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Tailored generation of quantum states in an entangled spinor interferometer
to overcome detection noise
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We theoretically investigate how entangled atomic states generated via spin-changing collisions in a spinor
Bose-Einstein condensate can be designed and controllably prepared for atom interferometry that is robust
against common technical issues, such as limited detector resolution. We use analytic and numerical treatments of
the spin-changing collision process to demonstrate that triggering the entangling collisions with a small classical
seed rather than vacuum fluctuations leads to a more robust and superior sensitivity when technical noise is
accounted for, despite the generated atomic state ideally featuring less metrologically useful entanglement. Our
results are relevant for understanding how entangled atomic states are best designed and generated for use in
quantum-enhanced matter-wave interferometry.
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I. INTRODUCTION

Entanglement, correlations, and coherence have the poten-
tial to enable a quantum advantage in many tasks, including
information processing, communications, and metrology [1].
However, due to the inherent fragility of such quantum
phenomena to decoherence and technical imperfections, real-
world examples of quantum-enhanced devices that outper-
form their state-of-the-art classical counterparts in meaningful
applications remain rare [2].

The use of cold atoms for quantum-enhanced sensors are
a prominent example [3], as they have long been identified
as a potential quantum platform with promising applications
such as gravimetry [4–6], time-keeping [7], navigation [8,9],
and resource exploration [10]. While there has been extensive
progress in the generation of metrologically useful atomic
entangled states [11–17], including conceptual demonstra-
tions of quantum-enhanced interferometry [18–22], a myriad
of technical challenges remain to be overcome to realize
a quantum-enhanced device that is competitive with practi-
cal state-of-the-art sensors using separable atomic ensembles
[23,24].

One relatively ubiquitous challenge is detection resolution,
i.e., the ability to accurately resolve or count single atoms
in large ensembles. Fundamentally, this limits the degree to
which quantum states can be distinguished and thus inherently
places bounds on how well small perturbations to a system
can be inferred [25]. To compound matters, one almost invari-
ably finds that the demands on detection resolution increase
in step with the degree of metrological enhancement that a
quantum state can provide. Excellent examples are macro-
scopic superposition states such as GHZ or NOON states,
which in principle enable improvements in precision by a
factor of 1/

√
N relative to current classical devices using N

probes, but typically require the ability to count single parti-

cles to enable measurements of parity or distribution functions
[26]. As such a capability is technically demanding, even in
state-of-the-art experiments, and difficult to scale with par-
ticle number [27]. There have been efforts to overcome this
limitation by developing novel methods such as interaction-
based readout (IBR) [28–31]. Despite notable demonstrations
[20,32,33], IBR methods require a level of coherent control
over the dynamics that can be demanding or impractical
for many experimental platforms. Consequently, it is im-
portant to assess the metrological utility of quantum states
with a practical viewpoint, striking a balance between ide-
alized metrological enhancement and robustness to technical
noise.

In this context, this paper presents a systematic investiga-
tion of the robustness and realistic metrological potential of a
class of atomic entangled states for SU(2) atom interferometry
with spinor BECs. Our study is targeted toward applications
where entangled matter waves are spatially split and recom-
bined to measure, e.g., gravitational acceleration, and are thus
ill-suited to the widely studied IBR methods that underpin
related SU(1, 1) atom interferometry [21,34–36]. We inves-
tigate the use of spin-changing collisions in a spinor BEC
to generate atomic squeezing and entanglement, and show
that entangled states generated by triggering the collisions
with a small classical seed rather than vacuum fluctuations
are more robust to realistic detection noise when using simple
measurement observables. This is in contrast to the ideal sce-
nario without technical noise, where seeding the entangling
dynamics always leads to a degradation of the metrological
performance per particle. These results complement other
favorable properties of seeding, such as an accelerated rate
of entanglement generation due to bosonic stimulation and a
broader dynamic range of sub-SQL sensitivity. Our findings
are illustrated through an approximate analytic model of the
spin-changing collisions, which enables us to derive insightful
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expressions for the sensitivity achievable with a range of
experimentally relevant measurement signals. Moreover, the
analytic predictions elucidate the dependence on initial state
properties, such as the size and phase coherence of the
seed. We also use numerical calculations of the exact quan-
tum dynamics to verify our predictions and their relevance
for experimentally realistic parameter regimes. Our results
are pertinent for future demonstrations of quantum-enhanced
atom interferometry using spin-changing collisions [37] and
demonstrate that judicious choices for initial state preparation
can have important consequences for prospective quantum-
enhancement [38,39].

The paper is organized as follows. Section II introduces the
physical model of spin-changing collisions in spinor BEC and
briefly recaps the framework of an SU(2) atom interferome-
ter. In Secs. III and IV, we use a simplified analytic model
of the spin-changing collisions to obtain expressions for the
ideal metrological performance and achievable sensitivity as
a function of the quantum state and choice of measurement
signal. We then expand our analysis to include the effect of
deleterious technical noise and imperfect state preparation in
Sec. V. These predictions are compared to numerical calcu-
lations of the exact quantum dynamics for an experimentally
relevant scenario in Sec. VI, before summarizing our results
in Sec. VII.

II. MODEL SYSTEM

A. Few-mode Hamiltonian

We consider the dynamics of a microwave-dressed spin-1
Bose-Einstein condensate, such as that recently reported in
Ref. [40]. The condensate is assumed to be confined in a deep
trapping potential, which enables a simplified treatment where
the spatial dynamics are frozen out and only the internal (spin)
degrees of freedom need be considered. In this limit, known as
the single-mode approximation [41–43], the spinor dynamics
are well described by the Hamiltonian Ĥ = Ĥinel + Ĥel + ĤZ

[44] with

Ĥinel = h̄g(â0â0â†
1â†

−1 + H.c.),

Ĥel = h̄gn̂0(n̂1 + n̂−1) + h̄g

2
(n̂1 − n̂−1)2,

ĤZ = −h̄p(n̂1 − n̂−1) − h̄q(n̂1 + n̂−1). (1)

Here, ni = â†
i âi is the particle number operator for the i =

mF = 0,±1 Zeeman sublevels. The Hamiltonian Ĥ in this
form splits the interactions into two contributions: Spin-
changing (Ĥinel) and spin-preserving (Ĥel) collisions. The
former describes a process where two mF = 0 atoms scatter
and generate a pair of atoms in mF = ±1, or vice versa, while
the latter describes elastic scattering that preserves the occu-
pation of each mF mode. The additional term, ĤZ, arises due to
an external magnetic field of magnitude B and is decomposed
into contributions from the linear and quadratic Zeeman shifts
characterized by p = gμBB/h̄ and q = p2/ωhf , respectively,
where g is the Landé hyperfine g factor, μB the Bohr magne-
ton, and ωhf the hyperfine frequency splitting. The quadratic
term shifts both mF = ±1 states symmetrically with respect
to mF = 0 and can also be manipulated via complementary
microwave dressing of the mF = 0 state [21,40], enabling

the relative strengths of p and q to be tuned independently.
Lastly, the Hamiltonian conserves the population difference
n̂1 − n̂−1. As a consequence, in the analytic calculations pre-
sented in Secs. III and V we ignore the elastic scattering ∝
(n̂1 − n̂−1)2 as a small irrelevant contribution (we validate this
assumption by explicitly including it in Sec. VI and present a
qualitative justification in Appendix C). Moreover, we absorb
the linear Zeeman shift by working in a frame rotating with
it such that it falls out of our calculations (although we com-
ment on the practical consequences of this where appropriate).
Throughout the remainder of the paper, we will set h̄ = 1.

B. Initial state

Typical experiments studying pair production dynamics in
a spinor BEC focus on initial conditions where the majority of
the condensate populates the mF = 0 state and acts as a source
for correlated pairs in mF = ±1. Here, we consider initial
states where a BEC of N atoms is prepared in the mF = 0
mode before a small number of atoms, ns, are coherently
transferred to either of the mF = ±1 modes by, e.g., resonant
microwaves [18], to act as a coherent seed that stimulates the
spin-changing collisions [34,35,45].

We distinguish two possible initial conditions stemming
from such a preparation protocol. The first only considers a
seed in the mF = 1 mode, leading to the initial state:∣∣ψ s

0

〉 = ∣∣ψ s
0,−1, ψ

s
0,0, ψ

s
0,1

〉 = |0,
√

N − ns,
√

nse
iθs〉. (2)

Here, we have assumed the mF = 0, 1 modes are described
as coherent states with occupation 〈n̂1(0)〉 = 〈ψ0|n̂1|ψ0〉 = ns

and 〈n̂0(0)〉 = N − ns [34], respectively, while the mF = −1
mode is prepared in the vacuum state with 〈n̂−1〉 = 0. Without
loss of generality, we have taken the mF = 0 coherent state to
have a real amplitude, such that any relevant phase relation-
ship between the mF = 0,±1 modes is encoded in θs.

Second, we consider seeding both mF = ±1 modes (simi-
lar to a previous study, Ref. [46]). This initial condition offers
a wide range of tunability in terms of, e.g., relative particle
number and phase between the mF = ±1 modes [34], but
we will choose to focus on the specific initial configuration
described by∣∣ψd

0

〉 = |
√

ns/2e−iθs ,
√

N − ns,
√

ns/2eiθs〉. (3)

Here, the mF = ±1 states are taken to be coherent states
with identical occupation 〈n̂±1(0)〉 = ns/2 and phase ±θs. The
latter is chosen so the phase coherence between the mF =
±1 modes (〈ψd

0 |â†
1â−1|ψd

0 〉 ∼ e−2iθs ) can be tuned without
impacting the phase coherence with respect to mF = 0 (de-
fined by the correlation 〈ψd

0 |â†
0â†

0â1â−1|ψd
0 〉 and related to the

spinor phase [21,35]). The dynamics of both states will prove
to be qualitatively similar so, for simplicity, we will frequently
focus our discussion on the case of a single seeded mode.

The dynamics generated by Ĥ for the initial states (2)
and (3) can be understood very simply in the limit where
the quadratic Zeeman shift, −q(n̂1 + n̂−1), is tuned to ap-
proximately cancel the initial mean-field energy shift of the
mF = ±1 generated by the large mF = 0 population, n̂0(n̂1 +
n̂−1) ≈ h̄g(N − ns)(n̂1 + n̂−1). Setting q = g(N − ns) elimi-
nates the Zeeman and elastic contributions from the Hamil-
tonian to a first approximation and Ĥ ≈ Ĥinel. The initial
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dynamics is thus dominated by the resonant conversion of
atoms from mF = 0 to mF = ±1 pairs, in a process anal-
ogous to four-wave mixing or parametric downconversion
in quantum optics. These spin-changing collisions generate
strong correlations and entanglement between the mF = ±1
modes, including squeezed fluctuations of the relative popula-
tion difference, 〈(�N̂−)2〉 < 〈N̂+〉 for N̂± = n̂1 ± n̂−1 [21,44],
which, as we discuss in Sec. III, can be exploited for quantum-
enhanced metrology.

