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Entanglement is a defining feature of quantum mechanics that can be a resource in engineered and natural
systems, but measuring entanglement in experiment remains elusive especially for large chemical systems. Most
practical approaches require determining and measuring a suitable entanglement witness which provides some
level of information about the entanglement structure of the probed state. A fundamental quantity of quantum
metrology is the quantum Fisher information (QFI), which is a rigorous witness of multipartite entanglement that
can be evaluated from linear response functions for certain states. In this paper, we explore measuring the QFI of
molecular exciton states of the first-excitation subspace from spectroscopy. In particular, we utilize the fact that
the linear response of a pure state subject to a weak electric field over all possible driving frequencies encodes
the variance of the collective dipole moment in the probed state, which is a valid measure for QFI. The systems
that are investigated include the molecular dimer, N-site linear aggregate with nearest-neighbor coupling, and
N-site circular aggregate, all modeled as a collection of interacting qubits. Our theoretical analysis shows that
the variance of the collective dipole moment in the brightest dipole-allowed eigenstate is the maximum QFI. The
optical response of a thermally equilibrated state in the first-excitation subspace is also a valid QFI. Theoretical
predictions of the measured QFI for realistic linear dye aggregates as a function of temperature and energetic
disorder due to static variations of the host matrix show that two- to three-partite entanglement is realizable. This
paper lays some groundwork and inspires measurement of multipartite entanglement of molecular excitons with
ultrafast pump-probe experiments.
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I. INTRODUCTION

Schrödinger famously stated that entanglement is the char-
acteristic trait of quantum mechanics with no classical analog
[1]. An entangled quantum state of a composite many-body
system may be completely known, whereas the states of its
individual constituents are completely unknown—the state
only exists as a whole. Entanglement has been postulated
since the birth of quantum mechanics, but considerable debate
surrounded its validity on account of the Einstein-Podolsky-
Rosen (EPR) paradox [2]. However, the mistaken assumption
of EPR—that physical reality is local—was later disproved
with several experiments [3–5] that violate Bell’s inequalities
of local realism [6]. Entanglement has since been discovered
to be a resource with potential to revolutionize next genera-
tion processes and technologies including quantum metrology
[7,8], teleportation [9–11], cryptography [12], and compu-
tation [13–15]. Entanglement also impacts quantum phase
transitions [16–19], dynamics [20,21], and energy conversion
[22–25]. Despite its potential and prevalence in natural and
engineered systems, entanglement’s experimental realization
remains elusive.

Two main factors contribute to the difficulty of measuring
entanglement. The first is that an entangled system is fragile
and loses its quantumness as a result of interactions with its
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environment. This process known as decoherence [26] is the
evolution of a coherent state into a statistical mixture. As a
result of these interactions, the state’s ability to host entan-
glement is greatly suppressed. The second obstacle is that
entanglement is quantified using information-theoretic mea-
sures such as purity or entropy. These quantities are obtained
by analyzing the state density matrix ρ, which is generally
inaccessible from experiment. Quantum state tomography—a
method to find ρ by a sequence of experiments—is only ap-
plicable to small systems made up of a handful of atoms [27].
The goal from the viewpoint of chemistry is to design com-
plex materials, from molecules to supramolecular assemblies,
for quantum information science (QIS) applications [28,29].
Thus, there is a need for practical approaches to measure
entanglement or, more broadly, nonclassical correlations in
large systems [30–32].

Unlike measures that explicitly depend on ρ, a more prac-
tical approach for measuring entanglement in large systems is
an entanglement witness, where the evaluation of an operator
in a given state may contain information about the state’s en-
tanglement structure. The quantum Fisher information (QFI)
[33] is an entanglement witness and a fundamental quantity
of quantum metrology [7,34]. The QFI quantifies how much a
state changes due to the interaction between an external agent
and internal operator of the system. This distance between
the initial and final states as a result of the interaction relates
to the maximum precision with which the (phase) parameter
generated by the interaction can be estimated; the greater the
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sensitivity of the probed state to the generator, the greater pre-
cision in the estimated parameter. As it turns out, the precision
in the estimated parameter increases with the entanglement
of the probed state. Besides its use in parameter estimation,
the QFI is a rigorous witness of multipartite entanglement
[35–37] and provides signatures of quantum phase transitions
[38,39].

Inspired by the proposed mechanism of entanglement
generation and evolution in photosynthetic light harvesting
systems [23,24,40,41], the focus of this paper is on propos-
ing a way to measure entanglement in molecular aggregates.
Molecular aggregates are assemblies of molecules with strong
near-field Coulomb interactions between electronic excita-
tions of individual molecules. These interactions form exciton
states—electronically excited states delocalized over spatially
separated molecules. Understanding the dynamics of molecu-
lar excitons gained significant attention [42,43] following the
experimental reporting of wavelike beating in spectroscopic
signals which showed the existence of long-lived coherences
in photosynthetic complexes [44]. These experiments posed
fundamental questions about whether the observed coher-
ences are electronic in origin [45–48] and whether they play
a functional role in the remarkably efficient energy transfer
process of photosynthesis [49]. While some issues may be
resolved, such as how the interaction between the system and
environment is not avoided to retain electronic coherences
but rather exploited via a noise-assisted energy transfer pro-
cess [50,51], photosynthetic light harvesting has undoubtedly
opened interesting questions about possible links between co-
herence, nonclassical correlations, and functionality [52,53].
Here, we ask, can we measure some form of nonclassical
correlation such as entanglement of a molecular exciton state?

There exist important theoretical works that have addressed
the topic of quantum state tomography of molecular exci-
tons. Namely, Yuen-Zhou and coworkers presented a method
for characterizing the dynamics of a molecular dimer in the
first-excitation subspace through a series of two-color photon-
echo experiments [54]. Hoyer and Whaley extracted the time
evolution of the excited-state density matrix from the mea-
sured response in nonlinear pump-probe spectroscopy using a
combined experimental and theoretical approach [55]. These
works are ambitious and forward thinking as they ultimately
sought a full characterization of the quantum dynamics–more
formally referred to as quantum process tomography in the
QIS community. Yet there are setbacks in these works that
open opportunities for future work such as extending the
theory of Ref. [54] to larger systems beyond the dimer and
eliminating the use of a predetermined model in Ref. [55]
describing how the system evolves following the probe inter-
action.

This paper presents a theory based on the QFI to measure
entanglement of molecular excitons from spectroscopy in the
linear response. We show that the interaction of the probing
field and collective dipole moment encodes a QFI, and thus
information about the probed state’s entanglement structure.
We apply the theory to pure states as well as thermally
equilibrated mixed states in the first-excitation subspace, the
latter of which are experimentally feasible to probe. We
present results of realistic linear dye aggregates showing the
dependence of the witnessed multipartite entanglement with

temperature and energetic disorder, ranging from two-partite
and reaching three-partite entanglement. We measure, con-
clusively, multipartite entanglement of excitons in nanoscale
systems.

II. BACKGROUND

A. Model

Molecular aggregates are a collection of interacting chro-
mophores commonly modeled by the Holstein Hamiltonian
consisting of N two-level sites each with an electronic
ground and excited state. Assuming neutral molecules, the
chromophores are coupled through an electrostatic Coulomb
interaction dominated by a dipole-dipole term. The effects
of the environment on the electronic system, i.e., electron-
phonon interactions, are commonly modeled by coupling each
site to a collection of local phonon modes. The combined
Hamiltonian (h̄ = 1) is given by

H =
N∑
n

ωnσ
+
n σ−

n +
N∑

m,n �=m

Jmn(σ+
m σ−

n + σ−
m σ+

n )

+
N∑
n

∑
k

�ka†
n,kan,k +

N∑
n

σ z
n

∑
k

gn,k (an,k + a†
n,k ).

