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Role of quadrature squeezing in continuous-variable quantum teleportation
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Quantum teleportation (QT) lies at the heart of modern day quantum information science and technology.
Despite extensive studies over past two decades, obtaining the necessary and/or sufficient criterion for QT with
continuous-variable (CV) resources, besides entanglement, still remains an open concern. In this backdrop,
here we analyze the role of a purely quantum optical (QO) attribute, known as quadrature squeezing, in CV
teleportation. We first provide an analytic proof that for Gaussian resources quadrature squeezing is necessary
for QT. However, for non-Gaussian resources we show a clear distinction between the pure and the mix states.
For the pure states, quadrature squeezing appears to be necessary for QT, in the sense that there is no QT without
quadrature squeezing. However, in the case of mix states we observe otherwise, i.e., QT could be achieved even
without quadrature squeezing. Our results present the exotic character of the QO attributes of the CV resources
and necessitate a deeper search for the necessary and/or sufficient criterion for CV QT.
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I. INTRODUCTION

Quantum teleportation (QT) [1,2], an information process-
ing task that exploits the nonlocal character of the resources,
plays an important role in modern day quantum information
science [3]. In this protocol, two or more interested parties
can share information between them at the cost of their shared
entanglement. Soon after the first description for the discrete-
variable (DV) systems by Bennett et al. [4], the concept of
teleportation had been extended to the continuous-variable
(CV) systems by Braunstein and Kimble [5] with subsequent
experimental realizations by many [6–12]. Recent advances
have further led to the hybrid systems that take into account
DV as well as CV components [13].

In the past two decades there has been extensive analysis
of various information-theoretic attributes that could play a
critical role in ensuring quantum teleportation with CV sys-
tems that lie beyond the scope of the classical description
[14–28]. While entanglement is necessary to obtain quantum
teleportation [29,30], use of non-Gaussian resources proved
to be beneficial in improving the performance as well as
lowering the requirements to obtain a certain success prob-
ability over the Gaussian resources [14–17,19–21]. However,
the fact that non-Gaussianity alone does not suffice for QT
[18,22–24,27] leads to a deeper search for condition(s) that
could be necessary and/or sufficient for QT, besides entangle-
ment.

Various authors have pointed out the Einstein-Podolsky-
Rosen (EPR) correlation as a very important ingredient in
obtaining QT with CV systems [17,26]. Moreover, it appears
to be a better witness of CV QT compared to other correlations
[28]. On the contrary, Lee et al. [20] and Wang et al. [25]
presented a practical example where EPR correlation is not
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necessary for QT. In our previous work, we further pointed
out examples where EPR correlation fails to suffice for QT,
leading to the conclusion that EPR correlation is neither nec-
essary nor sufficient for CV QT in general [31]. This leaves
the quest for a necessary and/or sufficient criterion for QT
with CV systems, beyond entanglement, open.

It may be noted that so far the studies on QT in the lit-
erature have been centered around the information-theoretic
aspects of the CV resources. Against this backdrop, here we
analyze the role of a purely quantum optical characteristic
of the resource states, namely, the U(2)-invariant quadrature
squeezing [32], in the context of teleportation. To that end, for
Gaussian resources, we first provide an analytic proof, by con-
sidering a generic variance matrix, that quadrature squeezing
is necessary to obtain teleportation beyond the scope of classi-
cal theory. However, in the case of resource states possessing a
non-Gaussian Wigner distribution, traditionally known as the
non-Gaussian states, we show a clear distinction between the
pure and the mix states.

As examples of non-Gaussian pure resources, we consider
the beam splitter (BS) output states with single-mode nonclas-
sical input states. As the specific input we consider two differ-
ent classes of states, in particular (a) the states involving pho-
ton addition and/or subtraction along with quadrature squeez-
ing [33,34] and (b) the states obtained by symmetric (even)
and antisymmetric (odd) superpositions of coherent states
[35]. Our analytic results for these states show that quadrature
squeezing is necessary for QT, in the sense that there is no QT
in the absence of quadrature squeezing. On the other hand,
as the mixed states we consider a simple decoherence model
where these pure input states contain additional thermal noise.
Here we observe that quadrature squeezing no longer appears
to be a necessary condition as over a reasonable parameter
region, one can obtain QT without quadrature squeezing.

