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We analyze the task of encoding classical information into a quantum system under the restriction by
symmetry. Motivated by an analogy between the resource theories of asymmetry and entanglement, we ask
whether an analog of superdense coding is possible in the former. I.e., we investigate whether the classical
information capacity of an asymmetric state can be strictly larger than that of any symmetric state whereas
the latter is a strictly positive constant. We prove that this is possible if and only if the unitary representation
of the symmetry is non-Abelian and reducible. The result provides an information-theoretical classification of
symmetries of quantum systems. We also discuss the possibility of superdense coding in other resource theories.
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I. INTRODUCTION

Asymmetry of quantum states plays the role of resources
for information processing tasks when the operations on the
system are restricted by symmetry. Examples of the tasks
range from quantum communication [1] and quantum metrol-
ogy [2] to reference frame sharing [3] and thermodynamic
work extraction [4]. Fundamental limitations on the transfor-
mation of quantum states under the symmetry restriction have
been investigated in Refs. [5–10], and quantification of asym-
metry of quantum states has been addressed in Refs. [11–14].
These researches are referred to as the resource theory of
asymmetry. Theoretically, the resource theory of asymmetry
is a particular case of a general formalism called the quantum
resource theory [15]. This formalism also applies to other
physical properties, such as coherence [16], athermality [17],
purity [18], non-Gaussianity (see, e.g., Refs. [19,20]), and
most notably, entanglement [21,22]. Once we have an infor-
mation processing task for which one physical property (e.g.,
entanglement) is useful as a resource, we could find, by formal
analogy, a task for which another property (e.g., asymmetry)
plays the role of the resource.

In this paper, we adopt the task of superdense coding
in the resource theory of entanglement and investigate the
possibility of its analog in the resource theory of asymmetry.
We consider a scenario in which one encodes classical infor-
mation into a quantum system by an operation restricted by
symmetry. The maximum amount of classical information that
can be encoded under this restriction depends on the initial
state of the system. In analogy with superdense coding in the
resource theory of entanglement, we define that superdense
coding is possible if the classical information capacity of an
asymmetric state is strictly larger than that of any symmetric
state while the latter is a strictly positive constant (see Fig. 1).
We prove that this relation holds if and only if the unitary
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representation of the symmetry of the system is non-Abelian
and reducible. Consequently, superdense coding is possible
in systems, e.g., with SU(2) symmetry, whereas it is not
possible in the case, e.g., of U (1) symmetry. The result thus
provides an information-theoretical classification of symme-
tries of quantum systems. For the simplicity of analysis, we
consider an asymptotic limit of infinitely many copies and
vanishingly small error.

This paper is organized as follows. In Sec. II, we de-
scribe the framework of the resource theory of asymmetry.
In Sec. III, we formulate the problem and present the main
results. In Sec. IV, we discuss the possibility of superdense
coding in other resource theories. Conclusions are given in
Sec. V. Throughout this paper, log t represents the base 2
logarithm of t.

II. RESOURCE THEORY OF ASYMMETRY

We describe the framework of the resource theory of asym-
metry.

A. Symmetry of quantum states

Consider a quantum system S described by a Hilbert space
HS with dimension dS (< ∞). The set of normalized density
operators on HS is denoted by S (HS ). Consider a symmetry
group G with the unitary representation UG ≡ {Ug}g∈G on
HS . A state σ ∈ S (HS ) is said to be symmetric if it satisfies
UgσU †

g = σ for any g ∈ G and asymmetric otherwise. We
denote the set of symmetric states by Ssym(S,UG). This defi-
nition can naturally be generalized to a system composed of n
duplicates of a system S, which is denoted by Sn. We intro-
duce notations �g := (g1, . . . , gn) and U�g := Ug1 ⊗ · · · ⊗ Ugn

for gi ∈ G (i = 1, . . . , n). Symmetric states are those that sat-
isfy the condition U�gσU †

�g = σ for any �g ∈ G×n (see Appendix
C in Ref. [23]).