(1)

The first two terms make up the electronic system (Hsys) where
σ+

n (σ−
n ) is the electronic raising (lowering) operator, ωn is the

electronic transition frequency, and Jmn is the dipole-dipole
coupling between sites m �= n. The third term of H is the
phononic contribution (Henv) where a†

n,k (an,k) is the phononic
creation (annihilation) operator associated to the kth phonon
mode coupled to site n and �k is the phononic frequency.
The last term of H models linear electron-phonon coupling
(Hsys-env) with coupling strength gn,k , which is a function of the
Huang-Rhys factor [56]. The Hamiltonian of Eq. (1) neglects
interaction terms that couple site local ground and excited
states since radiative and nonradiative decay to the excitonic
ground state are assumed to occur on much longer timescales
than other dynamics of interest. Within this approximation,
the number of electronic excitations is a conserved quan-
tity [

∑N
n σ+

n σ−
n , H] = 0. Therefore, the Hilbert space is a

direct sum over different electronic excitation subspaces H =
H0 ⊕ H1 ⊕ H2 ⊕ · · · HN . In this paper, our inspiration comes
from biomolecular systems where photoexcitation is weak
and/or doubly excited states are strongly suppressed. Thus,
we focus our attention on exciton dynamics confined to the
one-excitation subspace H1.

B. Exciton states and entanglement

The most basic system illustrating delocalized and en-
tangled exciton states in the absence of phononic degrees
of freedom is a dimer (N = 2). The Hilbert space of chro-
mophores A and B can be expanded in terms of site (localized)
basis states |00〉 , |10〉 , |01〉, and |11〉 where 0 and 1 re-
fer to zero and one excitations, respectively. For example,
|01〉 hosts zero excitations on A and one excitation on
B. The Hamiltonian of this purely electronic system is
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given by

|00〉 |10〉 |01〉 |11〉

H =
|00〉
|10〉
|01〉
|11〉

⎡
⎢⎣

0 0 0 0
0 ωA −J 0
0 −J ωB 0
0 0 0 ωA + ωB

⎤
⎥⎦ (2)

The ground |ε0〉 = |00〉 and doubly excited states |ε3〉 = |11〉
are eigenstates with eigenenergies 0 and ωA + ωB, respec-
tively, whereas the coupling JAB = −J couples the singly
excited states |10〉 and |01〉 giving rise to delocalized eigen-
states (|ε1〉

|ε2〉
)

=
(

cos θ sin θ

− sin θ cos θ

)(|10〉
|01〉

)
(3)

with eigenenergies ε1,2 = (ωA + ωB)/2 ∓
1
2

√
4J2 + (ωA − ωB)2 and where θ is a mixing angle defined

by tan 2θ = 2J/(ωB − ωA). The degree of entanglement
of the exciton states [Eq. (3)] depends on θ which can be
characterized with information-theoretic measures.

One such measure is the quantum purity defined as Tr(ρ2)
which classifies pure and mixed states. It is bounded by
1/d � Tr(ρ2) � 1, where d is the dimension of the Hilbert
space with Tr(ρ2) = 1 for pure states and Tr(ρ2) < 1 for
mixed states. From a quantum information standpoint, all is
known for pure states, whereas for mixed states, there is loss
of information. The magnitude of Tr(ρ2

AB) compared to that of
one of its subsystems Tr(ρ2

A) can determine whether partitions
A and B are entangled by the conditions:

Tr
(
ρ2

A

)
< Tr

(
ρ2

AB

)
, (4a)

Tr
(
ρ2

B

)
< Tr

(
ρ2

AB

)
. (4b)

The loss of information in ρA (ρB) with respect to ρAB in
Eq. (4) signifies that there exist quantum correlations between
A and B, making it impossible to completely know the state
of A (B) independently. A density matrix of a subsystem or
a reduced density matrix is calculated by averaging over the
information pertaining to all other subsystems ρA = TrB(ρAB).
For bipartite systems, Tr(ρ2

A) = Tr(ρ2
B). For either of the ex-

citon states in Eq. (3),

Tr
(
ρ2

A

) = cos4 θ + sin4 θ, (5)

which is <1 unless J = 0 (θ = {0, π/2}). In the limit of
maximal mixing cos θ = sin θ = 1/

√
2, the states are the

well-known maximally entangled Bell states [57].
Equation (1) models an electronic system coupled to

a phononic bath at temperature T , which thermalizes the
exciton. In this paper, we are interested in probing the en-
tanglement of experimentally feasible (quasi) steady states in
the first-excitation subspace. The excitonic density matrix in
the long-time limit after averaging over phonons is ρAB(t →
∞) = e−βH1/Z with inverse temperature β = 1/kBT and par-
tition function Z = Tr(e−βH1 ). To demonstrate the presence
of entanglement and its dependence on temperature, we con-
sider a dimer system the parameters of which are inspired by
the dominant dimeric structure in the Fenna-Matthews-Olson
complex given by sites 3 and 4 [58]. The site energies of the
chromophores are ωA = 12 328 cm−1 and ωB = 12 472 cm−1

FIG. 1. Entanglement of a dimer in a thermally equilibrated state
in the first-excitation subspace as a function of inverse tempera-
ture. Bipartite entanglement is computed with purity (left axis) and
concurrence (right axis). The state is entangled for all temperatures
since Trρ2

A < Trρ2
AB [Eq. (3)] and C(ρAB) > 0 where the amount of

entanglement increases with decreasing temperature. Parameters of
the dimer model are provided in the text

with dipole coupling J = 70.7 cm−1. The purities calculated
for the dimer and one of its subsystems are given by

Tr
(
ρ2

AB

) = e−2βε1 + e−2βε2

Z2
, (6a)

Tr
(
ρ2

A

) = (e−βε1 cos2 θ + e−βε2 sin2 θ )2

Z2

+ (e−βε1 sin2 θ + e−βε2 cos2 θ )2

Z2
. (6b)

Equation (6) is plotted in Fig. 1 along with the concurrence
C(ρAB), commonly used to characterize the entanglement of
two qubits in a mixed state, and ranges from C(ρAB) = 0 for a
separable state to C(ρAB) = 1 for a maximally entangled state
[59]. Purity and concurrence show a similar relationship in
which not only is the state entangled but the amount of en-
tanglement increases with decreasing temperature, eventually
leveling off at temperatures less than ≈72 K (β = ≈50 cm).

But while entanglement measures such as purity and
concurrence are insightful, they are difficult to measure ex-
perimentally because they explicitly depend on elements of ρ,
which are not readily available. Additionally, bipartite mea-
sures are unable to provide information about the multipartite
entanglement structure of the state of interest with a single
measurement. For example, in order to establish that all sub-
systems of a state are entangled using a bipartite measure,
all combinations of two partitions must be entangled. This
paper brings attention to the QFI, which is a rigorous wit-
ness of multipartite entanglement with relevance to electronic
spectroscopy. A key question that we pose and answer is the
following: Can spectroscopy be used to provide information
about the entanglement of the probed state similar to that
provided in Fig. 1?

III. THEORETICAL FRAMEWORK

A. Quantum Fisher information

The QFI is a fundamental quantity of quantum metrology.
It quantifies the maximal precision with which a parameter θ
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can be estimated in a given state. Such parameters are gen-
erally explicit in the Hamiltonian and become encoded in the
quantum state during the dynamics such as a driving magnetic
field [60,61]. The variance of θ is bounded by the QFI through
the quantum Cramér-Rao bound, 〈(
θ )2〉 � 1/(νFQ), where
ν is the number of independent measurements. For a pure state
|ψ〉,

FQ = 4(〈∂θψ |∂θψ〉 + |〈∂θψ |ψ〉|2). (7)

While θ can be more precisely estimated by increasing ν,
repeated measurement on the same initially prepared state is
difficult and often impractical. Thus, increasing the QFI is a
central task of quantum metrology. The amount of θ infor-
mation that is encoded in ρ changes as the system evolves.
For infinitesimally small changes in θ , the wave function
can be represented by a unitary transformation |ψθ+δθ 〉 =
e−iδθO |ψθ 〉, where O is the Hermitian generator of θ . That
is, O is the observable that generates a unitary transformation
of the state with respect to parameter θ . Equation (7) becomes

FQ = 4(〈ψ |O2 |ψ〉 − 〈ψ |O |ψ〉2), (8)

which is proportional to the variance of O. For a mixed state,
the transformation of ρ =∑λ pλ |λ〉 〈λ| is given by ρθ+δθ =
e−iδθOρθeiδθO and the QFI takes a more complicated form:

FQ = 2
∑
λ,λ′

(pλ − pλ′ )2

pλ + pλ′
|〈λ|O |λ′〉|2 (9)

where the sum is over combinations of states |λ〉 and |λ′〉 for
which pλ + pλ′ > 0.