The present paper is organized as follows. In Sec. II we
provide a simple and elegant analytic proof that for Gaussian
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states, quadrature squeezing is necessary for QT. In Sec. III we
present our observation for the non-Gaussian states. Here we
discuss our results on pure and mixed input states separately.
In Sec. IV we summarize and discuss the various subtleties of
the present work.

II. QT WITH GAUSSIAN RESOURCES AND SQUEEZING

We prove the necessity of quadrature squeezing for Gaus-
sian states by showing the one-way equivalence between
entanglement and quadrature squeezing. Let us consider a
two-mode Gaussian state described the variance matrix in the
standard form [32,36,37]

Vab =

⎛
⎜⎝

η 0 c1 0
0 η 0 c2

c1 0 ζ 0
0 c2 0 ζ

⎞
⎟⎠, (1)

subject to the Heisenberg uncertainty relation Vab + i
2� � 0,

where � = �1 ⊕ �2 such that �i = ( 0 1
−1 0) (i = 1, 2) is the

2×2 symplectic metric corresponding to a single-mode op-
tical field and η, ζ � 0. Without any loss of generality we
consider c1 � 0 and |c1| � |c2|.

The inseparability of a bipartite state manifests as the neg-
ativity under partial transposition. For a two-mode Gaussian
state this corresponds to the minimum symplectic eigenvalue
being less than unity [38], i.e., νmin < 1

2 . In the case of a
two-mode Gaussian state with the standard variance matrix
(1), the condition of νmin < 1

2 is essentially

4(η + ζ )2 > (1 + 4c1c2)2 + 8ηζ
(
1 + 2ηζ − 2c2

1 + c2
2

)
. (2)

On the other hand, the condition of quadrature squeezing
is given as the minimum eigenvalue of the variance matrix
being less than half, i.e., λmin < 1

2 [36]. In the case of the
Gaussian state of interest (1), the minimum eigenvalue is
given as λmin = [(η + ζ ) −

√
(η − ζ )2 + 4c2

1]/2.
We start with the following equation for any Gaussian

state of the form given in Eq. (1): 2(ηζ − c2
1 )(c2

1 − c2
2 ) +

c1(c1 + c2) � 0. The zero on the right-hand side is obtained
for c1 = c2, which describes a separable state. In the case of
an inseparable state the left-hand-side expression is always
greater than zero. Let us consider that the Gaussian state
(1) shows a negative partial transpose (NPT) (2), i.e., 4(η +
ζ )2 = (1 + 4c1c2)2 + 8ηζ (1 + 2ηζ − 2c2

1 + c2
2 ) + δ (δ > 0).

It could then be shown in a straightforward calculation that

2
(
ηζ − c2

1

)(
c2

1 − c2
2

) + c1(c1 + c2) > 0,

4(η + ζ )2 − δ >
[
1 + 4

(
ηζ − c2

1

)]2
,

2(η + ζ ) > 1 + 4
(
ηζ − c2

1

)
,

η + ζ − 1 <

√
(η − ζ )2 + 4c2

1,

(η + ζ ) −
√

(η − ζ )2 + 4c2
1

2
<

1

2
, or λmin <

1

2
.

This completes the proof that for a two-mode Gaussian
state, entanglement necessarily implies quadrature squeezing;
however, the converse is not true since squeezing could be
observed in a separable state as well.