A quantum system with symmetry is represented by a
Hilbert space that is decomposed into a direct-sum-product
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FIG. 1. Superdense coding in the resource theory of asymmetry
is depicted. The bit arrays are classical information that are to be
encoded into quantum systems. The quantum systems are initially
in an asymmetric state ρ or in a symmetric state σ . The function C

denotes the symmetry-restricted classical information capacity of the
state. Csym is a constant that does not depend on σ .

form [3]. The decomposition is also represented by an
embedded form (see Appendix B.1 in Ref. [24] for the
details), which would be useful to simplify the notations.
Consider a symmetry group G with the unitary representa-
tion UG ≡ {Ug}g∈G on HS . There exist three Hilbert spaces
Hs0 , HsL , HsR and a linear isometry �:HS → Hs0 ⊗ HsL ⊗
HsR that satisfy the following conditions: First, ��† =∑

q∈Q |q〉〈q|s0 ⊗ IsL
q ⊗ IsR

q , where {|q〉}q∈Q is a fixed orthonor-
mal basis of Hs0 , and IsL

q , IsR
q are projectors on subspaces

HsL
q ⊆ HsL and HsR

q ⊆ HsR , respectively, for each q. Second,
for any g ∈ G, the unitary Ug is decomposed by � as�Ug�

† =∑
q∈Q |q〉〈q|s0 ⊗ usL

g,q ⊗ IsR
q , where {ug,q}g∈G is an irreducible

unitary representation of G on HsL
q ⊆ HsL for each q. The

linear isometry � satisfying the above conditions is uniquely
determined from UG up to changes inthe basis. Schur’s lemma
implies that a symmetric state σ ∈ Ssym(S,UG) is decomposed
by � as �σ�† = ∑

q∈Q rq|q〉〈q|s0 ⊗ π sL
q ⊗ σ sR

q , where {rq}q∈Q

is a probability distribution on Q, πq is the maximally mixed
state on HsL

q , and σq is a state on HsR
q for each q ∈ Q. For

the system composed of n duplicates of S, it is convenient
to introduce notations �q := (q1, . . . , qn) ∈ Q×n, Hs̄L

�q := HsL
q1

⊗ · · · ⊗ HsL
qn

, Hs̄R

�q := HsR
q1

⊗ · · · ⊗ HsR
qn

and Hs̄0 := (Hs0 )⊗n.
A state σn on Sn is symmetric if and only if it is decom-
posed by �⊗n as (�⊗n)σ (�†⊗n) = ∑

�q∈Q×n r�q| �q〉〈 �q|s̄0 ⊗ π
s̄L

�q ⊗
σ

s̄R

�q with {r�q}�q∈Q×n being a probability distribution, π
s̄L

�q being

the maximally mixed state on Hs̄L

�q and σ�q ∈ S (Hs̄R

�q ). In the rest
of this paper, we omit � and represent all states and operators
on S in the embedded form.

Abbreviating dimHsL
q and dim HsR

q as dsL
q and dsR

q , re-
spectively, the total dimension of the system is calculated
to bedS = ∑

q∈Q dsL
q dsR

q . The unitary representation UG of G
on HS is Abelian if and only if dsL

q = 1 for all q ∈ Q, or
equivalently, iff it holds that

dS =
∑
q∈Q

dsR
q . (1)

The representation UG is irreducible if and only if |Q| = 1 and
dsR

q = 1, which is equivalent to the condition that∑
q∈Q

dsR
q = 1. (2)

B. Symmetry of quantum operations

Any quantum operation on system S is represented by
a completely positive trace-preserving (CPTP) map K on
S (HS ), which is described by a (nonunique) set of lin-
ear operators {Kl}l on HS such that K(·) = ∑

l Kl (·)K†
l and∑

l K†
l Kl = I (see, e.g., Ref. [25]). We say that a CPTP

map K on S (HS ) is asymmetry-nongenerating (AN) if
K(σ ) ∈ Ssym(S,UG) for any σ ∈ Ssym(S,UG), and symmetry-
preserving (SP) if K†(σ ′)/Tr[K†(σ ′)] ∈ Ssym(S,UG) for any
σ ′ ∈ Ssym(S,UG) as well, where K† is the adjoint map of
K. In addition, we say that an operation K is strongly
asymmetry-nongenerating (SAN) if there exists, at least, one
representation {Kl}l so that

∀l,∀σ ∈ Ssym(S,UG);
KlσK†

l

Tr[KlσK†
l ]