The limit of the QFI differs in the case of separable versus
entangled states. Consider a system with N identical sites and
a local generator O =∑N

i Oi where Oi acts on the ith site.
The spectral width of Oi is (λM − λm) where λM and λm are
the largest and smallest eigenvalues of Oi, respectively. In the
case of a separable state

FQ � N (λM − λm)2 (10)

where the equality in Eq. (10) is called the shot-noise limit
〈(
θ )2〉 � 1/[νN (λM − λm)2] whereas for an entangled state

FQ � N2(λM − λm)2 (11)

showing that the QFI (Eq. (11)) surpasses the shot-noise limit
〈(
θ )2〉 � 1/[νN2(λM − λm)2] and establishes the usefulness
of entangled states for precision measurements. Saturation of
Eq. (11) is called the Heisenberg limit and it can only be
achieved with a maximally entangled state. It is important
to note that although a state may be entangled, detecting the
state’s entanglement depends on the choice of generator O.
Characterizing entanglement via QFI can be accomplished by
maximizing the QFI, normalized by (λM − λm)2, with respect
to O.

The authors of Ref. [37] established bounds on the QFI
for multipartite entanglement classes where the magnitude
of QFI determines the number of entangled sites in a given
state. Fundamental to the proof is the concept of n pro-
ducibility. A pure state is n producible if it can be written
as |ψn-prod〉 = ⊗M

l=1 |ψl〉, where |ψl〉 is a state of Nl � n sites
(such that

∑M
l=1 Nl = N). A state is n-partite entangled if

it is n producible but not (n − 1) producible. Therefore, a

n-partite entangled state can be written as a product |ψn-ent〉 =
⊗M

l=1 |ψl〉 containing at least one state with Nl = n sites
that does not factorize. For example, the three-body state
|ψ2-ent〉 = |φ〉1 ⊗ |χ〉23 is two-partite entangled since |χ〉23
does not factorize. The same condition holds for mixed states.

For a system with N qubits, a general generator is given by

O = 1

2

N∑
i

ni · σi (12)

where ni · σi acts on the ith site. Here, ni is a unit vector on the
Bloch sphere and σi is a vector of the Pauli spin-1/2 matrices.
The following condition bounds n-producible states:

FQ � sn2 + r2 (13)

where s = �N
n � is the largest integer smaller than or equal to

N
n and r = N − sn. A violation of Eq. (13) proves (n + 1)-
partite entanglement. This proof applies to spins greater than
1/2 provided that the spectra of local operators (λM − λm) are
of unit width, as in the case of 1

2 (ni · σi ).

B. QFI and linear response theory

Of central importance to this paper is that the QFI is
related to linear response theory and becomes a measurable
quantity assuming that the chosen generator is experimentally
accessible. The QFI of a pure state can be expressed in terms
of a response function [62]. The same is true for thermal
ensembles [63]. Consider a material Hamiltonian, H0, per-
turbed by a time-dependent interaction, H (t ) = H0 + f (t )O,
where O is the interaction between the external agent and
internal operator of the system and f (t ) is the time depen-
dence of the perturbation. In the limit of weak coupling, the
expectation value of O in the probed state ρ is 〈O(t )〉 =
〈O〉 + ∫∞

0 dτ f (t − τ )R(τ ), where R(τ ) is the linear response
function. The transformation of R(τ ) to the frequency domain
is

χ (ω) = i

h̄

∫ ∞

0
dteiωt Tr{ρ[O(t ),O(0)]} (14)

where O(t ) = eiH0t/h̄Oe−iH0t/h̄. Without loss of generality, we
consider a state ρ =∑λ pλ |λ〉 〈λ| where |λ〉 is an eigenstate
of H0 with energy Eλ. The imaginary component of χ (ω) is

χ ′′(ω) = π
∑
λ,λ′

(pλ − pλ′ )|〈λ|O |λ′〉|2δ(h̄ω + Eλ − Eλ′ ).

(15)
The QFI of a pure state [Eq. (8)] is an integral over χ ′′(ω) with
respect to driving frequencies ω. Assuming the system is in
energy eigenstate |ψ〉 and 〈ψ |O |ψ〉 = 0, integrating Eq. (15)
and taking the sum over λ′ using the completeness relation∑

λ′ |λ′〉 〈λ′| = 1 gives

FQ = 4h̄

π

∫ ∞

0
dωχ ′′(ω). (16)

χ ′′(ω) can also be expressed in terms of correlation functions,
χ ′′(ω) = 1

2h̄ [C̃(ω) − C̃(−ω)], where C̃(ω) is the Fourier
transform of C(t ) = 〈O(t )O(0)〉:

C̃(ω) =
∫ ∞

−∞
dt〈O(t )O(0)〉eiωt . (17)
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Due to dephasing and dissipation, the system decoheres and
the correlation function C(t ) generally tends to zero. A key
feature that we will call attention to later in greater detail is
that Eq. (16) does not rely on any assumption about the form
of dephasing and dissipation experienced by the system.

C. QFI and spectroscopy

The experimentally accessible generator from linear spec-
troscopy is the interaction between a weak (classical) electric
field and the system’s dipole moment O = −μ · E where
μ =∑N

i μiσ
x
i and N is the number of sites. We refer to

O as the dipole-field generator. The spectrum of the dipole
autocorrelation function is given by (with E = μ̂)

I (ω) =
∫ ∞

−∞
dt〈μ(t )μ(0)〉eiωt , (18)

which encodes transitions between the probed state |ψ〉 and
all other states |λ〉 with nonzero transition dipole moment
〈ψ | μ |λ〉 �= 0 made up of contributions from stimulated emis-
sion and excited-state absorption. For pure probed states and
〈ψ | μ |ψ〉 = 0, the QFI can be expressed as

FQ = 2

π

∫ ∞

−∞
dωI (ω). (19)

Equation (19) is a direct consequence of
∫∞
−∞ dωeiωt =

2πδ(t ), where δ(t ) is the Dirac delta function. An alternative
form of the QFI in terms of the symmetric correlation func-
tion, S(ω) = 1

2 [C̃(ω) + C̃(−ω)], is

FQ = 4

π

∫ ∞

0
dωS(ω). (20)

D. QFI of the thermal exciton state from spectroscopy

Although the QFI of a pure state can be evaluated from
optical response, pure exciton states are very short lived
as electronic energy converts to phonons (i.e., nonradiative
decay) almost immediately following photoexcitation, pre-
cluding the measurement of their QFI. Here we show how the
optical response of a quasiequilibrium thermal vibronic state
in the first-excitation subspace is also a valid QFI. The system
relaxes into a thermal state in the first-excitation subspace
with reduced state ρ

eq
sys =∑N

n pn |εn〉 〈εn| where

pn =
{

exp (−εn/kBT )/Z for n ∈ first-exc. subspace
0 otherwise

(21)
and Z =∑N

n exp(−εn/kBT ). Evaluating the QFI [Eq. (9)] of
this state with the dipole-field generator results in

FQ = 4
N∑

m,n

pn|〈εn|μ|εm〉|2 (22)

where the sums over m and n run over all excitonic states
including those outside of the first-excitation subspace. The
sum over m is a completeness relation and the QFI becomes

FQ = 4
N∑
n

pn〈εn|μ2|εn〉 (23)

which is precisely equal to the QFI determined from op-
tical response [Eq. (19)] with spectrum given by I (ω) =∫∞
−∞ dt Tr[ρeq

sysμ(t )μ(0)]eiωt . Importantly, Eq. (23) connects
entanglement with the optical response of an experimentally
realizable exciton state. It is worth stressing that the QFI for a
mixed state is complicated; Eq. (23) does not apply for general
O. The reason the QFI is related to optical response for mixed
states in the first-excitation subspace, such as ρ

eq
sys, is that the

dipole-field generator connects states that differ by one exci-
tation O ∝∑N

i σ x
i where σ x

i = σ+
i + σ−

i , and the QFI, which
measures the dipole-allowed susceptibility, is strictly depen-
dent on transitions between the populated first-excitation
subspace and the unpopulated zero- and second-excitation
subspaces. In other words, the dipole-field generator does not
induce transitions within the first-excitation subspace that is
being probed.