C. SU(2) atom interferometer

In this paper, we focus our investigation on the per-
formance of states dynamically generated by spin-changing
collisions in an SU(2) atom interferometer. A paradigmatic
scheme is the atomic Mach-Zehnder (MZ) interferometer, an
example of which is illustrated in Fig. 1. The MZ interferome-
ter only actively involves the mF = ±1 modes and the mF = 0
mode serves only to mediate the preparation of the input state
|ψt 〉 = e−iĤt |ψ s,d

0 〉 for the interferometer.
The atomic MZ sequence is composed of three key steps:

(i) an internal state beam splitter that coherently mixes the
mF = ±1 modes, (ii) the accrual of a relative phase ϕ between
the mF = ±1 modes, and (iii) a second beam splitter to mix
the mF = ±1 modes. The entire sequence can be equivalently
described by the unitary ÛMZ ≡ ÛBS(π/2)ÛϕÛBS(π/2) such
that |ψ f 〉 = ÛMZ|ψt 〉 is the final state at the output of the MZ
interferometer. The beam-splitter operation between the mF =
±1 modes, ÛBS(φ) = eiφ(â†

1 â−1+â†
−1â1 )/2 with φ = π/2 corre-

sponding to a balanced 50:50 beam splitter, can be realized
by a series of resonant microwave pulses that couple internal
states in different F manifolds [18]. Such a sequence can
similarly be used for initial preparation of |ψ s,d

0 〉 (see Fig. 1).
The relative phase shift, Ûϕ = e−iϕ(n̂1−n̂−1 )/2, can be generated
by a number of different sources including the linear Zeeman
shift or gravitational acceleration. The latter case requires
additional state-selective momentum kicks after (before) step
(i) [(iii)] of the MZ sequence to map the entanglement and
correlations between internal (spin) to external (motional) de-
grees of freedom [37]. A subsequent free propagation time T
between the beam splitters leads to the accrual of a phase shift
ϕ ∼ g · kT 2 [47], where g characterizes the local gravitational
acceleration and k the momentum kick.

Alternatively, the MZ interferometer can be understood
as analogous to a Ramsey interferometer for collective spin
states [Fig. 1(a)]. Considering only the mF = ±1 modes that
participate in the interferometer, one can map the bosonic
problem to an equivalent collective spin picture using a
Schwinger boson mapping,

Ĵx = 1

2
(â†

1â−1 + â†
1â−1), (4)

Ĵy = 1

2i
(â†

1â−1 − â†
−1â1), (5)

Ĵz = 1

2
(â†

1â1 − â†
−1â−1), (6)

with accompanying raising and lowering operators Ĵ± = Ĵx ±
iĴy. In this picture, the beam splitters of the MZ interferometer
correspond to the pair of π/2 rotations about Ĵx employed

FIG. 1. (a) Interferometric sequence. (i) Illustration of a Mach-
Zehnder scheme, where entangled pairs of mF = ±1 atoms are the
input state of the upper and lower paths. Beam splitters are realized
by coherently mixing the mF = ±1 modes [see (b)] and a relative
phase shift ϕ is imprinted. Accruing a phase shift due to gravity
requires combining state-dependent momentum kicks imparted by
laser pulses (red curves) with the internal-state beam splitters. An
estimate of ϕ is obtained by measuring populations n̂±1 at the out-
puts. (ii) In an equivalent Ramsey sequence, the beam-splitter and
phase-shift operations correspond to rotations (axes indicated) of
the quantum state on a collective Bloch sphere, illustrated using the
Wigner phase-space distribution of an example squeezed state (see
Sec. III for details). (b) Example internal state dynamics for F = 1
sodium spinor BEC. Initialize: Coherent seeding is implemented
via microwave pulses resonantly tuned to an ancillary F = 2 man-
ifold that transfer a fraction of the total population to the mF = ±1
modes. Pulse 1 transfers ns atoms from (F, mF ) = (1, 0) → (2, 0)
and pulse 2 completes the transfer to (1,1) [split equally to (1, −1)
for dual seeding]. Entangle: Subsequent spin-changing collisions be-
tween mF = 0 atoms produce entangled pairs in mF = ±1 to realize
|ψ s,d

t 〉. Beam splitter: Coherent mixing of the mF = ±1 modes is
also implemented via resonant microwaves. Pulse 1 transfers the
entire population from (1, −1) → (2, 0) before pulse 2 implements
coherent 50:50 mixing of (2, 0) ↔ (1, 1). Finally, pulse 3 returns the
remaining population from (2, 0) → (1,−1).

in a Ramsey sequence for an ensemble of spin-1/2 particles,
e.g., ÛBS = e−iπ Ĵx/2 (equally, the rotations can be about Jy,
depending on the phase convention chosen for the original
beam splitter operation), while the phase shift corresponds to
a rotation about Ĵz, Ûϕ ≡ e−iϕĴz . This picture proves partic-
ularly useful as the quantum noise of the two-mode (mF =
±1) bosonic system can be readily visualized by plotting the
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Husimi or Wigner SU(2) phase-space distributions on a col-
lective Bloch sphere, which enables a simple understanding
of metrological performance of |ψt 〉 for a Ramsey sequence
in terms of, e.g., spin squeezing. We defer a full discussion of
this until Sec. III.

At the end of the interferometer, the phase shift ϕ is esti-
mated by measuring some signal M̂(n̂1, n̂−1) that is a function
of the populations n̂±1 of the internal states [48]. The sensitiv-
ity to the phase shift is characterized by the uncertainty �ϕ in
the estimate of ϕ due to quantum projection noise and can be
computed by

(�ϕ)2 = 〈(�M̂ )2〉
|∂ϕ〈M̂〉|2 . (7)

This sensitivity is minimized by choosing an optimal signal
M̂ and is fundamentally limited by the quantum Cramer-Rao
bound (QCRB), (�ϕ)2 � 1/FQ, where FQ is the quantum
Fisher information (QFI). In this paper, we restrict our dis-
cussion to pure states for which the QFI can be computed as
the variance of the generator of the phase shift [25],

FQ = 〈(�N̂−)2〉BS, (8)

where the subscript 〈...〉BS indicates that the expectation value
is computed with respect to the quantum state after the appli-
cation of the first beam splitter in the full MZ sequence. For
an uncorrelated input state of N+ = 〈n̂1〉 + 〈n̂−1〉 total atoms
in the mF = ±1 modes, the QCRB collapses to the standard
quantum limit (SQL) (�ϕ)2 � 1/N+ whereas we will show in
the following discussion that when correlations and entangle-
ment are allowed between the modes the QCRB leads instead
to the Heisenberg limit (HL) of (�ϕ)2 � 1/[N+(N+ + 2)]
[49]. Note that here we define the SQL and HL with respect
to the occupation of only the mF = ±1 modes and not the
complete system including the (passive) mF = 0 mode. We
will discuss comparisons to the SQL with respect to total atom
number, (�ϕ)2 � 1/N , in Sec. VI.

III. DYNAMICS AND QUANTUM FISHER INFORMATION
IN THE UNDEPLETED PUMP REGIME

In this section, we discuss an analytic treatment of the
entangling dynamics that is valid in the limit of large to-
tal particle number and suitably short interaction times. The
tractability of the system in this limit enables us to derive
insightful analytic expressions for the QFI, and we are also
able to use the SU(2) representation of the generated two-
mode quantum state to better understand the metrological
performance as a function of initial condition.

We begin by making the simplifying assumption that the
quadratic Zeeman shift is tuned to cancel the initial energy
shift provided by Ĥel, i.e., q = g(N − ns). At short times, the
dynamics of the system is then dominated by resonant spin-
changing collisions, e.g., Ĥ ≈ Ĥinel = g(â†

0â†
0â1â−1 + H.c.).

If the mF = 0 mode is macroscopically occupied, N � ns, 1,
we can invoke an undepleted pump approximation wherein we
replace â0, â†

0 → √
N throughout Ĥ . Together, these assump-

tions yield a quadratic effective Hamiltonian [44]:

ĤUP = gN (â1â−1 + â†
1â†

−1). (9)

The undepleted pump approximation (and also the assumption
that the Zeeman shift precisely cancels contributions from
elastic interactions) is typically valid in the limit where the
total number of atoms scattered into the mF = ±1 modes does
not exceed ∼10% of the initial population of the mF = 0
mode. Beyond this regime, the full form of Ĥ should be
considered as the quantum nature of the mF = 0 mode and
processes described by Ĥel and ĤZ become relevant.

The dynamics according to the simplified Hamiltonian (9)
can be exactly solved in either the Schrödinger [50] or Heisen-
berg [44,46] pictures using standard methods. We leave the
details of such calculations to Appendix A and simply present
the key results here. First, for both seeded initial states, the
spin-changing collisions generate an exponential growth of
the population of the mF = ±1 modes, which is identically
given by

N+ ≡ 〈n̂1(τ ) + n̂−1(τ )〉 = ns + n̄, n̄ = 2(ns + 1)sinh2(τ ),
(10)

where τ = gNt is the rescaled duration of spin-changing col-
lisions. In our expression for N+, we have adopted notation
to emphasize the distinction between (i) the uncorrelated or
classical population ns initially transferred to the mF = 1
state to act as a coherent seed and (ii) the n̄ atoms scattered
into the mF = ±1 modes by spin-changing collisions. Despite
this separation, the latter implicitly depends on ns as the co-
herent seed accelerates the pair production process through
bosonic stimulation. For completeness, the population differ-
ence N− ≡ 〈n̂1〉 − 〈n̂−1〉 = ns is trivially conserved during the
collision dynamics.

The fluctuations in both the population difference,
〈(�N̂−)2〉, and population sum, 〈(�N̂+)2〉, depend crucially
on the introduction of the seed. For both initial states, the
dynamics identically preserves the initial fluctuations in the
difference,

〈(�N̂−)2〉 = ns, (11)

which can be said to be suppressed, 〈(�N̂−)2〉 � N+, when
n̄ � ns. On the other hand, the fluctuations in the total popu-
lation rapidly grow and for both initial states we find

〈(�N̂+)2〉 = ns + n̄(1 + 2ns)(n̄ + 2 + 2ns)

(1 + ns)2
. (12)

Initially, or for n̄ � ns, these fluctuations are Poissonian,
〈(�N̂+)2〉 ∼ ns, reflecting the initial seed population. As more
atoms are scattered, such that n̄ � ns, the right-hand term
of Eq. (12) dominates and the fluctuations become super-
Poissonian, 〈(�N̂+)2〉 ∼ n̄2.

