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In this paper, we discuss in some detail how multiparty quantum key agreement protocols must be carefully
designed and present a collusion attack to illustrate this point. Then, a secure circle-type multiparty quantum key
agreement with Bell states is proposed. Bell states are used as the information carriers and transmitted among
the participants, who embed their secrets into the traveling particles via certain encoding operations. In this way,
all participants simultaneously obtain the same agreement key, i.e., the sum of their secret inputs, at the end of
the protocol. Here, quantum state discrimination is utilized to design the encoding operations, which ensures
that the proposed protocol is correct and secure against the presented collusion attack. Furthermore, it is shown
that the proposed protocol satisfies three conditions of a secure quantum key agreement protocol in theory. In
addition, these encoding operations consist of some common single-qubit gates, the Hadamard operator and four
Pauli operators, which makes the proposed protocol feasible using current technology.
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I. INTRODUCTION

In 1984, Bennett and Brassard proposed the famous BB84
protocol [1], which perfectly achieves a key distribution
task between two remote parties. Moreover, in contrast to
the security of classical key distribution protocols that are
based on the assumption of computational complexity, the
security of the BB84 protocol relies on quantum-mechanics
principles, which makes it unconditionally secure in theory.
Subsequently, quantum key distribution (QKD) has attracted
great attention, and progressed quickly in both theory and ex-
periment [2]. In addition to key distribution, key agreement is
another major method of key establishment [3] and plays a key
role in the field of cryptography. In a key agreement protocol,
two or more parties can agree on an identical key in such a way
that both influence the key. As an important cryptographic
primitive, key agreement is widely used in multiparty secure
computing, access control, electronic auctions, and so on [4].
Similar to QKD, quantum key agreement (QKA) has been
naturally proposed and has recently become a new research
branch of quantum cryptography.

In 2004, Zhou et al. [5] proposed the first QKA pro-
tocol, in which two users utilize quantum teleportation to
agree on a key. Afterward, based on entanglement swap-
ping, Shi and Zhong [6] proposed the first multiparty QKA
(MQKA) protocol in 2013. Unfortunately, these two proto-
cols are insecure, as shown in Refs. [7,8]. This has greatly
stimulated people’s interest and enthusiasm in the study of
this issue. Recently, a few subtle MQKA protocols [9–25]
have been proposed, in which various properties of quantum
mechanics are exploited. Based on the transmission struc-
tures of signal particles, these protocols are divided into three
categories [26]: complete-graph-type [8], tree-type [9], and
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circle-type [10–25]. Compared with the former two types,
circle-type MQKA (CMQKA) has higher efficiency and fea-
sibility. Therefore, most of the existing MQKA protocols
belong to the third type. However, in Ref. [26], it is shown
that some CMQKA protocols are insecure because they are
vulnerable against collusion attacks. Why are these protocols
so fragile? One main reason is that QKA is not an alter-
native method in comparison with QKD, but solves another
secure problem and has more rigorous security requirements.
Unlike QKD, the participants do not trust each other since
some of them can be dishonest in QKA. Thus, in addition
to security against external eavesdroppers, the QKA protocol
should be immune against participants’ attacks. Especially,
some dishonest participants may cooperate to predetermine
the agreement key by themselves, and break the fairness con-
dition, which has been mentioned in Refs. [24,25].

In this paper, we study this problem further and find two
security flaws in some CMQKA protocols. To illustrate these
flaws, a collusion attack is presented, which is more powerful
than the attack proposed in Ref. [26]. Then, a multiparty
quantum key agreement protocol is proposed, which is secure
against the presented attack and certain common attacks under
ideal conditions. Its security is ensured by some conclusions
about quantum state discrimination [27]. Moreover, since only
Bell states that are used as information carriers and some
common single-qubit operations, the Hadamard operator and
Pauli operators, are employed, the proposed protocol is more
feasible with current technology.

The remainder of this paper is organized as follows: In
Sec. II, we briefly review some notations related to this paper
and multiparty quantum key agreement protocols. Then, a
collusion attack by m − 1 dishonest participants is described
in Sec. III. Next, a multiparty quantum key agreement proto-
col with Bell states and the corresponding protocol analysis
are presented in Secs. IV and V, respectively. Finally, a short
conclusion is provided in Sec. VI.
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II. PRELIMINARIES

A. Some notations

Let us start with describing some notations that are used in
this paper. Bell states are the most common two-particle en-
tangled states and usually utilized as the information carriers
in some quantum cryptography protocols. For pairs of qubits,
the four Bell states are defined as

|ψ (u, v)〉 = 1√
2
|0〉|v〉 + (−1)u|1〉|v ⊕ 1〉, (1)

where u, v ∈ {0, 1}, and the symbol ⊕ denotes addition
module 2. These four states form a basis MB0 of a two-qubit
system, and can be converted to each other by performing one
of four Pauli operations:

U0,0 = I = |0〉〈0| + |1〉〈1|,U0,1 = X = |0〉〈1| + |1〉〈0|,
U1,0 = Z = |0〉〈0| − |1〉〈1|,U1,1 = iY = |0〉〈1| − |1〉〈0|.

(2)

This process can be depicted as follows:

Ux,y ⊗ I|ψ (u, v)〉 = |ψ (u ⊕ x, v ⊕ y)〉, (3)

where x, y, u, v ∈ {0, 1}. Moreover, the following equation
holds: Ux,yUx′,y′ = (−1)yx′

Ux⊕x′,y⊕y′ . Thus, four Pauli oper-
ators are used to construct the encoding operations in the
proposed protocol.

Besides the above four single-qubit operators, the
Hadamard operator is another important tool in the field
of quantum information processing, and can be defined as
follows:

H = 1√
2

(|0〉〈0| + |0〉〈1| + |1〉〈0| − |1〉〈1|). (4)

When applying Hadamard operation on one particle of Bell
states, we can get another basis of a two-qubit system, MB1 =
{|�(u, v)〉 = H ⊗ I|ψ (u, v)〉}. As for the operators H and
Ux,y, the following equation holds:

U0,0H = HU0,0,U1,0H = HU0,1,

U0,1H = HU1,0,U1,1H = −HU1,1. (5)

Based on the above equation, the Hadamard operator acts as
the obfuscation function in the proposed protocol. That is,
the encoding operations consist of Hadamard operators H and
four Pauli operators Ux,y. In Sec. V B, it is shown that these
encoding operations cannot be distinguished by unambiguous
discrimination [30] or minimum-error discrimination [27],
which ensures the security of the proposed protocol.

B. Brief review of MQKA protocols

1. General CMQKA protocol

For a multiparty QKA protocol, there are m participants,
Pi (i = 0, 1, . . . , m − 1), who hold their own secret Si. They
want to agree on a common key K determined by these m
secret inputs, K = f (S0, S1, . . . , Sm−1) (e.g., K = S0 ⊕ S1 ⊕
· · · ⊕ Sm−1). This implies that these m participants contribute
to the generation of the agreement key K equally. Moreover,
unlike QKD, not all participants are honest in QKA. As a
result, some dishonest participants may conspire to attack

the protocol. The goal of these dishonest participants is to
determine the agreement key by themselves, i.e., to undermine
the fairness of the protocol. The basic idea of their collusion
attack is to first eavesdrop the information about the secret
inputs of the remaining honest participants, from which the
agreement key may be derived before the end of the protocol.
After that, they take advantage of the opportunity to partici-
pate in the protocol to execute their appropriate attack actions,
by which the genuine agreement key is replaced with a fake
key predetermined by these dishonest participants alone. Ob-
viously, this kind of attack is more powerful than the external
attack. Therefore, a secure quantum key agreement protocol
should meet the following three conditions.

(C1) Correctness. At the end of the protocol, each partici-
pant gets the correct agreement key.

(C2) Security. No external eavesdropper can obtain any
information about the agreement key without being detected.

(C3) Fairness. All participants equally influence the agree-
ment key, that is, any nontrivial subset of the participants
cannot determine the agreement key alone.

In addition, in most QKA protocols, the secret input of
the participant is made up of random bits. Thus, after the
protocol is successfully completed, it does not matter whether
the input is obtained by other participants. Even if the protocol
is aborted due to an attack, the participant can discard this
input and restart the protocol with a new random bit string.
On the other hand, for some classical KA protocols or QKA
protocols with identity authentication [28,29], the input of the
participant contains the information about his secret message
(e.g., his master key). In this case, it is evident that his input
should be always kept secret from other participants. Hence,
for this kind of QKA protocols, the following privacy condi-
tion needs to be satisfied.

(C4) Privacy. The inputs of the participants can be kept
secret.

The QKA protocols discussed in this paper are of the for-
mer type. That is, in these protocols, the inputs of participants
are random bits and do not contain any private information.
Therefore, when analyzing the securities of these protocols,
we ignore the privacy requirement and focus on the first three
conditions C1–C3.

Obviously, a key agreement task can be achieved by ex-
ecuting QKD multiple times. That is, each participant Pi

utilizes a secure QKD protocol (e.g., BB84 protocol) to dis-
tribute his or her secret Si to the other m − 1 participants.
In this way, each participant can directly deduce the key K
from the received messages and his secret. This is the first
type of MQKA protocol, i.e., complete-graph-type. Since all
participants gain knowledge of these secret inputs, the privacy
of these inputs cannot be ensured. Moreover, the particle effi-
ciency is very low, and the quantum channels between any two
of these participants should be established, which means that
m(m − 1)/2 quantum channels are required. All these factors
make this type of protocol infeasible in a real environment.

The same is true of the second type. In a tree-type MQKA
protocol, an m-particle entangled state is shared among m par-
ticipants, who measure the particle in their hands and utilize
the correlation of the measurement results to share an identical
key. Obviously, when the number of participants is large,
preparing an m-particle entangled state is still very difficult
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FIG. 1. A general particle transmission model of CMQKA protocols. In an m-party CMQKA protocol, the signal particle sequence Qi→i⊕1

prepared by Pi (i = 0, 1, . . . , m − 1)is transmitted among the remaining m − 1 participants, Pi⊕̃1, Pi⊕̃2, . . ., Pi⊕̃(m−1), who respectively encode
their secret inputs by executing the operations, Ei⊕̃1[1], Ei⊕̃2[2], . . ., Ei⊕̃(m−1)[m − 1]), on the traveling particles. Finally, the particle sequence
Qi→i containing m − 1 participants’ secret inputs is sent back to Pi.

using current technology. This becomes a major obstacle in
practical applications. Hence, from a practical perspective,
the first two types of MQKA protocols are inefficient and
infeasible. Therefore, most research focuses on the third type,
i.e., circle-type MQKA.