IV. RESULTS AND DISCUSSION

A. QFI of the dimer from spectroscopy

We now apply the theory to the dimer model given by
Eq. (1) with N = 2. The dipole-field generator is chosen to
be O = 1

2

∑N
i σ x

i which validates the n-partite entanglement
relation of Eq. (13). The generator expressed in terms of the
exciton states is given by

O = α |ε0〉 〈ε1| + β |ε0〉 〈ε2| +α |ε1〉 〈ε3| + β |ε2〉 〈ε3| +H.c.,
(24)

where α = (cos θ + sin θ )/2 and β = (cos θ − sin θ )/2.
Equation (24) invokes the Franck-Condon approximation
which states that phonons are slow compared to electrons
during an electronic transition and therefore the dipole
moment is a function of electronic degrees of freedom only.
The time dependence of O is determined with the unitary
rotation O(t ) = U †O(0)U where U is the time-evolution
operator. Expanding U in the exciton basis,

U =
N∑
n

e−iεnt/h̄ |εn〉 e−iH ′
nt/h̄ 〈εn| (25)

where elements of U are eigenvalues with respect to excitons
and operators with respect to phonons. Without loss of gen-
erality, Eq. (25) assumes sites are coupled to a distribution of
global phonon modes such that bosonic operators an,k = ak

and interaction strengths gn,k = gk are independent of site
index n. In doing so, U = e−iHsyst/h̄e−i(Hsys-env+Henv )t/h̄ since
[Hsys, Hsys-env + Henv] = 0. H ′

n is the phononic contribution
in the nth exciton state e−iH ′

nt/h̄ = 〈εn| e−i(Henv+Hsys-env )t/h̄ |εn〉
which is diagonal in the exciton basis because the system
operator σ z =∑N

n σ z
n of the system-environment interaction

shares a common eigenbasis with the electronic Hamiltonian
[σ z, Hsys] = 0. Evaluating O(t ),

O(t ) = αei(ε0−ε1 )t/h̄ |ε0〉 eiH ′
0t/h̄e−iH ′

1t/h̄ 〈ε1|
+ βei(ε0−ε2 )t/h̄ |ε0〉 eiH ′

0t/h̄e−iH ′
2t/h̄ 〈ε2|

+ αei(ε1−ε3 )t/h̄ |ε1〉 eiH ′
1t/h̄e−iH ′

3t/h̄ 〈ε3|
+ βei(ε2−ε3 )t/h̄ |ε2〉 eiH ′

2t/h̄e−iH ′
3t/h̄ 〈ε3|

+ H.c. (26)
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The dipole autocorrelation function C(t ) = 〈μ(t )μ(0)〉 for the
system initially prepared in |ε0〉 is given by

C(t ) = (cos θ + sin θ )2

4
ei(ε0−ε1 )t/h̄〈eiH ′

0t/h̄e−iH ′
1t/h̄〉

+ (cos θ − sin θ )2

4
ei(ε0−ε2 )t/h̄〈eiH ′

0t/h̄e−iH ′
2t/h̄〉 (27)

where the system and environment are assumed to be separa-
ble ρsys ⊗ ρenv although this assumption is not a requirement
for the theory to hold true, and 〈· · · 〉 denotes a thermal av-
erage over phonons. The terms of Eq. (27) correspond to
transitions from the ground state to the first-excitation sub-
space: |ε0〉 → |ε1〉 and |ε0〉 → |ε2〉. The dephasing function
Fmn(t ) = 〈eiH ′

mt/h̄e−iH ′
nt/h̄〉 measures the overlap between the

phonon wave packets on |εm〉 with the same phonon wave
packets initially prepared on |εn〉. The dephasing function
modulates the energy gap εn − εm and is the source of homo-
geneous broadening and vibronic progression. Fmn(t ) is often
approximated with the second-cumulant expansion

Fmn(t ) = e−iλmnt/h̄−gmn(t ) (28)

with decaying part given by

gmn(t ) =
∫ ∞

0
dωρmn(ω)[coth (h̄ω/2kBT )(cos ωt − 1)

+i sin ωt] (29)

where λmn = h̄
∫∞

0 dωωρmn(ω) is the reorganization energy
and ρmn(ω) is the spectral density which encodes the distri-
bution of normal-mode frequencies weighted by the strength
with which each mode couples to the |εm〉 → |εn〉 transition
[56]. Although ρmn(ω) significantly affects the line shape, the
QFI which is an integral over the spectrum given by Eq. (19)
is a conserved quantity on account of the Dirac delta function∫∞
−∞ dωeiωt = 2πδ(t ). Thus, there are no limitations on the

form of the probed pure state, the system-environment inter-
action Hsys-env, or ρmn(ω) to validate the theory. The QFI of
the ground state |ε0〉 is simply the sum of the prefactors in
the correlation function (multiplied by 4) resulting in FQ = 2,
which is the maximum value for a separable state (i.e., shot-
noise limit for N = 2). There is no choice of O that will give
a QFI above this value.

The QFI is more interesting in the case of |ε1〉, which
unlike |ε0〉 is entangled. The correlation function is

C(t ) = (cos θ + sin θ )2

4
ei(ε1−ε0 )t/h̄〈eiH ′

1t/h̄e−iH ′
0t/h̄〉

+ (cos θ + sin θ )2

4
ei(ε1−ε3 )t/h̄〈eiH ′

1t/h̄e−iH ′
3t/h̄〉. (30)

The first term corresponds to stimulated emission |ε0〉 ← |ε1〉
and the second term corresponds to excited-state absorption
from the first- to second-excitation subspace |ε1〉 → |ε3〉. The
QFI is

FQ = 2 + 4 sin θ cos θ

= 2 + 4J√
4J2 + (ωA − ωB)2

.
(31)

Here, we see how the QFI depends on site energies and cou-
pling. The minimum QFI occurs if J = 0 corresponding to a

FIG. 2. Entanglement measures of |ε1〉 = cos θ |10〉 + sin θ |01〉
evaluated with purity given by Eq. (5) (left axis) and QFI given
by Eq. (31) (right axis). The generator used to compute the QFI is
O = 1

2

∑N
i σ x

i . FQ > 2 (for N = 2) indicates the state is entangled.
The QFI (and purity) show maximum entanglement at the Bell state
|ε1〉 = 1√

2
|10〉 + 1√

2
|01〉 and monotonically decrease (and increase)

in the regime of large site energy mismatch |ωA − ωB| � |J|.

separable state. The maximum QFI occurs if ωA = ωB, J > 0
(θ = π/4) corresponding to one of the famous Bell states.
Equation (31) and purity [Eq. (5)] are shown in Fig. 2 for
comparison.