Beyond these correlations, an illustrative understanding
of the metrological utility of |ψ s,d

t 〉 as the input to the MZ
interferometer can be provided by the collective spin basis.
For the case of a single seed, the solution of the time-evolved
bosonic state in the Schrödinger picture can be expressed
as [50]

∣∣ψ s
τ

〉
UP =

∞∑
J=0

J∑
mz=−J

cs
J,mz

(τ )|J, mz〉, (13)
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FIG. 2. (a) SU(2) Wigner distributions W J
|ψ〉(J) for |ψ s

t 〉 projected
into the J = 10 sector for (i) ns = 0.1 and (ii) ns = 4 and fixed
N+ = 102. The distributions are renormalized to account for the
projection onto the J = 10 sector. (b) QFI, FQ, as a function of
(i) collision duration τ and (ii) total population N+ in mF = ±1
modes. In panel (ii), we plot the normalized QFI per particle, where
FQ/N+ > 1 indicates sub-SQL sensitivity when only the mF = ±1
populations are considered. Predictions are from the undepleted
pump approximation, Eq. (17), with initial seed ocupation: ns = 0
(blue solid lines), ns = 10 (red dashed lines), and ns = 100 (green
dot-dashed lines).

with expansion coefficients,

cs
J,mz

(τ ) = nmz
s e−ns/2e2i[(J−mz ) π

4 +mzθs]

√
(J − mz )!

(J + mz )!

× sech1+2mz (τ )[−tanh(τ )]J−mz

(2mz )!
, (14)

for mz � 0 and cs
J,mz

(τ ) = 0 otherwise. The state is written in
the collective spin basis defined by Ĵz|J, mz〉 = mz|J, mz〉 and
Ĵ2|J, mz〉 = J (J + 1)|J, mz〉 with Ĵ2 = ∑

n=x,y,z Ĵ2
n . We point

out that in this form the quantum label for total collective
spin relates to the total occupation, J ↔ (n1 + n−1)/2, while
the spin-projection corresponds to the occupation difference,
mz ↔ (n1 − n−1)/2. The results and discussion in the follow-
ing are qualitatively analogous for the case of dual seeding.

The state |ψ s
τ 〉UP is visualized by plotting the correspond-

ing SU(2) Wigner quasiprobability distribution, W|ψ〉(J), on a
collective Bloch sphere [51,52]. We illustrate a pair of exam-
ples in Fig. 2(a) for ns = 0.1 and ns = 4 with n̄ chosen such
that N+ = n̄ + ns = 100 is fixed. For clarity, we only plot the

Wigner function W J
|ψ〉(J) corresponding to the projection of

the state |ψt 〉UP into a fixed J subspace. This is because, in
general, the large fluctuations of the total mF = ±1 population
[Eq. (12)] dictate that the quantum state spans a range of J
sectors and thus cannot be illustrated with a single sphere of
fixed radius J . The Wigner distributions of the two examples
showcase how the generated state |ψ s

t 〉UP can be split into a
pair of dominant cases, depending the nature of the quantum
fluctuations in the initial condition: (i) a Dicke regime [53] for
ns � 1 and (ii) a spin-squeezed state [54] regime for ns � 1.

The Dicke regime is understood by taking the extreme limit
of ns = 0, which corresponds to the previously studied case
of two-mode squeezed vacuum [18,55]. The lack of fluctu-
ations in Ĵz ∝ N̂− means that the state |ψt 〉UP corresponds
to a superposition of mz = 0 Dicke states spanning multiple
total spin sectors with integer J = 0, 1, 2, ..., and the Wigner
function for a typical J is dominated by a narrow ring of width
�Jz ∼ 1 about the equator [see panel (i) of Fig. 2(a)]. The ra-
dial symmetry of the distribution reflects that no well-defined
phase coherence is established between the mF = ±1 modes
by the spin-changing collisions or the initial vacuum noise that
triggers them, e.g., 〈Ĵ+〉 ≡ 〈â†

1â−1〉 = 0.
For ns � 1, the generated state changes qualitatively to

a spin-squeezed state [46,54]. Rigorously, a spin-squeezed
state satisfies ξ 2 = N+〈(�Ĵz )2〉/|〈Ĵ+〉|2 < 1, where ξ 2 is the
Wineland squeezing parameter [56]. For |ψ s

t 〉UP, it is straight-
forward to compute

ξ 2 = (1 + ns)2

nsn̄(2 + 2ns + n̄)
, (15)

which is less than one for n̄, ns � 1. We understand the
squeezing, in contrast to the Dicke regime, by noting that
introducing a coherent seed generates a well-defined phase
coherence between the mF = ±1 modes:

〈Ĵ+〉 = −i
e−2iθs ns

2 + 2ns

√
n̄(2 + 2ns + n̄). (16)

This means that the Wigner distribution is polarized along
a specific direction in the Jx − Jy plane [see panel (ii) of
Fig. 2(a)] but can still remain relatively narrow, �Jz ∼ √

ns,
such that �Jz/|〈Ĵ+〉| � 1/

√
N+ and the state is squeezed.

In both cases, the Wigner distributions plotted in Fig. 2
indicate that the quantum states feature reduced projection
noise in the amplitude quadrature (Jz) and are thus suitable
for distinguishing rotations (phase shifts) in a Ramsey (MZ)
sequence. We can make this statement precise by computing
the QFI [8], FQ = 〈(�N̂−)2〉BS ≡ 4〈(�Ĵz )2〉BS:

FQ = 1 + 2ns

2
cosh(4τ ) − 1

2
,

= ns + n̄(1 + 2ns)(n̄ + 2 + 2ns)

(1 + ns)2
. (17)

An identical expression for the QFI is obtained for the case
of dual seeds. The independence of Eq. (17) with respect
to θs might be surprising given the simplistic collective spin
interpretation we have presented so far. For the Dicke regime,
ns � 1, it is trivial that the QFI does not depend on θs as the
Wigner distribution becomes an increasingly symmetric ring
about the equator as ns → 0 [panel (i) of Fig. 2(a)]. On the
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other hand, for the squeezed regime [panel (ii) of Fig. 2(a)],
ns � 1, one could expect that θs must be chosen to align
the orientation of the collective spin (defined by 〈Ĵ+〉) with
the axis of rotation corresponding to the first beam splitter,
such that the squeezed projection noise optimally matches
the subsequent rotation about Ĵz. However, this intuition is
incorrect as it neglects that the state |ψ s

τ 〉UP spans multiple
J sectors and thus does not live on a single Bloch sphere.

Some further important remarks should be made about the
two equivalent formulations of the QFI presented in Eq. (17).
First, the second line indicates the QFI always predicts sub-
SQL sensitivity, e.g., 1/FQ � 1/N+ for any n̄ > 0. Similarly,
the HL is only explicitly saturated when a vacuum state is used
as the initial condition, ns = 0, leading to 1/FQ = 1/[n̄(n̄ +
2)]. The latter condition demonstrates that, in principle, the
introduction of any arbitrarily small coherent seed degrades
the ideal sensitivity.

Second, and despite the former observations, we point out
that one must carefully offset any apparent loss in relative
sensitivity against the accelerated rate at which pairs are pro-
duced due to the bosonic stimulation provided by a coherent
seed [see Eq. (10)]. In Fig. 2(a), we illustrate that within
the undepleted pump regime the QFI with a coherent seed
(ns �= 0) is always superior to the unseeded (ns = 0) case as
a function of τ . In fact, inspection of the first line of Eq. (17)
demonstrates that FQ ≡ FQ|ns=0 + nscosh(4τ ). Nevertheless,
it is similarly important to recognize that the undepleted pump
regime specifically ignores that in real experimental systems
there is always a finite total number of particles available from
the initial mF = 0 BEC that can be converted into pairs, e.g.,
N+ � N . Thus, the relative QFI per particle, FQ/N+ shown in
Fig. 2(b), is also an important metric.

While Dicke and spin-squeezed states are relatively well
understood in terms of their broad metrological utility, the

analysis of the QFI already makes clear that in the spinor BEC
system we must carefully understand how the initial seed ns

tunes us between these regimes. This is not only true in terms
of the achievable metrological sensitivity given, e.g., a fixed
particle resource N+ or time τ , but also in terms of robustness
to sources of technical noise. In the following sections, we
investigate this more systematically by considering a range
of measurement strategies for the MZ interferometer and the
impact of technical noise.

IV. OPTIMAL MEASUREMENTS AND ATTAINABLE
SENSITIVITY

The understanding of |ψ s
τ 〉UP provided by the collective

spin picture also enables us to readily identify measurements
that should allow for an optimal estimate of ϕ. Specifically,
in the squeezed regime a rotation can be inferred by simply
monitoring the change in the spin projection Jz [46], while in
the Dicke regime one needs to track J2

z due to the symmetry
of the Wigner distribution about the Bloch sphere [18]. These
observables are readily accessible in a spinor BEC experiment
from measurements of the mF = ±1 occupations.

The ideal sensitivity attainable with either measurement
of Ĵz or Ĵ2

z is straightforward, albeit sometimes cumbersome,
within the undepleted pump approximation. For brevity and
simplicity, we only present analytic expressions for the former
measurement but show example calculations and analysis for
both in Fig. 3. Further details of the calculations and more
extensive expressions can be found in Appendix A.

The mean and variance of Ĵz at the end of the MZ sequence
can be computed for either single or dual initial seeds and
expressed entirely in terms of the phase shift ϕ, initial seed ns,
and scattered population n̄. For a single seed, we obtain

〈Ĵz(ϕ)〉s = −ns

2
cos(ϕ) + ns cos(2θs)

√
n̄(n̄ + 2ns + 2)

2(ns + 1)
sin(ϕ),

〈[�Ĵz(ϕ)]2〉s = (2ns + 1)n̄

2(ns + 1)
sin2(ϕ) + (2ns + 1)n̄2

4(ns + 1)2
sin2(ϕ) + ns[1 + ns − cos(2θs) sin(2ϕ)

√
n̄(n̄ + 2ns + 2)]

4(ns + 1)
, (18)

and for dual seeds (see also Ref. [46]):

〈Ĵz(ϕ)〉d = −ns(1 + ns + n̄)sin(2θs)

2(1 + ns)
sin(ϕ),

〈[�Ĵz(ϕ)]2〉d = n̄(1 + 2ns)(2 + 2ns + n̄)

4(1 + ns)2
sin2(ϕ) + ns[1 + ns − cos(2θs) sin(2ϕ)

√
n̄(n̄ + 2ns + 2)]

4(1 + ns)
. (19)

We use the subscript 〈...〉s,d to differentiate expectation values computed for the initial conditions |ψ s,d
0 〉.