One may wonder whether the same conclusion holds true
for any Gaussian state. It must be noted that the variance ma-
trix for any general Gaussian state could be obtained by local
transformations, i.e., Sp(2, R) ⊕ Sp(2, R) operations applied
in the standard form (1). Since entanglement is independent
of the local operations, the NPT criterion for the standard
form will hold for any other form as well. On the other hand,
the squeezing condition (λmin < 1

2 ) is invariant under general
U(2) operations which form larger set than the symplectic
operations. Thus, under the local operations (as mentioned
above), the conclusion remains invariant. As a consequence,
in conjunction with the earlier result that entanglement is
necessary for QT [29,30], it trivially follows that quadrature
squeezing is necessary for QT in the case of Gaussian entan-
gled resources.

Next we consider the case of non-Gaussian entangled re-
sources.

III. SQUEEZING VS QT WITH NON-GAUSSIAN
RESOURCES

A. Pure states

In the Braunstein-Kimble (BK) protocol for CV QT, since
the practical entangled resources are not maximal, even for
a pure state input |ψin〉, the output state ρout becomes mixed
and an imperfect copy of the input. Consequently, the suc-
cess probability of teleporting an input pure state in the
BK protocol is measured by the corresponding fidelity F =
Tr[|ψin〉〈ψin|ρout] = 〈ψin|ρout|ψin〉. Evaluation of this fidelity
becomes particularly simple in terms of the characteristic
function as

F =
∫

d2z

π
χin(−z)χin(z)χab(z, z∗), (3)

where χin (χab) is the characteristic function corresponding to
the input state (two-mode resource state). In the case of an
unknown coherent input state, the expression of fidelity (3)
further reduces to

Fch =
∫

d2z

π
e−|z|2χab(z, z∗). (4)

The maximum fidelity of teleportation of a coherent state
attainable by a separable state in the BK protocol is 1

2 [29,30].
Evidently, F > 1

2 is considered as QT.
Now we consider the class of non-Gaussian entangled pure

states which are generated at the output of a 50:50 passive
BS where one of the input modes is fed with single-mode
nonclassical states while the other port is left in vacuum. As
specific input states we consider (a) states involving multiple
nonclassicality inducing operations (MNIOs) and (b) the even
and odd coherent superposition states known as the cat states
[39–41]. The MNIO states could be seen as the ones gener-
ated from vacuum by double photon addition or subtraction
in conjunction with quadrature squeezing in different orders.
These states are mathematically defined as

|ψ(2+)〉 = 1√
N (2+)

a†2Sa(r)|0〉,

|ψ(2−)〉 = 1√
N (2−)

a2Sa(r)|0〉,
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|ψ(2)〉 = Sa(r)|2〉,

|ψ(α±)〉 = 1√
N±

(|α〉 ± | − α〉), (5)

where Sa(r) = exp[r(a†2 − a2)/2] and a stands for the spe-
cific mode. The normalization constants are given as N (2+) =
μ2(3μ2 − 1), N (2−) = ν2(3μ2 − 2), and N± = 2(1 ± e−2α2

),
where μ = cosh r and ν = sinh r. The BS action, i.e., UBS,
could be realized as a map between the input and the output
mode operators as described by

U †
BS

(
ain

bin

)
UBS →

(
aout

bout

)
=

(
1/

√
2 1/

√
2

−1/
√

2 1/
√

2

)(
ain

bin

)
. (6)

Entanglement and teleportation characteristics of these states
have already been studied in detail [42,43]. Here we borrow
these results on the teleportation fidelity for the sake of com-
pleteness.

Since all the resource states are obtained with a passive
50:50 BS from input nonclassical states, here we first prove
the following lemma that we will use throughout the rest of
the paper.

Lemma. Beam-splitter output states are quadrature
squeezed only if the input is quadrature squeezed.