∈ Ssym(S,UG), (3)

and strongly symmetry-preserving (SSP) if, in addition to (3),
it holds that

∀l,∀σ ′ ∈ Ssym(S,UG);
K†

l σ ′Kl

Tr[K†
l σ ′Kl ]

∈ Ssym(S,UG). (4)

Suppose that our ability to perform operations on system S
is restricted by symmetry. It would be natural to assume that
asymmetric states cannot be generated from symmetric states.
Thus, we consider one of the above four classes as the set of
operations allowed under the restriction by symmetry, which
we denote by Osym(S,UG). A symmetric operation refers to an
operation that is either: (i) preparation of the system in a sym-
metric state or (ii) an operation that belongs to Osym(S,UG). It
is straightforward that the set of symmetric states is closed
under symmetric operations and that the set of symmetric
operations is closed under sequential compositions. Due to the
convexity of Ssym(S,UG), any SSP operation is also AN, SP,
and SAN. For the unitary operations, AN coincides with SAN
and SP coincides with SSP. The results presented in this paper
do not depend on which of the four classes we choose.

Instead of the above four classes, one may also consider
covariant operations [5–10,26] or operations that keep the
symmetric twirling operation invariant [27] as symmetric op-
erations. In this paper, we will not discuss which one of them
is the natural choice because it should be decided depending
on each physical context. We remark that the classes AN,
SAN, and SSP are natural generalizations of maximally in-
coherent operations (MIO), incoherent operations (IO), and
strictly incoherent operations (SIO) in the resource theory of
coherence [28].

III. SUPERDENSE CODING

We present formulation of superdense coding in the re-
source theory of asymmetry and describe the main result. A
proof of the result will be provided in the following subsec-
tions.
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A. Formulation and main results

Let us first recall superdense coding in the resource theory
of entanglement [29,30]. Consider encoding of a classical
message into a composite quantum system AB with a fixed
dimension dAdB. If any operation on AB is allowed for en-
coding, at most log dAdB bits of classical information can be
encoded. Suppose, however, that the encoding operation is
somehow restricted to operations on system A alone. In this
case, the maximum amount of classical information that can
be encoded into system AB depends on its initial state. If the
initial state is separable, the maximum encodable information
is equal to log dA. On the other hand, when the initial state
is sufficiently strongly entangled, it can be strictly larger than
log dA.

To formulate an analog of superdense coding in the re-
source theory of asymmetry, consider a scenario in which the
sender aims at transmitting nR bits of classical information
X by encoding it into a quantum system Sn = S1 · · · Sn and
sending the system to the receiver. Each system Si is initially
in a state ρ. We assume that the encoding operation E is
restricted to be symmetric ones, in which case it is described
by a set of symmetric CPTP maps {Ex}x=1,...,2nR . A decoding
operation is described by a measurement M on Sn, repre-
sented in terms of a set of positive semidefinite operators
{Mx}x=1,...,2nR such that

∑
x=1,...,2nR Mx � I . The probability

of correctly decoding X when the value of the message is
x is given by Pr(correct|X = x) = Tr[MxEx(ρ⊗n)]. Thus, the
maximum probability of error is defined by ε(E,M, ρ⊗n) :=
maxx∈{1,...,2nR} [1 − Tr[MxEx(ρ⊗n)]]. The symmetry-restricted
classical information capacity of a state ρ is defined as the
supremum of the rate R such that the maximum probability of
error can be made arbitrarily small for any sufficiently large n
by properly choosing the encoding operation and the decoding
measurement. We denote this capacity by C(ρ). Since the set
of symmetric operations is closed under sequential compo-
sitions, the function C is monotonically nonincreasing under
symmetric operations.

Our interest is on the maximal values of the symmetry-
restricted classical information capacities of asymmetric
states and symmetric states. Analogously to superdense cod-
ing in the resource theory of entanglement, we focus on
whether or not the former is strictly larger than the latter
whereas the latter is a strictly positive constant.

Definition 1. Superdense coding is possible on system S
with symmetry G if there exists a constant Csym > 0, and it
holds that

max
ρ∈S(HS )

C(ρ) > Csym = C(σ ) (5)

for any σ ∈ Ssym(S,UG).
The main result of this paper is the following theorem,

which is applicable to any of AN, SP, SAN, and SSP:
Theorem 2. Superdense coding is possible on system S

with symmetry G if and only if the unitary representation UG

of G on HS is non-Abelian and reducible.
A proof of Theorem 2 is provided in the following subsec-

tions. For the properties of quantum entropies that are used in
the proof, see, e.g., Refs. [25,31–33].

