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Hyperentanglement (HE), the simultaneous entanglement between two particles in more than one degree of
freedom, is relevant to both fundamental physics and quantum technology. Previous study on HE has been
focusing on photons. Here, we study HE in individual neutral atoms. In most alkaline-earth-like atoms with two
valence electrons and a nonzero nuclear spin, there are two stable electronic states, the ground state and the
long-lived clock state, which can define an electronic qubit. Meanwhile, their nuclear spin states can define a
nuclear qubit. By the Rydberg blockade effect, we show that the controlled-Z (CZ) operation can be generated
in the electronic qubits of two nearby atoms, and simultaneously in their nuclear qubits as well, leading to a
CZ⊗CZ operation which is capable to induce HE. The possibility to induce HE in individual neutral atoms offers
opportunities to study quantum science and technology based on neutral atoms.
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I. INTRODUCTION

An exotic multidimensional entanglement phenomenon
is hyperentanglement (HE), namely, a simultaneous entan-
glement in each of two or more degrees of freedom. The
capability to entangle two particles in more than one degree of
freedom can enhance the information and quantum correlation
carried by the particle pairs which brings extra strength in
the investigation of fundamental quantum theory, quantum
metrology, and quantum information. HE has been extensively
studied in photonic systems [1–11], but much less in other
candidates for quantum information.

Recently, with remarkable advances in experimental en-
tanglement demonstrations [12–20] and high-fidelity quantum
control [21–23], neutral atoms emerged as a promising plat-
form for large-scale quantum computing [24–32]. However,
it is unclear whether it is possible to create controllable HE
with neutral atoms. Until now, most entanglement experi-
ments with individually trapped atoms [12–17,19–22] focused
on entanglement between hyperfine-Zeeman substates though
Ref. [23] studied entanglement between (electronic) Rydberg
and clock states, and most theoretical studies on neutral-atom
entanglement were also about hyperfine-Zeeman substates
[32]. Rydberg interactions can lead to entanglement between
the internal states and the motional states [33], but the entan-
glement is difficult to control and more often appears as noise
[34].

Here, we study HE operations with neutral atoms, namely,
entanglement in both the electronic degree and the nuclear
spin degree of neutral atoms. In particular, we consider neutral
atoms the outermost shell of which has two valence electrons,
e.g., some alkaline-earth-metal or lanthanide atoms, which
we call alkaline-earth-like (AEL) atoms. Most AEL atoms
have two stable electronic states, the ground 1S0 state and
the long-lived 3P0 clock state. These two states can be the
two states |0(1)〉e of a quantum bit (qubit). Meanwhile, if

the AEL atom possesses a nonzero nuclear spin, one can
choose two nuclear spin states |0(1)〉n to define another qubit,
where the subscripts e and n denote the electronic and nuclear
spin degrees of freedom, respectively. Then, the state of one
atom is

(cos θ |0〉e + eiθ ′
sin θ |1〉e) ⊗ (cos φ|0〉n + eiφ′

sin φ|1〉n),

(1)

where θ, θ ′, φ, and φ′ are real variables, and the symbol ⊗
is used because the electronic and nuclear spin states are
decoupled in the ground and clock states of the AEL atom
we study. For the simplest case of two atoms, if quantum
operations exist to entangle both the electronic and nuclear
degrees of freedom, HE emerges. In this paper, we show that
it is possible to realize the controlled-Z (CZ) operation in both
degrees of freedom. For two qubits where their initial state
is (|00〉e + |01〉e + |10〉e + |11〉e) ⊗ (|00〉n + |01〉n + |10〉n +
|11〉n)/4 the CZ⊗CZ operations in the electronic and nu-
clear states lead to (|00〉e + |01〉e + |10〉e − |11〉e) ⊗ (|00〉n +
|01〉n + |10〉n − |11〉n)/4, which is an HE state where the
electronic qubits in the two atoms are maximally entangled,
and meanwhile the nuclear qubits are maximally entangled as
well.

A recent work [35] showed that it is possible to use Ry-
dberg blockade to entangle nuclear spin Zeeman substates
in the ground level of divalent neutral atoms, but the theory
therein cannot lead to HE. An outstanding challenge to realize
electron-nuclear spin HE in neutral atoms is that the electronic
and nuclear spin states are decoupled in the ground and clock
states (which is true for most cases except some exceptions
such as 165Ho [36]), but when the states are Rydberg excited
the electronic and nuclear spin states are coupled.

The remainder of this paper is organized as follows. In
Sec. II, we study the CZ operation with electronic qubits de-
fined by the ground 1S0 state and the stable 3P0 clock state. In
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Sec. III, we study the CZ operation in the nuclear spin states.
In Sec. IV, we analyze 87Sr and 171Yb about the experimental
prospects to realize the key steps in our theories. Section V
studies realization of single-qubit operations, Sec. VI dis-
cusses entanglement within one atom and between electronic
states in one atom and nuclear spin states in another, and
Sec. VII gives a brief summary.

II. CZ GATES WITH ELECTRONIC QUBITS

HE in this paper is created by sequentially entangling the
electronic states and the nuclear spin states. In this section,
we study the method to entangle the electronic states without
changing the nuclear spin states.

A. Challenges in realizing electronic CZ operations

It appears difficult to realize an entangling gate in the
electronic qubits when there are also nuclear spin qubits in
the atoms, i.e., when each electronic state is a superposition
of different nuclear spin states. The issue stems from the fact
that both nuclear spin qubit states shall be excited for each step
of the electronic state excitation. The Rydberg excitation of
AEL atoms was experimentally achieved in Ref. [23] without
involving nuclear spins for nuclear-spin-free 88Sr.

The issue is understood as follows. For an AEL atom with
a nonzero nuclear spin, because we not only use electronic
states, namely, the ground 1S0 state and a metastable clock
(the lowest excited) 3P0 state to define qubit states |0(1)〉e,
but also use nuclear spin states (with nuclear spin projections,
e.g., I and I − 1, along the external magnetic field) |0(1)〉n to
define another qubit, the general state for either the control or
the target atom is

(cos θ |0〉e + sin θ |1〉e) ⊗ (cos φ|0〉n + sin φ|1〉n), (2)

where we ignore a relative phase between |0〉 and |1〉 which
appeared in Eq. (1). The state is shown by a product of the
electronic and nuclear spin states in Eq. (1) because the nu-
clear spin is decoupled from the electrons in the ground state;
for the clock state there is a tiny mixing of the singlet states
[37], and the nuclear spin is decoupled from the electrons for
a first approximation. For frequently studied AEL atoms like
ytterbium [38–40] and strontium [23,41–44], the electronic
qubit states |0〉e and |1〉e are well separated by hundreds of
THz. For the nuclear spin qubit states, the two states |0(1)〉n

are separated by the Zeeman splitting gIμnB, where gI is the
nuclear g factor, μn is the nuclear magnetic moment, and B
is the magnetic field. The value of μn is on the order of the
nuclear magneton μN for both 87Sr [45] and 171Yb [46], so that
for a magnetic field B on the order of Gauss (1 G = 10−4 T)
as in experiments [12,14–19,21,22], the splitting between |0〉n

and |1〉n is on the order of kHz which is useful to distinguish
the two nuclear spin qubit states. When we say that the elec-
tronic state, e.g., |0〉e, is excited to a Rydberg state, what we
actually mean is that the state

|0〉e ⊗ (cos φ|0〉n + sin φ|1〉n) (3)

is excited to Rydberg states. Unfortunately, the state compo-
nents |0〉e ⊗ |0〉n and |0〉e ⊗ |1〉n are related with two different
nuclear spin projections. Both of them respond to the laser

excitation in the form of electric dipole coupling, leading to
Rydberg excitation. However, because hyperfine interaction
will occur for Rydberg states and |0〉n and |1〉n have different
nuclear spin projections, the two components |0〉e ⊗ |0〉n and
|0〉e ⊗ |1〉n will be excited to Rydberg states with different
mF . There is in general strong singlet-triplet coupling for
the s-orbital Rydberg states [47–49], so that | 1S0, F = I〉 is
mixed with | 3S1, F = I〉. Thus, whether we excite the qubit
states to | 3S1, F = I ± 1〉 or the mixed state of | 1S0, F = I〉
and | 3S1, F = I〉, the Zeeman splitting between two Rydberg
states with mF differing by 1 is on the order of megahertz
for a magnetic field on the order of B ∼ 1 G. This basically
means that the Rydberg excitation for |0〉e ⊗ |0〉n and that for
|0〉e ⊗ |1〉n cannot be resonant simultaneously. If one is reso-
nant, the other will be off resonant with a MHz-scale detuning.
But unfortunately, the Rabi frequency for the Rydberg excita-
tion cannot be very large, and values of several megahertz are
already very large [12–19,21–23]. Meanwhile, larger Rydberg
Rabi frequencies are desirable for faster quantum control so as
to suppress decoherence in the atomic systems. So, when the
excitation for one of the two states |0〉e ⊗ |0〉n and |0〉e ⊗ |1〉n

is resonant, the other will be excited with a detuning of a
similar magnitude to the Rydberg Rabi frequency in terms
of a generalized Rabi oscillation [21,35,50–52]. Thus, it is
impossible to use usual methods to excite one electronic qubit
state to the Rydberg state without disturbing the other qubit
state.