Unlike the prior result for the QFI, the form of 〈Ĵz(ϕ)〉s,d confirms the important role played by the seed phase θs. For the
case of a single seed, we observe that for θs = 0, π/2, π, ... the interferometric signal 〈Ĵz(ϕ)〉s is maximally boosted by the
spin-changing collisions—the contrast scales as n̄ for n̄ � ns, 1—whereas for θs = π/4, 3π/4, 5π/4... the signal depends only
on ns. Similar analysis is true for the case of dual seeds, albeit with the corresponding values of θs interchanged.

The attainable sensitivity from a measurement of Ĵz is calculated by directly substituting Eqs. (18) and (19) into Eq. (7). We
focus on the optimal cases of (i) θs = 0 (single seed) and (ii) θs = π/4 (dual seed), corresponding to the phases which maximize
the contrast of 〈Ĵz(ϕ)〉s,d , while results for arbitrary θs can be found in Appendix A. For a single seed, we obtain

(�ϕ)2
Ĵz,s

= ns(ns + 1)[1 + ns − sin(2ϕ)
√

n̄(n̄ + 2ns + 2)] + (2ns + 1)n̄2 sin2(ϕ) + 2(ns + 1)(2ns + 1)n̄ sin2(ϕ)

n2
s [cos(ϕ)

√
n̄(n̄ + 2ns + 2) + (ns + 1) sin(ϕ)]2

, (20)
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and for dual seeds we obtain [46]

(�ϕ)2
Ĵz,d

= (2ns + 1)n̄ tan2(ϕ)(n̄ + 2ns + 2) + ns(ns + 1)2 sec2(ϕ)

n2
s (n̄ + ns + 1)2

. (21)

Although the expressions are lengthy, a few simple state-
ments can be made. First, for ns → 0, both sensitivities (20)
and (21) diverge for arbitrary ϕ. This is consistent with the
fact that the amplitude of the interferometric signal rapidly
vanishes with decreasing ns, 〈Ĵz(ϕ)〉s,d ∝ ns → 0. Conversely,
when the coherent seed dominates, ns � n̄, both Eqs. (20) and
(21) limit to the archetypal example of a coherent spin state of
ns atoms (e.g., squeezing parameter ξ 2 = 1) input to a Ram-
sey interferometer: (�ϕ)2

Ĵz,s
� [sin2(ϕ)ns]−1 and (�ϕ)2

Ĵz,d
�

[cos2(ϕ)ns]−1. These expressions have a minimum at the op-
timal points ϕopt = π/2 and ϕopt = 0, respectively, where the
sensitivity reaches the associated SQL, (�ϕ)2

Ĵz,s,d
� 1/ns.

The sensitivity for intermediate values of n̄ and ns is more
complex, but we show representative examples in Fig. 3(a)
for ns = 0.1 [panel (i)] and ns = 4 [panel (ii)] with N+ =
ns + n̄ = 100. For dual seeding, we always observe a mini-
mum sensitivity at ϕ = 0, while in the case of a single seed
the location of the minimum shifts with ns but remains close
to ϕ = 0. Moreover, the achievable sensitivity appears to be
superior for a single seed in the squeezed regime, ns = 4.

We make these representative observations more rigorous
by computing the optimal (minimum) sensitivity in the limit
n̄ � ns, 1. In this case, expressions (20) and (21) can be ex-
panded in powers of ϕ about the point ϕ = 0 (Appendix A),
and we obtain

(�ϕ)2
Ĵz,s

∣∣
ϕopt

= (1 + ns)3

ns(1 + 2ns)

1

n̄2
(22)

and

(�ϕ)2
Ĵz,d

∣∣
ϕopt

= (1 + ns)2

ns(1 + ns + n̄)2
, (23)

which occur at ϕopt = [ns(1 + ns)]/[n̄(1 + 2ns)] and ϕopt = 0,
respectively.

The results (22) and (23) indicate optimal choices of ini-
tial seed population, nopt

s � (1 + √
3)/2 for a single seed and

nopt
s � 1 for dual seeds (for n̄ � ns, 1) that minimize the sen-

sitivity:

minns

[
(�ϕ)2

Ĵz,s

∣∣
ϕopt

] � 3
√

3

2n̄2
, minns

[
(�ϕ)2

Ĵz,d

∣∣
ϕopt

] � 4

n̄2
.

(24)

As previously observed in Ref. [46] for the latter case, this
demonstrates that a measurement of Ĵz can in principle lead to
a sensitivity that is within a O(1) prefactor of the HL, ∼1/n̄2,
for a fixed ns without any fine tuning as the total population
N+ is varied.

The optimal value of ns ∼ 1 is equivalent to the definitional
separation between the regime of squeezed states, identifiable
by the Wineland squeezing parameter ξ 2 < 1, as opposed to
Dicke-like oversqueezed states where the Wigner distribution
begins to wrap around the Bloch sphere and 〈Ĵz(ϕ)〉 → 0
due to symmetry. Moreover, the insensitivity of the optimal

ns to total particle number N+ = n̄ + ns arises because the
state |ψ s

t 〉UP can be crudely approximated by considering a
representative Wigner distribution on a single Bloch sphere
of radius J̄ =

√
〈Ĵ2〉 ∼ N+/2. For a minimum uncertainty

state, we will have that �J⊥�Jz ∼ N+ where �J⊥ is the rms
width of the state in the Jx − Jy equatorial plane. Substitut-
ing �Jz ∼ √

ns, we rearrange to obtain ns ∼ N2
+/(�J⊥)2, for

which a maximally squeezed state, �J⊥ ∼ J̄ , yields ns ∼ 1
independent of N+.

The sensitivity obtained with a measurement of Ĵ2
z can also

be obtained for arbitrary ns. The resulting expressions are
lengthy and not insightful, so we refer the interested reader
to Appendix A. However, it is useful to reproduce the well-
understood limiting case of ns = 0 as a reference [18,57],

(�ϕ)2
Ĵ2

z
= 1 + [2n̄(n̄ + 2) + 1]tan2(ϕ)

n̄(n̄ + 2)
, (25)

which has the optimal sensitivity

(�ϕ)2
Ĵ2

z

∣∣
ϕopt

= 1

n̄(n̄ + 2)
(26)

at ϕopt = 0.
In Fig. 3(a), we plot representative examples of (�ϕ)2

Ĵ2
z

to compare against the prior expressions for (�ϕ)2
Ĵz

. As pre-
viously discussed, we always choose θs = 0 (single-sided
seed) and θs = π/4 (dual seed) to optimize the achievable
sensitivity. For the case of ns = 0.1 in the Dicke regime,
the sensitivity achievable with Ĵ2

z is similar for either seed
configuration and is predictably superior to that attainable via
measurement of only Ĵz. We note that a divergence develops
that is located around the idealized ns = 0 working point of
ϕ = 0 (understood by the fact that for ns = 0 it corresponds
to a limit where both ∂ϕ〈Ĵ2

z (ϕ)〉 and 〈(�Ĵ2
z )2〉 vanish). In

the squeezed regime, ns = 4, we observe that the sensitivity
achievable with Ĵz and Ĵ2

z is similar and the shift of the optimal
working point is approximately the same.

In Fig. 3, we validate Eqs. (22) and (23) by exactly
computing the minimum sensitivity, optimized over ϕ, for
measurements of both Ĵz and Ĵ2

z . We show results as a function
of ns with fixed N+ = 100, although the behavior of (�ϕ)2

Ĵz

and (�ϕ)2
Ĵ2

z
are qualitatively unchanged as N+ is increased.

The predicted minima of (�ϕ)2
Ĵz

for either initial seed con-
figuration are clearly observable near ns ∼ 1, in agreement
with Eq. (24). In the squeezed regime, ns � 1, we observe that
while (�ϕ)2

Ĵz,s
and (�ϕ)2

Ĵ2
z ,s

collapse together for the single

seed and approach the QCRB, (�ϕ)2
Ĵz,d

and (�ϕ)2
Ĵ2

z ,d
are visi-

bly worse (until ns approaches N+). On the other hand, in the
Dicke regime, ns � 1, the sensitivity attained with Ĵ2

z quickly
becomes optimal, and the difference between the choices of
initial state vanish. Of note is that for trace amounts of seeding
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FIG. 3. (a) Example interferometric sensitivities as a function of
phase shift ϕ for different initial conditions: (i) ns = 0.1 and (ii) ns =
4. The sensitivities are computed from measurements of Ĵz (green
lines) and Ĵ2

z (blue lines) as labeled. Line style indicates single (solid)
and dual seed (dotted) initial conditions. We also plot the case of
ns = 0 with a Ĵ2

z measurement (red dot-dashed line), which saturates
the HL, as a reference in both panels. For all data, θs is optimally
chosen (see main text) and N+ = 102 is fixed. (b) Optimal sensitivity
as a function of initial seed occupation ns and N+ = 102. We indicate
with arrows the results of measurements of Ĵz (green lines) and Ĵ2

z

(blue lines) against the CFI F−1
C [Eq. (27), narrow magenta line] that

also saturates the QCRB [Eq. (17), thick black line underlying CFI].
The line styles indicate single (solid) and dual seed (dotted) initial
conditions. For clarity, we also indicate the Heisenberg (HL) and
standard quantum limits (SQL) for N+ = 102 in all panels.

ns � 1, the sensitivity achievable with Ĵ2
z does not saturate the

QCRB (in fact it only strictly saturates the bound for ns = 0).
For completeness, we also compute the classical Fisher

information (CFI) FC , which bounds the attainable sensitivity
in the case that one has access to the complete distribution
function Pn1,n−1 (ϕ) of the populations at the end of the MZ
sequence (equivalently, access to all possible moments of N̂−

and N̂+). The CFI is defined as

FC (ϕ) =
∑

n1,n−1

1

Pn1,n−1 (ϕ)

[
∂Pn1,n−1 (ϕ)

∂ϕ

]2

(27)

and is related to the sensitivity through (�ϕ)2 = 1/FC �
1/FQ. The CFI can be analytically computed in the limit of
ns = 0 [18,58], but for generic ns �= 0 we numerically eval-
uate FC by efficiently simulating the full MZ sequence with
|ψ s

UP(τ )〉 as the input state (see Appendix B for details). The
CFI is independent of ϕ and so we only include it in Fig. 3(b)
as a function of ns. We find it saturates the QCRB for all
ns. While the CFI is a demanding quantity to extract in an
experiment, it serves here to confirm that for ns � 1, measure-
ments of the mF = ±1 populations remain an optimal signal,
although the phase shift is encoded in higher-order moments
than we consider (e.g., Ĵz and Ĵ2

z ).