Although a given state may be entangled, its entanglement
is not necessarily detected via a dipole-field interaction. A
worthwhile inquiry therefore is to evaluate the maximum QFI
and determine how effective the dipole-field generator is at
witnessing the entanglement. The maximum QFI can be eval-
uated by taking the general two-level generator [Eq. (12)] and
maximizing the result with respect to site Bloch vectors n1 and
n2. The QFI in terms of n1 and n2 is

FQ = 2 ± 2
(
nx

1nx
2 + ny

1ny
2

)
sin 2θ − 2nz

1nz
2

− (nz
1 − nz

2

)2
cos2 2θ (32)

where the “+” and “−” solutions are those of the exciton
states |ε1〉 and |ε2〉, respectively. The x̂ and ŷ components must
be parallel or antiparallel depending on the sign of ± sin 2θ .
By setting nx

1nx
2 + ny

1ny
2 = sgn(± sin 2θ ) − nz

1nz
2 and maximiz-

ing with respect to nz
1 and nz

2, one finds nz
1 = nz

2 = 0. The
maximum QFI for both |ε1〉 and |ε2〉 is

F max
Q = 2 + 4|J|√

4J2 + (ωA − ωB)2
. (33)

While the single-excitation states host the same degree of
entanglement, the choice of n1 · n2 that maximizes the QFI
depends on the sign of J . The maximum QFI for J > 0 is
achieved for n1 · n2 = 1 for |ε1〉 and n1 · n2 = −1 for |ε2〉.
This condition is inverted if J < 0. In summary, the single-
excitation states are entangled if J �= 0, but the measured
QFI via the dipole-field interaction is the maximum QFI only
in the case of |ε1〉 for J > 0 and |ε2〉 for J < 0. To further
demonstrate, the QFI of |ε2〉 computed with the dipole-field
generator is

FQ = 2 − 4 sin θ cos θ

= 2 − 4J√
4J2 + (ωA − ωB)2

, (34)
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FIG. 3. Heatmap of entanglement measures for a thermally equilibrated exciton state of the dimer (N = 2) as a function of sin 2θ =
2J/
√

4J2 + (ωA − ωB )2 and J/kBT . Entanglement measures include the QFI computed with the dipole-field generator (left panel), the
maximum QFI (middle panel), and the concurrence (right panel). The dipole-field generator is able to detect an entangled state for J > 0
only, whereas the maximum QFI and concurrence show that the state is entangled for all J �= 0, and the degree of entanglement is symmetric
around J = 0.

which shows that entanglement is not detected (FQ � 2) if
J � 0 and detected (FQ > 2) if J < 0.

But for all practical purposes, an initially prepared pure
state will relax very quickly on an ultrafast timescale, pre-
cluding the state from being probed. The system will relax
nonradiatively into lower-lying exciton states until it reaches
a thermal state in the first-excitation subspace [Eq. (21)].
Remarkably, the optical response of this thermal state is still
a valid QFI [Eq. (23)]. Evaluating Eq. (23) for the dimer with
the dipole-field generator gives (Appendix A)

FQ = 2 + 2 tanh

(
1

kBT

∣∣∣∣ J

sin 2θ

∣∣∣∣
)

sin 2θ. (35)

This result is plotted in Fig. 3 (left panel) in the form of
a heatmap as a function of sin 2θ given in Eq. (31), which
quantifies both the sign of the coupling and the mismatch in
site energies, and the ratio of the coupling to thermal energy
J/kBT . The QFI computed with the dipole-field generator
is an entanglement witness only in the regime J > 0 where
FQ > 2. For J < 0 however, entanglement is not detected. The
maximum QFI (Appendix A)

F max
Q = 2 + 2 tanh

(
1

kBT

∣∣∣∣ J

sin 2θ

∣∣∣∣
)

|sin 2θ | (36)

shows that the degree of entanglement is symmetric around
J = 0 [Fig. 3 (middle panel)]. The left and middle panels
of Fig. 3 differ because the low-energy state, which is more
populated at thermal equilibrium, is the bright state when
J > 0; the optical response of this thermal state is depen-
dent on the dipole susceptibility of this low-energy state. On
the other hand when J < 0, the high-energy state dominates
the response, but there is a competing effect in which in-
creasing the high-energy state’s population with increasing
temperature also lessens the state’s entanglement. Although
the response increases with temperature, it does not surpass
the shot-noise limit and therefore the state’s entanglement
cannot be witnessed via the dipole-field interaction. The con-
currence shown in Fig. 3 (right panel) is in agreement with the
maximum QFI in Fig. 3 (middle panel).

B. QFI of the linear aggregate with nearest-neighbor coupling

We now focus our discussion on larger aggregates with
arbitrary N > 2. The exciton states and energies of the pris-
tine linear aggregate with identical site energies ωn = ω and
nearest-neighbor couplings Jmn = −Jδm,n±1 with open bound-
ary conditions are

∣∣ψL
k

〉 =
√

2

N + 1

N∑
n=1

sin

(
πkn

N + 1

)
|n〉 , (37a)

εL
k = −2J cos

(
πk

N + 1

)
(37b)

for k = 1, 2, . . . , N [64]. The QFI of state k with the dipole-
field generator is (Appendix B)

F k
Q = (N − 2) + 2

(
1 − (−1)k

N + 1

) sin2
(

πkN
2(N+1)

)
sin2

(
πk

2(N+1)

) . (38)

Figure 4 (left panel) shows Eq. (38) as a function of N for
k = 1, 3, and 5 as well as the n-partite entanglement classes
[Eq. (13)]. The QFI is largest for k = 1 corresponding to
three-partite entanglement. The QFI decreases with increasing
k and, for a given N , there exists a k = k′ above which the QFI
falls below the shot-noise limit FQ = N ; the entanglement of
states k > k′ can no longer be detected with the dipole-field
generator. The smallest k′ such that F k′

Q > N , distinguishing
the entangled and separable regimes, is shown in Fig. 4 (mid-
dle panel).

Unfortunately, we were unable to obtain an analytical so-
lution of the maximum QFI for linear aggregates with general
N > 2. Instead, we present results of a numerically optimized
QFI in a small aggregate with N = 7 shown in Fig. 4 (right
panel). The maximum QFI of the k = 1 state is obtained with
the dipole-field generator, but for k > 1, the QFI decreases
exponentially [similar to Fig. 4 (left panel)]. The maximum
QFI is symmetric around the center of the band (k = 4)
with maximum entanglement at the band edges and minimum
entanglement at the center; the dipole-field generator is lim-
ited to characterizing the k = 1 state only. Note the parallels
between the QFI computed with the dipole-field generator
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FIG. 4. QFI of the linear aggregate with nearest-neighbor coupling. Left panel: QFI as a function of number of sites N for the k = 1, 3,
and 5 states computed with the dipole-field generator. The maximum QFI of the brightest state (k = 0) of the circular aggregate given by
3N − 2 and the bounds of n-partite entanglement classes [Eq. (13)] are also shown. Only the k = 1 state is in the regime of three-partite
entanglement, and it is bounded from above by 3N − 2 for all N > 2. The upper bound is reached only for the dimer (N = 2). Middle panel:
The k = k′ state that splits the band between states the entanglement of which can and cannot be witnessed via a dipole-field interaction. Right
panel: A comparison between the QFI computed with the dipole-field generator and the numerically obtained maximum QFI (using Bayesian
optimization) for an N = 7 aggregate shows that the QFI of the brightest state (k = 1) is maximized with the dipole-field generator.

and the ground- to excited-state transition dipole moment
(squared) given by

(
μL

k

)2 = μ2

(
1 − (−1)k

N + 1

)
cot2

(
πk

2(N + 1)

)
, (39)

which relates directly to stimulated emission [64]. The k = 1
state is both strongly susceptible to the dipole-field generator
and the brightest state of the system. The susceptibility of a
general state k asymptotically scales with its transition dipole
moment, and similar to (μL

k )2, which drops off as k−2 for k �
N , so too does Eq. (38).