An operation K on system S is said to be covariant
if it commutes with the action of Ug, i.e., if it satisfies

K[Ug(·)U †
g ] = UgK(·)U †

g for any g ∈ G [5–10,26]. One can
also consider encoding of classical information into a quan-
tum system by covariant operations. Superdense coding is
possible under similar conditions as in Theorem 2 (see the
Appendix). Reference [27] considered a similar task in which
one encodes classical information into a quantum system by
operations that keep the symmetric twirling operation invari-
ant.

B. Capacity of asymmetric states

The first step toward the proof of Theorem 2 is to obtain a
lower bound on the symmetry-restricted classical information
capacity of arbitrary states:

Proposition 3. For any symmetry G with the unitary rep-
resentation UG on HS and any state ρ ∈ S (HS ), it holds that

C(ρ) � H ({pq}) +
∑
q∈Q

pq log dsL
q dsR

q − H (ρ), (6)

where pq := Tr[〈q|s0ρ|q〉s0 ]. The symbol H denotes both the
Shannon entropy and the von Neumann entropy, defined by
H ({pq}) := −∑

q pq log pq and H (ρ) := −Tr[ρ log ρ].
Proof. Fix arbitrary ε, δ > 0 and choose sufficiently large

n. Let Tn,δ ∈ Q×n be the δ-strongly typical set with respect
to {pq}q, and define a projector 	0

n,δ := ∑
�q∈Tn,δ

| �q〉〈 �q|s̄0 ⊗
I s̄L

�q ⊗ I s̄R

�q . Let W be a unitary on Sn that is decomposed into

W = ∑
�q∈Q×n | �q〉〈 �q|s̄0 ⊗ us̄L

�q ⊗ v
s̄R

�q , where u�q and v�q are uni-

taries on Hs̄L

�q and Hs̄R

�q , respectively. It is straightforward to
verify that W is symmetry preserving. Using this unitary, we
define ρW,n := W ρ⊗nW †. Due to the property of the typi-
cal set, it holds that Tr[	0

n,δρW,n] � 1 − ε. Suppose that u�q
and v�q in the definition of W are chosen randomly accord-
ing to the unitary invariant (Haar) measure, independently
for each �q. The averaged state over the unitaries is given
by ρ̄n := EW [ρW,n] = ∑

�q∈Q×n pq1 · · · pqn | �q〉〈 �q|s̄0 ⊗ π
s̄L

�q ⊗ π
s̄R

�q .

Denoting the right-hand side of (6) by D̂(ρ), it follows that
	0

n,δρ̄n	
0
n,δ � 2−n[D̂(ρ)−δ] · 	0

n,δ . We also define a projector
	W,n,δ := W 	n,δW † for each W , where 	n,δ is the pro-
jection onto the δ-typical subspace of (HS )⊗n with respect
to ρ. It should be noted that Tr[	W,n,δ] � 2n[H (ρ)+δ] and
Tr[	W,n,δρW,n] � 1 − ε.

To prove the existence of an encoding operation and
a decoding measurement with a small error, we fix R ≡
D̂(ρ) − 3δ and apply the packing lemma (Corollary 15.5.1
in Ref. [33]). It follows that there exist a set of symmetry-
preserving unitaries {Wx}2nR

x=1 and a positive operator-valued

measure {
x}2nR

x=1 such that 2−nR
∑2nR

x=1 Tr[
xρWx,n] � 1 −
4(ε + 2

√
ε) − 8 × 2−nδ . The right-hand side of this inequality

is greater than 1 − 13
√

ε for sufficiently large n. We construct
the protocol with rate R and error 13

√
ε by the encoding

operations Ex(·) = Wx(·)W †
x and the decoding measurement

Mx = 
x (x = 1, . . . , 2nR). Since ε, δ > 0 can be arbitrarily
small, this completes the proof of Inequality (6). �

The lower bound in Proposition 3 coincides with the di-
mension of the system for an asymmetric state in a particular
form
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Corollary 4. For any symmetry G with the unitary repre-
sentation UG on HS , it holds that

max
ρ∈S(HS )