V. ROBUSTNESS TO EXPERIMENTAL IMPERFECTIONS

The results of the previous sections indicate that triggering
the spin-changing collisions with vacuum noise will generi-
cally lead to the optimal generation of metrologically useful
entanglement. Adding a coherent seed alters the nature of
the state but nevertheless always fundamentally leads to a
degradation of the achievable sensitivity per particle. How-
ever, even in current state-of-the-art experimental systems,
this perspective is too simplistic as it discounts a myriad
of technical imperfections and limitations. In particular, it is
accepted that Dicke states are typically more susceptible to,
e.g., detection noise, than spin-squeezed states [38]. In the fol-
lowing discussion, we demonstrate that when detection noise
is incorporated it becomes favorable to use a coherent seed
to generate squeezed states that offer less ideal metrological
potential but are nevertheless more robust and thus provide a
meaningful practical advantage in metrological performance.
We give estimates for the optimal seed ns in this scenario, and
also discuss other favorable features of seeded initial states
such as an increased dynamic range.

A. Detection noise

In ultracold atomic gases, imperfect detection limits the
ability to precisely count atoms and thus measure, e.g., mo-
ments of Ĵz. We assume this can be modeled as random noise
on population measurements in each shot, e.g., Jz → Jz + ζdn,
where ζdn is Gaussian noise with variance σ and zero mean.
For our theoretical calculations, this is equivalent to making
the substitution,

〈Ĵz〉σ = 〈Ĵz〉σ=0, 〈(�Ĵz )2〉σ = 〈(�Ĵz )2〉σ=0 + σ 2,〈(
�Ĵ2

z

)2〉
σ

= 〈(
�Ĵ2

z

)2〉
σ=0 + 4σ 2

〈
Ĵ2

z

〉
σ=0 + 2σ 4, (28)

where the subscript 〈....〉σ indicates the expectation value
includes averaging over the detection noise characterized
by σ .

It is most illuminating to first examine the case where
there is no seed, for which a measurement of Ĵ2

z is minimally
required and a useful analytic expression can be given. The
ideal (σ = 0) working point ϕopt = 0 corresponds to a case
where both the variance 〈(�Ĵ2

z )2〉 and slope of the signal
∂ϕ〈Ĵ2

z (ϕ)〉 vanish. Thus, the introduction of detection noise
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leads to a divergent sensitivity at ϕ = 0 and we instead com-
pute the shifted optimal working point to be ϕopt,σ � 2σ 2/n̄2,
for which the sensitivity is

(�ϕ)2
Ĵ2

z ,σ

∣∣
ϕopt

� 1 + 12σ 2

n̄(n̄ + 2)
. (29)

The top line of Eq. (29) clearly illustrates that to achieve the
true HL, one must satisfy the highly restrictive requirement
σ � 1/

√
12 or, in simpler language, possess the ability to

precisely count the number of atoms in the ensemble at the
single-particle level. While there has been notable progress in
this direction for spinor BECs [27], this is so far limited to
ensembles equivalent to N+ � 103 atoms.

For the case of seeded initial states, ns �= 0, it is relatively
straightforward to obtain analytic expressions for the sensitiv-
ity attainable from both Ĵz and Ĵ2

z measurements. However, we
again find that only the former expressions have an insight-
ful form. For weak detection noise, σ � √

N+, the working
point ϕopt is approximately unmoved from the ideal (σ = 0)
scenario regardless of the initial seed configuration, and we
obtain the optimal sensitivities,

(�ϕ)2
Ĵz,s,σ

|ϕopt � (1 + ns)3

ns(1 + 2ns)

1

n̄2
+ 4σ 2

n2
s

(1 + ns)2

n̄2
(30)

and

(�ϕ)2
Ĵz,d,σ

|ϕopt � (1 + ns)2

ns(1 + ns + n̄)2
+ 4σ 2

n2
s

(1 + ns)2

(1 + ns + n̄)2

(31)

for n̄ � 1. Both equations, particularly the latter Eq. (31), are
of a form that suggests choosing a suitable seed, e.g., ns ∼ σ ,
might suppress the effects of modest detection noise.

We explore this prediction by plotting the optimal sensitiv-
ity as a function of seed occupation ns for fixed N+ = 1000
and realistic σ = 8 in Fig. 4(a). We compare the sensitivity
attainable with both Ĵz and Ĵ2

z , where the results are obtained
by numerical optimization of the exact analytic expressions
for (�ϕ)Ĵz,σ

and (�ϕ)Ĵ2
z ,σ in the undepleted pump regime

with no approximations. For this case, our calculations clearly
demonstrate introducing a coherent seed provides a marked
advantage over the unseeded case. In fact, for this value of
σ we highlight that the sensitivity attainable without seeding
is limited to a negligible ∼1 dB below the SQL, whereas for
a broad regime around ns ≈ 4σ 2 we comparatively observe
∼5 − 6 dB below the SQL.

We also compute the CFI as a function of ns for the same
parameters to better probe the distinction between seeded and
unseeded states in the presence of detection noise. Detection
noise can be included by convolving the true distribution
function Pn1,n−1 (ϕ) with a Gaussian function of width ∼σ (see
Appendix B for details). Also note that, unlike our previous
calculations for FC , when detection noise is included the CFI
depends on the phase shift ϕ and so we plot the minimum
value of 1/FC (ϕ) in Fig. 4(a). The optimal sensitivity obtained
with the CFI follows the same trend as simpler measurement
signals, with a clear improvement in sensitivity when a small
seed is included albeit at a slightly smaller value of ns ≈ σ .
However, the improvement between the seeded and unseeded
states is comparatively reduced to only ∼2 dB. This latter

FIG. 4. (a) Optimal sensitivity as a function of seed occupation
ns with fixed detection noise σ = 8. We label results for measure-
ments of Ĵz (green lines) (green solid and dashed lines for single
and dual seeds), Ĵ2

z (blue lines), and the CFI F−1
C [Eq. (27), magenta

line]. Line style indicates single (solid line) and dual (dashed line)
seed initial conditions. For reference, we also indicate the sensitivity
achievable with a coherent spin state (CSS) including identical de-
tection noise (faded gray line). Inset: Corresponding dynamic range
(DNR) depending on seed occupation and measurement signal (same
line styles as main panel). Results are indistinguishable for single
or dual seed initial conditions. We compare to the ideal (σ = 0)
result (33) (black line). (b) Best sensitivity (optimized over both
ϕ and ns) as a function of detection noise σ . Line styles are the
same as (a) with the additional comparison to the reference case of
ns = 0 (red dot-dashed line) and measurement of Ĵ2

z (other signals
are labeled in plot). Inset: Optimal seed occupation nopt

s as a function
of detection noise. The shaded grey regions in (a) and (b) indicates
sensitivity below the SQL, (�ϕ)2

SQL = 1/N+.

observation suggests that the improvement we observe in
(�ϕ)Ĵz,σ

and (�ϕ)Ĵ2
z ,σ when a seed is included should not

entirely be attributed to an enhanced robustness of the state
for arbitrary measurements of populations. Rather, the benefit
of seeding is driven by the fact that squeezed states encode
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the phase rotation ϕ in simple (e.g., low-order) moments of
the populations in a very robust way.

In Fig. 4(b), we compare the best attainable sensitivity
without a seed (using a Ĵ2

z measurement) and with coherent
seeding (either Ĵz or Ĵ2

z is measured) as a function of detection
noise σ . In the latter case, we optimize the chosen value of ns

to provide the largest gain (corresponding values are plotted
inset). Again, we observe that seeding provides a robust en-
hancement to detection noise. Comparing to the SQL, we find
that seeded states can tolerate up to 50% larger detection noise
(σ ≈ 9 for ns = 0 compared to σ ≈ 15 for ns �= 0) for N+ =
103 while still retaining a pure quantum advantage. A fairer
comparison is to define a practical classical limit in terms of
the sensitivity achievable with a coherent spin state (which is
typically used to define the SQL) and subject to equivalent
detection noise. With respect to this standard, we observe
that unseeded initial states lead to an entanglement-enhanced
sensitivity up to σ ≈ 11, whereas seeding retains a quantum
advantage up to σ ≈ 35 [59], or a >300% improvement in
acceptable detection noise.

The inset of Fig. 4(b) shows the optimal seed population ns.
For the Ĵz measurement, we approximately find that ns ∼ 4σ

(single seed) and ns ∼ 3σ (dual seed) are optimal for weak
σ , consistent with the cursory inspection of Eqs. (30) and
(31). As the particular example of Fig. 4(a) illustrates, this
choice is not fine tuned and, in fact, as σ increases we find
the minimum of (�ϕ)Ĵz,σ

becomes increasingly broad and less
sensitive to the precise value of ns. In contrast, it is interesting
to observe that the optimal ns for the Ĵ2

z measurement appears
to be quite different and favors larger seeds, even though the
optimal sensitivity is almost indistinguishable. Insight into
this difference is unfortunately constrained by the complexity
of the analytic expression for (�ϕ)Ĵ2

z ,σ .
Finally, it is worth commenting on the apparent paradox

of suggesting that detection noise can be offset by using a
small seed ns ∼ σ that itself could be barely resolved by
standard imaging due to detection noise. This is, in fact, not
a contradiction for two key reasons. First, the microwave
pulse sequence used to transfer atoms out of the condensate
into the mF = ±1 modes (Fig. 1) can be well calibrated at
large values of ns before extrapolating to low power such
that small ns can be reliably prepared. Second, the small
seed population can be inferred indirectly by analysis of the
population dynamics as a result of spin-changing collisions
rather than by direct imaging after the initial state is prepared.
Specifically, the sum population N+ has a well-defined and
strong dependence on ns, as established in Eq. (10), that can
be used to estimate the seed population to a degree much
better than the direct imaging may allow, i.e., ns � σ is
resolvable.

B. Dynamic range

Another important but often overlooked consideration for
quantum sensing is the dynamical range (DNR), i.e., the range
of ϕ over which each state provides a quantum advantage
compared to the SQL, (�ϕ) < 1/N+. Again, this quantity can
be analytically computed in the limit of ns = 0 for Ĵ2

z and
generic ns � 1 for Ĵz, both in the absence of detection noise.