In a CMQKA protocol, generally speaking, the signal
particle sequences are transmitted among m participants (as
shown in Fig. 1). To obtain a common agreement key K with a
length of n, each participant Pi (i = 0, 1, . . . , m − 1) prepares
a random n(1 + ζ )-bit sequence Si, where ζ is a factor that
determines the size of the test sample and can be arbitrary in
principle. The general procedure is described below.

(G1) Each participant Pi (i = 0, 1, . . . , m − 1) generates a
signal particle sequence Qi→i⊕̃1, where the symbol ⊕̃ denotes
the addition module m. Here, the information carriers may
be single-particle states (e.g., qubit [20,24] or qudit [23]) or
entangled states (e.g., Bell states [10,11,16,18,21,22], Brown
states [12,19], or cluster states [14,15]). Therefore, for sim-
plicity, we assume that the signal particle is prepared in a
certain initial state, |φi〉. Then, he sends Qi→i⊕̃1 to the next
participant Pi⊕̃1.

(G2) According to his secret Si⊕̃1, each participant Pi⊕̃1 per-
forms the encoding operation Ei⊕̃1[1] on the particle sequence
Qi→i⊕̃1, and obtains a new sequence Qi→i⊕̃2. After that, he
sends this new sequence to Pi⊕̃2.

(G3) Similarly, the remaining m − 2 participants Pi⊕̃ j ( j =
2, 3, . . . , m − 1) respectively encode their secret messages
Si⊕̃ j on sequence Qi→i⊕̃ j by executing the encoding operation
Ei⊕̃ j[ j] and send the encoded sequence Qi→i⊕̃( j+1) to the next
participant Pi⊕̃( j+1).

(G4) After all participants receive the traveling particle se-
quences Qi→i, each participant Pi measures the signal particles
that contain the secret messages of other m − 1 participants.
From the result and Si, he can deduce Ki = S0 ⊕ S1 ⊕ · · · ⊕
Sm−1.

(G5) These participants choose ζn samples to execute the
eavesdropping check process. The order of m participants is
random. For simplicity, suppose these participants execute
their respective eavesdropping check process orderly. Con-
cretely, the first participant P0 randomly selects 
 ζn

m � positions
from n(1 + ζ ) positions, and declares these chosen positions

publicly. After that, he requires the other participants Pj ( j �=
0) to announce the corresponding part of Kjs in these chosen
positions. By comparing these messages with his own result
K0, P0 determines whether or not eavesdropping exists. Just in
the same way, participant Pi (i = 1, 2, . . . , m − 1) randomly
chooses 
 ζn

m � samples from the remaining n(1 + ζ ) − i
 ζn
m �

positions. Then, he compares the 
 ζn
m � bits of Ki in these

chosen positions with the corresponding part of Kj declared
by Pj ( j = 0, 1, . . . , m − 1, j �= i). Obviously, in the ideal
condition, these bits are identical if no eavesdropping exists.
Hence, if the bits are equal, participant Pi accepts the remain-
ing part of Ki (with a length of n) as a raw agreement key.
Otherwise, this protocol is aborted.

From the above steps, it is not hard to see that only m
quantum channels are required to achieve a CMQKA protocol
among m participants. Moreover, except for the protocols with
a third party, the signal particles are generally prepared by
the participants. Instead of m-particle entangled states, single-
particle or two-particle entangled states are usually used as
the information carriers in CMQKA protocols. Obviously,
these states are more easy to generate, which reduces the
requirement for the quantum operation ability of the partici-
pants. Therefore, compared with the first two types of MQKA
protocols, circle-type multiparty quantum key agreement is
more feasible.

2. Liu’s attack

However, in Ref. [26], Liu et al. concluded that some
CMQKA protocols are insecure because they cannot satisfy
the fairness requirement. To illustrate this, they designed a
special collusion attack (Liu’s attack), in which two dishonest
participants at special positions, Pi and Pi⊕̃m/2 (referred to as Ṗi

and Ṗi⊕̃m/2), can determine the agreement key alone. Namely,
they can forge a fake agreement key K̇ �= K beforehand and
make other honest participants accept this fake key.

In Liu’s attack, Ṗi (Ṗi⊕̃m/2) intercepts the particle sequence
Qi→i⊕̃m/2 (Qi⊕̃m/2→i), which travels from Ṗi (Ṗi⊕̃m/2) to Ṗi⊕̃m/2

(Ṗi), in the middle of the protocol. Then, he measures these
particles that contain the secret message T1 = Si⊕̃1 ⊕ · · · ⊕
Si⊕̃(m/2−1) (T2 = Si⊕̃(m/2+1) ⊕ · · · ⊕ Si⊕̃(m−1)). Since the initial
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state |φi〉 (|φi⊕̃m/2〉) is known to these two dishonest partici-
pants, they can deduce T1 (T2) from the measurement results,
then obtain K = Si ⊕ T1 ⊕ Si⊕̃m/2 ⊕ T2. After that, Ṗi (Ṗi⊕̃m/2)
encodes a fake message K̇ ⊕ K ⊕ Si (K̇ ⊕ K ⊕ Si⊕̃m/2) on
the sequences Qi⊕̃(m/2+1)→i, Qi⊕̃(m/2+2)→i, . . ., and Qi⊕̃(m−1)→i
(Qi⊕̃1→i⊕̃m/2, Qi⊕̃2→i⊕̃m/2, . . ., and Qi⊕̃(m/2−1)→i⊕̃m/2). In step
G4, by measuring their particles, all honest participants obtain
a fake agreement key K̇ that is predetermined by Pi and Pi⊕̃m/2.
Because the keys shared by all participants are the same,
this attack introduces no errors in the eavesdropping check
process of step G5. This fake agreement key K̇ is accepted by
all participants. Hence, the general CMQKA protocol cannot
meet the fairness condition, and is insecure.

For example, in Ref. [18], Cao and Ma proposed a mul-
tiparty quantum key agreement protocol with Bell states
(Cao’s protocol). Each participant Pi (i = 0, 1, . . . , m − 1)
has a secret input Si (e.g., S0 = S1 · · · = Sm−1 = “00”), and
prepares a two-qubit entangled pair (qi, ri) that is randomly
selected from four Bell states. Then, he holds particle ri in his
hands, and makes qi orderly travel among the remaining m −
1 participants, i.e., Qi→i⊕̃1 = {qi}. Here, the signal particles
are transmitted in the secure quantum channel that is ensured
by decoy state method. When receiving the traveling particle,
each participant performs one of four Pauli operations (e.g.,
U0,0) according to his secret input. At last, the particle qi that
has been encoded by m − 1 participants Pj ( j �= i) is sent back
to Pi who applies Bell state measurements on two particles, qi

and ri. In terms of the measurement result, the initial state and
his own secret input, each participant Pi can obtain the agree-
ment key, Ki = S0 ⊕ S1 ⊕ · · · ⊕ Sm−1 (e.g., “00”). However, it
is vulnerable against Liu’s attack, which is shown in Ref. [22].

Without loss of generality, we can assume that P0 and
Pm/2 are dishonest (referred to as Ṗ0 and Ṗm/2). At the be-
ginning of Cao’s protocol, Ṗ0 and Ṗm/2 prepare |ψ (0, 0)〉q0,r0

and |ψ (0, 0)〉qm/2,rm/2 . As shown in Fig. 1, the particle q0 is
transmitted from P0 to P0 via P1, . . ., Pm/2, . . ., Pm−1, and qm/2

is transmitted from Pm/2 to Pm/2 via Pm/2+1, . . ., P0, . . ., Pm/2−1

at the same time. Therefore, when q0 is received by Pm/2 from
Pm/2−1, two dishonest participants can make Bell state mea-
surements on (q0, r0), and deduce the sum of the secret inputs
of P1, . . ., Pm/2−1, i.e., T1 = S1 ⊕ · · · ⊕ Sm/2−1. Similarly, Ṗ0

and Ṗm/2 obtain T2 = Sm/2+1 ⊕ · · · ⊕ Sm−1 by measuring the
particle pair (qm/2, rm/2). Obviously, from the values of T1

and T2, they can derive K = T1 ⊕ T2 ⊕ S0 ⊕ Sm/2 = “00” in
the middle of Cao’s protocol. Suppose the fake agreement key
is K̇ = “11.” Therefore, instead of U0,0, P0 performs U1,1 on
the particles qm/2−1, . . ., q1, that is, he encodes a fake message
“11” on these particles. Similarly, Pm/2 also applies U1,1 on
the particles qm−1, . . ., qm/2+1. At the end of the protocol, K̇
is accepted by all participants, because they obtain the same
values, K0 = K1 = · · · = Km−1 = “11,” and no error occurs.

Recently, some subtle improved methods have been pro-
posed to stand against Liu’s attack. One [19,20] is to introduce
a third party that helps participants fairly agree on a key. The
third party is generally required to be trusted or semitrusted,
which implies that this additional condition greatly lim-
its the practical application of these improved protocols. A
second method has been proposed by Wang et al. [21], which
can achieve asymptotic security. In this protocol, to resist

a t dishonest participants’ collusion attack, all participants
are divided into t groups, each of which performs a circle-
type quantum key agreement protocol. Obviously, when one
achieves security against the collusion attack by any num-
ber of dishonest participants, the protocol is changed to the
complete-graph-type. In addition, a method has recently been
adapted in designing the CMQKA protocol, in which the
encoding operations for one participant on different particles
are different. Namely, the operations, Ei[1], Ei[2], . . . , and
Ei[m − 1], are not the same. In this way, three interesting
groups of encoding operations are designed to achieve the key
agreement task [22–24]. Moreover, these three protocols are
secure against Liu’s attack.

III. m-1 DISHONEST PARTICIPANTS’ COLLUSION
ATTACK

A. The proposed attack

Further study revealed two key leakages in these protocols,
which may be the reason why these protocols are sensi-
tive to collusion attacks. One is the encoding operation. In
the CMQKA protocols, to achieve the same agreement key,
each participant’s encoding operations on different particle
sequences are the same or related. That is, each participant
performs his encoding operation m − 1 times, which may
make some indistinguishable operations distinguishable. The
other is the selection of the samples. In step G5, the samples
are chosen by the participants, which will provide a chance for
dishonest participants to cover up their attacks. Based on these
two loopholes, quantum state discrimination is utilized to de-
sign a collusion attack that is more powerful than Liu’s attack.