C(ρ) = log dS. (7)

Proof. The converse part supρ C(ρ) � log dS immedi-
ately follows from the Holevo bound [34]. The direct part
supρ C(ρ) � log dS follows from Proposition 3. Note that the
right-hand side of Inequality(6) is equal to log dS for any pure
state |ψ〉 in the form of |ψ〉 = ∑

q

√
dsL

q dsR
q /dS|q〉s0 |ψq〉sLsR ,

where |ψq〉 is a normalized state vector in HsL
q ⊗ HsR

q for
each q. �

C. Capacity of symmetric states

The second step for the proof of Theorem 2 is to derive the
symmetry-restricted classical information capacity of sym-
metric states. This completes the proof of Theorem 2 when
combined with the Abelian condition (1), the irreducibility
condition (2) and Corollary 4.

Proposition 5. For any symmetry G with the unitary repre-
sentation UG on HS and any symmetric state σ ∈ Ssym(S,UG),
it holds that

C(σ ) = log

(∑
q∈Q

dsR
q

)
. (8)

Proof. To prove the direct part C(σ ) � log (
∑

q dsR
q ), we

show that log (
∑

q dsR
q ) bits of classical information can

be encoded by a symmetric operation on system S. Let

{|er|+q〉}d
sR
q

r=1 be an orthonormal basis of HsR
q for each q ∈

Q and consider symmetric states ςq,r = |q〉〈q|s0 ⊗ π sL
q ⊗

|er|q〉〈er|q|sR (1 � r � dsR
q , q ∈ Q). The supports of these

states are orthogonal for (q, r) �= (q′, r′). Thus, log (
∑

q dsR
q )

bits of classical information can be encoded into the system S
by preparing it in the state ςq,r , depending on the message.

Next, we prove the converse part C(σ ) � log (
∑

q dsR
q ).

Suppose that R < C(σ ). By definition, for any ε > 0 and
sufficiently large n, there exist a set of symmetric encod-
ing operations E ≡ {Ex}x=1,...,2nR and a decoding measurement
M ≡ {Mx}x=1,...,2nR that satisfy the small error condition
ε(E,M, ρ⊗n) � ε. The state after the encoding operation is
represented by the density operator,

ςn := 2−nR
2nR∑
x=1

|x〉〈x|X ⊗ Ex(σ⊗n). (9)

The state after the decoding measurement is represented
by M̂(ςn), where M̂: Sn → X̂ is a map defined by
M̂(τ ) = Tr[Mx(τ )]|x〉〈x|X̂ . We introduce a state �n :=
2−nR

∑
x=1,...,2nR |x〉〈x|X ⊗ |x〉〈x|X̂ . The small error condition

implies that ‖M̂(ςn) − �n‖1 � ε. Due to Fano’s inequality
(see, e.g., Ref. [32]), the mutual information between X and
X̂ is evaluated as nR = I (X :X̂ )�n � I (X :X̂ )M̂(ςn ) + nRη(ε),
where η is a function that satisfies limε→0 η(ε) = 0.
The monotonicity of quantum mutual information
implies I (X :X̂ )M̂(ςn ) � I (X :Sn)ςn = H (Sn)ςn − H (Sn|X )ςn .
As we prove below, the entropies of the state ςn

are calculated to be H (Sn|X )ςn �
∑

�q μ�q log ds̄L

�q and

H (Sn)ςn � H ({μ�q}�q) + ∑
�q μ�q log ds̄L

�q ds̄R

�q , where {μ�q}�q∈Q×n

is a probability distribution. Thus, we arrive at nR �∑
�q μ�q log (ds̄R

�q /μ�q) + nRη(ε). Defining a probability

distribution {ν�q}�q by ν�q = dsR

�q /
∑

�q ds̄R

�q , and noting that∑
�q ds̄R

�q = (
∑

q dsR
q )n, we have

∑
�q μ�q log (ds̄R

�q /μ�q) =
−D({μ�q}‖{ν�q}) + n log (

∑
q dsR

q ) � n log (
∑

q dsR
q ). Here,

D is the Kullback-Leibler divergence defined by
D({μ�q}‖{ν�q}) := ∑

�q μ�q log (μ�q/ν�q) (see, e.g., Ref. [32]), and
the last inequality follows from the non-negativity thereof.
Consequently, we arrive at (1 − η(ε))R � log (