For the former case, we use Eq. (25) to directly obtain

DNRĴ2
z

=
√

2

n̄
(32)

for n̄ � 1, while in the case of ns � 1 manipulation of
Eqs. (20) and (21),

DNRĴz
=

√
2n2

s

1 + 2ns

√
2

n̄
, (33)

independent of the choice of initial single or dual seeds but
we have assumed n̄ � ns, 1. Thus, in principle, the dynamic
range increases by a factor of ∼√

ns when an appreciable
seed ns � 1 is introduced. While this is not necessarily a
meaningful advantage in the absence of detection noise, as
the optimal sensitivity is for ns ∼ 1, it suggests that for σ �= 0
then we might predict an enhanced DNR by a factor ∼√

σ

(given the optimal seed is ns ∼ σ ).
This speculation is validated by explicit computation of the

DNR in the inset of Fig. 4(a), including detection noise of
σ = 8 (other parameters are identical to the main plot). We
observe that the DNR grows with ns regardless of measure-
ment choice (discounting the redundant region of divergent
sensitivity for ns � 1 using Ĵz) and for this case the optimal
sensitivity at ns ∼ 30 is accompanied by an approximately
tenfold improvement in the DNR. This indicates that not only
do we generically expect improved optimal sensitivity with
seeded states but also a broader range of ϕ for which the
sensitivity is sub-SQL.

C. Errors in state preparation

Following the spirit of the previous section, we present
a brief analysis demonstrating that our conclusions are not
sensitive to small errors in preparation of the initial seed.
We separately consider the impact of number fluctuations and
phase fluctuations and, for simplicity, focus only on results for
the sensitivity (�ϕ)2

Ĵz
obtained for single-sided seeding.

Spurious fluctuations of the seed phase θs can be caused by,
e.g., imprecise characterization of Zeeman shifts in either the
dynamics or state preparation and noise in the phase of ap-
plied microwaves that realize the internal-state beam-splitter
operations. To understand the former, recall that the results
of the previous sections are calculated in a frame rotating
with the linear Zeeman shift, which in the original frame of
Ĥ [Eq. (1) manifests as a shift θs → θs + pt . This is easily
accounted for and removed by experimental calibration, but
unwanted fluctuations of the magnetic field or imprecise ex-
perimental timing could lead to shot-to-shot variations in θs.
We qualitatively account for these effects in our calculations
by a simple model wherein θs is taken to be a Gaussian random
variable with mean θs,0 and variance δθ2

s . It is straightforward
to substitute this definition of θs into the previously derived
results for 〈Ĵz(ϕ)〉 and 〈Ĵ2

z (ϕ)〉 [see Eq. (18)] and analytically
compute the average over θs. Considering small fluctuations
δθs � 1 and choosing θ0,s = 0, the best attainable sensitivity
is found to be

(�ϕ)2
Ĵz
|ϕopt � (1 + ns)3

ns(1 + 2ns)

1

n̄2

(
1 + 4 + 8ns

4 + 4ns
δθ2

s

)
(34)
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at

ϕopt = ns(1 + ns)

n̄(1 + 2ns)

(
1 − 2δθ2

s

)
. (35)

Both expressions are only perturbed weakly by phase fluc-
tuations at second order, with an O(1) prefactor depending
on ns. This indicates that our findings are robust to spurious
variations of θs.

Fluctuations in the number of seed atoms can also arise
due to, e.g., shot-to-shot variations in the applied microwave
power or duration during the transfer of atoms from mF = 0
to mF = ±1 initially. The effect of this can be investigated
with a crude model where ns fluctuates shot-to-shot as a
Gaussian variable with variance δn2

s � n2
s . This is sufficient to

demonstrate the robustness of our results, although in practice
a more quantitative treatment could be designed based on the
precise technical source of the fluctuations (i.e., one should
formally model the source of the fluctuations, such as the
microwave power, instead of the output atom number ns).
Moreover, the condition on δns (enforced to ensure contribu-
tions from unphysical ns < 0 do not skew the result) is not
overly restrictive when realistic values of σ are taken into
account. Substituting this model into the results for 〈Ĵz(ϕ)〉
and 〈Ĵ2

z (ϕ)〉 [see Eq. (18)] the same as previously leads to an
optimal attainable sensitivity,

(�ϕ)2
Ĵz
|ϕopt � (1 + ns)3

ns(1 + 2ns)

1

n̄2

(
1 + 1 + ns

1 + 2ns

δn2
s

ns

)
(36)

at

ϕopt � ns(1 + ns)

n̄(1 + 2ns)

(
1 + 1 + ns

1 + 2ns
δn2

s

)
(37)

for δns � ns. The former result for (�ϕ)2
Ĵz
|ϕopt indicates that

one should have δn2
s � ns, e.g., small noise compared to the

Poissonian quantum fluctuations of the initial coherent seed,
to retain good sensitivity.

VI. NUMERICAL ANALYSIS OF REALISTIC SYSTEM

The results and analysis of the previous section is insightful
but it is ultimately limited by the validity of the undepleted
pump approximation. Here we extend our investigation by
simulating the full quantum dynamics of large, experimentally
relevant systems and including the effects of depletion on the
pair production process.

We numerically integrate the quantum dynamics of a sys-
tem of N ∼ 104 particles that evolves according to the full
Hamiltonian Ĥ = Ĥinel + Ĥel + ĤZ as given in Eq. (1). While
this still assumes the spatial dynamics are frozen, our treat-
ment now properly treats depletion of the mF = 0 mode and
the interplay of the quadratic Zeeman shift with the elastic
collisions. Moreover, we explicitly include the term ∝ g(n̂1 −
n̂−1)2, although we only find it is not quantitatively relevant
(see also Appendix C). Our calculations solve for the time-
evolved state |ψ s

t 〉 = e−iĤt |ψ s
0〉 expanded in the Fock basis,

based on an efficient Chebyshev scheme [60] (see Appendix
B for further details).

We assume a condensate of N = 104 atoms is prepared in
the mF = 0 mode before a small number of atoms is coher-
ently transferred to seed the mF = 1 mode. We model this

FIG. 5. (a) Normalized sensitivity N+(�φ)2 obtained from full
quantum dynamics [governed by Ĥ , Eq. (1)] of an initial BEC of
N = 104 atoms as a function of initial seed occupation ns and in-
teraction time τ . Measurement signals are indicated on panels. Note
that the plotted data saturates the color scale in lower left corner of
panels (i.e., N+(�φ)2 > 10 dB). (b) Optimal sensitivity as a function
of seed ns, with τ chosen such that N+ = 1000 or 2000 (indicated
by arrows). Markers indicate results of full numerical simulations
for a measurement of Ĵz (circles) or Ĵ2

z (squares), while the tracking
solid lines are equivalent analytic predictions from the undepleted
pump approximation [e.g., Eq. (20)] with n̄ and ns chosen to match
numerical results. In all panels of (a) and (b), we include fixed
detection noise σ = 8.

transfer process formally such that the total number of atoms
N is fixed in our calculations and we do not truncate our Fock
basis [34]. For this large particle number, our initial state very
well approximates |ψ s

0〉 = |0,
√

N − ns,
√

nseiθs〉 considered
in previous sections. Spin-changing collisions are abruptly
commenced by quenching the quadratic Zeeman shift to reso-
nance, q = g(N − ns). After a time t the generated state |ψ s

t 〉
is then input to a MZ sequence before the relevant expectation
values are computed.

We compute the optimal sensitivities (�ϕ)2
Ĵz
|ϕopt and

(�ϕ)2
Ĵ2

z
|ϕopt as a function of both seed size ns and interaction

time τ = gNt and plot the results in Fig. 5(a). For best com-
parison to prior results (e.g., Fig. 3) the calculated sensitivities
include detection noise of σ = 8. Both (�ϕ)2

Ĵz
and (�ϕ)2

Ĵ2
z

show similar behaviors, including a pronounced minimum
in the sensitivity as a function of time that approximately
corresponds to the point where the maximum occupation of
the mF = ±1 modes is first reached (before the collision pro-
cess dynamically reverses and atoms repopulate the mF = 0
mode). This minimum occurs faster as ns is increased, reflect-
ing the bosonic stimulation of the scattering process provided
by an initial coherent seed. Moreover, the minimum is clearly
enhanced for ns ∼ 102, consistent with our prior analysis of
Fig. 3.
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FIG. 6. Best achievable sensitivity as a function of seed ns after
optimization over interaction time τ . The sensitivity is rescaled rel-
ative to the absolute SQL (�ϕ)2

SQL = 1/N . We compare results of
full numerical simulations for a measurement of Ĵz (green circles)
or Ĵ2

z (blue squares) with analytic expressions (corresponding blue
and green lines overlaying the markers) derived from the undepleted
pump approximation [e.g., optimization of Eq. (20)] with n̄ matched
to numerical simulations. We include fixed detection noise σ = 8.
Inset: Sensitivity as a function of σ obtained from numerical calcula-
tions with optimally chosen initial seed ns (green squares) compared
to ns = 0 prediction (red data). Lines (red dashed for ns = 0 and
green solid for ns �= 0) are analytic predictions from undepleted
pump approximation with matching N+.

Figure 5(b) shows the best attainable sensitivity as a func-
tion of ns with τ chosen for each ns such that the total
population of the mF = ±1 modes is fixed to N+ = 1000 or
2000, corresponding to 10% and 20% depletion, respectively.
In both cases, we compare the results of the full numerical
calculations to the analytic expressions Eqs. (20) and (21) (we
use the exact analytic expressions and optimize numerically
over ϕ) and find superb agreement despite the large depletion.
We comment that comparing the full numerical results with
these analytic expressions of course does not actually assess
their validity with respect to the simplest effects of pump
depletion, such as the slowdown in scattering to the mF = ±1
modes [as clearly we are neglecting the analytic prediction
linking n̄ and τ , Eq. (10)]. Rather, it simply makes clear that
the connection established by the analytic model between
various correlation functions and the number of scattered
atoms n̄ can still give tremendous insight into the structure
of correlations and associated robustness of the generated
states.

In Fig. 6, we go even further beyond our prior analytic anal-
ysis and compute the best attainable sensitivity as a function
of ns after optimizing over interaction time τ . For simplicity,
we restrict the optimization to times τ � τmax, where τmax

corresponds to the time at which the first maximum in the pop-
ulation of the mF = ±1 modes is reached. This is reasonable,
as it is typically challenging for experiments to reliably probe
correlations beyond this timescale without including quantita-
tive corrections due to the spatial dynamics, although there
has been notable recent progress in this direction [45,61].