B. Theory for Rydberg excitation of
both nuclear spin qubit states

We study methods to fully excite both |0〉e ⊗ |0〉n and
|0〉e ⊗ |1〉n to Rydberg states. Because |0〉e ⊗ |0〉n and |0〉e ⊗
|1〉n have different nuclear spin projections along the quanti-
zation axis, they are excited to Rydberg states of a common
principal quantum number but different mF . We label these
two states by |r0〉 and |r1〉 corresponding to the two transitions

|0〉e ⊗ |0〉n
�0−→ |r0〉,

|0〉e ⊗ |1〉n
�1−→ |r1〉, (4)

where �0(1) is the Rabi frequency for the corresponding tran-
sition. For highly excited states, the electronic and nuclear
spin states are coupled so that we use |r0(1)〉 to denote the
Rydberg states. For a magnetic field B on the order of Gauss,
the splitting between |0〉e ⊗ |0〉n and |0〉e ⊗ |1〉n is on the
order of kilohertz. As shown later, we consider that |r0〉 and
|r1〉 are either 3S1 Rydberg states, or superpositions of 3S1 and
1S0 Rydberg states due to hyperfine interactions. In this case,
the Zeeman splitting between two Rydberg states with mF

differing by 1 is on the order of megahertz for B ∼ 1 G. As
a consequence, in the rotating frame, if one of the two transi-
tions in Eq. (4) is resonant, the other will be off resonant with
a detuning � on the order of megahertz. For an off-resonant
transition between a ground state and a Rydberg state, e.g.,
the second in Eq. (4), a direct analysis based on the unitary
dynamics shows that starting from the ground state, the pop-
ulation in the Rydberg state cannot exceed �2

1/(�2
1 + �2)

[35,50–52]. One can use a large magnetic field to increase
� so as to suppress the unwanted transition. However, to
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FIG. 1. (a) An atom is excited by two sets of laser fields, one
resonant with the transition from the qubit state |0〉 to the Rydberg
state |r0〉, and the other resonant with the transition from |1〉 to
|r1〉. For the study in Sec. II B 1, the two states |0〉 and |1〉 refer
to |0〉e ⊗ |0〉n and |0〉e ⊗ |1〉n, respectively, but the theory in this
figure applies to similar level diagrams in general. (b) Each set of
fields not only couples the resonant transition, but also couples the
off-resonant transition. Because of the selection rules, there can be
a coefficient η risen from the difference in the dipole couplings
in the two transitions. As a result, the laser field resonant for the
transition |0〉 ↔ |r0〉 with a Rabi frequency �0 will induce a detuned

transition |1〉 η�0e−it�

←−−−−−−−−→ |r1〉. Meanwhile, the laser field resonant for
the transition |1〉 ↔ |r1〉 with a Rabi frequency �1 will induce a

detuned transition |0〉 �1eit�/η←−−−−−−−−→ |r0〉. Here, � is the frequency sep-
aration between the two transitions from |0(1)〉 to the Rydberg states
|r0(1)〉.

have errors smaller than 10−4, we need �/�1 on the order
of 100, which requires a large magnetic B field. Nevertheless,
large magnetic fields are related with larger spatial fluctuation
that leads to strong dephasing [53,54]. For Rydberg entan-
glement experiments with ground-state atoms, the magnitudes
of B fields were smaller than 9 G [12,14–19,21,22] although
Ref. [13] used a relatively large field of 11.5 G. Below, we
show that there are ways to conquer the issue of Rydberg ex-
citation with weak magnetic fields; in particular, we consider
|�/�0(1)| � 10.

1. One-step Rydberg excitation with two lasers,
one resonant and the other off resonant

It has been shown that when multiple Rabi frequencies
control the Rydberg excitation from the ground state, reso-
nance can arise from off resonance; see, e.g., Ref. [55]. The
method in Ref. [55] was derived from a much earlier work
[56], where two symmetrically detuned excitation fields can
lead to a resonant state excitation. To solve the problem of
simultaneously exciting two nuclear spin states |0〉n and |1〉n

to Rydberg states, we extend the method in Refs. [55,56]
and consider the scheme in Fig. 1. Two laser fields are used
to excite the states to Rydberg states, one resonant with the
transition |0〉e ⊗ |0〉n ↔ |r0〉 by a Rabi frequency �0, while
the other is resonant with the transition |0〉e ⊗ |1〉n ↔ |r1〉
by a Rabi frequency �1. The two laser fields have the same
polarization but have a frequency difference characterized by
a detuning � in one of two transitions for each state. Then,
because the values of mF of the two states |0〉e ⊗ |0〉n and

|0〉e ⊗ |1〉n differ by 1, the ratio η between the Rabi frequen-
cies for the two transitions |0〉e ⊗ |0(1)〉n ↔ |r0(1)〉 for each
set of laser fields is usually not equal to 1. The Hamiltonians
for the two transitions are, respectively, given by

Ĥ0(t ) = 1

2

(
0 �0 + �1e−i�t/η

�0 + �1ei�t/η 0

)
(5)

with the basis {|r0〉, |0〉e ⊗ |0〉n}, and

Ĥ1(t ) = 1

2

(
0 η�0ei�t + �1

η�0e−i�t + �1 0

)
(6)

with the basis {|r1〉, |0〉e ⊗ |1〉n}. Here, η is determined by the
electric dipole selection rules and is assumed to be real for
brevity.

An intuitive look at Eqs. (5) and (6) gives us an impression
that it seems impossible to simultaneously excite both |0〉e ⊗
|0〉n and |0〉e ⊗ |1〉n to Rydberg states. However, if the Rabi
frequency �0(1) is time dependent in the form of

�0(1) = 2iκ0(1) sin(δt ), (7)

Rydberg excitation can still proceed in the limit δ 	 �, where
κ0(1) is a positive frequency for brevity. A similar analysis
was shown in Ref. [55] where only κ0(1) is present for the
excitation of the state |0(1)〉.

To understand the Rydberg excitation by the fields shown
in Fig. 1 with condition (7), we start from the case when only
the excitation with the Rabi frequency �0 is present, then
Eq. (5) becomes

Ĥ ′
0 = 1

2

(
0 2iκ0 sin(δt )

−2iκ0 sin(δt ) 0

)
. (8)

By evaluating the time ordering operator, one can find that
starting from the ground state |ψ (t = 0)〉 = |0〉e ⊗ |0〉n, the
amplitude in |r0〉 is

〈r0|ψ (t )〉 = sin
κ0[1 − cos(δt )]

δ
, (9)

while 〈ψ (t = 0)|ψ (t )〉 = cos κ0[1−cos(δt )]
δ

, which means that at
the moment t = T with T given by

κ0[1 − cos(δT )]

δ
= π

2
, (10)

the Rydberg state |r0〉 is fully populated. A numerical sim-
ulation about this phenomenon is shown in Fig. 2(a) which
shows that the final state is indeed |r0〉 if we identify the
basis {|r1〉, |1〉} in Fig. 2(a) as the basis of Eq. (8). To avoid
interrupting the state |0〉e ⊗ |1〉n by the fields for realizing
the transition |0〉e ⊗ |0〉n ↔ |r0〉 as discussed above, one can
set δ 	 �. The reason is as follows. When the fields act on
the transition from |0〉e ⊗ |1〉n to the Rydberg state, there is
not only a coefficient η as shown in Eq. (6), but also a large
detuning �. Then, the Hamiltonian for |0〉e ⊗ |1〉n is

Ĥ ′
1 = Ĥ ′

1+ + Ĥ ′
1−,

Ĥ ′
1+ = η

2

(
0 κ0ei(δ+�)t

κ0e−i(δ+�)t 0

)
, (11)

Ĥ ′
1− = η

2

(
0 −κ0ei(�−δ)t

−κ0e−i(�−δ)t 0

)
. (12)
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FIG. 2. Population dynamics for |1〉 and |r1〉 in a two-level
system with three different Hamiltonians. (a) With a Hamiltonian
iκ0 sin(δt )|r1〉〈1| + H.c., a complete population inversion occurs
with T = acos[1 − πδ/(2κ0 )]/δ. (b) If the laser fields are largely
detuned with �, the population in |r1〉 is tiny during the pulse.
(c) If rectangular pulses are used, i.e., we use the Hamiltonian
iκ0ei�t |r1〉〈1| + H.c., the population error or leakage in the Rydberg
state is 0.034 at the end of the pulse. The condition (�, δ)/(2κ0) =
(5, 0.1) is used here.

The two highly off-resonant transitions in Eqs. (11) and (12)
are with slightly different detunings, but for the condition
δ 	 �, it is likely that both Eqs. (11) and (12) have the same
detuning �, which simply means that Ĥ1+ + Ĥ1− = 0. So, the
state |0〉e ⊗ |1〉n seems to have no fields and is, hence, not
excited.

The key point in the above discussion lies in the fact that
without using large �/κ0 we can suppress the Rydberg excita-
tion of |0〉e ⊗ |1〉n. To show this, we consider η = 1 for brevity
and (�, δ)/(2κ0) = (5, 0.1) as an example, and compare the
off-resonant excitation by the Hamiltonian Ĥ ′

1 [which is equal
to the sum of Eqs. (11) and (12)] and the excitation by the
following Hamiltonian:

Ĥ ′′
1 = 1

2

(
0 2iκ0ei�t

−2iκ0e−i�t 0

)
. (13)

As numerically shown in Fig. 2(b), the leakage to the Rydberg
state is negligible with Hamiltonian iκ0 sin(δt )ei�t |r1〉〈1| +
H.c., but when Eq. (13) is used, the leakage can be as large as
3% shown in Fig. 2(c). More than the error in the population,
the final phase of 〈1|ψ〉 in Fig. 2(c) is as large as 0.13π ,
while that in Fig. 2(b) is only 0.025π . The phase error is quite
detrimental concerning the realization of a controlled-phase
gate such as CZ [57]. These data show that the application of
a field that is largely detuned and slowly varying, which has a
Hamiltonian in the form of Eq. (8) for the targeted transition,
is advantageous for suppressing the detrimental influence on
the other qubit state that is off-resonantly coupled.

FIG. 3. Population evolution in the ground and Rydberg states,
shown by solid and dashed curves, respectively. (a, b) Results
with the Hamiltonians in Eq. (5) and in Eq. (6), respectively. The
pulse duration is T = acos[1 − πδ/(2κ0)]/δ, where κ0 = κ1 and
(�, δ)/(2κ0) = (10, 0.1). The final population in |r0(1)〉 is 0.999 85
in both (a) and (b). The phase arg〈r0(1)|ψ〉 is ±0.0028π in (a) [(b)]
at the end of the pulse, while the desired phase is zero.

Finally, we study Rydberg excitations of |0〉e ⊗ |0〉n and
|0〉e ⊗ |1〉n with the two laser fields shown in Fig. 1. Because
each of the two sets of fields is resonant with one transition
only, the relevant Hamiltonians are given in Eqs. (5) and
(6). For brevity, we consider the case η = 1 because a value
different from 1 only has a marginal influence on the error
shown in, e.g., Fig. 2(b). The time dependence for �0(1) is
specified in Eq. (7). To have a high-fidelity state excitation,
we use the condition (�, δ)/(2κ0) = (10, 0.1) to simulate the
population evolution by Eqs. (5) and (6), with results shown
in Figs. 3(a) and 3(b), respectively. The population error is
smaller than 1.5 × 10−5 in both cases, and the phase error (the
correct phase should be zero) is smaller than 0.003π . So, it is
a useful way to use the scheme shown in Fig. 1 for Rydberg
excitation of the electronic qubits when there is a nonzero
nuclear spin in the atom. If the initial state is |r0(1)〉 for the
Hamiltonian in Eq. (5) [(6)], a similar pulse can deexcite them
back to the ground states, where the final phase for the ground
state is π , and numerical simulations give similar results about
the errors in the population and phase.

