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Verifiable blind quantum computation provides a cloud scenario for scalable quantum information processing.
However, constructing one resource-efficient verification protocol is still an open problem. In this paper, the
context of verification we consider is the measurement-based model, in which the client receives the graph
state prepared by the server and performs single-qubit measurements on it to drive the computation. We first
utilize three entanglement witnesses to estimate the fidelity of the prepared graph state. Applying entanglement
witnesses to design the test phase, we propose verification protocols. Our protocol requires overhead in terms
of copies of the graph state that scales as O(n2 log n), where n is the number of qubits of the graph state.
Furthermore, the soundness of our protocol is improved. The advantages of our protocol are derived from the fact
that each entanglement witness can be implemented by the client with a fixed number of measurement settings.
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I. INTRODUCTION

Quantum computation has drawn intense interest in recent
years due to the growing trend of quantum supremacy [1].
Quantum computers can efficiently solve problems which are
intractable on classical computers. For instance, Shor’s algo-
rithm can achieve dramatic reductions in run time for integer
factorization [2]. However, scalable quantum computation is
still hard to achieve. The number of qubits in existing quan-
tum computers is less than 100, which means that we are
in the noise intermediate-scale era [3]. Quantum computing
is likely to be implemented in the cloud model in the near
future since quantum computing resources, such as graph
states, are rare for a user. In the cloud environment, the user
can access quantum computing capabilities remotely. Blind
quantum computing (BQC) [4–18] provides such a cloud
scheme, in which a client with only the ability to do classical
computing and prepare or measure single qubits can delegate
computation tasks to a server who has the ability to do univer-
sal quantum computation while simultaneously keeping the
input, output, and algorithm unknown to the server. The first
blind quantum computation protocol, in which the quantum
circuit model was considered and a quantum one-time pad
was used to encrypt input qubits, was proposed by Childs [4].
Afterward, the first blind quantum computation protocol using
measurement-based quantum computing (MBQC) [19–21], in
which the quantum ability that the client needs is preparing ro-
tated single-qubit states, was proposed by Broadbent et al. [5].
The blind quantum computation protocol we consider in this
paper was proposed by Morimae and Fuji [10] and is called
measurement-only blind quantum computing. In their proto-
col, the server prepares a universal resource state of MBQC
and sends each qubit of the resource state one by one to the
client, who subsequently performs single-qubit measurements
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on received qubits. From the perspective of quantum ability
owned by the client, single-qubit measurement is much easier
to implement than single-qubit state generation.

Universal blind quantum computation can guarantee the
correctness and the blindness. In other words, if the server
is honest, the client will obtain the correct outcome, and
privacy is preserved. However, if the server is malicious, the
client cannot make sure that the outcome sent by the server
is correct. This has caused the need for a client to be able to
verify the correctness of the computation outcome, which is
called verification of blind quantum computation. There have
been many verifiable blind quantum computation (VBQC)
protocols [22–39] that can fully solve this problem. There
are two main types of verification protocols. The first type
is called trap-based verification [28,29], in which a client
required to prepare single-qubit states embeds trap qubits in
the computation to verify the behavior of the server. Based
on this, several protocols achieving a completely classical
client were proposed [24,26,30,38]. However, multiple non-
communicating servers are required. The second type is called
measurement-only verification [23,25,31–34,36], in which a
client required to make single-qubit measurements directly
verifies the resource state of MBQC sent by a server. In this
paper, we focus on measurement-only verification and certify
the graph state [40].

All proposed measurement-only verification protocols uti-
lizing stabilizer testing [25,31,34,36] for the graph state have
a large resource overhead. This is an obstacle to the devel-
opment of scalable quantum computing. Here, we introduce
the notion of entanglement witnesses [41–46] to VBQC. En-
tanglement witnesses have also been used in quantum key
distribution for security proofs [47]. In the case of VBQC,
the resource state or graph state is just in the form of entan-
glement. It is therefore a natural idea to utilize entanglement
witnesses to verify the graph state. Compared with previous
verification protocols, our protocol dramatically reduces the
resource overhead.
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The remainder of this paper is organized as follows. In
Sec. II, we introduce the technical groundwork for entan-
glement witnesses to make an estimation of the fidelity. In
Sec. III, we propose our VBQC protocols with respect to
entanglement witnesses. In Sec. IV, we finally conclude our
results and leave some open problems.