In the presented attack, only one participant, P0, is hon-
est, and the remaining m − 1 participants, Ṗi (i = 1, 2, . . . ,

m − 1), are dishonest and conspire to attack. These m − 1 par-
ticipants predetermine a fake key K̇ and attempt to deceive P0

into accepting this fake key. Here, these dishonest participants
have unlimited computing power and private communica-
tion the technology of which is only limited by the laws of
quantum mechanics. The detailed attack strategy is described
as follows.

First, these m − 1 dishonest participants, i.e., Ṗi (i �= 0),
prepare m − 1 fake particles, each of which is in a state |�〉,
and orderly send them to P0. Before the particle sequence
Q0→0 is sent back to P0, these dishonest participants held
m − 1 fake particles that have been encoded by P0. Namely,
these fake particles are in the state E0[1]|�〉 ⊗ E0[2]|�〉 ⊗
· · · ⊗ E0[m − 1]|�〉. When P0’s encoding operation set is �0

(or �1) for his secret S0 = 0 (or 1), these dishonest partici-
pants utilize a certain method to discriminate the following
two sets of states:

�0 = {E0[1]|�〉 ⊗ · · · ⊗ E0[m − 1]|�〉 | E0[ j] ∈ �0},
�1 = {E0[1]|�〉 ⊗ · · · ⊗ E0[m − 1]|�〉 | E0[ j] ∈ �1}. (6)

Suppose a deterministic or almost correct result is obtained
with probability 1 − ρ, and an uncertain one with probability
ρ. In other words, there are approximately n(1 + ζ )(1 − ρ)
deterministic results and n(1 + ζ )ρ uncertain results. Obvi-
ously if the result is deterministic or almost correct, it is easy
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for these dishonest participants to infer the corresponding
bit of P0’s secret S0. Based on the bits of S0 and K̇ , they
apply an appropriate operation on the corresponding particle
of sequence Q0→0 and transmit it to P0. Otherwise, the par-
ticle is sent back to P0 directly. In the eavesdropping check
process, these m − 1 dishonest participants select all or part of
n(1 + ζ )ρ uncertain results as the samples. In this way, they
can reduce the error rate and cover up their attack actions.
Evidently, when m is sufficiently large, the presented attack is
valid because it cannot be detected in the eavesdropping check
process.

Next, the securities for the CMQKA protocols under the
presented attack are discussed. At first, for the protocols with
the same encoding operations, there is only one operation in
the set �0 = {χ0} (or �1 = {χ1}), and the corresponding state

is

m−1︷ ︸︸ ︷
χ0|�〉 ⊗ . . . ⊗ χ0|�〉 (or

m−1︷ ︸︸ ︷
χ1|�〉 ⊗ . . . ⊗ χ1|�〉). From the

conclusions of Refs. [31,32], it can be directly deduced that
these two operations can be infallibly discriminated as long as
m is sufficiently large. This implies that all CMQKA protocols
with the same encoding operations are insecure, because they
are vulnerable against the presented attack.

Now, the case in which the encoding operations are dif-
ferent is considered. Since the operations cannot be perfectly
discriminated, CMQKA protocols with different encoding
operations are generally more secure than those with the
same operations. However, except for perfect discrimination,
there are two other common discrimination methods. One is
unambiguous discrimination [30], which distinguishes them
without error but leaves a nonzero probability for an incon-
clusive answer. The other is minimum-error discrimination
[27], in which an inconclusive outcome is not allowed, and
the probability of making an incorrect guess is minimized. For
these two discriminations, there may exist a nonzero proba-
bility 1 − ρ of obtaining a deterministic result or an almost
correct one, which causes this type of protocol to be insecure.
In the following section, to illustrate this more clearly, we take
the protocol (Huang’s protocol) presented in Ref. [22] as an
example.

B. An example

To stand against Liu’s attack, Huang et al. propose an
improved multiparty quantum key agreement protocol with
Bell states [22]. The signal particle transmission of Huang’s
protocol is similar to that of the general CMQKA protocol
mentioned in Sec. II B 1. Specifically, in Huang’s protocol,
Bell states are used as the information carriers, and one par-
ticle of each Bell state travels among m participants. The
general process of the agreement is reviewed briefly as fol-
lows.

(H1) Each participant Pi generates a random
n(1 + ζ )-bit string that represents his secret, Si =
{s1

i , s2
i , . . . , sn(1+ζ )

i }, and a sequence of m − 1 n(1 + ζ )-bit
strings, Bi = {Bi[1], Bi[2], . . ., Bi[m − 1] | Bi[k] =
b1

i [k], b2
i [k], . . . , bn(1+ζ )

i [k]} (Ki and RHi in the original pro-
tocol of Ref. [22]), where the subscript i = 0, 1, . . . , m − 1
indicates the ith participant and the superscript j =
1, 2, . . . , n(1 + ζ ) indicates the jth bit of one participant’s
secret. Then, Pi prepares n(1 + ζ ) two-qubit entangle pairs,

each of which is randomly in one of four states, {|BS00〉 =
|ψ (0, 0)〉, |BS01〉 = |ψ (1, 0)〉, |DBS00〉 = 1√

2
(|ψ (0, 0)〉 −

i|ψ (1, 0)〉), |DBS01〉 = 1√
2
(|ψ (1, 0)〉 − i|ψ (0, 0)〉)}. Finally,

he takes two particles from each entangled pair to form two
ordered particle sequences, and sends one particle sequence
to the next participant.

(H2) In terms of two random bit sequences, Si and Ri, each
participant Pi performs his encoding operation RZ ( π

2 )bj
i [k]Zs j

i

on the jth traveling particle, where RZ ( π
2 ) = 1√

2
I − 1√

2
iZ .

Then, he sends the particle sequence that contains his secret
inputs to the next participant. This process continues until the
particle sequence is sent back to Pi.

(H3) After all traveling particle sequences return to the
hands of the participants who prepared them, each participant
Pi declares the value of Ri. Based on these public messages,
each participant Pi calculates a bit sequence Ŝi with a length of
n(1 + ζ ) by measuring his entangled pairs. Obviously, when
there are no attacks, the value for this secret sequence is
Ŝi = {ŝ1

i , ŝ2
i , . . . , ŝn(1+ζ )

i | ŝ j
i = s j

0 ⊕ s j
1 ⊕ · · · ⊕ s j

m−1}.
(H4) The eavesdropping check process is executed.

Namely, each participant Pi randomly selects nζ

m samples, and
requires the other participants to announce their secret inputs.
If the corresponding bit of his secret sequence ŝ j

i is inconsis-
tent with the calculation of their secret inputs, he terminates
the protocol. Otherwise, Pi accepts the remaining part of Ŝi as
his raw agreement key.

It is not hard to see that the main improved method of
Huang’s protocol is the introduction of a controlling operation
RZ ( π

2 ). In this way, the participants can encode the same bit 0
(1) on different traveling particles by applying one of two op-
erations, I or RZ ( π

2 ) [Z or RZ ( π
2 )Z]. Namely, �0 = {I, RZ ( π

2 )}
and �1 = {Z, RZ ( π

2 )Z}. In the presented attack, according to
the conclusion in Ref. [33], the maximally entangled states,
Bell states, are used as the fake particles. Concretely, m − 1
dishonest participants prepare m − 1 two-particle pairs in the
state |ψ (0, 0)〉, and send one particle of each entangled pair to
the honest participant P0 in turn. After P0 encodes his secret on
this particle and sends it to the next participant, they intercept
this particle. In this way, these m − 1 dishonest participants
have m − 1 entangled pairs.

These particle pairs are in a set of states {|BS00〉, |DBS00〉 =
RZ ( π

2 )|ψ (0, 0)〉} or {|BS01〉, |DBS01〉 = RZ ( π
2 )|ψ (1, 0)〉},

which corresponds to P0’s secret bit s j
0 = 0 or 1.

Obviously, these two sets of states cannot be discriminated
unambiguously. However, the states can be discriminated
with a minimum-error rate. From the well-known
result [27] that to discriminate between two mixed
states ρ0 = 1

2 (|BS00〉〈BS00| + |DBS00〉〈DBS00|) and
ρ1 = 1

2 (|BS01〉〈BS01| + |DBS01〉〈DBS01|), the minimum-
error probability attainable is derived to be pE = 1

2 −
1
2 || 1

2 (ρ0 − ρ1)|| = 1
2 −

√
2

4 ≈ 0.146 < 0.25, where ||�|| =
Tr(

√
�†�). Obviously, to achieve the minimum-error

rate, a project measurement is performed in the
basis, {cos( π

8 )|BS00〉 + i sin( π
8 )|BS01〉, sin( π

8 )|BS00〉 −
i cos( π

8 )|BS01〉, |ψ (0, 1)〉, |ψ (1, 1)〉}.
For simplicity, we can adopt a direct method to dis-

tinguish these two mixed states, while the corresponding
error rate is 0.25. That is, a Bell state measurement is
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TABLE I. Four possible results and the corresponding probabilities.

η 0 1 2 3

Prob 0.015625 0.140625 0.421875 0.421875

applied on a two-qubit pair that is in one of four states
{|BS00〉, |DBS00〉, |BS01〉, |DBS01〉}. When the measurement
result is |BS00〉 (|BS01〉), we guess the particles are in the state
ρ0 (ρ1), i.e., S0 = 0 (S0 = 1). Since |DBS00〉 = 1√

2
(|BS00〉 +

i|BS01〉) and |DBS01〉 = 1√
2
(|BS01〉 − i|BS00〉), the error rate

for such a guess is 0.25. This is not equal to 50%, which
implies that one can obtain partial information about S0 from
the measurement result. In particular, when m is large enough,
these m − 1 dishonest participants can guess P0’s secret with
a very small error rate. Moreover, they can further reduce the
error rate by choosing some values as test samples.

Suppose m = 5, i.e., there is one honest participant P0 and
four dishonest participants, Ṗ1, Ṗ2, Ṗ3, and Ṗ4. The secret bits
of P0 and m − 1 dishonest participants are S0, S1, . . ., S4,
respectively. Therefore, the genuine agreement bit sequence
is K = S0 ⊕ S1 ⊕ · · · ⊕ S4, and the fake sequence is K̇ =
S1 ⊕ · · · ⊕ S4. In this case, these m − 1 dishonest participants
try to make P0 accept the fake sequence as the agreement key,
which requires that no error is introduced in the eavesdropping
check. They can achieve this goal by executing the following
special attack actions.