2. A two-step Rydberg excitation by the method of Ref. [35]

The method in Sec. II B 1 requires �/�0(1) as large as,
for example, 10, as in Fig. 3. If large Rydberg Rabi fre-
quencies are realized, for example, as large as 2π × 7 MHz
[23], it is challenging to use the theory in Sec. II B 1 unless
larger magnetic fields are employed so as to induce a large
�. Below, we describe another method that is compatible
with small �/�0(1) but can also lead to high-fidelity Rydberg
excitation of both nuclear spin states. The method is derived
from the theory shown in Ref. [35] which studies selective
Rydberg excitation of a nuclear spin state in the ground-state
manifold.

The theory is shown in Fig. 4, which can be under-
stood as a repeat of the Rydberg excitation scheme in
Ref. [35] with specific detunings. As an example, we consider
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FIG. 4. A two-step Rydberg excitation scheme, and a two-step deexcitation scheme. Symbols beside the arrows denote Rabi frequencies,
and the directions of arrows denote the direction of population transfer. (a) An atom is excited by laser fields that are resonant with the transition
from |0〉e ⊗ |0〉n to the Rydberg state |r0〉. It induces an off-resonant excitation from |0〉e ⊗ |1〉n to |r1〉. With � ≡ √

η2�2
0 + �2 equal to 2N

times �0, where N is an integer, the state |0〉e ⊗ |1〉n returns to itself with a phase twist. (b) When the laser fields are set to be resonant with
the transition from |0〉e ⊗ |1〉n to the Rydberg state |r1〉, and the Rabi frequencies are chosen so that the generalized Rabi frequency for the
transition between |0〉e ⊗ |0〉n and |r0〉 is 2N times �1, the state |r0〉 returns to itself with a phase change. The two pulses in (a) and (b) induce
a full Rydberg excitation. Here, (c) shows the state evolution with the same pulse as in (b) except a phase 2ϕ in the Rabi frequency, which
deexcites the state |r1〉 back to the ground state. Likewise, (d) shows the Rydberg deexcitation for |r0〉, which uses laser fields as used in
(a) except a phase 2ϕ in the Rabi frequency.

exciting the state |0〉e ⊗ |1〉n to a Rydberg state with a constant
Rabi frequency �0. The fields can induce a Rydberg Rabi
frequency η�0 for the transition |0〉e ⊗ |1〉n ↔ |r1〉 shown in
Fig. 4(a), where η is from the angular momentum coupling
rules. η can be a complex variable, but whether being real or
complex will not have nontrivial effects in a complete cycle of
detuned Rabi oscillation as we consider in this paper. So, we
assume real η for brevity. When π polarized fields are used
with 171Yb atoms, |η| is 1 because the two nuclear spin states
are symmetrical to each other except for a sign difference in
the coupling matrices (see, e.g, the appendices of Ref. [35]).
For AEL qubits the nuclear pin I of which is larger than 1/2,
the value of |η| is not 1 in general but it does spoil our theory.
For brevity, we consider η = 1. The Hamiltonians for the two
states |0〉e ⊗ |0〉n and |0〉e ⊗ |1〉n are given by Eqs. (5) and
(6), respectively, with �1 = 0. To analytically derive the time

dynamics, we use appropriate rotating frames with operators

R̂ =
∑

j

E j | j〉〈 j|,

R̂0 = R̂ + �|r0〉〈r0|,
R̂1 = R̂ − �|r1〉〈r1|, (14)

to transform the wave function |�〉 in the Schrödinger picture
to wave functions eitR̂|�〉, eitR̂0 |�〉, or eitR̂1 |�〉 in rotating
frames, where | j〉 and Ej are the wave function and eigenen-
ergy of the atomic state labeled by j. In particular, we study
quantum gates in the frame rotating with R̂, i.e., with wave
functions |ψ〉 ≡ eitR̂|�〉, but will sometimes use the frames
rotating with R̂0(1) when analyzing the system dynamics. For
the excitation in Fig. 4(a), the off-resonant excitation on
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the state |0〉e ⊗ |1〉n is described by Eq. (6) which can be
transformed to the frame defined by R̂1,

Ĥ (R̂1 )
1 = 1

2

(
2� �0

�0 0

)
, (15)

where �0 is constant instead of being time dependent as in
Sec. II B 1. The Hamiltonian above can be diagonalized as
[50]

Ĥ (R̂1 )
1 =

∑
α=±

εα|vα〉〈vα|,

where

ε± = (
� ±

√
�2

0 + �2
)
/2,

|v±〉 =
(

�0

2
|0〉e ⊗ |1〉n + ε±|r1〉

)
/N±,

N± =
√

�2
0/4 + ε2±, (16)

from which we have

|0〉e ⊗ |1〉n = 2

�0

ε−N+|v+〉 − ε+N−|v−〉
ε− − ε+

,

|r1〉 = N+|v+〉 − N−|v−〉
ε+ − ε−

.

Starting from an initial state |ψ (0)〉 = |0〉e ⊗ |1〉n, the wave
function becomes

|ψ (t )〉 = 2

�0
Ŝ

ε−N+e−itε+ |v+〉 − ε+N−e−itε− |v−〉
ε− − ε+

, (17)

where the frame transformation factor Ŝ ≡ eitR̂e−it R̂1 can be
expanded as eit�|r1〉〈r1|. A π pulse with duration tπ = π/�0

can complete the transition |0〉e ⊗ |0〉n → −i|r0〉. To avoid
exciting |0〉e ⊗ |1〉n to Rydberg states, it is desirable to realize
a generalized Rabi frequency � =

√
�2

0 + �2 which is 2N
times �0, where N is an integer. The reason that we call � a
generalized Rabi frequency [50] lies in the fact that although
full Rydberg excitation is not achieved, there is a state rotation
from the ground state to a superposition of the ground state
and the Rydberg state. According to Eq. (17), with a pulse of
duration tπ , the input state |0〉e ⊗ |1〉n undergoes N detuned
Rabi cycles,

|0〉e ⊗ |1〉n → eiϕ |0〉e ⊗ |1〉n, (18)

where ϕ ≡ −[N + �/(2�0)]π ; here the frame transforma-
tion factor Ŝ does not take effect because there is no
population in the Rydberg state. Thus, with a π pulse which
is resonant with the transition

|0〉e ⊗ |0〉n
�0−→ −i|r0〉, (19)

the other nuclear spin state stays there, with only a phase
accumulation as shown in Eq. (18). For a general qubit state
initialized in

|0〉e ⊗ (cos φ|0〉n + sin φ|1〉n), (20)

the first π pulse changes it to (in the frame R̂)

−i cos φ|r0〉 + sin φeiϕ |0〉e ⊗ |1〉n, (21)

as schematically shown in Fig. 4(a).

The state in Eq. (21) has not been fully excited to the
Rydberg state. In order to excite the component |0〉e ⊗ |1〉n

to the Rydberg state, we use the same strategy as used from
Eqs. (15)–(21), but with Rydberg laser fields resonant with

|0〉e ⊗ |1〉n
�1−→ −i|r1〉, (22)

so the other state |r0〉 will be off-resonantly excited to |0〉e ⊗
|0〉n. In this case, Eq. (5), with �0 = 0, is transformed to the
frame rotating with R̂0,

Ĥ (R̂0 )
0 = 1

2

(−2� �1

�1 0

)
, (23)

and the wave function |r0〉 is transformed to eitπ R̂0 e−itπ R̂|r0〉 =
eitπ �|r0〉, where the magnitudes of the Rydberg laser fields
are chosen so that |�1| is equal to |�0| in Eq. (15) and the
pulse is applied in the time interval t ∈ (tπ , 2tπ ]. By using
the same theoretical scheme as above, a π pulse will excite
the state |0〉e ⊗ |1〉n to |r1〉, but the state component |r0〉 will
experience N detuned Rabi cycles, evolving as

|r0〉 → e2itπ R̂e−2itπ R̂0 [e−iϕ (eitπ �|r0〉)]

= e−iϕe−itπ �|r0〉, (24)

where ϕ is defined below Eq. (18). By using the fact that
e2iNπ = 1, we have e−iϕe−itπ � = eiϕ . As a consequence, the
state in Eq. (21) evolves to (in the frame R̂)

−ieiϕ (cos φ|r0〉 + sin φ|r1〉). (25)

The second step is schematically shown in Fig. 4(b).
After fully exciting the state |0〉e ⊗ (cos φ|0〉n + sin φ|1〉n)

to the Rydberg state in Eq. (25), the mechanism of the Ry-
dberg blockade can be implemented. For example, when a
control qubit experiences the above two-step Rydberg excita-
tion, its Rydberg population can block the Rydberg excitation
of a nearby target qubit. After the quantum manipulation of
the target qubit, the state of the control qubit shall be restored
back to the ground state.

Similar to the Rydberg excitation, the deexcitation also
needs two steps, shown in Figs. 4(c) and 4(d). However, if
the Rabi frequencies are still those used in the excitation pro-
cesses, the final state will have undesired phases. So, the third
step is similar to the second step but with a Rabi frequency
�1e2iϕ , where the phase in the Rabi frequency will not have
any nontrivial effect for a full detuned Rabi cycle as shown in
Eqs. (15)–(18), but will have a net effect in half of a resonant
Rabi cycle. Then, the third pulse realizes

|r0〉 → eiϕ |r0〉,
|r1〉 → −ie−2iϕ |0〉e ⊗ |1〉n,

so that the state in Eq. (25) evolves to (in the frame R̂)

−i cos φe2iϕ |r0〉 − sin φe−iϕ |0〉e ⊗ |1〉n. (26)

Likewise, the fourth step is similar to the first step, except that
the Rabi frequency changes to �0e2iϕ . Then, it realizes

|r0〉 → −ie−2iϕ |0〉e ⊗ |0〉n,

|0〉e ⊗ |1〉n → eiϕ |0〉e ⊗ |1〉n,
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so that the state in Eq. (26) evolves to (in the frame R̂)

−|0〉e ⊗ (cos φ|0〉n + sin φ|1〉n).