II. ESTIMATING THE FIDELITY WITH ENTANGLEMENT
WITNESSES

Recall that in measurement-only BQC, a client (Alice)
receives a graph state prepared by a server (Bob) and performs
single-qubit measurements to obtain the outcome she wants.
The server cannot get any information about the client due to
the no-signaling principle [48]. Since no message is sent from
the client to the server, the no-signaling principle guarantees
that if the client and the server share a system, the client
cannot transmit any of her messages to the server regardless
of what they do on their systems. We refer to this as blindness.
However, a malicious server can prepare any state to destroy
the computation so that the client gets the incorrect outcome.
In order to achieve verifiability, Alice will instruct Bob to pre-
pare a certain number of copies of the graph state (dishonest
Bob may not obey orders). Alice then alternates performing
the computation and testing the server’s behavior. Bob has no
knowledge about which copies of the graph state are used for
testing and which are used for the ultimate computation task.
If the test is passed, Alice can guarantee that the copy used
for the computation task is close to the desired graph state.
In this section we propose two methods using entanglement
witnesses to estimate the fidelity between an unknown state
and a given graph state, which will be used to design the above
test of VBQC (see Sec. III).

Let us start by introducing entanglement witnesses of the
graph state. Given an undirected graph G with n vertices i ∈ V
and edges (i, j) ∈ E , the graph state |G〉 that corresponds
to G is defined by |G〉 = (

∏
(i, j)∈E Ui j )|+〉⊗n, where |+〉 =

(|0〉 + |1〉)/
√

2 represents the state of each vertex and Ui j

is the controlled-Z gate |0〉〈0| ⊗ I + |1〉〈1| ⊗ Z that acts on
qubits corresponding to vertices i and j. Here, I is the identity
operator, and Z is the Pauli matrix σz. The graph state |G〉
has n stabilizers gi = Xi

∏
k∈N (i) Zk for i = 1, 2, . . . , n, where

N (i) is the set of neighbors of vertex i and Xi and Zi denote
the Pauli matrices σx and σz acting on vertex i. The graph state
|G〉 is defined as the unique state fulfilling |G〉 = gi|G〉 for all
i. The term “entanglement witness” was introduced by Terhal
[42]. An entanglement witness W is an observable such that (i)
Tr(W �s) � 0 for all separable state �s and (ii) Tr(W �e) < 0
for at least one entangled state �e. Here, Tr(·) represents
the trace of the matrix. We therefore say that W detects the
entanglement of �e. A typical entanglement witness detecting
genuine n-qubit entanglement for a state close to the n-qubit
graph state |G〉 is

W1 = I

2
− |G〉〈G| = I

2
−

n∏
i=1

gi + I

2
, (1)

where the projector on the state to be detected has been used
as an observable to detect entanglement (see Sec. 3.6.2 of
Ref. [44]). See Sec. 3.4.3 of Ref. [44] for the second equality

of Eq. (1). The witness W1 should be decomposed into a
sum of locally measurable operators for the convenience of
measurements in an experiment. However, the number of local
measurements in these decompositions probably increases ex-
ponentially with the number of qubits [49]. Hence, two types
of witnesses with constant measurement settings have been
proposed [50,51]. In order to explain these witnesses, we need
to introduce the notion of the colorability of a graph. A graph
is called m-colorable if all vertices of the graph can be divided
into at least m disjoint subsets S1, . . . , Sm of vertices, where
there are no edges between any pair of vertices in Sj for any j.
We say that S1, . . . , Sm are m divided sets of the m-colorable
graph. One of witnesses for the graph state |G〉 corresponding
to a two-colorable graph G is

W2 = 3I − 2

[∏
i∈S1

gi + I

2
+

∏
i∈S2

gi + I

2

]
, (2)

where S1 and S2 are two divided sets of the two-colorable
graph G. Two-colorable graph states such as a brickwork state
[5] and a Raussendorf-Harrington-Goyal (RHG) state [52]
are widely used as the resource state of BQC. Generally, the
m-colorable graph state |G〉 has the witness

