operation to all vectors
from the solution parametrized by us (9), we can obtain any
solution of c = 16. Since unitary operations do not change the
scalar product, and each two clues from the original grid has
the scalar product either 0 or 1, we conclude that all the clues
must belong to the same row, column, or block [indeed, using
(9) we can check that the scalar product of vectors which do
not belong to the same row, column or block, is different than
0 and 1]. However, the classical grid with all the clues in the
same row, column, or block is never uniquely solvable, which
contradicts our assumption. Therefore, the solution cannot be
of the cardinality c = 16.

Second, cardinality c = 8 is also excluded. Reasoning
analogous to the argument from the previous paragraph [based
on the parametrization ((B5), (B6), (B8), (B9)) of solutions
of cardinality c = 8], leads to the conclusion that all clues
must belong to the same two rows or columns. Again, the grid
with two rows and/or columns filled is not uniquely solvable,
since we can always transpose the remaining two rows and/or
columns obtaining two distinct solutions.

What is more, the cardinality c = 6 might also be excluded.
In this case, the clues in the original grid can be placed
everywhere, except four entries. However, even if we fill all
the other entries (in accordance with the parametrization of
c = 6 solutions), all the remaining four vectors will belong to
the same two-dimensional subspace spanned by two computa-
tional vectors. Thus, they can be chosen to be computational
vectors in two different ways, from which we conclude that
the original grid was not uniquely solvable. To make it more
prominent, let us choose the parametrization (B5) and set
β = 0. The corresponding solution is

|1〉 |2〉 |3〉 |4〉
|3〉 |4〉 |a12〉 |b12〉
|2〉 |1〉 |4〉 |3〉
|4〉 |3〉 |b12〉 |a12〉

. (E1)

It is noticeable that even if we give all computational vectors
from the above grid as clues, we still have freedom in the

choice of |a12〉 and |b12〉. In particular, we can set |a12〉 = |1〉,
|b12〉 = |2〉, or vice versa. Hence, the original classical grid
was not uniquely solvable.

Finally, SudoQ with the cardinality c = 4, whose vectors
are chosen in the computational basis corresponds to the clas-
sical solution, which we assumed is unique.

APPENDIX F: DISTINCT EIGENVECTORS OF
WEYL-HEISENBERG OPERATORS XZk AND XZl

Let X and Z be standard shift and phase operators defined
on the N-dimensional Hilbert space HN ,

X =
N∑

j=1

| j〉 〈 j ⊗ 1| , Z =
N∑

j=1

ω j | j〉 〈 j| , (F1)

where addition is understood modulo N . Notice that the fol-
lowing commutation relation holds:

XZ = ωZX, (F2)

where ω = e2π i/N is a root of unity. Consequently, XZk =
ωkZX .

Proposition 27. No eigenvector of XZk is an eigenvector
of XZl for k 
= l .

Proof. Suppose that |v〉 is a simultaneous eigenvector of
XZk and XZl :

XZk |v〉 = λk |v〉 , XZl |v〉 = λl |v〉 . (F3)

Without loss of generality, we can assume k > l , which en-
ables us to transform the above relationship into

XZk |v〉 = XZk−l Zl |v〉 = ωk−lλlZ
k−l |v〉 . (F4)

Therefore, |v〉 is also an eigenvector of Zk−l . If we expand |v〉
in the computational basis |v〉 = ∑

i αi |i〉, we can note that
there exists i such that αi equals zero. This is true if the dimen-
sion N is prime, as Zk−l has a nondegenerated spectrum and
thus its eigenvectors are elements of the computational basis
B, with only one nonzero coefficient. However, even if the
spectrum of Zk−l is degenerated, it is not fully degenerated,
so combining it with the diagonal form of this operator, we
obtain that indeed some coefficient αi is zero.

On the contrary, for an eigenvector |v〉 = ∑
i αi |i〉 of the

matrix XZk , all coefficients αi are nonzero since the action
of the matrix on a vector translates all its elements by one,
possibly with some acquired phase.

Gathering the above statements together, by contradiction
we conclude that no vector |v〉 is a simultaneous eigenvector
of XZk and XZl .
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