C. Application in the ground state and the clock state

In Secs. II B 1 and II B 2 the two methods can be applied to
any electronic states of the form 2S+1L0. For most AEL atoms
with a nonzero nuclear spin, the ground 1S0 state is long lived,
and there is a metastable 3P0 state that is long lived, too. The g
factor for the ground state is simply the nuclear spin g factor,
while that for the 3P0 clock state is mainly from the nuclear
spin but there is a 60% enhancement from the singlet-triplet
mixing due to the spin-orbit and hyperfine interactions for the
case of 87Sr [37]. For other elements the enhancement can
differ due to different strengths in the spin-orbit and hyperfine
interactions, but even so, the magnitude of the Zeeman shift in
3P0 is of similar magnitude to that in the ground state. Because
the nuclear g factor is three orders of magnitude smaller than
that of the electron spin, the Zeeman shift in 3P0 is still on
the order of kHz. So, compared to the Zeeman shift in the
Rydberg state, the two nuclear spin states in either the ground
state 1S0 or the clock state 3P0 are nearly degenerate. As a
result, the parameter � in Secs. II B 1 and II B 2 is mainly
from the Zeeman shift of the Rydberg states, and, hence, the
two theories are applicable to both electronic qubit states.

One difference between exciting the two electronic qubit
states to an s-orbital Rydberg state is that a two-photon excita-
tion is required for the qubit state 1S0, while only a one-photon
excitation is required for the clock state 3P0 [23].

D. CZ operation in the electronic states and its fidelity

The Rydberg excitation shown in Secs. II B 1 and II B 2
is the foundation of our quantum gates. To realize a CZ gate
in the electronic qubits, one can use the following pulse se-
quence. First, apply the pulse sequence shown in Sec. II B 1
or Sec. II B 2 for the control atom. When the first theory is
used, the laser configuration is shown in Fig. 1 and the pulse
duration is shown in Eq. (10); when the second theory is used,
the laser pulse for Rydberg excitation is shown in Figs. 4(a)
and 4(b). Second, if the first theory is used, then apply the laser
fields as in Fig. 1 for a duration [see Eq. (10) and explanations
around it]

κ0[1 − cos(T δ)]

δ
= π, (27)

so that a π phase appears for the input state |10〉; if the second
theory is used, then use the pulse sequence shown in Fig. 4
for the target atom which also induces a π phase shift. For the
input state |10〉 in the electronic state space, there will be a
π phase imprinted in it at the end of the four-pulse sequence
shown in Fig. 4. The input state |00〉 does not pick any phase
because the control atom is in Rydberg states which block the
Rydberg excitation of the target atom. Third, apply the pulse
shown in Fig. 1 for the control qubit with the pulse duration
shown in Eq. (10) if the first theory is used, or the pulses
shown in Figs. 4(c) and 4(d) if the second theory is used.
These three steps will lead to an electronic CZ gate, i.e., an

operation which maps the initial state∑
α,β∈{0,1}

aαβ |αβ〉e ⊗
∑

α,β∈{0,1}
bαβ |αβ〉n (28)

to

[−a00|00〉e − a01|01〉e − a10|10〉e + a11|11〉e]

× ⊗
∑

α,β∈{0,1}
bαβ |αβ〉n, (29)

where
∑

α,β∈{0,1} |aαβ |2 = ∑
α,β∈{0,1} |bαβ |2 = 1.

The fidelity to map Eq. (28) to Eq. (29) is intrinsically
limited by three factors. First, there is an intrinsic rotation
error in the Rydberg excitation and deexcitation, as shown in
Fig. 3 for the first theory. Second, the Rydberg-state decay will
lead to errors because there is time for the atomic state to be
in the Rydberg states. Third, the blockade interaction is finite,
which results in an imperfect blockade. The intrinsic rotation
error is 1 − F , where F is an average fidelity given by [58]

F = [|Tr(U †U )|2 + Tr(U †U U †U )]/272.

Here, U is the actual gate matrix evaluated by using the
unitary dynamics with the Rydberg-state decay ignored, and
U , given by (−112 0

0 14

)
, (30)

is the ideal gate matrix in the ordered basis

|00〉e ⊗ {|00〉n, |01〉n, |10〉n, |11〉n},
|01〉e ⊗ {|00〉n, |01〉n, |10〉n, |11〉n},
|10〉e ⊗ {|00〉n, |01〉n, |10〉n, |11〉n},
|11〉e ⊗ {|00〉n, |01〉n, |10〉n, |11〉n}, (31)

where 14 and 112 are the 4 × 4 and 12 × 12 identity matrices,
respectively. In order to evaluate the intrinsic rotation error,
we assume that the Rydberg interaction is large enough and
leave the blockade error to be analyzed separately when V is
finite [53].

Because the method in Sec. II B 2 is based on the the-
ory shown in Ref. [35], the fidelity analysis could be easily
done following Ref. [35]. So, we will use the theory studied
in Sec. II B 1 to examine the intrinsic gate error. We em-
ploy Eqs. (5) and (6) to simulate the time dynamics for the
states. During the first pulse, lasers with Hamiltonians Ĥ1(t )
in Eq. (5) and Ĥ2(t ) in Eq. (6) are applied for the control
atoms with a duration Tp1 = acos[1 − πδ/(2κ0)]/δ ≈ 1.30 ×
2π
2κ0

determined by Eq. (10). For the second pulse, lasers

with Hamiltonians Ĥ1(t − Tp1) in Eq. (5) and Ĥ2(t − Tp1) in
Eq. (6) are applied for the target atoms with a duration Tp2 =
acos[1 − πδ/κ0]/δ ≈ 1.89 × 2π

2κ0
, where Tp2 �= 2Tp1. During

the third pulse, the same types of laser fields used in the first
pulse are used, i.e., lasers with Hamiltonians Ĥ1(t − Tp1 −
Tp2) in Eq. (5) and Ĥ2(t − Tp1 − Tp2) in Eq. (6) are applied for
the control atoms with a duration Tp1. With the condition η =
1 and (�, δ)/(2κ0) = (10, 0.1), we numerically found that
the intrinsic rotation error is Ero = 3.74 × 10−4. The time for
the atom to be in the Rydberg state averaged over the 16 states
in Eq. (31) is TRyd = 1.55 × 2π

2κ0
as numerically evaluated,
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which leads to a decay error Edecay = TRyd/τ ≈ 3.35 × 10−3

if we adopt the parameters from Ref. [35] with 2κ0 = 2π ×
1.4 MHz and τ = 330 μs. Finally, there will be a blockade
error (2κ0/V )2 [53] for each of the four states on the first row
of Eq. (31). With V = 2π × 47 MHz [35], the error due to
the blockade leakage for the gate will be Ebl = 2.2 × 10−4.
So, the intrinsic gate fidelity for the electronic CZ operation
described by Eqs. (28) and (29) is 1 − Ero − Edecay − Ebl ≈
99.61% which is dominated by the Rydberg-state decay.

III. CZ GATES WITH NUCLEAR SPIN QUBITS

HE in neutral atoms for our purpose is to entangle not
only the electronic qubits, but also the nuclear spin qubits.
We analyze methods to realize nuclear-spin CZ operation in
this section. As in Sec. II, we first outline methods to excite
nuclear spin qubit states to Rydberg states.

A. Rydberg excitation of both electronic qubit states for a
nuclear spin qubit state

As studied around Eq. (3) in Sec. II A where both nuclear
spin states shall be excited for a certain electronic qubit state,
here, when we want to excite the nuclear spin state |0〉 to
Rydberg states, we actually need to map the state

(cos θ |0〉e + sin θ |1〉e) ⊗ |0〉n (32)

to a superposition of different Rydberg eigenstates

cos θ |r0〉 + sin θ |R0〉, (33)

where θ is a real variable (here we ignore a relative phase
between the two state components for brevity), |r0〉 denotes
the Rydberg state as used in Sec. II, while |R0〉 is a Rydberg
state of a different principal quantum number.

To achieve Rydberg excitation of both electronic qubit
states of a certain nuclear spin state, e.g., |0〉, we consider the
laser configuration in Fig. 5. Whether the theory in Sec. II B 1
or the theory in Sec. II B 2 is used, the Hamiltonian for the
state |0〉e ⊗ |0〉n is

Ĥ0 = 1

2

(
0 �0

�0 0

)
(34)

with the basis {|r0〉, |0〉e ⊗ |0〉n}, and the Hamiltonian for the
state |1〉e ⊗ |0〉n is

Ĥ ′
0 = 1

2

(
0 Λ�0

Λ�0 0

)
(35)

with the basis {|R0〉, |1〉e ⊗ |0〉n}. Due to the comparable mag-
nitudes of the Rabi frequency and the Zeeman shift in the
Rydberg states, the state |0〉e ⊗ |1〉n is excited off resonantly
with the Hamiltonian

Ĥ1 = 1

2

(
0 η�0ei�t

η�0e−i�t 0

)
(36)

with basis {|r1〉, |0〉e ⊗ |1〉n}. Similarly, there is an off-
resonant excitation of the state |1〉e ⊗ |1〉n with the Hamilto-
nian

Ĥ ′
1 = 1

2

(
0 η′Λ�0eiζ�t

η′Λ�0e−iζ�t 0

)
(37)

FIG. 5. Rydberg excitation of |0〉e ⊗ |0〉n and |1〉e ⊗ |0〉n. (a) An
atom is excited by two sets of laser fields, one resonant with the
transition from |0〉e ⊗ |0〉n to the Rydberg state |r0〉, and the other
resonant with the transition from |1〉e ⊗ |0〉n to the Rydberg state
|R0〉. (b) There is a Zeeman shift in the Rydberg states (which is much
larger than that in the ground or clock state), so the state |0〉e ⊗ |1〉n

is excited to a Rydberg state |r1〉 with a detuning �. (c) The Rydberg
Rabi frequency is Λ�0 for the transition |1〉e ⊗ |0〉n ↔ |R0〉 where
Λ is tunable via adjustment of the strength of the laser fields. The
other ground state |1〉e ⊗ |1〉n is excited to |R1〉 with a detuning ζ�.
Here, because there is some difference between the g factors of the
ground and clock states, a factor ζ arises which is positive since
the detuning is mainly determined by the electron g factors of the
Rydberg states. The factor η (η′) arises from angular momentum
selection rules because the two nuclear spin states have different
values of mI .

with the basis {|R1〉, |1〉e ⊗ |1〉n}. Here, the detunings and
dipole coupling matrix elements are different for the two
transitions from the the electronic |0〉 and |1〉 states, which
is incorporated in the factors ζ , η, and η′ which are fixed
variables (once the polarization of the fields is fixed) because
they are determined by the atomic states, while Λ can be
varied by adjustment of the strength of the laser fields.