W3 = 3I − 2
m∑

j=1

⎛
⎝∏

i∈S j

gi + I

2

⎞
⎠, (3)

where S1, . . . , Sm are m divided sets of the m-colorable graph
G. Another witness for the graph state |G〉 is

W4 = (n − 1)I −
n∑

i=1

gi. (4)

The construction of witnesses W1,W2,W4, and W4 comes
from the following fact. To make the expectation value of the
witness reach a minimum for the graph state |G〉, a full set of
generators, i.e., n stabilizers, is necessary [53]. The coefficient
1/2 of witness W1 is derived from max|φ〉 |〈φ | G〉|2, where |φ〉
belongs to the set of biseparable states [49]. The coefficient of
witness W2 or W4 is chosen such that there is a positive number
α satisfying that W2 − αW1 or W4 − αW1 is negative semidef-
inite. As we will see later, all eigenvalues of the matrix W2 −
2W1 are zero, which means that W2 − 2W1 can be negative
semidefinite. Combining it with Tr(|G〉〈G|W1) = −1/2, one
can obtain Tr[|G〉〈G|(W2 − 2W1)] � 0, i.e., Tr(|G〉〈G|W2) �
−1. This means that W2 detects the graph state |G〉. Similarly,
W4 detects the graph state |G〉. As for witness W3, it is a
generalization of witness W2 (see Sec. 6.6.2 of Ref. [44]).

According to the construction of witnesses W3 and W4,
they both need only m measurement settings for a given
m-colorable graph state, where the jth measurement setting
is the observable

∏
i∈S j

gi. For example, three measurement
settings needed for the three-colorable triangular lattice graph
state [54] are illustrated in Fig. 1, where all vertices of the
triangular lattice graph are divided into the subset S1 of red
vertices, the subset S2 of green vertices, and the subset S3 of
blue vertices.

As mentioned earlier, measuring the witnesses on the graph
state |G〉 can detect the entanglement of |G〉. If we measure
the witnesses on the state used for the test stage, where the
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FIG. 1. Three measurement settings needed for the three-
colorable triangular lattice graph state |G′〉. (a) The observable∏

i∈S1
gi on |G′〉. Alice measures red qubits in the X basis and other

qubits in the Z basis. (b) The observable
∏

i∈S2
gi on |G′〉. Alice

measures green qubits in the X basis and other qubits in the Z basis.
(c) The observable

∏
i∈S3

gi on |G′〉. Alice measures blue qubits in
the X basis and other qubits in the Z basis.

unknown state prepared by Bob is treated as |G〉 to perform
the measurement settings, we can determine whether or not
the state used for the computation stage is close to |G〉. Thus,
Bob’s behavior is verified. To clarify this, we give our two
methods for estimating the fidelity F = 〈G|�|G〉 for an un-
known state � once we get the real number Tr(W �) coming
from local measurements. An approach for estimating fidelity
is to construct the positive-semidefinite operator. This method
has been used to estimate the fidelity between the prepared
state and an ideal Greenberger-Horne-Zeilinger (GHZ) state
or cluster state [53]. We generalize it to the case of the graph
state. Let us explain our main idea. We need to find a positive
number α such that W − αW1 � 0, where � 0 means that the
operator is positive semidefinite. Then using the inequality
Tr[(W − αW1)�] � 0, we get a lower bound on the fidelity
from the expectation value of the witness W , i.e.,

F = 〈G|�|G〉 � 1

2
− 1

α
Tr(W �). (5)

We consider exploring the existence of α for W ∈
{W2,W3,W4}. We start by introducing a special basis. The
eigenvectors corresponding to the eigenvalues ±1 of the sta-
bilizers {gi}n

i=1 form a complete basis of the n-qubit Hilbert
space, which is similar to the GHZ basis in [53]. We call this
basis the G basis. We then label the basis states with n-tuples
of {0, 1}, i.e., |Φ00···0〉, |Φ00···1〉, . . . , |Φ11···1〉. The ith digit of
the basis state |ϕ〉 is 0 (1) if and only if 〈ϕ|gi|ϕ〉 = +1 (−1).
For example, the graph state |G〉 is the basis state |Φ00···0〉,
where the subscript tuple 00 · · · 0 originates from the fact
that 〈G|gi|G〉 = +1 holds for all i. Let us observe the matrix
forms of witnesses in the G basis. The matrix form of gi in
the G basis is I⊗(i−1) ⊗ Z ⊗ I⊗(n−i) since gi gives +1 and −1
expectation values for states of the form |Φs1···si−10si+1···sn〉 and

|Φs1···si−11si+1···sn〉, respectively. Furthermore, the matrix forms
of W1,W2,W3, and W4 in the G basis can be written as