In step H2, for the jth position, these four dishonest partic-
ipants prepare four entangled pairs in the initial state |BS00〉,
and send one particle of each entangled pair to P0 in order.
Meanwhile, they honestly encode their secret bits to the jth
signal particle generated by P0. Before Ṗ4 sends this particle
back to P0, these dishonest participants hold four entangled
pairs, on which P0 performed his encoding operations. They
can apply Bell state measurements on the first three entangled
pairs and keep the fourth pair untouched. When S0 = 0 (or
1), there are η |BS01〉 (|BS00〉) among the three measurement
results, where η = 0, 1, 2, 3. Through simple calculations, we
can obtain the probabilities for η |BS01〉 (|BS00〉), which are
listed in Table I.

Then, these dishonest participants can adopt a direct
method to guess the value of s j

0 according to their results.
Concretely, if η � 2, they think the value is zero, i.e., s̃ j

0 = 0.
If η � 1, s̃ j

0 = 1. Finally, if s̃ j
0 is equal to 1, these dishonest

participants think that the jth bit of K is not equal to that of
K̇ , perform Z operation on P0’s signal particle, and send it to
P0. Otherwise, they send it back directly.

In step H3, P0 measures his signal particle pairs to ob-
tain his secret bit sequence Ŝi. Obviously, when the guess
is correct, the corresponding bit of Ŝi is equal to that of K̇ ,
i.e., ŝ j

i = k̇ j . Otherwise, ŝ j
i = k̇ j ⊕ 1. In step H4, because the

controlling sequence R0 declared by P0 is known to these
dishonest participants, they can select a right basis to measure
the untouched entangled pairs and deduce the value of s j

0.
After this, if s̃ j

0 �= s j
0, these dishonest participants announce

fake messages, the sum of which is equal to ŝ j
0. Otherwise, i.e.,

the guess is right, they announce their secret inputs honestly.
Obviously, in this way, the attack action cannot be found,
because this announcement cannot introduce any errors.

Next, the success rate for these dishonest partici-
pants’ predetermining the agreement key is discussed. It is
evident that these dishonest participants can determine the
key by themselves when they successfully guess the value
of s j

0 in the attack. Thus, from Table I, the correct rate of
the guess is Prob(η = 3) + Prob(η = 2) = 0.843 75. In other
words, the guess is wrong with a probability of Prob(η =
1) + Prob(η = 0) = 0.15625. In this case, P0 acknowledges
that the agreement key is k j instead of k∗

j . However, these dis-
honest participants can select this bit as a test sample. Hence,

when ζ > 0.2428, the condition
ζ

(m−1)
m

1+ζ
> 0.156 25 is satisfied.

Four dishonest participants are able to choose all bits in which
they guessed wrong as the samples. In this way, the remaining
bits for K , which are equal to that for K̇ , form the agreement
key. Since no error is introduced in the eavesdropped check
process, this fake agreement key is accepted by P0.

To illustrate the attack more clearly, a case (m =
5, n = 16, ζ = 0.25) is taken as an example. Supposing
that P0 has a secret (1 + ζ ) × n = 20-bit sequence, S0 =
“11110011010010000100,” four dishonest participants’ fake
bit sequence is K̇ = “00000000000000000000.” Therefore,
the genuine sequence is K = S0 ⊕ K̇ = S0. After measur-
ing three entangled pairs that contain P0 secret inputs, these
dishonest participants obtain the result of the guess, S̃0 =
“10110010010010010100.” Here, because the error of the
guess is 0.1563, we can assume that 0.1563 × 20 ≈ 3 results
(e.g., the second, eighth, and fifteenth bits) are incorrect.
According to S̃0 and K̇ , dishonest participants perform Z or
I operation on P0’s signal particles. In step H3, P0 obtains
his bit sequence Ŝ0 = S0 ⊕ S̃0 = “01000001000000100000.”
After P0 declares Ri, dishonest participants can deduce S0

by measuring the untouched entangled pair. In terms of S0

and S̃0, they know the positions of three incorrect results.
For ζ = 0.25, each dishonest participant can choose ζ×n

m ≈ 1
bit as his sample. Therefore, these three bits are able to be
selected as the samples by four dishonest participants. At last,
the remaining bit sequence “000000000000000” is accepted
as the agreement key, which means that these dishonest par-
ticipants successfully break the fairness of Huang’s protocol.

IV. THE PROPOSED CMQKA PROTOCOL

In this section, a CMQKA protocol with Bell states is
proposed, in which quantum state discrimination and hash
function are utilized to plug up the two loopholes mentioned
in the above section. Here, the hash function is required to
be preimage resistant, that is, it is difficult to find an input
that maps to a certain hash value. For the sake of clarity,
let us start with a specific three-party (i.e., m = 3) case, in
which three participants P0, P1, and P2 respectively hold three
random bit strings, S0 = “000110,” S1 = “101011,” and S2 =
“100110.” These three bit strings represent their secret inputs.
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TABLE II. The classical sequences in the three-party protocol.

Si Ai Bi Ci Hi

P0 000110 001101,011011 010100,010110 001011,011101 0010
P1 101011 110101,111010 010110,011001 011110,010001 1010
P2 100110 100101,011011 001101,101001 000011,111101 1001

By the following steps, they can agree on a common key,
K = S0 ⊕ S1 ⊕ S2.

In the initialization phase, each participant P0 (P1,
P2) first generates two random 12-bit strings, A0 =
{A0[1], A0[2] | A0[1] = “001101,” A0[2] = “011011”} and
B0 = {B0[1], B0[2] | B0[1] = “010100,” B0[2] = “010110”}
(A1 and B1, A2 and B2). From S0 and A0 (S1 and A1, S2 and
A2), he can deduce C0 = {C0[1],C0[2] |C0[1] = S0 ⊕ A0[1] =
“001011,” C0[2] = S0 ⊕ A0[2] = “011101”} (C1, C2). Mean-
while, they agree on a hash function h : {0, 1}12 → {0, 1}4,
and obtain the hash value of B0 (B1, B2), H0 = h(B0) =
“0010” (H1, H2). Obviously, this hash function cannot be
preimage resistant, because the hash value is too short,
only 4 bits. Generally speaking, for a hash function to be
preimage resistant, the minimum length of the output is
80 bits. Therefore, this is just an example, where we need to
adopt a preimage-resistant hash function, e.g., SHA or MD5,
in the practical application of the presented protocol.

The concrete values of these classical bit sequences are
listed in Table II. After that, three hash values are declared
by these participants publicly. In addition, each participant P0

(P1, P2) prepares six Bell states as the signal particles, which
are all in the initial state |ψ (0, 0)〉, and obtains two ordered
qubit sequences, Q0→1 and R0 (Q1→2 and R1, Q2→0 and R2).

In the encoding phase, three signal particle sequences,
Q0→1, Q1→2, and Q2→0, are transmitted among three partic-
ipants who perform the encoding operation on these particles.
For example, P0 holds R0 in his hands and sends Q0→1

to P1 first. After receiving Q0→1, P1 encodes the mes-
sages, A1[1], B1[1], and C1[1], on the traveling particles.
Concretely, if the jth bit of B1[1] is 0 (or 1), P1 per-
forms the operation I (or H) on the jth qubit of Q0→1,
j = 1, 2, . . . , 6. Then, in terms of the values of A1[1]
and C1[1], he performs one of four Pauli operations on
the corresponding particle, i.e., “xy” �→ Ux,y. Therefore, af-
ter the encoding operations U1,0 ⊗ U1,1H ⊗ U0,1 ⊗ U1,1H ⊗
U0,1H ⊗ U1,0, these six two-qubit entangled pairs are in the
state |ψ (1, 0)〉|�(1, 1)〉|ψ (0, 1)〉|�(1, 1)〉|�(1, 0)〉|ψ (1, 0)〉.
The encoded particle sequence that is named as Q0→2 is sent
from P1 to P2. Similarly, P2 encodes his messages, A2[2],

B2[2], and C2[2], by applying the operation U0,1H ⊗ U1,1 ⊗
U1,1H ⊗ U0,1 ⊗ U1,0 ⊗ U1,1H on Q0→2, and sends the en-
coded sequence Q0→0 back to P0. The concrete states of three
particle sequences are listed in Table III.

In the decoding phase, three participants respectively an-
nounce the values of B0, B1, and B2, after acknowledging
that three sequences, Q0→0, Q1→1, and Q2→2, are received
by them. If H0 �= h(B0), H1 �= h(B1) or H2 �= h(B2), they
abort the protocol. Otherwise, in terms of these public
messages, P0 (P1, P2) performs I or H operation on the cor-
responding particle of Q0→0 (Q1→1, Q2→2), and then makes
Bell state measurements on the particles of sequences R0

and Q0→0 (R1 and Q1→1, R2 and Q2→2). From the mea-
surement results and his secret messages, three participants
can deduce a six-bit sequence Ŝ0, Ŝ1, and Ŝ2, respec-
tively. For example, based on B1[1] ⊕ B2[2] = “111111,”
P0 applies the operation H ⊗ H ⊗ H ⊗ H ⊗ H ⊗ H on six
particles of Q0→0. Then, according to the measurement re-
sult |ψ (0, 0)〉|ψ (0, 0)〉|ψ (1, 0)〉|ψ (0, 1)〉|ψ (1, 1)〉|ψ (0, 1)〉,
he deduces that the sum of P1’s secret input and P2

’s is “001101,” where |ψ (0, 0)〉, |ψ (1, 1)〉 �→ “0” and
|ψ (0, 1)〉, |ψ (1, 0)〉 �→ “1.” By adding his own secret input
S0, P0 obtains Ŝ0=“001011.” In the same way, the other two
participants respectively get Ŝ1 and Ŝ2. Obviously, if there is
no eavesdropping, Ŝ1=Ŝ2=Ŝ0.

In the eavesdropping check phase, three participants calcu-
late a six-bit sequence D = B0[1] ⊕ B0[2] ⊕ B1[1] ⊕ B1[2] ⊕
B2[1] ⊕ B2[2] = “101001.” In accordance with D, the
second, fourth, and fifth positions are chosen as the samples,
where the corresponding bit of D is “0.” Therefore, Ŝ0 is
divided into two sequences, T0 = “001” and K0 = “011” (the
remainder), the lengths of which are 3, i.e., n1 = n2 = 3.
Meanwhile, since D ∈ {0, 1}6 can be represented as a number,
41 = 25 + 23 + 1, they can obtain δ = D mod n1 = 2. Thus,
P0 announces the third bit of T0, i.e., T ′

0 = “1.” Similarly, P1

and P2 respectively declare the first bit of T1 and the second bit
of T2, i.e., T ′

1 = “0” and T ′
2=“0.” A new sequence T ′ = “001”

is formed by these three public messages. Participant P0 (P1,
P2) can detect the eavesdropping by comparing T ′ with T0

(T1, T2). If T0 = T1 = T2 = T ′, three participants accept the

TABLE III. The change of the states of three signal particle sequences during the encoding phase of the three-party protocol.