1. Rydberg excitation with sinusoidal pulses

If the first theory, i.e., the theory in Sec. II B 1, is used, the
Rabi frequencies �0 in Eq. (34) and Λ�0 in Eq. (35) are both
given by 2iκ0(1) sin(δt ) as in Eq. (7). Then, the Rydberg exci-
tations of |0〉e ⊗ |0〉n and |1〉e ⊗ |0〉n have the same duration,
although it is not a necessary condition, nor do we need to
start the excitation of the two electronic states simultaneously.
This is because the two electronic qubit states, namely, the
ground state and the metastable clock state, have a frequency
separation of hundreds of THz which is sufficiently large to
suppress unwanted excitation of the nontargeted qubit state.
When only one electronic qubit state is excited, the other
electronic qubit state is not influenced. The benefit to have
the same duration is that it can be easier to use pulse pickers
to simultaneously switch the fields for exciting |0〉e ⊗ |0〉n and
|1〉e ⊗ |0〉n.

There will be phase shifts to |0〉e ⊗ |1〉n and |1〉e ⊗ |1〉n

when |0〉e ⊗ |0〉n and |1〉e ⊗ |0〉n are resonantly excited by
the Hamiltonians in Eqs. (34) and (35). By using the Hamil-
tonians in Eq. (36), we numerically found that the phase
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shift to |0〉e ⊗ |1〉n is ϕ1 ≈ 0.0395 for a pulse duration
Tp1=acos[1 − πδ/(2κ0)]/δ when η = 1 and (�, δ)/(2κ0) =
(10, 0.1). Although |ζ |, |η′| ≈ 1 for the case of 171Yb ana-
lyzed in Ref. [35], the phase shift to |1〉e ⊗ |1〉n will differ
from δϕ if |ζ |, |η′| �= 1 when other isotopes are used. How-
ever, as will be shown in Sec. III A 2, the different phase shifts
can be made equal by an extra phase compensation. Therefore,
we will assume that the phase shifts are equal for the states
|0〉e ⊗ |1〉n and |1〉e ⊗ |1〉n.

2. Rydberg excitation with rectangular pulses

As shown in Sec. II B 1, the first theory needs a relatively
large magnetic field, while the second theory in Sec. II B 2
can be used with a small magnetic field. For the nuclear spin
CZ operation with the second theory, the Hamiltonians for the
relevant states are still given by Eqs. (34), (35), (36), and (37),
but there are two differences compared to the first theory.
First, quasirectangular pulses are used, i.e., �0 is constant
when the laser pulse is sent, while the first theory requires
shaped pulses. Second, there shall be a “rational” generalized
Rabi frequency as specified below Eq. (17), namely,√

η2�2
0 + �2 = 2N�0,√

(η′)2Λ2�2
0 + ζ 2�2 = 2N ′Λ�0, (38)

where N and N ′ are positive integers. The above equations
mean that if we choose the ratio of Rabi frequencies to be

Λ = |ζ�|√
�2 + �2

0[η2 − (η′)2]
, (39)

the two equations in Eq. (38) can be satisfied with N = N ′,
which is feasible since � and the strength of the laser fields
can be adjusted while the parameters ζ , η, and η′ are deter-
mined by the configuration of atomic levels. Because the π

pulse durations for Rydberg excitation in Figs. 5(b) and 5(c)
are π

�0
and π

Λ�0
, respectively, one can use the condition in

Eq. (39) to show that both the transition

|0〉e ⊗ |1〉n → eiϕ2 |0〉e ⊗ |1〉n (40)

with detuning � and the transition

|1〉e ⊗ |1〉n → eiϕ′
2 |1〉e ⊗ |1〉n (41)

with detuning ζ� acquire phases given by

ϕ2 = −
(

N + �

2�0

)
π,

ϕ′
2 = −

(
N + ζ�

2Λ�0

)
π. (42)

The above equation means that it is necessary to have extra
phase compensation so as to avoid extra entanglement in the
electronic states. This can be done by using highly detuned
lasers tuned near to, e.g., |1〉e ⊗ |1〉n, i.e., the other state |1〉e ⊗
|0〉n does not acquire any phase. Then, by exciting the state
|1〉e ⊗ |1〉n with a Rabi frequency significantly smaller than
the detuning to it, one can add an appropriate phase shift to it
so that

ϕ′
2 → ϕ2. (43)

Here, the fields may also excite the state |1〉e ⊗ |0〉n because
it is almost degenerate with |1〉e ⊗ |1〉n. However, the two
nuclear spin states can be chosen in a way that |0〉n has the
maximal nuclear spin projection along the external magnetic
field, then using circularly polarized fields can avoid the exci-
tation of |1〉e ⊗ |0〉n when |1〉e ⊗ |1〉n is excited; see Fig. 1(b)
of Ref. [35] as an example. Here, it is necessary to choose the
appropriate types of detuning since a blue (red) detuning gives
a tiny negative (positive) phase shift for each detuned Rabi
cycle (with the understanding that a phase equal to an integer
times 2π is trivial). A detailed analysis about such type of
phase compensation can be found on page 6 of Ref. [35]. With
the phase change in Eq. (43), the Rydberg excitation changes
the initial input state of the control qubit

(cos θ |0〉e + sin θ |1〉e) ⊗ (cos φ|0〉n + sin φ|1〉n) (44)

to

−i cos φ(cos θ |r0〉 + sin θ |R0〉)

+ sin φeiϕ2 (cos θ |0〉e + sin θ |1〉e) ⊗ |1〉n, (45)

which can be followed by Rydberg excitation of the target
atom so as to create a CZ gate in the nuclear spin state space.

When the nuclear spin state |0〉 is excited to a Rydberg state
and back at the end of a CZ gate pulse sequence, the state of
the control qubit becomes

− cos φ(cos θ |0〉e + sin θ |1〉e) ⊗ |0〉n

+ sin φe2iϕ2 (cos θ |0〉e + sin θ |1〉e) ⊗ |1〉n, (46)

where the minus sign on the first line above arises from the
π + π pulses resonantly acting on the Rydberg excitation,
and the phase 2ϕ2 on the second line arises from the detuned
transition; it can be removed by extra pulses which will be
shown in Sec. III B 2. Because only the nuclear spin |0〉 state
is excited, the phase twist from the detuned transitions is quite
different from that described in Fig. 4. This is because in
Fig. 4 both the two nuclear spin states should be excited to
Rydberg states, while here we only need to excite one of the
two nuclear spin states to Rydberg states.

B. CZ operation in the nuclear spin states and its fidelity

1. CZ gate with sinusoidal pulses

The CZ gate sequence with the nuclear spin states can be
realized as follows with the first theory, i.e., the theory in
Sec. II B 1. First, apply the pulse sequence for the control atom
shown in Fig. 5 with a duration T specified by [see Eq. (10)
and explanations around it]

κ0[1 − cos(T δ)]

δ
= π

2
, (47)

where �0 = 2iκ0 sin(δt ) and Λ = 1. Second, apply the laser
fields for the target atom as in Fig. 5 for a duration T with
�0 = 2iκ0 sin(δt ) and Λ = 1. Third, repeat the second step,
but with �0 = 2iκ0 sin(δt )e−i2ϕ1 and Λ = 1; here the relative
phase 2ϕ1 for the Rabi frequencies in the third step is used
to induce an extra phase shift to |10〉n because otherwise the
final phases in |10〉n and |11〉n will be different. Fourth, apply
the same pulse sequence in the first step so as to deexcite the
Rydberg states of the control qubit. As a result of these four
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steps, a CZ-like gate is realized which maps the initial state∑
α,β∈{0,1}

aαβ |αβ〉e ⊗
∑

α,β∈{0,1}
bαβ |αβ〉n (48)

to ∑
α,β∈{0,1}

aαβ |αβ〉e ⊗ [−b00|00〉n − b01|01〉n − b10e4iϕ1 |10〉n

+b11e4iϕ1 |11〉n], (49)

where ϕ1 is the phase accumulation in the detuned Rabi oscil-
lation as shown in Sec. III A 1. After a phase compensation
strategy that will be shown in Sec. III B 2, the CZ operation
emerges which leads to the output states:∑

α,β∈{0,1}
aαβ |αβ〉e ⊗ [−b00|00〉n − b01|01〉n − b10|10〉n

+b11|11〉n]. (50)

2. CZ gate with rectangular pulses and phase compensation

Here, we take the method in Sec. II B 2 to discuss the
phase compensation. As shown in Eq. (46), there will be an
unwanted phase accumulation for the nuclear spin state. To
solve this problem, we propose the following pulse sequence
for realizing a CZ-like gate and then describe methods to
compensate the unwanted phase.

First, excite the control atom with the laser configuration
shown in Fig. 5. The pulse durations are π/�0 and π/(Λ�0)
for the |0〉e ⊗ |0〉n and |1〉e ⊗ |0〉n states, respectively. The two
sets of laser fields in Figs. 5(a) and 5(b) do not need to start (or
end) at the same moment. This step excites the control atom
to Rydberg states if the input nuclear spin states are |00〉n and
|01〉n.

Second, excite the target atom with laser fields shown in
Fig. 5 with two pulses. In the first pulse, the Rabi frequency
and pulse duration are �0 and 2π/�0 for |0〉e ⊗ |0〉n, and are
Λ�0 and 2π/(Λ�0) for |1〉e ⊗ |0〉n. In the second pulse, the
Rabi frequency and pulse duration are e−2iϕ2�0 and 2π/�0

for exciting the input state |0〉e ⊗ |0〉n, and are e−2iϕ2Λ�0 and
2π/(Λ�0) for the input state |1〉e ⊗ |0〉n. These two pulses
resonantly excite the nuclear spin input state |10〉n, which
imprints a phase π + 2ϕ2 to it according to the picture of a
standard resonant Rabi oscillation. However, the two pulses
induce off-resonant excitation for the nuclear spin input state
|11〉n, imprinting a phase 2ϕ2 to it according to Eq. (46), where
the phase twist 2ϕ2 is from the detuned Rabi cycles but not
related with the phase of the Rabi frequencies.