To provide more rigor to the claim that the maximum
QFI of the k = 1 state can be obtained with the dipole-field
generator, we turn to aggregates with periodic boundary con-
ditions (i.e., circular aggregates) with indistinguishable sites
and couplings that are not limited to nearest neighbors. The
main motivation to study circular aggregates is that natural
photosynthetic proteins such as LH1 and LH2 have a circular
architecture [40]. Additionally, circular aggregates are often
used to model linear aggregates with N � 1 because of their
simple exciton states given by

∣∣ψC
k

〉 = 1√
N

N∑
n=1

e2π i(kn/N ) |n〉 (40)

for k = 0, 1, . . . , N − 1 [64]. Unique to the circular ag-
gregate is that oscillator strength is concentrated in the
super-radiant k = 0 state, which is due to permutational in-
variance among the sites. This symmetry is broken in the
linear aggregate because sites are not equivalent, and oscil-
lator strength is distributed among a number of low k states
[Eq. (39)]. In the limit of large N � 1, the circular and linear
aggregates exhibit identical spectroscopic properties because
the low k bright states of the linear aggregate become degener-
ate with its k = 1 state. The maximum QFI of the k = 0 state
is as an upper bound on the maximum QFI for the k = 1 state
of the linear aggregate for all N . To that end, we were able
to find that the dipole-field generator maximizes the QFI of

the k = 0 state resulting in FQ = 3N − 2 (Appendix D). This
result is plotted in Fig. 4 (left panel) along with Eq. (38), con-
firming that the k = 1 state of the linear aggregate is limited
to three-partite entanglement.

Delocalization is a common measure in the context of
molecular excitons which begs for consideration of how de-
localization and multipartite entanglement compare to one
another. We believe that their correspondence is ambiguous
or at least unknown. Let us take for example our analysis of
the k = 0 state of Eq. (40) which was shown in Appendix D
to be three-partite entangled for N � 3. Delocalization of a
general state |ψ〉 =∑N

i ci |ψi〉, with expansion coefficients ci

and basis states |ψi〉, can be quantified with the participation
ratio (PR) expressed as (

∑N
i |ci|2)2/

∑N
i |ci|4, ranging from

1 (localized to a single site) to N (equally delocalized across
all N sites) [65]. The PR of the k = 0 state of Eq. (40) is N
which clearly grows with N , whereas the multipartite entan-
glement does not. While PR > 1 signifies at least bipartite
entanglement, beyond that, how PR relates to multipartite
entanglement is not clear. Therefore, entanglement is likely
fundamentally different from delocalization.

For a thermally equilibrated exciton state of the linear
aggregate, we find that for J < 0 the state’s entanglement
cannot be detected from linear spectroscopy (Fig. 5). Again,
this effect is because the brightest state is located at the top
of the band which hosts very little population and only be-
comes populated with increasing temperature. But increasing
temperature is also detrimental to the entanglement of the
state. Therefore, although the optical response increases with
temperature, the entanglement cannot be detected from linear
spectroscopy even if it exists. This scenario is unlike J > 0
for which the brightest state is at the bottom of the band.
Witnessing three-partite entanglement rapidly decreases with
increasing N because the low-energy bright states become
closer in energy and their Boltzmann populations become
more alike. As a result, the relative population of the brightest
k = 1 state decreases and the contribution of this state to the
overall optical response decreases as well.
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FIG. 5. Heatmap of the QFI per number of sites FQ/N for a
thermally equilibrated exciton state of the linear aggregate with
nearest-neighbor coupling as a function of N and J/kBT . The
entanglement of aggregates with J > 0 can be realized with the
dipole-field generator, whereas the entanglement of aggregates with
J < 0 cannot. The witnessed entanglement is at least two-partite for
all N � 2, and at most three-partite.

C. QFI of linear dye aggregates with static energy disorder

We shall now model the measured QFI for realistic ag-
gregates. The systems under consideration are prototypical
J aggregates (J > 0) of the dye pseudoisocyanine (PIC) the
spectroscopic properties of which are understood from theory.
The authors of Ref. [66] modeled the temperature-dependent
absorption linewidth of such aggregates and found excellent
quantitative agreement to experiment. Their model considers
the dephasing of excitons and static energy disorder. As previ-
ously described in Sec. IV A, the measured QFI is independent
of the homogeneous line broadening in the optical response
due to exciton-phonon interactions. However, the effect of
static disorder on the measured QFI has yet to be addressed,
which we incorporate in our analysis here.

Static variations of the chemical environment in which
the sites are embedded cause perturbations in both site ener-
gies (diagonal disorder) and couplings (off-diagonal disorder).
Assuming such variations are uncorrelated among the sites,
the electronic Hamiltonian can be modeled with site energies
given by En = E + δE where δE is a Gaussian random vari-
able N (0, σ 2

δE ). The dipole coupling between sites is given by
Jmn = −J ′/|xm − xn|3 where xm is the position of site m given
by xm = ma + δx where a is the lattice spacing that defines the
mean distance between nearest neighbors and δx is a Gaussian
random variable N (0, σ 2

δx ). The QFI [Eq. (23)] is calculated
for each realization and the final result is an average over all
M realizations.

In our predictions shown in Fig. 6, aggregate sizes of
N = 20 and 100 are considered. Diagonal and off-diagonal
disorder are calculated separately in order to isolate the ef-
fects of each type. The general trend of the QFI is that it
increases as temperature decreases and then levels off at a
maximum value for a given amount of disorder. Disorder is
found to lessen the degree of entanglement (i.e., Anderson
localization). More importantly, three-partite entanglement is
potentially realizable in the presence of strong disorder. Fig-
ure 6 shows the witnessed QFI with site energies varying
with σδE = 0.1J to 0.6J (top panels), or coupling between

FIG. 6. QFI per number of sites FQ/N for linear dye aggregates
as a function of J/kBT (where J = J ′/a3) for different degrees
of disorder. Diagonal (top panels) and off-diagonal (bottom pan-
els) disorder are considered separately. FQ/N is calculated for six
equally spaced disorder parameters: σδE/J = 0.1 to 0.6 (diagonal)
and σδx/a = 0.01 to 0.06 (off-diagonal). Aggregate lengths are N =
20 (left panels) and N = 100 (right panels). Results are averaged
over M = 104 realizations. Disorder lessens the degree of entan-
glement, but even three-partite entanglement is realizable in the
presence of relatively strong disorder.

nearest neighbors σJm,m±1∼0.04J to 0.3J and second-nearest
neighbors σJm,m±2∼0.003J to 0.02J (bottom panels). Reported
disorder parameters for PIC aggregates are σδE/J = 0.128
for PIC-Cl and σδE/J = 0.249 for PIC-F [66]. Together with
coupling J = 600 cm−1 and an aggregate size of N = 20,
three-partite entanglement may be witnessed at a wide range
of feasible temperatures, e.g., ≈17 to 58 K (corresponding to
J/kBT = 50 to 15). Experiments that are capable of recov-
ering trends in the predicted QFI, particularly in the regime
of temperatures showing a dramatic change in the QFI and a
crossover between two- and three-partite entanglement, would
be particularly desirable for validating the present theory.

D. Experimental realization and challenges

An essential ingredient assumed in the present theory is
that the stimulated emission and excited-state absorption spec-
tra of the probed state can be adequately discriminated in
the overall response. The challenge here is in avoiding an
overlap of stimulated emission and ground-state bleach, the
latter being the response of aggregates in the ground state
rather than the entangled excited state. In small rigid systems,
the 0-0 band of the ground-state bleach may overlap with the
0-0 band in stimulated emission. But in many systems with
more flexibility, the Stokes shift is sufficiently large, ensuring
that each signal can be spectrally resolved. Excited-state ab-
sorption appears in a lower-energy regime and is thus not a
limiting factor in this regard.