P0 P1 : Q0→1
(A1[1],B1[1],C1[1])−−−−−−−−−→ Q0→2 P2 : Q0→2

(A2[2],B2[2],C2[2])−−−−−−−−−→ Q0→0

Q0→1R0 : ⊗6
j=1|ψ (0, 0)〉 |ψ (1, 0)〉|�(1, 1)〉|ψ (0, 1)〉|�(1, 1)〉|�(1, 0)〉|ψ (1, 0)〉 |�(0, 0)〉|�(0, 0)〉|�(1, 0)〉|�(0, 1)〉|�(1, 1)〉|�(0, 1)〉

P1 P2 : Q1→2
(A2[1],B2[1],C2[1])−−−−−−−−−→ Q1→0 P0 : Q1→0

(A0[2],B0[2],C0[2])−−−−−−−−−→ Q1→1

Q1→2R1 : ⊗6
j=1|ψ (0, 0)〉 |ψ (1, 0)〉|ψ (0, 0)〉|�(0, 0)〉|�(0, 1)〉|ψ (0, 1)〉|�(1, 1)〉 |ψ (1, 0)〉|�(1, 1)〉|�(1, 1)〉|ψ (0, 0)〉|�(0, 0)〉|�(0, 0)〉

P2 P0 : Q2→0
(A0[1],B0[1],C0[1])−−−−−−−−−→ Q2→1 P1 : Q2→1

(A1[2],B1[2],C1[2])−−−−−−−−−→ Q2→2

Q2→0R2 : ⊗6
j=1|ψ (0, 0)〉 |ψ (0, 0)〉|�(0, 0)〉|ψ (1, 1)〉|�(0, 1)〉|ψ (0, 1)〉|ψ (1, 1)〉 |ψ (1, 0)〉|ψ (1, 1)〉|�(1, 0)〉|�(0, 1)〉|ψ (1, 1)〉|�(0, 1)〉
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remainder of the bits as the raw agreement key, i.e., K =
K0 = K1 = K2 = “011,” and achieve the key agreement task
successfully.

Here, it is evident that the positions of the samples are de-
termined by the value of D, which is the sum of Bis. Since the
hash value Hi = h(Bi ) is announced during the initialization
phase, the participant is not free to declare the value of Bi in
the decoding phase. This implies that the dishonest participant
cannot cover up his attack action by selecting the uncertain
results as the samples. In addition, since the hash function is a
many-to-one mapping, one cannot derive a unique correct Bi

from the hash value h(Bi ), even if he has unlimited computing
power. For the encoding operations, we will prove in the
next section that these operations cannot be distinguished by
unambiguous discrimination and minimum-error discrimina-
tion. Therefore, in the proposed protocol, the two security
loopholes mentioned in Sec. III have been overcome through
quantum state discrimination and the classical hash function.
Moreover, the above three-party protocol can be directly gen-
eralized to the multiparty case, as described below.

Suppose there are m parties, Pi (i = 0, 1, . . . , m − 1),
who hold their own secret n-bit strings Si = {s1

i , s2
i , . . . , sn

i },
respectively. After executing the following steps, these par-
ticipants obtain an agreement key K with a length of
approximately n

2 .
Step (1) Each participant Pi (i = 0, 1, . . . , m − 1)

generates two sequences of m − 1 random n-bit strings,
Ai={Ai[1], Ai[2], . . . , Ai[m − 1] | Ai[k] = a1

i [k] . . . an
i [k],

a j
i [k] ∈ {0, 1}} and Bi = {Bi[1], Bi[2], . . ., Bi[m −

1] | Bi[k] = b1
i [k] . . . bn

i [k], bj
i [k] ∈ {0, 1}}. Then, according

to Si and Ai, he can obtain a sequence of m − 1 n-bit
strings Ci = {Ci[1],Ci[2], . . . ,Ci[m − 1] | Ci[k] =
c1

i [k] . . . cn
i [k], c j

i [k] ∈ {0, 1}}, where

c j
i [k] = a j

i [k] ⊕ s j
i , (7)

and k = 1, 2, . . . , m − 1, j = 1, 2, . . . , n. In addition, these
m participants agree on a preimage-resistant hash function
h : {0, 1}∗ → {0, 1}w. Finally, Pi keeps his strings Ai, Bi, and
Ci secret and declares the hash value, Hi = h(Bi ), publicly.
Note that, since the function h is preimage resistant, it is
impossible to derive the input Bi from its hash value Hi.

Step (2) Each participant Pi prepares n two-qubit entangled
pairs and obtains two ordered particle sequences, Qi→i⊕̃1 =
{q1

i , q2
i , . . . , qn

i } and Ri = {r1
i , r2

i , . . . , rn
i }. Each two-qubit

pair (q j
i , r j

i ) is in an initial state |ψ (0, 0)〉. After that, Pi holds
particle sequence Ri in his hands and sends Qi→i⊕̃1 to the next
participant Pi⊕̃1.

Step (3) After receiving the signal particle sequence
Qi→i⊕̃1, participant Pi⊕̃1 (i = 0, 1, . . . , m − 1) executes his
encoding operation based on his strings Ai⊕̃1[1], Bi⊕̃1[1], and
Ci⊕̃1[1]. Concretely, for the jth particle of sequence Qi→i⊕̃1,
he performs the local unitary operation Ua j

i [1],c j
i [1]H

bj
i [1] on

particle q j
i . In this way, he obtains a new particle sequence

Qi→i⊕̃2 that contains his secret messages Ai⊕̃1[1], Bi⊕̃1[1], and
Ci⊕̃1[1]. Finally, he sends Qi→i⊕̃2 to participant Pi⊕̃2

Step (l + 2) (l = 2, 3, . . . , m − 1): In the same way as step
3, participant Pi⊕̃l (i = 0, 1, . . . , m − 1) encodes his secret
messages Ai⊕̃l [l], Bi⊕̃l [l], and Ci⊕̃l [l] on the sequence Qi→i⊕̃l ,

which is transmitted from the previous participant Pi⊕̃(l−1).
After that, he sends the encoded sequence Qi→i⊕̃(l+1) to par-
ticipant Pi⊕̃(l+1).

Step (m + 2): When he receives the particle sequence Qi→i,
participant Pi (i = 0, 1, . . . , m − 1) sends the acknowledg-
ment to the other participants. After all participants hold the
traveling particles generated by themselves, they announce the
secret messages Bi in random order. Then, each participant Pi

takes advantage of the irreversibility of the hash function h to
verify the correctness of Bj ( j �= i) for the other m − 1 par-
ticipants. If h(Bi ) �= Hi, all participants think that there exist
some dishonest participants and abort the protocol. Otherwise,
they are assured that Bi is genuine and continue the protocol.

Step (m + 3): Each participant Pi (i = 0, 1, . . . , m − 1)
holds two participle sequences Qi→i and Ri. In terms of the
public messages Bi⊕̃k[k] (k = 1, 2, . . . , m − 1), he performs
the operation H or I on the traveling particles. Concretely,
if bj

i⊕̃1[1] ⊕ bj
i⊕̃2[2] ⊕ · · · ⊕ bj

i⊕̃(m−1)[m − 1] = 1, he applies

H on the particle q j
i . Otherwise, he does nothing, i.e., the

operation I is chosen. After that, Pi performs Bell state mea-
surements on each two-particle pair and obtains the result
|ψ (u j

i , v
j
i )〉. In accordance with these n measurement results,

he is able to deduce Ŝi = {ŝ1
i , ŝ2

i , . . . , ŝn
i }, where ŝ j

i = u j
i ⊕

v
j
i ⊕ s j

i .
Step (m + 4): All participants execute the eavesdropping

check process. In this process, each participant Pi calculates
the sum of Bi and obtains a bit sequence D with a length of
n, i.e., D = {d1, d2, . . . , dn | d j = ⊕m−1

i=0 Bi[ j]}. If the value
of d j is equal to zero, the corresponding bit ŝ j

i is selected
as a sample. In this way, Pi divides the sequence Ŝi into
two ordered bit sequences with a length of approximately n

2 ,
the sample sequence Ti = {t1

i , t2
i , . . . , t n1

i } and the information
sequence Ki = {k1

i , k2
i , . . . , kn2

i }, where n1 ≈ n2 ≈ n
2 and n1 +

n2 = n. Next, in terms of D, Pi calculates δ = (d1 × 2n−1 +
d2 × 2n−2 + · · · + dn × 20) mod n1 and declares part of Ti,
T ′

i = {t (δ+i) mod n1
i , t (δ+i+m) mod n1

i , . . ., t (δ+i+
n1/m�×m) mod n1
i }.

Finally, based on these public messages, all participants obtain
a new n1-bit sequence T ′, which consists of m T ′

i s. Each
participant can compare this bit sequence with their own Ti.
Obviously, if Ŝ1 = Ŝ2 = · · · = Ŝm−1, then all Ti are equal to
T ′. In this case, all participants accept K = K0 = K1 = · · · =
Km−1 as the raw agreement key. Otherwise, the protocol is
abandoned.

V. PROTOCOL ANALYSIS

In the proposed protocol, since the secret input of the par-
ticipant is a random bit string, there is no need to discuss the
privacy of the protocol. Therefore, in this section, we focus on
the first three conditions, and show that the proposed protocol
is correct, fair, and secure in theory.

A. Correctness

For a key agreement protocol, it is correct, which means
that all participants must eventually get the same key. It is easy
for CMQKA protocols with the same encoding operations to
satisfy this condition. However, in the proposed protocol, the
encoding operations, which are performed by a participant on
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the different signal particles at the same order, are different.
Thus, the correction of the proposed protocol should be con-
sidered. In the following, it is shown that the keys obtained by
all participants are equal.