Third, apply the same pulses as in the first step for the
control atom to restore the Rydberg state back to the ground
state (or the clock state). The first and third steps resonantly
excite the nuclear spin input states |00〉n and |01〉n, giving
them a π phase shift according to the standard picture of a
resonant Rabi oscillation, and meanwhile results in a phase
2ϕ2 in the input states |10〉n and |11〉n according to Eq. (46).
Therefore, the initial state in Eq. (48) is mapped to∑

α,β∈{0,1}
aαβ |αβ〉e ⊗ [−b00|00〉n − b01|01〉n − b10e4iϕ2 |10〉n

+b11e4iϕ2 |11〉n], (51)

(a) (b)

FIG. 6. Scheme to compensate the unwanted phase appearing in
Eqs. (49) and (51). A laser field is applied which is tuned near to the
transition |0〉e ⊗ |1〉n → |p1〉 with a blue detuning |δp|, and similar
for the transition |1〉e ⊗ |1〉n → |p′

1〉. Because |δp| 	 �, the states
|0(1)〉e ⊗ |0〉n are highly detuned and do not pick up any phase error
comparable to other errors.

where one can see that there is an unwanted phase 4ϕ2 for
the input nuclear spin states |10〉n and |11〉n. To undo this
phase, we can use a strategy outlined in Fig. 6 for the control
atom, but with laser fields tuned nearly resonant, with Rabi
frequency �p and detuning δp, to the transition |0〉e ⊗ |1〉n →
|p1〉; similarly, laser fields are used with Rabi frequency ζ�p

and detuning ζ δp for the transition |1〉e ⊗ |1〉n → |p′
1〉, where

|p1〉 and |p′
1〉 can be chosen from a high-lying Rydberg state or

some low-lying states that have long lifetimes. The detuning
shall be much smaller than �, i.e., |δp| 	 �, so that the other
nuclear spin states |0(1)〉e ⊗ |0〉n do not acquire extra phase
shift for they are largely detuned when the Rabi frequencies
satisfy the condition �p 	 |δp|. With the following excitation

|0〉e ⊗ |1〉n

�p,blue detuned by δp←−−−−−−−−−−−−−−−−−−−−−−→ |p1〉,

|1〉e ⊗ |1〉n

ζ�p,blue detuned by ζ δp←−−−−−−−−−−−−−−−−−−−−−−−−→ |p′
1〉, (52)

for a duration of tPC and tPC/|ζ | (“PC” represents phase com-
pensation), respectively, one can show that [35]

|0〉e ⊗ |1〉n → eiΘtPC�p/(2π )|0〉e ⊗ |1〉n,

|1〉e ⊗ |1〉n → eiΘtPC�p/(2π )|1〉e ⊗ |1〉n (53)

by using the theoretical methods shown in Eqs. (15)–
(17), where tPC�p/(2π ) should be an integer. Here, �p ≡√

�2
p + δ2

p and

Θ = −(1.0 + δp/�p)π, (54)

which is approximately given by

Θ ≈
(

−2 + �2
p

2δ2
p

)
π, (55)

in the limit |�p/δp| 	 1.
To undo the unwanted phase in Eq. (51), we impose the

condition

−2πN = 4ϕ2 + ΘtPC�p/(2π ) (56)
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where N is a positive integer, leading to

tPC ≈ 8δ2
p (2ϕ2 + πN )(

4δ2
p − �2

p

)√
�2

p + δ2
p

, (57)

which can be further approximated as 2(2ϕ2 + πN )/|δp| =
2π (N − 2N − �/�0)/|δp|. Choosing the smallest integer N
that is larger than 2N + �/�0 leads to a duration tPC that is
smaller than 2π/|δp|. Here, 2π/|δp| can be on the order of ms
when we have a MHz-scale � in the condition of |δp| 	 �.

With the unwanted phase terms removed in Eq. (51), the
final output of the nuclear-spin CZ gate will be Eq. (50). The
above procedure is also applicable to undo the phase 4ϕ1 in
Sec. III B 1. Thus, by using either the first or the second
theory, we can realize a CZ operation in the nuclear spin space.

3. Gate fidelity

The fidelity for the nuclear spin CZ operation is limited by
three intrinsic factors, the Rydberg-state decay, the blockade
leakage, and the intrinsic rotation error. The ideal gate matrix
is still given by Eq. (30), but with the basis

{|00〉e, |01〉e, |10〉e, |11〉e} ⊗ |00〉n,

{|00〉e, |01〉e, |10〉e, |11〉e} ⊗ |01〉n,

{|00〉e, |01〉e, |10〉e, |11〉e} ⊗ |10〉n,

{|00〉e, |01〉e, |10〉e, |11〉e} ⊗ |11〉n. (58)

As in Sec. II D, we employ the Rydberg-excitation the-
ory studied in Sec. II B 1 to examine the intrinsic gate error
since the analysis by the method in Sec. II B 2 could be
easily done following Ref. [35]. In principle, the Rabi fre-
quencies from the ultraviolet (UV) laser fields for the clock
states, as shown in the experiment of Ref. [23], can be much
larger than those for the ground states. But for brevity, we
assume the condition Λ = 1 and apply the pulses with du-
rations specified by Eq. (47) where �0 = 2iκ0(1) sin(δt ) and
(�, δ)/(2κ0) = (10, 0.1) as in Sec. II B 1. Moreover, we as-
sume |η| = |η′| = 1 corresponding to the case of 171Yb and
π polarized laser fields [35], and assume ζ = 1 since the
detunings are mainly determined by the Zeeman shifts of
Rydberg states. Hamiltonians in Eqs. (34) and (35) are used,
and the duration for the first or the fourth pulse on the control
atom, and that for the second or third pulse on the target atom,
are T =acos[1 − πδ/(2κ0)]/δ. The unwanted transitions in the
other nuclear spin states are governed by Hamiltonians in
Eqs. (36) and (37). The targeted state transform is given in
Eq. (49); we assume that the phase compensation can work
perfectly that maps Eq. (49) to Eq. (50), which is done by
adding a phase −4ϕ1 to the output of the input states |10〉n

and |11〉n in the numerical simulation. The numerical result
for the intrinsic rotation error is Ero = 2.63 × 10−3 which is
mainly determined by the population loss in the input state
|11〉n. The Rydberg superposition time is TRyd = 2.04 × 2π

2κ0
,

so that the decay error is Edecay = TRyd/τ ≈ 4.42 × 10−3 with
2κ0 = 2π × 1.4 MHz and τ = 330 μs adopted from Sec. II D.
The blockade error occurs for the four input states in the
first line of Eq. (58), so that we have Ebl = 2.2 × 10−4. The
intrinsic fidelity for the nuclear spin CZ operation is 1 − Ero −
Edecay − Ebl ≈ 99.27%.

Combining the results in Sec. II D where a fidelity 99.61%
was shown for the electronic CZ operation, the final fidelity
is 99.61% × 99.27% = 98.88% for realizing the CZ⊗CZ gate
which can map the initial state∑

α,β∈{0,1}
aαβ |αβ〉e ⊗

∑
α,β∈{0,1}

bαβ |αβ〉n (59)

to

[a00|00〉e + a01|01〉e + a10|10〉e − a11|11〉e]

× ⊗ [b00|00〉n + b01|01〉n + b10|10〉n − b11|11〉n]

where
∑

α,β∈{0,1} |aαβ |2 = ∑
α,β∈{0,1} |bαβ |2 = 1.

Note that the fidelity shown above does not mean that
the CZ⊗CZ gate cannot obtain higher fidelities. In the above
estimate, the fidelity is small for the nuclear spin CZ operation
for we have assumed �/(2κ0) = 10. But if �/(2κ0) = 20
(other parameters are the same), i.e., if the magnetic field is
doubled compared to the condition above, the intrinsic rota-
tion error in the nuclear spin CZ operation shrinks to Ero =
6.64 × 10−4, leading to a fidelity 99.47% for the nuclear spin
CZ operation. Moreover, we have not used any optimization
procedure. In principle, high-fidelity Rydberg blockade gates
can be designed by using shaped pulses with appropriate
time dependence in the amplitude or phase of the laser fields
[59–62].

IV. EXPERIMENTAL CONSIDERATION

The practical feasibility of coherent Rydberg excitation is
vital to the theory of this paper, where two factors are of
particular relevance: Rydberg excitation, and a MHz-scale
Zeeman shift in the Rydberg state with a weak magnetic field.
Below, we analyze two isotopes, 87Sr and 171Yb. One thing is
common for these two elements, i.e., the hyperfine interaction
mixes the singlet and triplet wave functions in their Rydberg
states. Below, we first analyze 87Sr and briefly mention 171Yb
as it was studied in Ref. [35] in detail.

A. 87Sr

We first study strontium, an element extensively studied
in experiments [23,41–44,49,63–67] and in theories [37,68–
74], which show that it is possible to prepare Rydberg
states. For the Rydberg blockade, we calculate that the van
der Waals interaction coefficient for the (5s70s) 1S0 state is
C6/2π = −710 GHz μm6 with the quantum defects used in
Refs. [69,72]. One can choose states with principal quantum
numbers near n = 63 where Förster resonance occurs [72] if
strong interactions are desired.

The Rydberg excitation of the clock state (5s5p) 3P0 in-
volves a one-photon UV laser excitation which is easily
achievable with a large Rabi frequency [23]. For the ground
state, a two-photon Rydberg excitation can be used where an
intermediate state shall be used. The dipole matrix element be-
tween the ground state and |(5s5p) 1P1〉 is large, but the short
lifetime of about 5 ns of |(5s5p) 1P1〉 can spoil the coherence
during the excitation. There are two useful intermediate states
for a two-photon Rydberg excitation, the state |(5s5p) 3P1〉,
and the state |(5s6p) 1P1〉. As estimated in Ref. [35], the dipole
matrix element between the ground state and |(5s5p) 3P1〉 is
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FIG. 7. (a) Energy-level configuration for exciting a (5sns) Ry-
dberg state from the ground state of 87Sr. The intermediate state
|(5s6p) 1P1〉 is shown with a thick line for it has a hyperfine split-
ting of several tens of MHz which is negligible compared to a
GHz-scale detuning at the intermediate state. The Rydberg state
|(5sns) 1S0, F = 9/2〉 excited from the ground state is not purely
singlet, but has some mixing of the triplet state |(5sns) 3S1, F =
9/2〉, shown in Sec. IV A 2, so that it has a g factor dominated
by the electron g factor (see Sec. IV A 2 for detail). The nearest
state to it is |(5sns) 1S0, F = 7/2〉, which is about 2π × 1.27 GHz
lower. (b) Energy-level configuration of exciting |(5sn′s) 3S1, F =
7/2〉 from the clock state by a one-photon transition, where n′ �= n.
The Rydberg state nearest to it is |(5sn′s) 1S0, F = 9/2〉 (which has
some triplet component). The wavelengths were estimated by data
from Ref. [45], quantum defects from Ref. [49], and n, n′ ∼ 70.

about half of that between the ground state and |(5s6p) 1P1〉,
while the dipole coupling matrices between these two inter-
mediate states and a Rydberg state are of similar magnitude.
So, the two-photon Rydberg Rabi frequency via the interme-
diate state |(5s5p) 3P1〉 will be smaller if there is an upper
bound for the achievable laser powers at hand. This means
that only very stable Rydberg states can be coherently excited
via |(5s5p) 3P1〉.