Proof. Let us consider the standard form of a single-mode
variance matrix Vsingle = diag{η, ζ } (η, ζ � 1

2 ), while the vari-
ance matrix for the vacuum is given by Vvac = diag{ 1

2 , 1
2 }. For

the sake of simplicity, without any loss of generality, let us
consider η � ζ . Under the action of the BS (6), the output
two-mode variance matrix becomes

Vout =

⎛
⎜⎜⎜⎜⎝

η+ 1
2

2 0
−η+ 1

2
2 0

0
ζ+ 1

2
2 0

−ζ+ 1
2

2
−η+ 1

2
2 0

η+ 1
2

2 0

0
−ζ+ 1

2
2 0

ζ+ 1
2

2

⎞
⎟⎟⎟⎟⎠. (7)

In a very straightforward calculation the minimum eigen-
value for Vout could be shown to given as λmin = min{ 1

2 , η, ζ }.
Evidently, the output state is quadrature squeezed λmin < 1

2
only if ζ < 1

2 (as η � ζ ), i.e., the input states is quadrature
squeezed. This completes the proof. Here we would like to
emphasize the fact that since the quadrature squeezing crite-
rion is U(n) invariant, any local unitary transformation on the
input single-mode variance matrix would leave the conclusion
unchanged.

In Fig. 1 we plot a comparison between the teleportation
fidelity of a coherent state and the quadrature squeezing for
the BS output resource states with an input MNIO class of
states. As evident from the figure, the squeezing parameter
strength required to yield quantum teleportation is higher than
the respective strength required for quadrature squeezing. In
other words, there is no quantum teleportation in the absence
of quadrature squeezing.

Similarly, in Fig. 2 we plot a comparison between telepor-
tation and quadrature squeezing for the BS output resources
with even and odd coherent states as input. It is evident from
the figure that there is a clear distinction between the even and
the odd coherent superposition. While the even superposition
(|ψ(α+)〉) always leads to QT, the odd superposition (|ψ(α−)〉)
never leads to QT. From the respective squeezing character it

FIG. 1. Plot of (a) teleportation fidelity F and (b) lowest eigen-
value of the variance matrix λmin with squeezing strength r for the
MNIO class of input states. Different curves correspond to input
|ψ(2+)〉 (black solid line), |ψ(2−)〉 (blue dashed line), and |ψ(2)〉 (green
dash-dotted line). Horizontal curves (red dotted line) correspond to
the values (a) F = 1

2 and (b) λmin = 1
2 . Plotted quantities are dimen-

sionless.

is quite clear that there is no QT in the absence of quadrature
squeezing.

B. Mixed states

Let us now consider the case of mixed states. As exam-
ples, we focus on the aforementioned pure states suffering
from source error yielding additional thermal noise. Such
noises can appear for several reasons such as imperfect cavity
and spurious noise (naturally appearing in any experimental
setup). Speaking mathematically, these noisy states are de-
scribed as

ρ(2+)(ε) = (1 − ε)|ψ(2+)〉〈ψ(2+)| + ερth(n̄),

ρ(2+)(ε) = (1 − ε)|ψ(2−)〉〈ψ(2−)| + ερth(n̄),

ρ(2)(ε) = (1 − ε)|ψ(2)〉〈ψ(2)| + ερth(n̄),

ρ(α±)(ε) = (1 − ε)|ψ(α±)〉〈ψ(α±)| + ερth(n̄), (8)

where ρth(n̄) = 1
n̄

∑
k ( n̄

1+n̄ )k|k〉〈k|, n̄ represents the average
number of thermal photons, and ε stands for the noise
strength.

FIG. 2. Plot of (a) teleportation fidelity F and (b) lowest eigen-
value of the variance matrix λmin with squeezing strength r for input
even and odd coherent superposition states. Different curves corre-
spond to input |ψ(α+)〉 (black solid line) and |ψ(α−)〉 (blue dashed
line). Horizontal curves (red dotted line) correspond to the values
(a) F = 1

2 and (b) λmin = 1
2 . Plotted quantities are dimensionless.
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FIG. 3. Plot of (a) teleportation fidelity F and (b) lowest eigen-
value of the variance matrix λmin with noise strength ε for the noisy
MNIO states. Different curves correspond to input ρ(2+)(ε) (black
solid line), ρ(2−)(ε) (blue dashed line), and ρ(2)(ε) (green dash-dotted
line). Horizontal curves (red dotted line) correspond to the values
(a) F = 1

2 and (b) λmin = 1
2 . The other parameters are r = 1.5 and

n̄ = 1.0. Plotted quantities are dimensionless.