Without loss of generality, the jth agreement key is taken
as an example. That is, we discuss whether or not the follow-
ing equation holds:

ŝ j
0 = ŝ j

1 = · · · = ŝ j
m−1. (8)

In this case, the corresponding value of each participant Pi’s
secret bit strings Si (i = 0, 1, . . . , m − 1) is s j

i ; those of classi-
cal messages Ai, Bi, and Ci are {a j

i [1], a j
i [2], . . . , a j

i [m − 1]},
{bj

i [1], bj
i [2], . . . , bj

i [m − 1]}, and {c j
i [1], c j

i [2], . . . ,
c j

i [m − 1]}, respectively. So, according to Eq. (7), we have

a j
i [1] ⊕ c j

i [1] = · · · = a j
i [m − 1] ⊕ c j

i [m − 1] = s j
i . (9)

In the protocol, in order to obtain ŝ j
0, P0 generates

a two-particle pair (q j
0, r j

0) in the initial state |ψ (0, 0)〉.
After that, the remaining participants Pi (i = 1, 2, . . . , m − 1)
orderly perform their encoding operations, Ua j

1[1],c j
1[1]H

bj
1[1],

Ua j
2[2],c j

2[2]H
bj

2[2], . . ., Ua j
m−1[m−1],c j

m−1[m−1]H
bj

m−1[m−1] on the trav-

eling particle q j
0. Thus, in step (m + 3), this entangled pair is

in the state

|ψ (u0, v0)〉 = H⊕m−1
l=1 bj

l [l]Ua j
m−1[m−1],c j

m−1[m−1]

Hbj
m−1[m−1] · · ·Ua j

1[1],c j
1[1]H

bj
1[1]|ψ (0, 0)〉. (10)

From Eq. (5), we can obtain

Ux,yHz = (−1)xyH ẑUx̂,ŷ, (11)

where

ẑ = z, x̂ = z · x ⊕ z · y, ŷ = z · y ⊕ z · y, (12)

and z = z ⊕ 1. From Eqs. (10) and (11), the following
equation can be derived:

|ψ (u0, v0)〉 = (−1)⊕
m−1
l=1 (a j

l [l]⊕c j
l [l])Uâ j

m−1[m−1],ĉ j
m−1[m−1]

. . .Uâ j
1[1],ĉ j

1[1]|ψ (0, 0)〉, (13)

where

â j
k[k] = (⊕k

l=1bj
l [l])a j

k[k] ⊕ (⊕k
l=1bj

l [l])c j
k[k],

ĉ j
k[k] = (⊕k

l=1bj
l [l])c j

k[k] ⊕ (⊕k
l=1bj

l [l])a j
k[k], (14)

and k = 1, 2, . . . , m − 1. In terms of Eqs. (3) and (13), we get

u0 = ⊕m−1
l=1 â j

l [l], v0 = ⊕m−1
l=1 ĉ j

l [l]. (15)

So, after measuring the Bell state |ψ (u0, v0)〉, P0 obtains his
agreement key ŝ j

0, where

ŝ j
0 = u0 ⊕ v0 ⊕ s j

0 = s j
0 ⊕ s j

1 ⊕ · · · ⊕ s j
m−1. (16)

Similarly, for the other m − 1 entangled pairs, (q j
i , r j

i ) (i =
1, 2, . . . , m − 1), they are in the state ⊗m−1

i=1 |ψ (ui, vi )〉, after

the encoding operations. Here,

|ψ (ui, vi )〉 = H⊕m−1
l=1 bj

i⊕̃l [l]Ua j
i⊕̃(m−1)[m−1],c j

i⊕̃(m−1)[m−1]

Hbj
i⊕̃(m−1)[m−1]

. . .Ua j
i [1],c j

i [1]H
bj

i [1]|ψ (0, 0)〉.
(17)

In the same way, the following equation is attained:

ŝ j
i = ui ⊕ vi ⊕ s j

i = s j
0 ⊕ s j

1 ⊕ · · · ⊕ s j
m−1. (18)

From Eqs. (16) and (18), it is shown that all participants
receive the same agreement key, i.e., Eq. (8) holds. Therefore,
the proposed protocol is correct.

B. Fairness

In this section, the security of the proposed protocol in the
m − 1 dishonest participants’ collusion attack is analyzed. In
the attack, we can assume that P0 is honest, and the remaining
dishonest participants Ṗi (i = 1, 2, . . . , m − 1) conspire to at-
tack the presented protocol. Their purpose is to determine the
agreement key by themselves, and succeed in cheating P0 to
accept this fake key.

For the jth bit of the agreement key k j , these dishonest
participants Ṗi want to replace the key k j = s j

0 ⊕ s j
1 ⊕ . . . s j

m−1

with a fake key k̇ j = s j
1 ⊕ s j

2 ⊕ . . . s j
m−1, without introducing

any error. Namely, they should make P0 accept this fake key,
i.e., ŝ j

0 = k̇ j . In step (m + 3), P0 calculates the value of ŝ j
0

by measuring the entangled pair (q j
0, r j

0). Since the particle
r j

0 is always in P0’s hands, participants Ṗi should execute
their attack action on particle q j

0 before it is sent back to P0.
On the other hand, if these dishonest participants obtain the
value of s j

0, they can apply an appropriate operation on q j
0,

which makes ŝ j
0 = k̇ j . Concretely, if s j

0 = 1, the operation X
(or Z) is executed; otherwise, there is no action. Therefore, the
key point of this attack is whether the dishonest participants
eavesdrop the value of s j

0 before the sequence Q0→0 is sent
from Pm−1 to P0 in step (m + 1).

According to the procedure of the proposed protocol, only
one possible chance may be utilized to obtain s j

0. That is
steps 3 to (m + 1), in which P0 encodes s j

0 on the traveling
particles. In this case, the encoding operation is applied by
P0 (m − 1) times, which is the same as the general CMQKA
protocol in Sec. II B. Hence, similar to the analysis in Sec. III,
the key point is changed to discriminate two sets of states,
�0 and �1, where �0 = {U0,0,U0,0H,U1,1,U1,1H} and �1 =
{U0,1,U0,1H,U1,0,U1,0H}.

First, unambiguous discrimination is considered. Without
loss of generality, we can assume that dishonest participants
prepare m fake particles that are in the initial state:

|�〉 =
∑

μ1,μ2,...,μm−1=0,1

|μ1〉 f1 |μ2〉 f2 . . . |μm−1〉 fm−1

|ξμ1,μ2,...,μm−1〉 fm . (19)

In step (i + 1) (i = 1, 2, . . . , m − 1), Ṗm−1 sends a fake par-
ticle fi to P0, instead of the signal particle q j

m−i. When P0

performs his encoding operation E0[i] = Ua j
0[i],c j

0[i]H
bj

0[i] and
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sends particle fi to Ṗ1 in step (i + 2), Ṗ1 intercepts this fake
particle. The above action is repeated m − 1 times. At the end
of step (m + 1), the dishonest participants hold all fake parti-
cles, which is in the state ⊗m−1

i=1 E0[i] ⊗ I|�〉 f1, f2,... fm . They try
their best to eavesdrop the value of s j

0 by performing a certain
positive operator-valued measurement on these fake particles.
So, the key of this attack is changed to distinguish two sets
of quantum states, �0 = {⊗m−1

i=1 E0[i] ⊗ I|�〉 | E0[i] ∈ �0} and
�1 = {⊗m−1

i=1 E0[i] ⊗ I|�〉 | E0[i] ∈ �1}. However, since H =
1√
2
(X + Z ), a state |γ 〉 = H ⊗ H ⊗ · · · ⊗ H ⊗ I|�〉 ∈ �0 can

be written as

|γ 〉 =
(

1√
2

)m−1

(X + Z ) ⊗ · · · ⊗ (X + Z ) ⊗ I|�〉

=
(

1√
2

)m−1 ∑
E0[1],...,E0[m−1]=X,Z

( ⊗m−1
i=1 E0[i] ⊗ I|�〉). (20)

From the above equation, it is directly derived that the state
|γ 〉 ∈ �0 can be linearly generated by the states of set �1.
Similarly, because iY = 1√

2
(ZH − XH ), I = 1√

2
(ZH + XH ),

and iY H = 1√
2
(Z − X ), any state from the set �0 is a linear

combination of the states of �1, and vice versa. Hence, two
sets �0 and �1 are linearly dependent. According to Theorem
2 of Ref. [34], we can conclude that these two sets cannot be
unambiguously discriminated.

In the following, the case in which minimum-error dis-
crimination is adopted is discussed. First, the dishonest
participants perform a simple attack that is similar to the
attack depicted in Sec. III B. That is, they prepare m − 1
two-particle entangled pairs in the state∣∣ω(1)

00

〉 = |0〉e1 |ϕ0〉e2 + |1〉e1 |ϕ1〉e2 , (21)

where 〈ϕ0|ϕ0〉 + 〈ϕ1|ϕ1〉 = 1. Then, Ṗm−1 sends the fake par-
ticle e1 to P0. After this particle containing the information
about P0’s encoding operation is sent from P0 to Ṗ1, Ṗ1 in-
tercepts particle e1 and performs a certain minimum-error
discrimination. Concretely, if s j

0 = 0, the particle pair is in
one of four states {|ω(1)

0ν1
〉 = Uν1

1 ,ν1
1
H ν2

1 |ω(1)
00 〉 | ν1 = ν1

1 × 2 +
ν2

1 , ν1
1 , ν2

1 ∈ {0, 1}}, where

|ω(1)
01 〉 = 1√

2
[(|0〉 + |1〉)|ϕ0〉 + (|0〉 − |1〉)|ϕ1〉],

|ω(1)
02 〉 = (−|1〉|ϕ0〉 + |0〉|ϕ1〉),

|ω(1)
03 〉 = 1√

2
[(|0〉 + |1〉)|ϕ1〉 − (|0〉 − |1〉)|ϕ0〉]. (22)

Because the encoding operation is selected from �0 (�1)
randomly, the two-particle entangled pair is in a mixed state,
ρ

(1)
0 = 1

4 (
∑3

ν1=0 |ω(1)
0ν1

〉〈ω(1)
0ν1

|). Similarly, when s j
0 = 1, the

set is {|ω(1)
1ν1

〉 = U
ν1

1 ,ν1
1
H ν2

1 |ω(1)
00 〉 | ν1 = ν1

1 × 2 + ν2
1 , ν1

1 , ν2
1 ∈

{0, 1}}, where∣∣ω(1)
10

〉 = (|1〉|ϕ0〉 + |0〉|ϕ1〉),

∣∣ω(1)
11

〉 = 1√
2

[(|0〉 + |1〉)|ϕ0〉 − (|0〉 − |1〉)|ϕ1〉],
∣∣ω(1)

12

〉 = (|0〉|ϕ0〉 − |1〉|ϕ1〉),

∣∣ω(1)
13

〉 = 1√
2

[(|0〉 − |1〉)|ϕ0〉 + (|0〉 + |1〉)|ϕ1〉]. (23)

The corresponding mixed state is ρ
(1)
1 =

1
4 (

∑3
ν1=0 |ω(1)

1ν1
〉〈ω(1)

1ν1
|). From Eqs. (22) and (23), the following

equations can be deduced:

ρ
(1)
0 = ρ

(1)
1 = 1

4

(∣∣κ (1)
0

〉〈
κ

(1)
0

∣∣ + ∣∣κ (1)
1

〉〈
κ

(1)
1

∣∣
+∣∣κ (1)

2

〉〈
κ

(1)
2

∣∣ + ∣∣κ (1)
3

〉〈
κ

(1)
3

∣∣) (24)

where ∣∣κ (1)
ν1

〉 = Uν1
1 ,ν2

1

∣∣ω(1)
00

〉
. (25)

Based on the conclusion of Ref. [27], we have the minimum-
error probability of distinguishing these two mixed states,
pE = 1/2, which means that the discrimination is the same
as a random guess.