Figure 7 shows the energy levels involved in the Rydberg
excitation of the ground state via |(5s6p) 1P1〉. The hyperfine
interaction influences the level structures of the intermediate
and Rydberg states which can be described by the frequency
shift [47,75],

Ehfs = AhfsK + Bhfs

3
2 K (2K + 1) − IJ (I + 1)(J + 1)

2IJ (2I − 1)(2J − 1)
, (60)

where (I, J ) = (9/2, 1) here, and K ≡ I · J is expanded as

K = [F (F + 1) − I (I + 1) − J (J + 1)]/2. (61)

In Eq. (60), the first term is from the interaction of the nuclear
magnetic moment and the magnetic field generated by the
electrons, and the second term arises from the interaction
between the electrons and the electric quadrupole moment of
the nucleus.

The Rydberg excitation of the ground state in this paper
relies on an effective two-photon Rabi frequency. To show that
it is possible to achieve a two-photon Rabi frequency, we need
to analyze the level diagrams of the intermediate state and the
Rydberg state.

1. Intermediate state

We first analyze the hyperfine structure of the intermedi-
ate state. The quadrupole interaction exists only for states
with I, J � 1 [75] which makes the level structures of 87Sr

FIG. 8. Influence of the hyperfine and an external magnetic field
B on the energy-level diagram (in reference to the unperturbed
energy) for the state 87Sr |(5s6p) 1P1〉. Presented here is an approx-
imation in that F is treated as a good quantum number which is
valid only for small B. To convert to joule, multiply by the Planck
constant h.

more complex compared to that of 171Yb. The values of
Ahfs and Bhfs can be measured by optical spectroscopy [75].
For the state 87Sr |(5s5p) 1P1〉, we have (Ahfs, Bhfs)/2π =
(−3.4, 39) MHz [76], but we did not find experimental results
of them for the state |(5s6p) 1P1〉. However, one can theoreti-
cally estimate that the values of Ahfs and Bhfs are proportional
to l (l + 1)〈1/r3〉/[ j( j + 1)] and (2 j − 1)〈1/r3〉/( j + 1), re-
spectively [47], where (l, j) = (1, 1) for both |(5s5p) 1P1〉
and |(5s6p) 1P1〉, and 〈1/r3〉 is the expectation value of 1/r3

for the certain state. One can approximately have 〈1/r3〉 ∝
1/[n∗3l (l + 1/2)(l + 1)] [77], where n∗ is the effective prin-
cipal quantum number. With the approximation of n∗ = 5
and 6 for the states |(5s5p) 1P1〉 and |(5s6p) 1P1〉, one can
estimate that for |(5s6p) 1P1〉 the hyperfine constants are
(Ahfs, Bhfs)/2π = (−2.0, 23) MHz.

With a magnetic field B along z, there is a Zeeman energy
EZ = (gsSzμB + glLzμB − gI Izμn)B/h̄, where gs, gl , and gI

are the electron spin, orbital, and nuclear g factors, respec-
tively; Sz, Lz, and Iz are the z components of the electron spin,
orbital, and nuclear spin angular momenta, respectively; and
h̄ is the reduced Planck constant. Here, μB is the Bohr mag-
neton, μn = −1.0924μN is the nuclear magnetic moment for
87Sr [37], and μN is the nuclear magneton. The energy levels
of the atom can be numerically calculated by diagonalizing
Ehfs + EZ, but with B < 10 G for |(5s5p) 1P1〉, F can be a
good quantum number [37], and the energy shift (divided by
h̄) of the atomic state is

W = Ehfs + gF mF μBB/h̄, (62)

where gF is the effective g factor for the hyperfine sub-
states. The hyperfine constants are of similar magnitudes for
|(5s6p) 1P1〉 and |(5s5p) 1P1〉, so that we treat F as a good
quantum number with B < 10 G for |(5s6p) 1P1〉 and Eq. (62)
is still useful here. With the approximation gL = 1 and ne-
glecting diamagnetic correction which is rather tiny [37], we
have gJ ≈ 1 for |(5s6p) 1P1〉, so that gF ≈ gJ [F (F + 1) −
I (I + 1) + J (J + 1)]/[2F (F + 1)] [78]. The value of W is
shown in Fig. 8, which shows that the energy separations
between the hyperfine substates of different F are within
2π × 60 MHz. When the single-photon detuning of the laser
fields is about [15,19,22] or over [13,14,17] 2π × 1 GHz, the
different substates in Fig. 8 behave as one state as the energy
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difference between them is negligible compared to the detun-
ing. This means that a two-photon Rabi frequency between the
ground and Rydberg states can be easily established for the
case of 87Sr, which is in sharp contrast to the case of 171Yb
analyzed in Ref. [35] where there is a GHz-scale hyperfine
splitting in the intermediate state analyzed there.

2. Rydberg state

For s-orbital Rydberg states, the second term in Eq. (60)
vanishes, but the hyperfine interaction is still there. The diag-
onal hyperfine coupling matrix elements are [47,49]

0 = 〈(5sns) 1S0, F = I|A′
hfsI · J|(5sns) 1S0, F = I〉,

−A′
hfs

2
= 〈(5sns) 3S1, F = I|A′

hfsI · J|(5sns) 3S1, F = I〉,
A′

hfsI

2
= 〈(5sns) 3S1, F = I + 1|A′

hfsI · J|(5sns) 3S1,

F = I + 1〉, (63)

and

−A′
hfs(I + 1)

2
= 〈(5sns) 3S1, F = I − 1|A′

hfsI · J

|(5sns) 3S1, F = I − 1〉, (64)

where A′
hfs/2π ≈ −1.0 GHz is mainly due to the contact

interaction between the 5s valence electron and the nucleus
[49]. There is also an off-diagonal coupling

A′
hfs

2

√
I (I + 1)On′n = 〈(5sn′s) 1S0, F = I|A′

hfsI · J

|(5sns) 3S1, F = I〉, (65)

where On′n ≈ 0.98 for n′ = n [49]. Because On′n < 0.1 for
n′ �= n and rapidly decreases when |n′ − n| increases, and also
because the admixing of states with |n′ − n| > 0 results in
small energy shift that can be incorporated in the practical
experiment, we neglect terms with n′ �= n in the theoretical
analysis.

With the unperturbed energy of (5sns) 1S0 as reference,
Fig. 9 shows the energies of |(5sns) 3S1, F = I ± 1〉 by the
dotted and dash-dotted curves, respectively (here we show the
energy in reference to one 87Sr state for each n, in contrast to
Fig. 2 of Ref. [49] which shows the difference of the energy
of a 87Sr state and the energy of the 88Sr state of the same
orbital). The solid and dashed curves in Fig. 9 are labeled
with states that have the largest overlap of the eigenstates, and
they denote states with both singlet and triplet components
because Eq. (65) shows that the states |(5sns) 1S0, F = I〉
and |(5sns) 3S1, F = I〉 are coupled by hyperfine interaction.
Take n = 70 as an example; the states labeled “n 1S0, F =
I” and “n 3S1, F = I ,” separated by about 2π × 5.28 GHz,
have about 67 and 33% population in |(5sns) 1S0, F = I〉,
respectively. So, by choosing either of these two states for
our theory, a g factor dominated by the electron g factor can
lead to a MHz-scale Zeeman shift with a Gauss-scale mag-
netic field. Because the transition from the intermediate state
(5s6p) 1P1 (if it is purely singlet) to the state |(5sns) 3S1, F =
I − 1〉 is spin forbidden, we can create HE via the state
labeled “n 1S0, F = I” as it has a larger state overlap with

FIG. 9. Energy of a (5sns)-orbital Rydberg state of 87Sr in ref-
erence to the unperturbed energy of (5sns) 1S0, i.e., the energy
when neglecting the hyperfine interaction. For brevity, “n” instead of
“5sns” labels the states. The quantum defects in Ref. [49] were used
here. The topmost four curves are for the states with principal quan-
tum number n + 1, and the bottommost four curves are for the states
with principal quantum number n − 1. The states |(5sns) 3S1, F =
I ± 1〉 only obtain diagonal energy shifts in the presence of hyperfine
interaction, but the states |(5sns) 3S1, F = I〉 and |(5sns) 1S0, F = I〉
are coupled with each other, so that the labels “n 3S1, F = I” and
“n 1S0, F = I” beside the solid and dashed curves denote the main
components in the mixed states. The energy is shown in units of GHz;
to convert to joule, multiply by h.

|(5sns) 1S0, F = I〉, so that we can have a larger Rydberg Rabi
frequency enabled by a large dipole matrix element between
the Rydberg and intermediate states.

Population loss to nearby Rydberg states can be avoided.
Take n = 70 as an example; the state labeled “n 1S0, F = I”
for the solid curve is over the state |(5sns) 3S1, F = I − 1〉
by about 2π × 1.27 GHz, and, more importantly, the transi-
tion from the intermediate state (5s6p) 1P1 to the pure triplet
state |(5sns) 3S1, F = I − 1〉 is spin forbidden; there can be
a tiny mixing of the triplet wave function in (5s6p) 1P1 as
shown in [37], so the Rabi frequency of the transition from
(5s6p) 1P1 to |(5sns) 3S1, F = I − 1〉 will be several orders
of magnitude smaller than the GHz-scale detuning. This can
suppress unwanted population loss. The next nearest state is
the state labeled “n 3S1, F = I ,” but it is about 2π × 5.28 GHz
below “n 1S0, F = I ,” so that the population leakage to it can
be neglected.

B. 171Yb

We then briefly discuss 171Yb since there is a detailed anal-
ysis in Ref. [35]. The two nuclear spin states with mI = ±1/2
define a nuclear spin qubit, and the ground state (6s2) 1S0

and the clock state (6s6p) 3P0 define an electronic qubit. The
ground state has a pure singlet pairing in the two valence
electrons, while there is a tiny singlet component mixed in
the clock state [37]. Without such a mixing, the lifetime of the
clock state would be as long as the ground state. Because the
mixing is tiny, the lifetime of the clock state is still comparable
to that of the ground state.