In Fig. 3 we plot a comparison between teleportation and
squeezing for the input noisy MNIO class of states. It is
evident from the figure that as the noise strength increases, the
difference between the QT and quadrature squeezing becomes
vivid. While the resource states lose quadrature squeezing
(λmin > 1

2 ) for a small noise strength, they still yield QT. This
indicates that in the case of mixed states, QT could be obtained
even without quadrature squeezing.

Similarly, in Fig. 4 we show the relative character of QT
and quadrature squeezing under the effect of noise. We ob-
serve that, very similar to the case of noisy MNIO states
(Fig. 3), here also over a reasonable parameter region QT
exists without quadrature squeezing for the even coherent
superposition. It may also be noted that the odd coherent
superposition does not possess any squeezing character under
any condition.

IV. CONCLUSION

To summarize, in this paper we have analyzed a quan-
tum optical character, namely, the U(2)-invariant quadrature
squeezing in the context of CV teleportation. To that end, we
analytically proved that for Gaussian resources, in general,
quadrature squeezing is necessary for QT. On the other hand,
in the case of non-Gaussian resources we observed a clear
distinction between the pure and the mixed states. We have
elaborated our results by considering a class of states, in
particular, the states obtained at the output of a 50:50 BS
with single-mode nonclassical input states. Our analytic result
showed that in the case of pure states quadrature squeezing is
necessary for QT, in the sense that there is no QT without
quadrature squeezing. However, in the case of mixed states,
we have observed otherwise. In our simple noise model where
the input pure states contain additional thermal noise, there is

FIG. 4. Plot of (a) teleportation fidelity F and (b) lowest eigen-
value of the variance matrix λmin with noise strength ε for input
noisy even and odd coherent superposition states. Different curves
correspond to input ρ(α+)(ε) (black solid line) and ρ(α−)(ε) (blue
dashed line). Horizontal curves (red dotted line) correspond to the
values (a) F = 1

2 and (b) λmin = 1
2 . The other parameters are r = 1.5

and n̄ = 1.0. Plotted quantities are dimensionless.

a finite parameter region over which QT exists even without
quadrature squeezing.

It may be noted that, so far, the characterizations of
the CV resources, in the context of QT, have been mostly
centered around the information-theoretic aspects. With this
background, here we have focused on the respective quan-
tum optical characterization. Although the attribute, namely,
quadrature squeezing, appears to be necessary for QT in the
case of all Gaussian states and the non-Gaussian pure states, it
fails in the case of non-Gaussian mixed states. This indicates
the imminent role of non-Gaussianity arising solely due to
classical mixing in the context of CV QT.

One may further consider similar attributes such as the
sum squeezing and the difference squeezing that might be
an integral component of QT with non-Gaussian optical re-
sources [25]. However, it must be noted that both the sum
squeezing and the difference squeezing could be obtained
from U(2)-invariant quadrature squeezing and vice versa by
a suitable transformation (at the frequency level) [44]. The
present analysis of the U(2)-invariant quadrature squeezing
has revealed the exotic character of the quantum optical at-
tributes of the CV resources and necessitates a deeper search
for the physical attributes, beyond entanglement, that might
be crucial in surpassing the classical limit of teleportation.

Nonetheless, it might also be worth analyzing the role of
quadrature squeezing for important states such as binomial
code [45] or the Gottesman-Kitaev-Preskill code [46] in the
context of quantum teleportation, a one-way quantum compu-
tation [47]. Recent work on teleportation and error correction
of such codes [48] further increases the scope of the present
results to the cluster states, a useful resource in achieving
quantum computation through quantum teleportation [49].
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