W G
1 = diag

(− 1
2 , 1

2 , . . . ,− 1
2 , 1

2

)
, (6)

W G
2 = W G

4 = diag(−1, 1, . . . ,−1, 1), (7)

W G
3 = diag(3 − 2m, 5 − 2m, . . . , 3 − 2m, 5 − 2m), (8)

where diag represents a diagonal matrix. Thus, we have W G
2 −

2W G
1 = 0 and W G

4 − 2W G
1 = 0. According to linear algebra,

the matrix W2 − 2W1 is similar to the matrix W G
2 − 2W G

1 ,
which means that their eigenvalues are zero. Hence, W2 −
2W1 � 0 is satisfied, i.e., α = 2. W4 − 2W1 � 0 is obtained in
an analogous way. However, when m � 3, there exists at least
one negative number on the diagonal of matrix W G

3 − αW G
1

for any α, so that W3 − αW1 is not positive semidefinite. To
this end, we have

F � 1
2 − 1

2 Tr(W2�), (9)

F � 1
2 − 1

2 Tr(W4�). (10)

If � is exactly the ideal graph state |G〉〈G|, then Tr(W2�) =
Tr(W4�) = −1. Consequently, both witnesses W2 and W4 can
obtain the fidelity F = 1.

Another approach for estimating fidelity is inspired by esti-
mating entanglement measures [55]. In the above background,
one aims to derive

ε(W ) = inf
�

{E (�)|Tr(W �) = w }, (11)

where E (·) is some entanglement measure or another convex
and continuous function and w is the mean value for measur-
ing the witness W . Note that ε(W ) is actually the infimum of
E (ρ) over all states compatible with the data Tr(W ρ) = w.
Using the Legendre transform [56] of the entanglement mea-
sure E , one can get

ε(W ) = sup
r

{rw − Ê (rW )}, (12)

where r is an arbitrary real number, Ê (rW ) =
sup
|ψ〉

{〈ψ |rW |ψ〉 − E (|ψ〉)}, and |ψ〉 is an arbitrary pure

state.
Here, we use E (·) ∈ [0, 1] to denote the fidelity, i.e.,

E (·) = 〈G| · |G〉. Then we have Ê (rW ) = sup|ψ〉{〈ψ |(rW −
|G〉〈G|)|ψ〉}. The supremum is obtained when |ψ〉 is the
eigenvector for the largest eigenvalue of rW − |G〉〈G|. Let
us consider the case of W = W3. First, the matrix form of
rW3 − |G〉〈G| in the G basis can be expressed as

diag(r(3 − 2m) − 1, r(5 − 2m), . . . ,

r(3 − 2m) − 1, r(5 − 2m))
(13)

Since the eigenvalues of the matrix form of the same
operator in different bases are invariant, the eigenvalues
of rW3 − |G〉〈G| are r(3 − 2m) − 1 and r(5 − 2m). This
means Ê (rW3) = max{r(3 − 2m) − 1, r(5 − 2m)}. If � is ex-
actly the ideal graph state |G〉〈G|, then Tr(W3�) = 3 − 2m.
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FIG. 2. Illustration of the verification of BQC with entanglement
witnesses. Bob prepares a quantum state that consists of a number
of registers, where each register consists of an n-qubit state, and
sends it to Alice. If Bob is honest, the state of each register is the
ideal m-colorable graph state |G〉. However, if Bob is malicious,
registers could be entangled with each other. Alice randomly chooses
a register to perform MBQC that is used for computation tasks. For
the remaining registers for the test phase, each register is measured
in one measurement setting that is selected randomly. If the measure-
ment outcomes in the test satisfy certain conditions, the state of the
register used for computation will be close to |G〉.