Further, we consider a more general attack, in which m − 1
dishonest participants prepare a m-particle entangled state,
|ω(m−1)

00...0 〉 = |�〉. Then, similar to the attack with unambiguous
discrimination, Ṗm−1 orderly sends m − 1 fake particles, f1,
f2, . . ., and fm−1, to P0. Thus, after P0 performs m − 1 en-
coding operations, the whole system is in one of 4m−1 states
�0 = {|ω(m−1)

0ν1ν2...νm−1
〉} (�1 = {|ω(m−1)

1ν1ν2...νm−1
〉}) if s j

0 = 0 (1). Here,

the states |ω(m−1)
0ν1ν2...νm−1

〉 and |ω(m−1)
1ν1ν2...νm−1

〉 are depicted as
follows:∣∣ω(m−1)

0ν1ν2...νm−1

〉 = Uν1
1 ,ν1

1
H ν2

1 ⊗ Uν1
2 ,ν1

2
H ν2

2 ⊗ · · ·
⊗Uν1

m−1,ν
1
m−1

H ν2
m−1 |ω(m−1)

00...0 〉,∣∣ω(m−1)
1ν1ν2...νm−1

〉 = U
ν1

1 ,ν1
1
H ν2

1 ⊗ U
ν1

2 ,ν1
2
H ν2

2 ⊗ · · ·

⊗U
ν1

m−1,ν
1
m−1

H ν2
m−1 |ω(m−1)

00...0 〉. (26)

Thus, the corresponding two mixed states are

ρ
(m−1)
0 = 1

4m−1

3∑
ν1,ν2,...,νm−1=0

∣∣ω(m−1)
0ν1ν2...νm−1

〉〈
ω

(m−1)
0ν1ν2...νm−1

∣∣,

ρ
(m−1)
1 = 1

4m−1

3∑
ν1,ν2,...,νm−1=0

∣∣ω(m−1)
1ν1ν2...νm−1

〉〈
ω

(m−1)
1ν1ν2...νm−1

∣∣. (27)

By simple calculations, we get

ρ
(m−1)
0 = ρ

(m−1)
1

=
(

1

4

)m−1 3∑
ν1,ν2,··· ,νm−1=0

∣∣κ (m−1)
ν1ν2···νm−1

〉〈
κ (m−1)

ν1ν2···νm−1

∣∣ (28)

where ∣∣κ (m−1)
ν1ν2···νm−1

〉 = Uν1
1 ,ν2

1
⊗ Uν1

2 ,ν2
2
⊗ · · ·

⊗Uν1
m−1,ν

2
m−1

∣∣ω(m−1)
00···0

〉
. (29)

Because these two mixed states are the same, it is obviously
impossible to discriminate them.

From the above analysis, it is shown that no one is able to
obtain the value of s j

0 by performing unambiguous discrimina-
tion or minimum-error discrimination. For completeness, the
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case in which these dishonest participants cooperate to attack
the proposed protocol after P0 received Q0→0 in step (m + 2)
is discussed briefly. Before he declares his secret message
B0, P0 should receive the traveling particle sequence Q0→0.
That is, when they obtain the value of B0, these dishonest
participants cannot operate the particles in Q0→0 that are in
P0’s site. In this case, the only attack action performed by
these dishonest participants is to announce the fake secret
messages, B1, B2, . . ., Bm−1, which is similar to the attack
mentioned in Ref. [22]. Therefore, when P0 performs H or
I operation on each particle pair in step (m + 3), half of them
use the wrong operation and half use the right one. When the
operation is wrong, the measurement result is also incorrect.
This means that the error rate is approximately 50%. Hence,
this attack is inevitably detected by P0 because the probability
that it successfully passes the eavesdropping check process is
( 1

2 )

ζn
m � ≈ 0.

C. Security

Suppose Eve is an external eavesdropper who attempts to
eavesdrop on the agreement key. Since k j = s j

0 ⊕ s j
1 ⊕ · · · ⊕

s j
m−1, Eve can generally use two methods to obtain the value

of k j . One is that Eve tries to eavesdrop each value of s j
0

and then calculates the sum of these m values. However,
similar to some multiparty quantum cryptography protocols
(e.g., quantum secret sharing), the participants take part in
the protocol and are more powerful than Eve in the proposed
protocol. Therefore, like the dishonest participants, Eve is also
unable to eavesdrop s j

i from the analysis of the above section.
The other method involves directly eavesdropping on the

value of k j . This is the same case as the participant who does
not know the secrets of the other participants but gets the
agreement key. Without loss of generality, we take the particle
pair (q j

0, r j
0) as an example. In the proposed protocol, Eve has

no access to the particle r j
0 that is always held by P0; thus,

all her attack actions are restricted to the particle q j
0, which is

transmitted among the participants. Moreover, no matter what
these encoding operations are, this traveling particle is always
in the maximal mix state ρ = 1

2 (|0〉〈0| + |1〉〈1|). Thus, Eve
cannot obtain any information about k j only from the traveling
particle. To see this in a sufficient way, we will consider
two possible cases, in which Eve may execute two common
attacks: intercept-resend attack and entangle-ancilla attack.

In the intercept-resend attack, Eve intercepts the travel-
ing particle q j

0 and replaces it with a fake particle qe. Here,
the fake particle pair (qe, re) is prepared in an initial state
|ψ (0, 0)〉. After all participants execute their encoding oper-
ations on the fake particle, Eve can measure it to obtain the
value of k j if and only if she knows the secret message Bi.
However, these messages are announced by the participants
in step (m + 2) after all traveling particle sequences Qi→i are
received by the participants Pi (i = 0, 1, . . . , m − 1). Hence,
Eve should transmit the intercepted particle q j

0 to participant
P0. Meanwhile, the secret messages are still unknown to her.
Therefore, Eve has to randomly choose one basis from MB0

and MB1 to measure the fake particle pair. Then, in terms

of the measurement result, Eve performs the corresponding
operation on particle q j

0 and sends it back to P0. Obviously,
the probability that Eve selects a wrong measurement basis
is approximately 50%, which means that this attack will in-
troduce an error rate of 25%. Hence, this attack can be easily
detected in the eavesdropping check process.

Another more general attack is an entangle-ancilla attack.
The general idea of this attack is described as follows. First,
Eve prepares two ancillary particles, g1 and g2, in the initial
states, |0〉g1 and |0〉g2 . In step 2, when the signal particle q j

0
is transmitted from P0 to P1, Eve entangles the first ancilla
g1 with q j

0, and then sends q j
0 to P1. Next, particle q j

0 travels
among these participants. When the signal particle is sent back
to P0 in step (m + 1), Eve intercepts this particle and makes
the second ancilla g2 interact unitarily with particle q j

0. At the
end of the protocol, Eve tries to eavesdrop k j by measuring
two ancillary particles. In the following, we will show that Eve
cannot reveal any information about k j under the condition
that no error occurs.

Here, we can write the most general operations, G1 and G2,
which Eve could apply to the signal particle and two ancillary
particles, as follows:

G1 : |0〉q j
0
|0〉g1 → |0〉q j

0
|ε00〉g1 + |1〉q j

0
|ε01〉g1 ,

|1〉q j
0
|0〉g1 → |0〉q j

0
|ε10〉g1 + |1〉q j

0
|ε11〉g1 , (30)

G2 : |0〉q j
0
|0〉g2 → |0〉q j

0
|τ00〉g2 + |1〉q j

0
|τ01〉g2 ,

|1〉q j
0
|0〉g2 → |0〉q j

0
|τ10〉g2 + |1〉q j

0
|τ11〉g2 , (31)

where the states |εi j〉 and |τi j〉 are pure ancilla states uniquely
determined by G1 and G2. The following conditions can be
derived from the unitary features of these two operations:

〈ε00|ε10〉 + 〈ε01|ε11〉 = 0, 〈τ00|τ10〉 + 〈τ01|τ11〉 = 0,

〈ε00|ε00〉 + 〈ε01|ε01〉 = 〈ε10|ε10〉 + 〈ε11|ε11〉 = 1,

〈τ00|τ00〉 + 〈τ01|τ01〉 = 〈τ10|τ10〉 + 〈τ11|τ11〉 = 1. (32)

In the entangle-ancilla attack, the signal particle pair and
two ancillary particles are in an initial state, |α0〉r j

0 q j
0g1g2

=
|ψ (0, 0)〉r j

0 q j
0
|0〉g1 |0〉g2 . After the first unitary interaction be-

tween particles q j
0 and g1, the whole system is in the state

|α1〉r j
0 q j

0g1g2
= I ⊗ G1 ⊗ I|α0〉r j

0 q j
0g1g2

= 1√
2

(|00ε000〉 + |01ε010〉 + |10ε100〉

+ |11ε110〉)r j
0 q j

0g1g2
. (33)

From Eq. (5), we can derive that the encoding operations of
these participants can be represented by one of eight unitary
operators, �0 ∪ �1. Namely, after all participants encode their
secrets on particle q j

0, the four particles are in the state

∣∣α2
i′ j′k′

〉
r j

0 q j
0g1g2

= I ⊗ Uj′,k′Hi′ ⊗ I ⊗ I|α1〉r j
0 q j

0g1g2
, (34)
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where i′, j′, k′ ∈ {0, 1}. Then, Eve entangles the second an-
cilla g2 with q j

0, and the state |α2
i′ j′k′ 〉r j

0 q j
0g1g2

is changed to∣∣α3
i′ j′k′

〉
r j

0 q j
0g1g2

= I ⊗ I ⊗ G2

∣∣α2
i′ j′k′

〉
r j

0 g1q j
0g2

. (35)

In step (m + 3), P0 performs operation H or I on the signal
particle q j

0 based on the public messages. So, the whole quan-
tum system is in one of eight states:

|θi′ j′k′ 〉r j
0 q j

0g1g2
= I ⊗ Hi′ ⊗ I ⊗ I

∣∣α3
i′ j′k′

〉
r j

0 q j
0g1g2

. (36)