In experiment, the quantity that is measured is the molar
extinction coefficient ε[ L cm−1

mol ] determined by the Beer-

Lambert law I
I0

= 10−εCl where I[ J s−1

cm2 ] is the intensity of
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light, C[ mol
L ] is the molar concentration, and l[cm] is the path

length of the probing field through the sample. The differential
change of intensity per unit length is related to the energy
absorbed dI

dx = −nαI where n[cm−3] is the aggregate density
and α[cm2] is the absorption cross section. These relations
give ε = NAα

ln(10)103N where NA is Avogadro’s constant and N
is the number of molecules per aggregate. The absorption
cross section is given by α = h̄ω

I0

∑
m,n pnWmn where pn is the

population of |εn〉 given by Eq. (21), I0 = 1
2ε0cE2

0 is the total

intensity of the incident field, and Wmn[s−1] = πE2
0

2h̄2 |〈εm|Ê ·
μ|εn〉|2δ(ω − ωmn) is the rate of transition from |εm〉 to |εn〉
due to the interaction between the system’s dipole moment
and the probing field with frequency ω. These relations can
be used to solve for the (unitless) QFI per number of sites:

FQ

N
= 4

N

N∑
n

pn〈εn|O2|εn〉

= 3 ln (10)103ε0ch̄

πNAμ2
i

∫
ε(ω)

ω
dω. (41)

The integral in Eq. (41) is taken over the stimulated emission
and excited-state absorption parts of the spectrum. Here, O =
1
2

∑N
i σ x

i and μi[C cm] is the magnitude of the single-site
transition dipole moment. Equation (41) assumes an isotropic
field with uniform polarization in all directions resulting in
〈cos2 θ〉 = 1/3. In theory, Eq. (41) is a valid expression for
deducing the n-partite entanglement [Eq. (13)], although it
should be stated that a more rigorous formulation of the ex-
tracted QFI that considers the combined pump-probe signal
is warranted. Reference [67] provides expressions of the in-
coherent and coherent parts of the signal in linear aggregates,
the former of which contains the relevant information.

An important issue regarding practicality of Eq. (41) is the
possible ambiguity in the QFI of a state determined based on a
response that is ensemble averaged. The results of Fig. 6 were
obtained with a fixed number of sites in each aggregate N .
However, in a realistic sample this may be a crude approx-
imation as not all aggregates are of identical size; instead,
aggregate size may be best described by some distribution. A
generalization of this paper to handle such uncertainties may
prove useful. Perhaps an easier first step for measurements
in bulk would be to observe the arctan-like dependence of
the integrated response as a function of inverse temperature
(Fig. 6), without classifying n-partite entanglement. Single-
aggregate spectroscopy eliminates variation on N and may be
a more reliable approach for assigning multipartite entangle-
ment [68].

V. CONCLUSIONS AND FUTURE OUTLOOK

Nonclassical correlations are a potential resource in en-
gineered and biological systems. There has been substantial
progress in the foundations of nonclassical correlations from
an information-theoretic standpoint, but experimental re-
alization of such correlations, including entanglement, is
notoriously difficult to achieve. Our paper presented a theory
based on the QFI for measuring entanglement of molec-
ular excitons—delocalized electronic states in molecular

aggregates—from spectroscopy. We showed that the optical
response of a thermally equilibrated exciton state in the first-
excitation subspace is a valid QFI. The QFI of the probed state
is encoded in its stimulated emission and excited-state ab-
sorption spectra. Our analyses of the molecular dimer, N-site
linear aggregate with nearest-neighbor coupling, and N-site
circular aggregate showed that the response of a dominant
dipole-susceptible state effectively determines the witnessed
entanglement. Applying the theory to realistic linear dye J
aggregates, we predict that two- and three-partite entangle-
ment are realizable with ultrafast pump-probe experiments,
assuming that the appropriate signals can be adequately dis-
criminated in the overall response.

While this paper is a step toward measuring nonclassi-
cal correlations in molecular excitons, ultimately it is the
evolution of nonclassical correlations that is most insightful,
providing a lens to the rich exciton-phonon dynamics. In
order to achieve this goal with an outlook on spectroscopic
techniques, the proposed measure must be both expressed
in terms of response function(s) and generalized to arbitrary
mixed states that are inevitable due to decoherence. It would
be interesting to apply the present analysis to light-matter
states of cavity QED [69] and entangled spins in molecular
architectures [70].
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APPENDIX A: QFI OF THE MOLECULAR DIMER
IN THE THERMAL EXCITON STATE

We evaluate the QFI [Eq. (9)] in a thermal exciton state
given by Eq. (21) for a molecular dimer with generator
Eq. (12). The terms include

4p1|〈ε0|O|ε1〉|2

= e
1

kBT | V
sin 2θ |

Z
[
1 + 2

(
nx

1nx
2 + ny

1ny
2

)
sin θ cos θ

−{(nz
1

)2
sin2 θ + (nz

2

)2
cos2 θ

}]
, (A1a)

4p2|〈ε0|O|ε2〉|2

= e− 1
kBT | V

sin 2θ |
Z

[
1 − 2

(
nx

1nx
2 + ny

1ny
2

)
sin θ cos θ

−{(nz
1

)2
cos2 θ + (nz

2)2 sin2 θ
}]

. (A1b)

The terms 4p1|〈ε1|O|ε3〉|2 and 4p2|〈ε2|O|ε3〉|2 are equiva-
lent to Eqs. (A1a) and (A1b), respectively, with sin θ ↔ cos θ .
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Lastly,
4(p1 − p2)2

p1 + p2
|〈ε1|O|ε2〉|2

= 4 tanh2

(
1

kBT

∣∣∣∣ V

sin 2θ

∣∣∣∣
)

sin2 θ cos2 θ
[(

nz
1

)2 − (nz
2

)2]
.

(A2)
Combining all terms,

FQ = 2 + 2 f (θ )
(
nx

1nx
2 + ny

1ny
2

)
+ f 2(θ )

(
nz

1 − nz
2

)2 − [(nz
1

)2 + (nz
2

)2]
(A3)

where f (θ ) = tanh( 1
kBT | V

sin 2θ
|) sin 2θ . The x̂ and ŷ compo-

nents must be parallel or antiparallel depending on the sign
of f (θ ) to maximize Eq. (A3). Equation (36) is attained by
setting nx

1nx
2 + ny

1ny
2 = sgn[ f (θ )] − nz

1nz
2 in Eq. (A3) and max-

imizing with respect to nz
1 and nz

2, resulting in nz
1 = nz

2 = 0.

APPENDIX B: QFI OF THE LINEAR AGGREGATE
FROM SPECTROSCOPY

We evaluate the QFI of the states |ψL
k 〉 [Eq. (37a)] with

generator O = 1
2

∑N
i σ x

i . Expressing σ x
i in terms of rais-

ing and lowering operators σ x
i = σ+

i + σ−
i , 〈O〉 = 0 since

〈m|σ+
i |n〉 = 〈m|σ−

i |n〉 = 0. The QFI becomes FQ = 4〈O2〉.
An expansion of O2 gives

O2 = 1

4

N∑
i, j

σ+
i σ+

j + σ+
i σ−

j + σ−
i σ+

j + σ−
i σ−

j . (B1)

The middle two terms preserve the number of excitations
whereas the first and last terms connect states that differ by
two excitations. Only the middle two terms have nonzero
expectation values. We begin by evaluating these terms in
the site basis: 〈m|σ+

i σ−
j |n〉 and 〈m|σ−

i σ+
j |n〉. The first term

is straightforward 〈m|σ+
i σ−

j |n〉 = δimδ jn, resulting in

〈σ+
i σ−

j 〉 = 2

N + 1

[∑
n

sin

(
πkn

N + 1

)]2

, (B2)

whereas for the second term we must consider combi-
nations i, j. For i = j, 〈m|σ−

i σ+
j |n〉 = 〈m|[σ−

i , σ+
j ]|n〉 +

〈m|σ+
j σ−

i |n〉 = δi jδmn(1 − 2δ jm) + δi jδ jmδmn. Here, we have
used [σ+

i , σ−
i ] = σ z

i and 〈m|σ z
i |n〉 = δmn(2δim − 1). For i �=

j, 〈m|σ−
i σ+

j |n〉 = 〈m|σ+
j σ−

i |n〉 = δ jmδin − δi jδ jmδmn. Com-
bining these parts,

〈σ−
i σ+

j 〉 = 2(N − 2)

(N + 1)

N∑
n

sin2

(
πkn

N + 1

)

+ 2

N + 1

[
N∑
n

sin

(
πkn

N + 1

)]2

. (B3)

Equation (38) is recovered by summing Eqs. (B2) and (B3)
and evaluating the summations:[

N∑
n

sin

(
πkn

N + 1

)]2

= 1 − (−1)k

2

sin2
(

πkN
2(N+1)

)
sin2

(
πk

2(N+1)

) , (B4a)

N∑
n

sin2

(
πkn

N + 1

)
= N + 1

2
. (B4b)

APPENDIX C: QFI OF THE CIRCULAR AGGREGATE
FROM SPECTROSCOPY

We evaluate O = 1
2

∑N
i σ x

i in the states |ψC
k 〉 [Eq. (40)].