Furthermore, we have

E (�)

� sup
r

{rTr(W3�) − Ê (rW3)}

=
⎧⎨
⎩

sup
r

{r(3 − 2m) − [r(3 − 2m)−1]} = 1, r < −1/2

sup
r

{−2r}, r � −1/2

= 1; (14)

that is, the fidelity satisfies F = 1. If � deviates slightly from
the ideal graph state, then Tr(W3�) = 3 − 2m + δ, where δ >

0 is small enough. Similarly, we have

E (�) � sup
r

{rTr(W3�) − Ê (rW3)}

=
⎧⎨
⎩

sup
r

{1 + rδ}, r < −1/2

sup
r

{−2r + rδ}, r � −1/2

= 1 − δ/2.

(15)

In order to figure out how one can use the estimation
of the fidelity in this section to complete the verification of
blind quantum computation, let us focus on the process of
verification of BQC, which is shown in Fig. 2. Note that the
measurement settings in the test phase are used to collect
statistics corresponding to entanglement witnesses. Owing to
the techniques of probability theory, the outcomes derived
from the jth measurement setting on the registers used for test
can be used to estimate the outcomes of the jth measurement
setting on the n-qubit state ρMBQC used for computation. And
then one can calculate the value Tr(W ρMBQC) for any witness
W ∈ {W2,W3,W4}. Utilizing expressions (9), (10), and (15)
of the estimation of the fidelity given in this section, we
finally obtain a lower bound of the fidelity of the state ρMBQC.

If we require the measurement outcomes in the test phase
to satisfy certain conditions, then the fidelity 〈G|ρMBQC|G〉
will approach 1. Therefore, we achieve the verification of the
resource state of blind quantum computation.

III. VERIFIABLE BLIND QUANTUM COMPUTATION
WITH ENTANGLEMENT WITNESSES

In this section, we use the estimation of the fidelity in
Sec. II, Serfling’s bound [57], and the Azuma-Hoeffding
bound [58] to analyze verifiable properties of our protocols.
The properties that we consider are completeness and sound-
ness. The completeness means a high joint probability that
when Bob is honest, Alice accepts the result and the outcome
is correct. The soundness means a low conditional probability
of obtaining an incorrect outcome given that Alice accepts the
result. The soundness says that when Alice accepts the result,
there is a high probability for the state prepared by Bob to be
close to the ideal graph state.

Before proceeding, we first clarify Serfling’s bound and the
Azuma-Hoeffding bound so that one can prove the verifiabil-
ity of the protocol.

Lemma 1. Serfling’s bound. Given a set of T binary random
variables Y = (Y1,Y2, . . . ,YT ) with Yk ∈ {0, 1} and two arbi-
trary positive integers N and K that satisfy T = N + K , we
have

Pr

⎛
⎝∑

k∈Π

Yk � N

K

∑
k∈Π

Yk + Nv

⎞
⎠

� 1 − exp

(
− 2v2NK2

(N + K )(K + 1)

) (16)

for any 0 < v < 1, where Pr(·) denotes the event probability,
Π is a set of K samples chosen independently and uniformly
at random from Y without replacement, and Π is the comple-
mentary set of Π in Y .

Lemma 2. Azuma-Hoeffding bound. Let ξ1, ξ2, . . . , ξn

be independent random variables, where ξi ∈ [ai, bi], i =
1, 2, . . . , n. We have that for any t > 0,

Pr

[
ξ1 + ξ2 + · · · + ξn

n
− E

(
ξ1 + ξ2 + · · · + ξn

n

)
� t

]

� 1 − exp

(
− 2n2t2∑n

i=1 (bi − ai )2

)
, (17)

where E(·) is the mathematical expectation.
Let us first focus on the scenario for the witness W2. We

define a random variable Mρ
j ∈ {0, 1} in the case of perform-

ing the jth measurement setting on an arbitrary n-qubit state
�. More precisely, we define

Mρ
j =

∏
i∈S j

xi
∏

k∈N (i) zk + 1

2
, (18)

where xi ∈ {−1, 1} and zk ∈ {−1, 1} are the measurement out-
comes of Pauli observables Xi and Zk acting on the state �,
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respectively. Thus, we have

Tr

⎛
⎝∏

i∈S j

gi + I

2
ρ

⎞
⎠ = Mρ

j , (19)

where Mρ
j is the mathematical expectation of the random

variable Mρ
j . Our verification protocol using the witness W2

is shown in Protocol 1.