We find excellent qualitative agreement with our previous
conclusions: In the presence of detection noise, the addition
of a coherent seed improves the achievable sensitivity. More-
over, while our results are clearly beyond the validity of the
undepleted pump regime [typical depletion of mF = 0 for the
data in Fig. 6(b) is ∼50%], we nevertheless find substantial
quantitative agreement by substitution of ns and n̄ obtained
from the numerical calculations directly into Eq. (20) and
optimizing over ϕ. This demonstrates that the analytic insight
provided by the undepleted pump regime can remain relevant
for realistic experimental conditions.

Quantitatively, we highlight that the calculation of the full
dynamics predicts a ∼7 dB improvement in sensitivity by
adding a suitable seed, to be compared to �4.5 dB in Fig. 3
based on undepleted pump calculations. This improvement
can be attributed to another favorable feature of seeded initial
states—they tend to support a larger total depletion of the
mF = 0 mode and thus better utilize the total available particle
resource for metrology.

VII. DISCUSSION AND OUTLOOK

Our results can be contrasted with recent studies of seeded
spin-exchange dynamics both in the limit of the undepleted
pump approximation and longer timescales [34,35]. These
works focused on the metrological potential of the generated
states for SU(1, 1) interferometry, which is a well-known
example of IBR [21,62]. In this case, the main benefit of
seeding is taken to be the acceleration of the dynamics and
thus naive protection against sources of technical noise and
decoherence such as particle loss. On the other hand, other
work has shown that the IBR intrinsically provides robustness
to detection noise σ ∼ O(

√
N ) [63,64], so introducing a seed

simply degrades the metrologically useful entanglement (per
particle) within the undepleted pump regime.

In summary, we have investigated how the initial quan-
tum fluctuations that trigger spin-changing collisions in a
spinor BEC can influence their practical utility for generating
metrologically useful states for matter-wave interferometry.
Particularly, introducing a coherent seed allows one to tune
controllably between regimes of Dicke-like states and spin-
squeezed states [46]. The former states are inherently superior
in an idealized setting, as they possess an optimal distribution
of quantum projection noise that enables saturation of the
HL in an SU(2) atom interferometer [53], but the latter are
more robust to ever present detection noise [38]. A careful
analysis demonstrates that while introducing a weak seed
does inevitably reduce the ideal per-particle interferometric
performance of the state generated by spin-changing colli-
sions, superior practical performance with a coherent seed is
robustly obtained for any reasonable value of σ .

Our results can be directly relevant for current efforts
to realize entanglement-enhanced interferometry using the
dynamics of spinor BECs [27,35,37,65], although the con-
clusions are broad. In particular, our work demonstrates the
importance of tailoring the generation of entanglement to
survive technical noise and imperfections in realistic quantum
systems rather than for idealized properties and promised
metrological potential.
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APPENDIX A: ANALYTIC TREATMENT
IN THE UNDEPLETED PUMP REGIME

The results of Secs. III–V in the main text follow from an
analytic solution of the dynamics generated by

ĤUP = gN (â1â−1 + â†
1â†

−1), (A1)

which is quadratic in bosonic creation/annihilation oper-
ators and thus exactly solvable. In the following subsec-
tions, we present the relevant solutions of the dynamics
in both the Schrödinger and Heisenberg pictures, and
present details of key expressions presented in the main
text.

1. Entangled input state

Evolution under ĤUP is equivalent to bosonic two-
mode squeezing that is studied in quantum optics. As
a consequence, it is straightforward to adopt known re-
sults from the quantum optics literature to analytically
solve the dynamics of the time-evolved state |ψ s,d

t 〉UP =
e−iĤUPt |ψ s,d

0 〉 [50]. The combination of initial seeding and
subsequent squeezing evolution means that the generated
state within the undepleted pump regime can be identified
as the well-understood two-mode squeezed coherent state
[66]. Specifically, |ψ s,d

t 〉UP = Ŝ(r(t ), π/4)D̂(α1, α−1)|0, 0〉,
where Ŝ(r, φ) = er(â1â−1e−2iφ+â†

1 â†
−1e2iφ ) is the two-mode squeez-

ing operator and r(t ) = gNt , D̂(α, β ) = eαâ†
1−α∗â1 eβâ†

−1−β∗â1

is the two-mode coherent displacement operator with α±1

the initial coherent amplitude of the mF = ±1 modes,
and |0, 0〉 is the bosonic vacuum state for the mF = ±1
modes.

For a single initial seed, the time-evolved state
in the Fock basis can be written as |ψ s

t 〉UP =∑∞
n,m=0 cn,m(t )|n, m〉 with expansion coefficients

[50],

cn,m(t ) = e−ns/2ei(m+n)π/4

√
m!

n!

× sech(gNt )[
√

nse
i(θs−π/4)sech(gNt )]n−m

× [−tanh(gNt )]mLn−m
m (0), (A2)

for m � n and zero otherwise. The state can be equivalently
written in the collective spin basis, e.g., Eq. (13) of the main
text, by making the correspondence J = (n + m)/2 and mz =
(m − n)/2. We use the latter to plot the Wigner function [51]
of the generated state on a collective Bloch sphere, as in Fig. 2.

2. Expectation values

Expectation values for the population dynamics, QFI and
metrological sensitivity are instead most easily computed by
treating the dynamics in the Heisenberg picture. The two-
mode squeezing generated by the Hamiltonian ĤUP has the
solution [44]

â±1(τ ) = cosh(τ )â±1(0) − isinh(τ )â†
∓1(0), (A3)

where τ = gNt . It is straightforward to use Eq. (A3) in com-
bination with the given initial states to compute all relevant
correlation functions of the system after the period of spin-
changing collisions, such as Eqs. (10)–(12) in the main text.
These expressions will naturally involve the interaction time
τ , but this can be replaced with the number of scattered atoms
n̄ by using

τ = 1

2
ln

[
1 + ns + n̄ + √

n̄(2 + 2ns + n̄)

1 + ns

]
, (A4)

which follows from the definition N+ = 〈n̂1(τ ) + n̂−1(τ )〉 =
n̄ + ns.

3. MZ sensitivity

Relevant correlations at the output of the MZ interfer-
ometer can also be obtained by apply a series of linear
transformations on Eq. (A3) corresponding to the beam-
splitter and mirror elements. Specifically, denoting b̂±1 as the
bosonic annihilation operator of the mF = ±1 modes after the
full MZ sequence, we have the relation

b̂±1 = cos
(ϕ

2

)
â±1(τ ) − i sin

(ϕ

2

)
â∓1(τ ). (A5)

With Eq. (A5), we then obtain the following required cor-
relation functions. For a single initial seed,

〈Ĵz(ϕ)〉s = − ns

2
cos(ϕ) + ns cos(2θs)

√
n̄(n̄ + 2ns + 2)

2(ns + 1)
sin(ϕ),

〈
Ĵ2

z (ϕ)
〉
s = n̄ sin2(ϕ)(n̄ + 2ns + 2)

(
n2

s cos(4θs) + (ns + 4)ns + 2
)

8(ns + 1)2

− ns cos(2θs) sin(2ϕ)
√

n̄(n̄ + 2ns + 2)

4
+ ns(ns cos(2ϕ) + ns + 2)

8
,

〈
Ĵ4

z (ϕ)
〉
s = − 3

32
− 5

4

〈
Ĵ2

z (ϕ)
〉
s + 1

32

4∑
j=0

Cs
j cos4− j (ϕ) sin j (ϕ), (A6)
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where

Cs
0 = (

2n4
s + 12n3

s + 24n2
s + 12ns + 3

)
, Cs

1 = −ns(ns + 3)
(
2n2

s + 6ns + 3
)√

n̄(n̄ + 2ns + 2)

(ns + 1)
,

Cs
2 =

(
2n4

s + 14n3
s + 25n2

s + 12ns + 3
)
n̄(n̄ + 2ns + 2) + (2ns + 1)(ns + 1)4

(ns + 1)2
,

Cs
3 = −ns(ns + 3)

√
n̄(n̄ + 2ns + 2){2[ns(ns + 6) + 3]n̄(n̄ + 2ns + 2) + 3(2ns + 1)(ns + 1)2}

(ns + 1)3
,

Cs
4 = 2n̄(n̄ + 2ns + 2){[ns(ns + 6) + 3]n̄ + 3(ns + 1)2}{[ns(ns + 6) + 3]n̄ + (ns + 1)[ns(2ns + 9) + 3]}

(ns + 1)4
+ 6ns(ns + 2) + 3.

(A7)

For an initial state with dual seeds,

〈Ĵz(ϕ)〉d = −ns(1 + ns + n̄)sin(2θs)

2(1 + ns)
sin(ϕ),

〈
Ĵ2

z (ϕ)
〉
d = ns(2 + ns)

8
+ n̄ sin2(ϕ)(n̄ + 2ns + 2)

4
− n2

s

8
cos(2ϕ),

〈
Ĵ4

z (ϕ)
〉
d = − 3

32
− 5

4

〈
Ĵ2

z (ϕ)
〉
d + 1

32

4∑
j=0

Cd
j cos4− j (ϕ) sin j (ϕ), (A8)

where

Cd
0 = 3

(
2n2

s + 4ns + 1
)
, Cd

1 = 0, Cd
2 = {ns[ns(2ns + 7) + 12] + 3}n̄(n̄ + 2ns + 2) + (2ns + 1)(ns + 1)4

(ns + 1)2
, Cd

3 = 0,

Cd
4 = 2n̄(n̄ + 2ns + 2)

(1 + ns)4

{
2
(
n2

s + 6ns + 3
)2

(ns + 1)n̄ + (
n2

s + 6ns + 3
)2

n̄2 + (
2n4

s + 18n3
s + 51n2

s + 36ns + 9
)
(ns + 1)2

}
+ 2ns

(
6 + 12ns + 6n2

s + n3
s

) + 3. (A9)

In all expressions, we have again replaced the natural dependence on τ with n̄.
The sensitivity of the MZ interferometer with measurement signals Ĵz or Ĵ2

z can be constructed using the results of Eqs. (A6)
and (A8). In the main text, we presented the results for the former under the simplification that θs = 0, π/4, but in full generality
we obtain

(�ϕ)2
Ĵz,s

= ns(ns + 1)[ns + 1 − cos(2θs) sin(2ϕ)
√

n̄(n̄ + 2ns + 2)] + (2ns + 1)n̄2 sin2(ϕ) + 2(ns + 1)(2ns + 1)n̄ sin2(ϕ)

n2
s [cos(2θs) cos(ϕ)

√
n̄(n̄ + 2ns + 2) + (ns + 1) sin(ϕ)]2

,

(A10)
and

(�ϕ)2
Ĵz,d

= csc2(2θs) sec2(ϕ)

n2
s (n̄ + ns + 1)2 {(2ns + 1)n̄ sin2(ϕ)(n̄ + 2ns + 2) + ns(ns + 1)[ns + 1 − cos(2θ ) sin(2ϕ)

√
n̄(n̄ + 2ns + 2)]}.