∑
q dsR

q ).
Since this relation holds for any ε > 0 and R < C(σ ), we
obtain C(σ ) � log (

∑
q dsR

q ).
The entropies of the state ςn are evaluated as follows. Since

Ex(σ⊗n) is a symmetric state, it can be represented as

Ex(σ⊗n) =
∑
�q∈Qn

μ�q|x| �q〉〈 �q|s̄0 ⊗ π
s̄L

�q ⊗ ς
s̄R

�q,x, (10)

where π
s̄L

�q is the maximally mixed state on

Hs̄L

�q , {μ�q|x}�q∈Qn is a probability distribution for each

x and ς�q,x ∈ S (Hs̄R

�q ). It follows that H (Sn)Ex (σ⊗n ) =
H ({μ�q|x}�q) + ∑

�q∈Qn μ�q|x[H (ς�q,x ) + log ds̄L

�q ]. This leads to

H (Sn|X )ςn = 2−nR
∑2nR

x=1 H (Sn)Ex (σ⊗n ) �
∑

�q∈Qn μ�q log ds̄L

�q ,

where μ�q := 2−nR
∑2nR

x=1 μ�q|x. It also follows from
(9) and (10) that TrX [ςn] = ∑

�q∈Qn μ�q| �q〉〈 �q|s̄0 ⊗
π

s̄L

�q ⊗ ς
′s̄R

�q , where ς ′
�q ∈ S (Hs̄R

�q ). This implies that

H (Sn)ςn = H ({μ�q}�q) + ∑
�q∈Qn μ�q[log ds̄L

�q +H (ς ′
�q )]�H ({μ�q}�q)

+ ∑
�q∈Qn μ�q log ds̄L

�q ds̄R

�q . �

IV. SUPERDENSE CODING IN OTHER
RESOURCE THEORIES

We investigate the possibility of superdense coding in other
resource theories (see Table I). In any resource theory, states

TABLE I. Possibility of superdense coding in several resource
theories is summarized. NO and SO stand for noisy operations [18]
and stabilizer operations [35], respectively, and LOCC for local
operations and classical communication. The classical information
capacity of free states is denoted by Cfree, and the total dimension of
the system is denoted by dS . Note that dS = dAdB in the case of the
resource theory of entanglement.

042413-4



SUPERDENSE CODING IN THE RESOURCE THEORY … PHYSICAL REVIEW A 104, 042413 (2021)

on a system are classified into free states and resource states,
and operations on the system are into free operations and non-
free operations. The minimal assumptions that any resource
theory must satisfy are as follows: (i) the set of free states
is closed under the action of free operations, (ii) the set of
free operations are closed under sequential composition, and
(iii) any free state can be prepared by a free operation [15].
We may consider a task of encoding classical information
into a quantum system under the restriction that the class of
operations allowed for encoding is equal to or a subset of the
set of free operations. We could say that superdense coding is
possible if the classical information capacity of any free state
is a strictly positive constant and that of, at least, one resource
state is strictly larger than that of free states.

Superdense coding is not possible in any resource theory
in which there is only a single free state because the capacity
of free states is, in that case, equal to zero. Examples of such
resource theories are those of athermality [17,36] and purity
[18]. The possibility of superdense coding in the resource the-
ories of coherence [16] and magic [35] depends on the class
of operations allowed for encoding. Superdense coding is not
possible if any free operation is allowed for encoding. This is
because the capacity of any free state is equal to the system
dimension and can never be smaller than the capacity of
resource states. In general, superdense coding is not possible
if the number of perfectly distinguishable free states is equal
to the system dimension, and any free state can be prepared
by an operation allowed for encoding. In that case, however,
we may still reconcile the possibility of superdense coding
by adopting a strict subset of the set of free operations for
encoding. An example is the resource theory of entanglement:
superdense coding is not possible if all LOCC operations are
allowed for encoding but is possible if the encoding operations
are restricted to be local operations on one of the subsystems.