Protocol 1 Verifiable blind quantum computation with
witness W2.

Step 1.
Honest Bob prepares a 3Kn-qubit state |G〉⊗3K and sends each of
its qubits one by one to Alice, where |G〉 is an n-qubit graph state
on a two-colorable graph G. Here, K is set to be 	n2 log n
, where
	·
 is the ceiling function. However, malicious Bob can prepare
any 3Kn-qubit state �Bob. Whether or not Bob is honest, Alice
sequentially divides the state sent by Bob into 3K registers, where
each register stores n qubits.
Step 2.
Alice repeats the following local measurements for 1 � j � 2:
Alice chooses K registers from the remaining (4 − j)K registers
independently and uniformly at random, and then she performs the
jth measurement setting on the K registers that are chosen. More
specifically, for each selected register, Alice measures in Pauli
observable X the qubits corresponding to the divided set Sj of the
two-colorable graph G and other qubits in Pauli observable Z .
Alice then calculates the value Mρ

j according to Eq. (18). We
denote the number of registers satisfying Mρ

j = 0 as Kj .
Step 3.
Alice uses one register chosen from the remaining K registers
uniformly at random for computational tasks and discards the
other K − 1 registers. The chosen single register is called the
target register, and the averaged state of the target register is
ρtgt = 1

K

∑K
i=1 ρi, where �i is the state of the ith register of the

remaining K registers.
Step 4.
Alice accepts the result of the computation performed on the target
register if

K1 + K2 � K

2n
. (20)

The main reason why the accepting condition in step 4
is taken to be Eq. (20) is as follows. We need to keep the
scale of the fidelity 〈G|ρtgt|G〉 of Protocol 1 as 1 − O(1/n)
for the comparison with the soundness of Ref. [36]. As men-
tioned in Appendix A, the fidelity is given by Eq. (A10).
In other words, the fidelity satisfies 〈G|ρtgt|G〉 � 1 − 3v −
2t − 2(K1 + K2)/K for any 0 < v < 1 and t > 0 with a prob-
ability of at least [1 − exp(−v2K/2)]2[1 − exp(−2Kt2)]2.
If we set v = O(1/n), t = O(1/n), K1 + K2 � K/2n, then
〈G|ρtgt|G〉 � 1 − O(1/n) is obtained. The reason why the
overhead of Protocol 1 is O(n2 log n) copies of the graph state
is as follows. Since the required number of graph states is 3K ,
the overhead depends on the parameter K . In order to make the
above confidence probability scale as 1 − O(n−λ) for a certain
constant λ, K should be chosen to be O(n2 log n).

Now we show how to derive the completeness and sound-
ness of Protocol 1. In order to see the completeness, we
consider the case that Bob behaves honestly. We need to
calculate the probability that Alice accepts the result and the
probability that the result coming from the target register is
correct. The product of both probabilities is the completeness.
One can see that if Bob is honest in Protocol 1, he will prepare
|G〉⊗3K . In other words, the state of every register is |G〉〈G|.
According to Eq. (19), Mρ

j = 1 holds for every register used
for the jth measurement setting in step 2. This implies that
all registers satisfy Mρ

j = 1 for the process of performing the
jth measurement setting on the K registers, i.e., K1 = K2 = 0.
Since the accepting condition (20) is always satisfied, there is
a unit probability that Alice accepts the result. In addition, the
target register is prepared in the form of the ideal graph state
|G〉. Hence, the probability that the result coming from the
target register is correct is 100%. Finally, the completeness of
Protocol 1 can be obtained, which is a unit probability. In the
case of soundness, we have the following theorem.

Theorem 1. Assume that λ1 is any constant satisfying
logn 16 < λ1 < (n − 1)2/16 and n � 6. If Protocol 1 is ac-
cepted, we can guarantee that the n-qubit averaged state ρtgt

satisfies, with a probability of at least 1 − 4n−λ1/2,

〈G|ρtgt|G〉 � 1 − 1 + 4
√

λ1

n
. (21)

Proof. Using Lemma 1, we first show that if we per-
form the jth measurement setting on the final K registers
of step 3 in Protocol 1, then an upper bound of the number
of registers satisfying Mρ

j = 0 and the relevant confidence
probability can be obtained. Hence, the lower bound of∑K

k=1 Mρk
j is directly given. Using Lemma 2, we then get

a lower bound of 1
K

∑K
k=1 Mρk

j and the relevant confidence
probability. Starting from Eq. (19), we can obtain a lower
bound of Tr(

∏
i∈S j

gi+I
2 ρtgt ). According to the estimation (9)

of the fidelity and the expression (2) of witness W2, we finally
prove that the fidelity 〈G|ρtgt|G〉 satisfies a lower bound with
a certain confidence probability. The full proof is given in
Appendix A.