The excitation from the clock state (6s6p) 3P0 to a 3S1

Rydberg state is easy to realize with UV lasers [23,79,80],
and the 3S1 Rydberg state has a g factor dominated by the
electron g factor so that a large Zeeman shift can appear with
a weak magnetic field. However, it is questionable whether
fast Rydberg excitation from the ground to the Rydberg
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state can be achieved. We find that it is possible to use
the (6s6p) 3P1 state as the intermediate state for Rydberg
excitation. As shown in Ref. [81], the state |(6s6p) 3P1〉 is ac-
tually given by β|(6s6p) 1P0

1 〉 + α|(6s6p) 3P0
1 〉 with (α, β ) =

(0.991, −0.133) [81], where the superscript 0 denotes pure
Russell-Saunders states. Because the transition from the sin-
glet to triplet states is spin forbidden, the ground state can
be coupled to the (6s6p)1P0

1 component in (6s6p) 3P1. The
dipole matrix element between the ground state and (6s6p)1P0

1
can be estimated by the Weisskopf-Wigner approximation
[78], leading to a matrix element on the order of ea0 where
e is the elementary charge and a0 is the Bohr radius. With
the mixing coefficient |β| = 0.133, the dipole matrix element
between the ground state and the intermediate state is on the
order of 0.1ea0. For the upper transition from |(6s6p) 3P1〉 to
(6sns) 3S1〉 with n a large principal quantum number, we use
the semiclassical analytical formula [82] which was tested
to be a useful approximation [83]. Then one can estimate a
dipole coupling matrix element about 0.005ea0 with n ∼ 70
[84]. The transition from the ground state to the (6s6p) 3P1

state needs light of wavelength about 556 nm [85,86], and
its transition to the Rydberg state with n ∼ 70 needs radi-
ation of wavelength 308.4 nm [35]. In the experiments of
Ref. [87] lasers with wavelength in the range 304–309 nm
were used to excite Rydberg states of a strontium ion (see
also Refs. [88,89]). These UV lasers could be prepared by fre-
quency doubling via the second-harmonic generation. There is
a hyperfine splitting about 2π × 5.9 GHz in the |(6s6p) 3P1〉
state, which makes it necessary to numerically verify the pos-
sibility of a two-photon Rydberg excitation. This was done
in Ref. [35], which showed that it is possible to obtain an
effective Rydberg Rabi frequency over 2π × 1 MHz for the
transition between the ground and Rydberg states via the
(6s6p) 3P1 intermediate state. The g factor of the (6sns) 3S1

state is dominated by the electron g factor, so that a MHz-scale
Zeeman shift can arise with a Gauss-scale magnetic field.
The energy levels and the hyperfine couplings involved in the
Rydberg excitation are shown in Ref. [35].

The Rydberg interaction can be large enough for ytterbium,
too. By quantum defects in Ref. [48] and radial integration of
Ref. [82], we calculate [90] that the van der Waals coefficient
is C6/2π = 32 GHzμm6 for, as an example, the ytterbium
(6s70s) 1S0 state if the atoms are along the quantization axis.
However, the quantum defects for the 3P0,1,2 Rydberg states of
ytterbium are not available but they are required to calculate
the interaction for atoms in the 3S1 states, which should be
much larger. This is because the interaction in 3S1 atoms has
nine transition channels, while two atoms in the 1S0 state only
have one transition channel. So, the Rydberg blockade can
take effect with our theories.

V. SINGLE-QUBIT GATES

Single-qubit logic operations can proceed based on the
methods shown above.

Single-qubit gates with the nuclear qubits are as follows.
(i) To induce a phase shift like |0〉e ⊗ |1〉n → e−2ϕ2 |0〉e ⊗

|1〉n, we can use the highly off-resonant optical excitation
shown in Fig. 6(a), where the contents around Eqs. (52)–(57)
show that the phase-shift gate can complete within a time

Stark shift
Original level

No shift

(a)

(b)

FIG. 10. Example of population transfer between the nuclear
spin states in the ground state of 87Sr. (a) By exciting the ground
state to a 3P0 state [such as (5s7p) 3P0] with highly off-resonant,
right-hand polarized laser fields, a MHz-scale Stark shift can appear
for the ground Zeeman substates mF = I − 1, I − 2, · · · , but there
is negligible shift for the state mF = I for there is no mF = I + 1
state in the 3P0 state. (b) A two-photon transition between the two
ground Zeeman substates mF = I and I − 1, i.e., |0〉e ⊗ |1〉n and
|0〉e ⊗ |0〉n, is established by optical excitation of them via a highly
off-resonant p-orbital state [such as the state (5s5p) 3P1]. Due to the
Stark shifts shown in (a), the transition between |0〉e ⊗ |0〉n and the
ground Zeeman substate mF = I − 2 is highly detuned, so that there
is no population leakage outside the qubit state space.

on the order of ms. To induce a phase shift to the state
|0〉e ⊗ |0〉n, the fields can be tuned near to the transition be-
tween |0〉e ⊗ |0〉n and the Rydberg state.

(ii) To create a population transfer between |0〉e ⊗ |0〉n

and |0〉e ⊗ |1〉n, the method in Fig. 10 can be used, where
Fig. 10(a) shows that using Stark shift one can create energy
shift to the Zeeman substates in the ground state. The two-
photon Raman transition via the p-orbital state with mF = I
in Fig. 10(b) can induce coherent population transfer between
|0〉e ⊗ |0〉n and |0〉e ⊗ |1〉n. But because of the Stark shifts
in Fig. 10(a), the leakage from the state |0〉e ⊗ |0〉n to the
Zeeman substate with mF = I − 2 is highly detuned so as to
suppress population leakage out of the computational basis.

(iii) The phase-shift gate and population transfer operation
with |1〉e ⊗ |1〉n and |1〉e ⊗ |1〉n can proceed as in (i) and (ii),
but with s or d-orbital states instead of the p-orbital states in
Figs. 6 and 10 for inducing phase shift or Raman transition.

(iv) Combining (i) and (iii), one can create a phase shift to
either of the two nuclear spin qubit states; combining (ii) and
(iii), a population transfer between the two nuclear spin qubit
states can occur.

Single-qubit phase gates with the electronic qubits can
proceed as described by the contents in (i) and (iii). For
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population transfer between the electronic qubits, laser fields
polarized along the quantization axis can induce transitions

|0〉e ⊗ |0〉n ↔ |1〉e ⊗ |0〉n, (66)

|0〉e ⊗ |1〉n ↔ |1〉e ⊗ |1〉n. (67)

Because of the hyperfine interaction that modifies the wave
function of the clock state, there is a linear Zeeman shift which
is about δs-p = B × 0.11mF kHz/G for the 1S0 - 3P0 transition
[37]. Then, if the transition in Eq. (66) is resonant, the transi-
tion in Eq. (67) is with a detuning δs-p(mF = I ) − δs-p(mF =
I − 1), and vice versa. So, to induce a population transfer for
the same amount for both Eqs. (66) and (67), the methods
outlined in Sec. II B with the specific strategy shown in Figs. 1
and 4 can be used, where the lower and upper states in Figs. 1
and 4 correspond to the states on the left and right sides of
Eqs. (66) and (67), respectively.

VI. CROSS-ENTANGLEMENT

A. Entanglement in one atom

It is possible to induce entanglement between the elec-
tronic and nuclear spin qubit states within one atom.
In particular, we consider such a CZ operation that
maps the state (|0〉e ⊗ |0〉n + |0〉e ⊗ |1〉n + |1〉e ⊗ |0〉n +
|1〉e ⊗ |1〉n)/2 to (|0〉e ⊗ |0〉n + |0〉e ⊗ |1〉n + |1〉e ⊗ |0〉n −
|1〉e ⊗ |1〉n)/2. This operation is simply a phase shift opera-
tion for the state |1〉e ⊗ |1〉n, which can be achieved by the
strategy shown in Sec. V.

B. Entanglement between two atoms

It is also possible to create entanglement between the elec-
tronic qubit states of one atom and the nuclear spin qubit
states of another atom. We consider a CZ operation between
the electron state |1〉 in the control atom and the nuclear
spin state |1〉 in the target atom. To avoid confusion, we use
subscripts c and t to denote states for the control and target
atoms, respectively, and then this gate maps the state

(|0〉e ⊗ |0〉n + |0〉e ⊗ |1〉n + |1〉e ⊗ |0〉n + |1〉e ⊗ |1〉n)c

⊗(|0〉e ⊗ |0〉n + |0〉e ⊗ |1〉n + |1〉e ⊗ |0〉n + |1〉e ⊗ |1〉n)t

(68)

to

(|0〉e ⊗ |0〉n + |0〉e ⊗ |1〉n)c

⊗(|0〉e ⊗ |0〉n + |0〉e ⊗ |1〉n + |1〉e ⊗ |0〉n + |1〉e

⊗|1〉n)t + (|1〉e ⊗ |0〉n + |1〉e ⊗ |1〉n)c ⊗ (|0〉e ⊗ |0〉n

+|1〉e ⊗ |0〉n)t − (|1〉e ⊗ |0〉n + |1〉e ⊗ |1〉n)c ⊗ (|0〉e

⊗|1〉n + |1〉e ⊗ |1〉n)t. (69)

The above CZ operation can be realized as follows.
(i) Use the strategy specified in the first paragraph of

Sec. II D to excite the state (|0〉e ⊗ |0〉n + |0〉e ⊗ |1〉n)c to
Rydberg states for the control atom. For example, the two
steps in Figs. 4(a) and 4(b) can realize the Rydberg excitation.

(ii) Use either the method in Sec. III B 1 or the method
in Sec. III B 2 to excite the state (|0〉e ⊗ |1〉n + |1〉e ⊗ |1〉n)t

of the target atom to Rydberg states and back again. When
there is no Rydberg blockade from the control atom, the state
(|0〉e ⊗ |1〉n + |1〉e ⊗ |1〉n)t will pick up a π phase during this
step.

(iii) Use similar laser excitation as used in step (i), but
with π phase different in the Rydberg Rabi frequencies. Take
the Rydberg deexcitation shown in Fig. 4 as an example; the
resonant Rabi frequencies should be −e2iϕ�1 and −e2iϕ�0

in Figs. 4(c) and 4(d), respectively. Then, there will be no
phase twist to the state (|0〉e ⊗ |0〉n + |0〉e ⊗ |1〉n)c. These
three steps can realize the map from Eq. (68) to Eq. (69).

VII. CONCLUSIONS

We study hyperentanglement in divalent neutral atoms re-
alized by exciting the ground and clock states of AEL atoms to
Rydberg levels. Our theories take advantage of the fact that in
the ground and clock states the electronic and nuclear degrees
of freedom are decoupled. We show that without changing
the states of the electronic qubits, nuclear spin qubits can be
entangled between two atoms. On the other hand, without
changing the states of the nuclear spin qubits, the electronic
qubits can be entangled, too. Detailed analysis shows that a
fidelity over 98% can be achieved for realizing the CZ⊗CZ

operation in the electronic and nuclear spin qubits of two
atoms. The possibility to create hyperentanglement with neu-
tral atoms sheds light on the study of quantum control with
neutral atoms.
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