V. CONCLUSION

We have proposed an analog of superdense coding in
the resource theory of asymmetry. We have proved that
superdense coding is possible if and only if the unitary rep-
resentation of the symmetry is non-Abelian and reducible.
The result provides an information-theoretical classification
of symmetries of quantum systems. Some future directions are
to obtain an upper bound on the symmetry-restricted classical
information capacity of general states and to extend the result
to the one-shot scenario.
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APPENDIX: CAPACITY UNDER
COVARIANT ENCODINGS

An operation K on system S is said to be covariant if it
satisfies K[Ug(·)U †

g ] = UgK(·)U †
g for any g ∈ G. In the fol-

lowing, we consider encoding of classical information into a
quantum system under the condition that the encoding op-
erations are restricted to be covariant ones. The following
theorem provides conditions for superdense coding to be pos-
sible by covariant encodings:

Theorem 6. Superdense coding by covariant encodings is
possible on system S with symmetry G only if the unitary
representation UG of G on HS is non-Abelian and reducible
and is possible if it holds that

max
q∈Q

min
{
dsL

q , dsR
q

}
� 2. (A1)

Proof. The capacity theorem for symmetric states (Propo-
sition 5 in the main text) is applicable to the case of covariant
encodings because any covariant operation is AN, and the
only condition used in the proof of Proposition 5 is that the
encoding operations are AN. The only if part of Theorem 6
immediately follows. To prove the if part, it suffices to prove
that

max
ρ∈S(HS )

C(ρ) � log

(∑
q∈Q

d∗
q dsR

q

)
, (A2)

where d∗
q := min{dsL

q , dsR
q }. Note that the right-hand side of

the above inequality is strictly greater than the capacity of
symmetric states [Equality (8) in the main text] if the condi-
tion (A1) is satisfied. We prove (A2) by showing that for any
ρ ∈ S (HS ) it holds that

C(ρ) � H ({pq}) +
∑
q∈Q

pq
[
H

(
ρsL

q

) + log dsR
q

] − H (ρ). (A3)

Here, pq := Tr[〈q|s0ρ|q〉s0 ] and ρsL
q := p−1

q TrsR〈q|s0ρ|q〉s0 .
The right-hand side of the above inequality is equal
to log (

∑
q∈Q d∗

q dsR
q ) for state |ψ∗〉 = ∑

q∈Q(d∗
q dsR

q /d ′
S )1/2

|q〉s0 |ψ∗
q 〉sLsR , where d ′

S := ∑
q∈Q d∗

q dsR
q and |ψ∗

q 〉 ∈ HsL
q ⊗

HsR
q is the maximally entangled state of Schmidt rank d∗

q for
each q.

The proof of Inequality (A3) proceeds along the
same line as the proof of Proposition 3 in the main
text. Instead of the projector 	0

n,δ , we define 	′0
n,δ :=∑

�q∈Tn,δ
| �q〉〈 �q|s̄0 ⊗ 	

s̄L

�q,δ
⊗ I s̄R

�q , where 	�q,δ is the projector onto

the conditionally typical subspace of Hs̄L

�q with respect to state

ρ
s̄L

�q . We consider a unitary W ′ on Sn in the form of W ′ =∑
�q∈Qn | �q〉〈 �q|s̄0 ⊗ I s̄L

�q ⊗ v
s̄R

�q , which is covariant because U�g is

decomposed into (�⊗n)U�g(�†⊗n) = ∑
�q∈Qn | �q〉〈 �q|s̄0 ⊗ us̄L

�g,�q ⊗
I s̄R

�q . We have Tr[	′0
n,δW

′ρ⊗nW ′†] � 1 − ε, and the averaged

state over the unitaries is given by ρ̄n := EW ′[W ′ρ⊗nW ′†] =∑
�q∈Qn pq1 · · · pqn | �q〉〈 �q|s̄0 ⊗ ρ

s̄L

�q ⊗ π
s̄R

�q . It follows that

	′0
n,δρ̄n	

′0
n,δ � 2−n[D̂′(ρ)−δ] · 	′0

n,δ , where we have denoted
the right-hand side of (A3) by D̂′(ρ). By the same argument
as in the proof of Proposition 3, there exists a coding protocol
with rate D̂′(ρ) − 3δ and error 13

√
ε. Since ε, δ > 0 can be

arbitrarily small, we complete the proof of Inequality (A3). �
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