Protocol 1 offers a large improvement over current verifica-
tion protocols. The protocol of Takeuchi et al. [36] considered
stabilizer testing and Serfling’s bound. They guarantee the
fidelity 1 − (2

√
c + 1)/n with a probability of at least 1 −

n1−5c/64, where c is any constant satisfying 64/5 < c < (n −
1)2/4 and n � 9. However, the number of total copies of
the graph state |G〉 is O(n5 log n) in their protocol. Note that
Protocol 1 needs only O(n2 log n) copies of the graph state.
In addition, the soundness of Protocol 1 is better than that of
Ref. [36]. To clarify this, if we require the protocol of Ref. [36]
to achieve the same fidelity as Protocol 1,

1 − 1 + 4
√

λ1

n
= 1 − 1 + 2

√
c

n
(22)

implies that c = 4λ1. Furthermore,

1 − 4n−λ1/2 > 1 − n1−5λ1/16 (23)

means that Protocol 1 has a better significance level.
Let us now turn to the scenario for witness W4. We define

one surjection f : {1, 2, . . . , n} → {1, 2, . . . , m} such that i ∈
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S f (i). Next, we define a random variable Mρ

l ∈ {−1, 1} for any
l ∈ Sj in the case of performing the jth measurement setting
on an arbitrary n-qubit state ρ. More precisely, we define

Mρ

l = xl

∏
k∈N (l )

zk, (24)

where xl ∈ {−1, 1} and zk ∈ {−1, 1} are the measurement out-
comes of Pauli observables Xl and Zk acting on the state ρ,
respectively. Thus, we have

Tr(glρ) = Mρ

l , (25)

where Mρ

l is the mathematical expectation of the random
variable Mρ

l . Our verification protocol using witness W4 is
described in Protocol 2.

Protocol 2 Verifiable blind quantum computation with
witness W4.

Step 1.
Honest Bob prepares an [(m + 1)Kn]-qubit state |G〉⊗(m+1)K and
sends each of its qubits one by one to Alice, where |G〉 is an
n-qubit graph state on an m-colorable graph G. Here, K is set to be
	n4 log n
. However, malicious Bob can prepare any
[(m + 1)Kn]-qubit state �Bob. Whether or not Bob is honest, Alice
sequentially divides the state sent by Bob into (m + 1)K registers,
where each register stores n qubits.
Step 2.
Alice repeats the following local measurements for 1 � j � m:
Alice chooses K registers from the remaining (m + 2 − j)K
registers independently and uniformly at random, and then she
performs the jth measurement setting on the K registers that are
chosen. For any l ∈ Sj , we denote the number of registers
satisfying Mρ

l = −1 as Kjl .
Step 3.
Follow step 3 of Protocol 1.

Step 4.
Alice accepts the result of the computation performed on the target
register if

max
j

(
max
l∈S j

Kjl

)
� K

n2m
. (26)

The main reason why the accepting condition in step 4
is taken to be Eq. (26) is similar to that for Protocol 1. As
mentioned in Appendix B, the fidelity is given by Eq. (B6).
In other words, the fidelity satisfies 〈G|ρtgt|G〉 � 1 − nmv −
nt/2 − nm(max jmaxl∈S j Kjl )/K for any 0 < v < 1 and t >

0 with a probability of at least [1 − exp(−v2K/2)]m[1 −
exp(−2Kt2)]m. If we set v = O(1/n2), t = O(1/n2), Kjl �
K/n2m for all j and l ∈ S j , then 〈G|ρtgt|G〉 � 1 − O(1/n) is
obtained. In order to make the above confidence probability
scale as 1 − O(n−λ) for a certain constant λ, K should be
chosen to be O(n4 log n).