Similar to Appendix B, FQ = 4〈O2〉 with O given by Eq. (B1).
Evaluating the two nonzero terms 〈σ+

i σ−
j 〉 and 〈σ−

i σ+
j 〉 gives

F k
Q = (N − 2) + 2

N

sin2 (πk)

sin2 (πk/N )
(C1)

where we have used the summation∑
n

∑
m

e2π ik(n−m)/N = sin2 (πk)

sin2 (πk/N )
. (C2)

Equation (C1) is equivalent to

F k
Q =

{
3N − 2 for k = 0
N − 2 otherwise . (C3)

APPENDIX D: MAXIMUM QFI OF THE k = 0 STATE
IN THE CIRCULAR AGGREGATE

We evaluate Eq. (12) in the state |ψC
0 〉 = 1√

N

∑N
n |n〉 and

show that the maximum QFI F max
Q = 3N − 2 can be obtained

with O = 1
2

∑N
i σ x

i . Expanding 〈O2〉, there are nine terms:
σ x

i σ x
j , σ x

i σ
y
j , σ x

i σ z
j , etc. The expectation values of σ x

i σ z
j , σ z

i σ x
j ,

σ
y
i σ z

j , and σ z
i σ

y
j are zero because they connect states with a

different number of excitations.
The terms 〈σ x

i σ
y
j 〉 and 〈σ y

i σ x
j 〉 combine to give

α = i
(
nx

i ny
j − ny

i nx
j

)
[〈σ+

i σ−
j 〉 − 〈σ−

i σ+
j 〉]. (D1)

Terms in 〈σ x
i σ

y
j 〉 and 〈σ y

i σ x
j 〉 that change the number of excita-

tions are not shown in Eq. (D1) since their expectation values
are zero. Equation (D1) is zero since for i = j, the term nx

i ny
i −

ny
i nx

i = 0, whereas for i �= j, 〈σ+
i σ−

j 〉∗ = 〈σ−
i σ+

j 〉. The term
in [· · · ] becomes 2iIm[〈σ+

i σ−
j 〉] = 0.

The terms 〈σ x
i σ x

j 〉 and 〈σ y
i σ

y
j 〉 combine to give

β = (nx
i nx

j + ny
i ny

j

)
[〈σ+

i σ−
j 〉 + 〈σ−

i σ+
j 〉]. (D2)

Both 〈m|σ+
i σ−

j |n〉 and 〈m|σ−
i σ+

j |n〉 have been evaluated in
Appendix B. Equation (D2) becomes

β = 3

N

N∑
i, j

nx
i nx

j + ny
i ny

j − 2

N

N∑
i

nx
i nx

i + ny
i ny

i . (D3)

The relation [σ+
i , σ−

i ] = σ z
i is used to obtain

〈m|σ z
i σ z

j |n〉 = δmnδinδ jn−δmnδin(1 − δ jn) − δmnδ jn(1 − δin) +
δmn(1 − δin)(1 − δ jn). Reducing further, 〈m|σ z

i σ z
j |n〉 =

4δmnδinδ jn − 4δmnδin + δmn. The term γ = nz
i n

z
j〈σ z

i σ z
j 〉

becomes

γ = 4

N

N∑
i

nz
i n

z
i − 4

N

N∑
i, j

nz
i n

z
j +

N∑
i, j

nz
i n

z
j . (D4)

Summing Eqs. (D3) and (D4) completes the calculation of
4〈O2〉. The term 〈O〉2 has a single nonzero term from 〈σ z

i 〉

4〈O〉2 =
(

2 − N

N

)2∑
i, j

nz
i n

z
j . (D5)
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Combining Eqs. (D3)–(D5), the QFI becomes

FQ = 3N − 2 + 6

N

N∑
i

nz
i n

z
i − 3N + 4

N2

N∑
i, j

nz
i n

z
j . (D6)

The x̂ and ŷ components of all ni are set parallel to one another
to maximize Eq. (D6), nx

i nx
j + ny

i ny
j = 1 − nz

i n
z
j . Maximizing

Eq. (D6) with respect to nz
i gives the system of equations

3N − 4

N2
nz

i − 3N + 4

N2

N∑
j �=i

nz
j = 0, (D7)

which can be recast in terms of a circulant coefficient matrix
C ⎛

⎜⎜⎜⎜⎜⎜⎝

c1 cN · · · c2

cN c1 · · · c3

...
...

. . .
...

c2 c3 · · · c1

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

nz
1

nz
2

...

nz
N

⎞
⎟⎟⎟⎟⎟⎟⎠

= 0 (D8)

with matrix elements c1 = (3N − 4)/N2 and ci �=1 = −(3N +
4)/N2. For Eq. (D8) to host nontrivial solutions, the determi-

nant of C

det(C) =
N−1∏
j=0

(c1 + cNω j + cN−1ω
2 j + · · · + c2ω

(N−1) j )

(D9)
where ω = exp(2π i/N ) must be zero. Solving further,

det(C) =
(

3N − 4

N2

)N

+
(

−3N + 4

N2

)N N−1∑
j=1

ω j
∑N−1

k=0 k

=
(

3N − 4

N2

)N

+
(

−3N + 4

N2

)N N−1∑
j=1

r j (D10)

where r = exp[iπ (N − 2)] = (−1)N . The determinant re-
duces to

det(C) =
{(

3N−4
N2

)N + ( 3N+4
N2

)N
(N − 1) N even(

3N−4
N2

)N
N odd

. (D11)

Since det(C) �= 0, the only solution of Eq. (D7) is the trivial
one with nz

i = 0. The maximum QFI is F max
Q = 3N − 2. All

generators that satisfy ni · n j = 1 and nz
i = 0 will give the

maximum QFI, among which is O = 1
2

∑N
i σ x

i .
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Y.-C. Cheng, R. E. Blankenship, and G. R. Fleming, Nature
(London) 446, 782 (2007).

[45] J. Yuen-Zhou, J. J. Krich, and A. Aspuru-Guzik, J. Chem. Phys.
136, 234501 (2012).

[46] M. B. Plenio, J. Almeida, and S. F. Huelga, J. Chem. Phys. 139,
235102 (2013).

[47] A. S. Johnson, J. Yuen-Zhou, A. Aspuru-Guzik, and J. J. Krich,
J. Chem. Phys. 141, 244109 (2014).

[48] J. Lim, C. M. Bösen, A. D. Somoza, C. P. Koch, M. B.
Plenio, and S. F. Huelga, Phys. Rev. Lett. 123, 233201
(2019).

[49] H.-G. Duan, V. I. Prokhorenko, R. J. Cogdell, K. Ashraf, A. L.
Stevens, M. Thorwart, and R. D. Miller, Proc. Natl. Acad. Sci.
USA 114, 8493 (2017).

[50] M. B. Plenio and S. F. Huelga, New J. Phys. 10, 113019
(2008).

[51] J. Cao, R. J. Cogdell, D. F. Coker, H.-G. Duan, J. Hauer, U.

Kleinekathöfer, T. L. Jansen, T. Mančal, R. D. Miller, J. P.
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