At last, Eve may eavesdrop k j from two ancillary particles in
her hands. That is, she tries to use the difference between two

mix states,

�0 = 1

4

1∑
i′=0

[
trr j

0 q j
0
(|θi′00〉〈θi′00|) + trr j

0 q j
0
(|θi′11〉〈θi′11|)

]
,

�1 = 1

4

1∑
i′=0

[
trr j

0 q j
0
(|θi′01〉〈θi′01|) + trr j

0 q j
0
(|θi′10〉〈θi′10|)

]
, (37)

to obtain information about k j = j′ ⊕ k′, where Trr j
0 q j

0
is the

partial trace over the signal particle pair (r j
0, q j

0).
Through simple calculations, we can rewrite eight states

|θi′ j′k′ 〉 of Eq. (36) as

|θ000〉 = 1√
2

1∑
j′,k′=0

| j′k′〉|β j′00k′ 〉, |θ001〉 = 1√
2

1∑
j′,k′=0

| j′k′〉|β j′10k′ 〉,

|θ010〉 = 1√
2

1∑
j′,k′=0

| j′k′〉|β j′01k′ 〉, |θ011〉 = 1√
2

1∑
j′,k′=0

| j′k′〉|β j′11k′ 〉,

|θ100〉 = 1

2
√

2

1∑
j′=0

{|0 j′〉[|β0010〉 + |β0100〉 + (−1) j′ (|β0011〉 + |β0101〉)] + |1 j′〉[|β1010〉 + |β1100〉 + (−1) j′ (|β1011〉 + |β1101〉)]},

|θ101〉 = 1

2
√

2

1∑
j′=0

{|0 j′〉[|β0110〉 + |β0000〉 + (−1) j′ (|β0111〉 + |β0001〉)] + |1 j′〉[|β1110〉 + |β1000〉 + (−1) j′ (|β1111〉 + |β1001〉)]},

|θ110〉 = 1

2
√

2

1∑
j′=0

{|0 j′〉[|β0000〉 − |β0110〉 + (−1) j′ (|β0001〉 − |β0111〉)] + |1 j′〉[|β1000〉 − |β1110〉 + (−1) j′ (|β1001〉 − |β1111〉)]},

|θ111〉 = −1

2
√

2

1∑
j′=0

{|0 j′〉[|β0100〉 − |β0010〉 + (−1) j′ (|β0101〉 − |β0011〉)] + |1 j′〉[|β1100〉 − |β1010〉 + (−1) j′ (|β1101〉 − |β1011〉)]},

(38)

where

|βi′ j′k′l ′ 〉 = |εi′0〉|τ j′l ′ 〉 + (−1)k′ |εi′0〉|τ j′l ′ 〉. (39)

In the eavesdropping check process, P0 makes a Bell state
measurement on the particle pair (r j

0, q j
0). Thus, in order

for there to be no error, the states |θi′ j′k′ 〉 should satisfy the
following conditions:

〈ψ (0, 0)|θi′01〉 = 〈ψ (0, 0)|θi′10〉 = 0,

〈ψ (1, 1)|θi′01〉 = 〈ψ (1, 1)|θi′10〉 = 0,

〈ψ (0, 1)|θi′00〉 = 〈ψ (0, 1)|θi′11〉 = 0,

〈ψ (1, 0)|θi′00〉 = 〈ψ (1, 0)|θi′11〉 = 0. (40)

From Eqs. (38) and (40), the following equation can be
derived:

|β0000〉 − |β1001〉 = |β0001〉 + |β1000〉 = 0,

|β0100〉 + |β1101〉 = |β0101〉 + |β1100〉 = 0,

|β0010〉 + |β1011〉 = |β0011〉 − |β1010〉 = 0,

|β0110〉 − |β1111〉 = |β0111〉 + |β1110〉 = 0, (41)

where 0 is denoted as a null vector. Based on Eqs. (32), (39),
and (41), we obtain the following two constraints:

|ε00〉 = |ε11〉, |ε01〉 = −|ε10〉,
|τ00〉 = |τ11〉, |τ01〉 = −|τ10〉, (42)

or,
|ε00〉 = −|ε11〉, |ε01〉 = |ε10〉,
|τ00〉 = −|τ11〉, |τ01〉 = |τ10〉. (43)

When the condition (42) is satisfied, the following equation
can be deduced from Eq. (38):

|θ000〉 = |ψ (0, 0)〉|β0000〉 + |ψ (1, 1)〉|β0001〉,
|θ001〉 = −|ψ (1, 0)〉|β0011〉 + |ψ (0, 1)〉|β0010〉,
|θ010〉 = |ψ (1, 0)〉|β0010〉 + |ψ (0, 1)〉|β0011〉,
|θ011〉 = −|ψ (0, 0)〉|β0001〉 + |ψ (1, 1)〉|β0000〉,
|θ100〉 = |ψ (0, 0)〉|β0010〉 − |ψ (1, 1)〉|β0011〉,
|θ101〉 = |ψ (1, 0)〉|β0000〉 − |ψ (0, 1)〉|β0001〉,
|θ110〉 = |ψ (1, 0)〉|β0001〉 + |ψ (0, 1)〉|β0000〉,
|θ111〉 = −|ψ (0, 0)〉|β0011〉 + |ψ (1, 1)〉|β0010〉. (44)
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Based on Eqs. (37) and (44), we get

�0 = �1 = 1

2

1∑
j′,k′=0

|β00 j′k′ 〉〈β00 j′k′ |. (45)

As for the condition (43), the same conclusion is drawn, i.e.,
Eq. (45) still holds. This implies that Eve cannot obtain any
information about k j under the condition that no errors are
introduced during the eavesdropping check process. Hence,
the proposed protocol is secure against the entangle-ancilla
attack.

VI. CONCLUSION

Before presenting our conclusion, we briefly discuss the
hash function used in the protocol. From the above security
analysis, it is shown that the presented protocol is secure in
theory when the hash function is preimage resistant. With
the development of quantum computing, some classical hash
functions will be compromised by some advanced quantum
algorithms. Thus, the presented protocol with classical hash
functions is only computationally secure. To achieve per-
fect security, replacing the classical hash function with the
quantum hash function [35,36] is an effective solution. In
other words, the presented protocol with quantum hash func-
tions is secure, because it is still preimage resistant under the
condition of quantum computing. However, it is easier to per-
form a classical hash function than the quantum counterpart
using current technology. As said in Ref. [2], infinite security
will demand infinite cost, which means zero practical interest.
Hence, in the following, the security of the presented protocol
with classical hash functions is analyzed briefly.

In the protocol with classical hash functions, the preimage-
resistant condition cannot be satisfied. Namely, one can
calculate some possible preimages from a hash value. It may
provide m − 1 dishonest participants a chance to attack the
protocol. However, in the protocol, the honest participant P0

deduces the agreement key from his measurement results of
particle sequence Q0→0, which is received before announcing
B0 in step (m + 2). Thus, in order to make P0 accept a fake key
(e.g., K̇ = “00 . . . 0”), m − 1 dishonest participants should
perform an appropriate operation on Q0→0 before sending it
back to P0. This operation is determined by the values of the
fake key and P0’s secret input. However, before step (m + 2),
the value of B0 is only known to P0. Since the hash function is
a many-to-one mapping, one cannot derive a unique correct
B0 from the hash value h(B0). Especially for the balanced
hash function, these dishonest participants have to choose
randomly a measurement basis and eavesdrop P0’s input by
measuring the signal particles. Thus, there are some positions,
at which their guess about P0’s input is wrong. That is, some
bits of P0’s measurement results are not what the dishonest
participants want. In this case, m − 1 dishonest participants
should calculate many preimages, from which m − 1 appro-
priate fake Ḃis (Ḃ1, Ḃ2, . . ., Ḃm−1) are selected to satisfy two
conditions. One is that P0’s measurement basis determined by
⊕m−1

i=1 Ḃi[i] should be correct. Namely, in order to introduce
no errors, P0’s measurement results are not random. On the
other hand, to make P0’s agreement key equal to K̇ , these
positions, at which the guess about P0’s input is wrong, should

be selected as the samples. Therefore, the other condition is
that the bit value of ⊕m−1

i=1 Ḃi ⊕ B0 at these positions must be
zero. Obviously, getting these appropriate Ḃis will take a lot
of time and has a probability of failure, i.e., there are no
m − 1 fake Ḃis that meet these two conditions. However, in
step (m + 2), these dishonest participants are required to de-
clare their Ḃis after P0 announces the value of B0. Obviously,
they have not much time to compute these m − 1 Ḃis from
the hash values His. Consequently, even if the classical hash
function is broken by quantum computing, it is quite difficult
for the dishonest participants to successfully cheat the honest
participant to accept a fake key. In other words, the presented
protocol with some balanced classical hash functions (e.g.,
SHA or MD5) can be used to achieve key agreement tasks
in most practical implementation scenarios, though it is only
computationally secure. In addition, since the agreement key
is raw, the classical postprocessing process may reduce the
leaked information to zero. Similar to that for QKD, a rig-
orous analysis is required, which will be considered in our
future works.

In this paper, the design and analysis of a secure multiparty
quantum key agreement protocol, which is another main key
establishment method in addition to quantum key distribution,
is studied, especially for the circle-type MQKA. According
to the fairness requirements of this kind of protocol, through
analysis of some existing protocols, two possible security
loopholes are found. Based on these loopholes, quantum
state discrimination is utilized to present a collusion attack
by m − 1 dishonest participants. To resist this attack, a
circle-type multiparty quantum key agreement protocol with
Bell states is proposed. In this protocol, a set of quan-
tum encoding operations is designed by using the Hadamard
operator and four Pauli operators. Since these encoding opera-
tions cannot be discriminated by unambiguous discrimination
or minimum-error discrimination, the proposed protocol is
secure against the presented m − 1 dishonest participants’
collusion attack. Furthermore, it is shown that the proposed
protocol is secure against some common external and internal
attacks. Additionally, the implementation of the protocol only
requires the preparation and measurement of Bell states and
some common single-qubit gates, thus the protocol is feasible
using current technology. Since the implementation of the
protocol is inevitably affected by noise, the threshold value
for the error rate should be provided before implementing
it. However, in this paper, no exact threshold value is given,
which is also the case for many multiparty quantum cryptogra-
phy protocols and becomes an open problem. Combined with
quantum state discrimination, we will study this problem in
the future.
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