(A11)

The expressions for the sensitivity obtained with Ĵ2
z are much

more involved and not useful to reproduce.
We use Eqs. (A10) and (A11) to analytically compute the

optimal sensitivity as a function of ϕ, ns, and θs. The results of
this are quoted in Sec. IV but we briefly discuss our procedure
here.

First, it is straightforward to determine that θs = 0 and
θs = π/4 are optimal seed phases for the single and dual seed
initial states, respectively, as they maximize the amplitude of
the signal 〈Ĵz(ϕ)〉. The optimal working point ϕopt is then ob-
tained from Eq. (A11) by minimizing the numerator. We find
ϕopt = 0 and thus (�ϕ)2

Ĵz,d
|ϕopt = (1 + ns)2/[ns(1 + ns + n̄)]

per Eq. (23) of the main text. Moreover, this sensitivity is
minimized for nopt

s � 1 in the limit of large n̄ � ns, 1.
On the other hand, optimizing Eq. (A10) is more in-

volved. First, we empirically identify that in the limit of

ns � 1 (i.e., when the sensitivity is meaningfully useful)
the sensitivity is minimized in the neighborhood of ϕ ≈
0. This motivates an expansion of (�ϕ)2

Ĵz,s
as a Maclau-

rin series in ϕ, e.g., (�ϕ)2
Ĵz,s

≈ a0 + a1ϕ + a2ϕ
2 + O(ϕ3)

where a0, a1, a2, ... can be computed from derivatives of
Eq. (A10). Retaining only terms to quadratic order, it
is straightforward to obtain the minimum of the sensi-
tivity as (�ϕ)2

Ĵz,d
|ϕopt = a0 − a2

1/4a2 = (1 + ns)3/[n̄2ns(1 +
2ns)] at ϕopt = a1/(2a2) = [ns(1 + ns)]/[n̄(1 + 2ns)]. Subse-
quent minimization with respect to ns gives nopt

s � (1 +√
3)/2 in the limit of large n̄ � ns, 1. For completeness, we

follow a similar recipe to obtain the results (34) and (36),
where θs or ns are allowed to randomly fluctuate due to im-
perfect state preparation.

The results for (�ϕ)2
Ĵz

given above can be readily extended
to include detection noise σ , characterized by the relations
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(28) of the main text. As the ideal (σ = 0) working point co-
incides with the maximum magnitude of the slope ∂ϕ〈Ĵz〉, we
can assume that to a good approximation ϕopt is unchanged for
modest detection noise. Under this assumption, the optimal
sensitivity for σ �= 0 can be estimated as

(�ϕ)2
Ĵz,s,σ

|ϕopt �
[

(�ϕ)2
Ĵz,s,σ=0 + σ 2

|∂ϕ〈Ĵz〉σ=0|2
]∣∣∣∣

ϕ=ϕopt

.

(A12)
Substitution of relevant expressions into this formula leads
directly to Eqs. (30) and (31) of the main text.

Finally, the DNR for (�ϕ)2
Ĵz

can also be computed in the
absence of detection noise [Eq. (33) of the main text]. For an
initial state with two seeds, this can be accomplished exactly
by finding values of ϕ that solve (�ϕ)2

Ĵz,d
= 1/

√
N+ using

Eq. (A11) in the limit of large n̄ � 1, ns. For a single seed,
we again use the Maclaurin series expansion of (�ϕ)2

Ĵz,s
and

solve the same equality to obtain an identical result.

APPENDIX B: EFFICIENT NUMERICAL CALCULATION
OF DYNAMICS AND CLASSICAL FISHER INFORMATION

1. Quantum dynamics

Figures 5 and 6 of the main text present results based on the
full quantum dynamics within the single-mode approxima-
tion. To be concrete, we use an efficient Chebyshev expansion
approach [60] to numerically solve the dynamics of the system
in the Schrödinger picture. Calculations are implemented us-
ing OPENMP on a High Performance Computing Cluster node
and a simulation involving N ∼ 104 particles typically takes
∼1 − 5 h using ∼20 CPU cores.

Our numerical calculations assume the initial mF = 0 BEC
is prepared in a Fock state of N atoms before the ns seed
atoms are coherently transferred into the mF = +1 state. This
approach becomes formally equivalent to the initial coherent
seeds we consider in our analytic calculations in the limit of
N → ∞ [34], but is primarily useful to reduce computational
overhead by working in a regime of fixed total particle number
N̂ = n̂0 + n̂1 + n̂−1.

Our calculations use the full Hamiltonian

Ĥsim = g(â0â0â†
1â†

−1 + H.c.) + gn̂0(n̂1 + n̂−1)

− q(n̂1 + n̂−1) + g

2
(n̂1 − n̂−1)2 − gns(n̂1 − n̂−1),

(B1)

which includes all terms of Ĥ [Eq. (1)] in the main text
except for the irrelevant linear Zeeman shift. The last term
−gns(n̂1 − n̂−1) of Ĥsim is added to cancel off the mean-field
contribution of the spin-precession generated by g

2 (n̂1 − n̂−1)2

(discussed in more detail in Appendix C). This mimics the
experimental calibration of the relationship between initial
seeding phase and the beam-splitter phase.

2. CFI

The CFI can be evaluated according to Eq. (27) of the main
text. However, in practice, we find it is simpler to compute the

CFI in the equivalent form

FC (ϕ) =
∑
J,mz

1

PJ,mz (ϕ)

[
∂PJ,mz (ϕ)

∂ϕ

]2

, (B2)

where PJ,mz (ϕ) ≡ |cϕ
J,mz

is the joint distribution function
for the total spin and mean projection along z obtained
in terms of the expansion coefficients of the collective
spin state after the phase-shift is imprinted, e.g., |ψϕ

BS〉 =
ÛBSÛϕ|ψ s

τ 〉.
We obtain |ψϕ

BS〉 and the associated cϕ
J,mz

using a Cheby-
shev expansion approach, i.e., by treating the rotation operator
exp(−iŜ · nϕ) as a time propagation operator where the angle
ϕ plays the role of time and Ŝ · n is the effective Hamiltonian.
This approach enables us to avoid the computationally expen-
sive evaluation of Wigner-D matrices in a very high angular
momentum space [67,68].

To account for detection noise, we compute the convolved
distribution |P̃J,mz |2 using

∣∣P̃J,mz

∣∣2 = 1

2πσ 2

∑
J ′,m′

z

∣∣PJ ′,m′
z

∣∣2
e− (J−J′ )2+(mz−m′

z )2

2σ2 . (B3)

In our numerical calculations, we truncate the double sum
so it only includes the relevant region |J ′ − J|, |m′

z − mz| ∈
[0, 10σ ]. A brute force calculation of the convolution is
not appropriate as the evaluation of the sum scales as
O(100σ 2N ), where N is the size of the Hilbert space, which
becomes slow for large σ or N . Instead, we decouple the
expression (B3) into a pair of sums∣∣PJ,m′

z

∣∣2 = 1√
2πσ 2

∑
J ′

∣∣PJ ′,m′
z

∣∣2
e− (J−J′ )2

2σ2 ,

∣∣P̃J,mz

∣∣2 = 1√
2πσ 2

∑
m′

z

∣∣PJ,m′
z

∣∣2
e− (mz−m′

z )2

2σ2 , (B4)

which only scales as 2 × O(10σN ).

APPENDIX C: ROLE OF TERMS ∝ (n̂1 − n̂−1)2

IN THE DYNAMICS

In the analytic treatment of Secs. III–V, it was assumed
that elastic collisions ∝ (n̂1 − n̂−1)2 in Ĥ could be ignored.
This was justified by noting that (i) the term commutes with
the Hamiltonian and can be treated independently and (ii) it
should be negligibly small compared to other contributions
to the dynamics given that we typically assume ns � N . The
former point means that we can understand the influence of
the additional term as simply a subsequent transformation of
the state we generate, e.g., |ψt 〉 → e−igt (n̂1−n̂−1 )2 |ψt 〉, and input
to the MZ interferometer. We use this to better justify point (ii)
in the following.

The transformation, e−igt (n̂1−n̂−1 )2
, is equivalent to a one-

axis twisting (OAT) term in the collective spin picture—(n̂1 −
n̂−1)2 ∝ Ĵ2

z —and this provides a useful way to quantify its
impact on the physics we predict. In particular, the OAT
evolution can be broken into two independent effects: (1) a
mean-field rotation ∝ gt〈Ĵz〉Ĵz ∼ gnst Ĵz of the state |ψ s

t 〉 about
the Bloch sphere that deterministically shifts the seed phase,
similar to the linear Zeeman shift, θs → θs + gnst (this is
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absent for states with dual seeding), and (2) a nonlinear
shearing of the fluctuations of the state at a rate ∼g

√
ns (cor-

responding to the size of the quantum fluctuations in Jz of the
squeezed states we prepare).

Both effects must be considered with respect to the relevant
timescale of the pair production process, e.g., t ∼ O(1/gN ).
For example, the precession generates a drift of the optimal
seed phase on the order of gnst ∼ ns/N . In principle, this
drift is negligibly small for most cases we consider (ns � N).
However, it is also easily removed by appropriate calibration
of the ensuing beam-splitter operations/spin rotations (identi-
cal to the linear Zeeman shift). For this reason, we artificially

remove this contribution in Fig. 5 of the main text to better
match a real experiment (see prior discussion in Appendix B).
On the other hand, the shearing contribution leads to an irre-
versible reduction in contrast, e.g., decrease in effective |〈Ĵ+〉|
of the squeezed state that degrades the performance of the
interferometer [54,69]. Fortunately, the much slower rate of
this effect means that it can be easily neglected on the relevant
timescale of pair production, e.g., g

√
nst ∼ √

ns/N0 � 1 for
all cases we consider in Sec. VI. We have checked this claim
by constructing Fig. 5(b) with and without the (n̂1 − n̂−1)2

contribution and observed that the relevant results change
negligibly for ns � 0.1N .
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