Similarly, the completeness of Protocol 2 is 100%
since honest Bob always prepares |G〉⊗(m+1)K and Kjl = 0
holds with unit probability for all l, j. The soundness of
Protocol 2 is given by the following theorem.

Theorem 2. Assume that λ2 is any constant satisfying
2 + logn 4 < λ2 < ( n−1

1/2+m )2. If Protocol 2 is accepted, we can
guarantee that the n-qubit averaged state ρtgt satisfies, with a
probability of at least 1 − 2n1−λ2/2,

〈G|ρtgt|G〉 � 1 − 1 + (1/2 + m)
√

λ2

n
. (27)

Proof. Using Lemma 1, we first show that if we perform
the jth measurement setting on the final K registers of step 3
in Protocol 2, then there will be an upper bound of the number
of registers satisfying Mρ

l = −1 and the relevant confidence
probability for any l ∈ S j . Using Lemma 2, we then get a

lower bound of 1
K

∑K
k=1 Mρk

l and the relevant confidence prob-
ability. Starting from Eq. (25), one can obtain a lower bound
of Tr(glρtgt ). According to the estimation (10) of the fidelity
and the expression (4) of witness W4, we finally prove that
the fidelity 〈G|ρtgt|G〉 satisfies a lower bound with a certain
confidence probability. The full proof is given in Appendix B.

In contrast to Ref. [36], Protocol 2 requires only
O(n4 log n) copies of the graph state. Similarly, if we require
the protocol of Ref. [36] to achieve the same fidelity as
Protocol 2,

1 − 1 + (1/2 + m)
√

λ2

n
= 1 − 1 + 2

√
c

n
(28)

leads to c = (1/2 + m)2λ1/4. Furthermore, when n � 16 and
m � 4,

1 − 2n1−λ2/2 > 1 − n1−5(1/2+m)2λ2/256 (29)

shows that Protocol 2 has a better significance level.
Let us consider the scenario for witness W3. We introduce

the same definition of the random variable Mρ
j ∈ {0, 1} as in

the scenario for witness W2. Our verification protocol using
witness W3 is shown in Protocol 3.

Protocol 3 Verifiable blind quantum computation with
witness W3.

Step 1.
Follow step 1 of Protocol 2, where K is set to be 	4m2n2 log n
.

Step 2.
Follow step 2 of Protocol 2, where we denote the number of
registers satisfying Mρ

j = 0 as Kj .
Step 3.
Follow step 3 of Protocol 1.

Step 4.
Alice accepts the result of the computation performed on the target
register if

m∑
j=1

Kj �
K

mn
. (30)

The accepting condition (30) in step 4 is derived
from the following fact. As described in Appendix C,
the fidelity satisfies F > 1 − m2v − mt − m

∑m
j=1 Kj/K for

any 0 < v < 1 and t > 0 with a probability of at least
[1 − exp(−v2K/2)]m[1 − exp(−2Kt2)]m. If we set v =
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O(1/n), t = O(1/n),
∑m

j=1 Kj � K/mn, then 〈G|ρtgt|G〉 �
1 − O(1/n) is obtained. In order to make the above confidence
probability scale as 1 − O(n−λ) for a certain constant λ, K
should be chosen to be O(n2 log n).

Note that if Bob is honest, the state received by Alice is
|G〉⊗(m+1)K and Kj = 0 holds with unit probability for all j.
This implies that the completeness of Protocol 3 is 100%. In
addition, we have derived the following theorem.

Theorem 3. Assume that λ3 is any constant satisfying
2 logn 2m < λ3 < ( n−1

m/2+1/4 )2. If Protocol 3 is accepted, we
can guarantee that the n-qubit averaged state ρtgt satisfies, with
a probability of at least 1 − 2mn−λ3/2,

〈G|ρtgt|G〉 � 1 − 1 + (m/2 + 1/4)
√

λ3

n
. (31)

Proof. The proof follows closely certain steps of the proof
of Theorem 1. The difference is that j = 1, 2 is replaced with
j = 1, 2, . . . , m. Due to the estimation (15) of the fidelity and
the expression (3) of witness W3, we can prove that the fidelity
〈G|ρtgt|G〉 satisfies a lower bound with a certain confidence
probability. The full proof is given in Appendix C.

Compared with Ref. [36], Protocol 3 requires only
O(n2 log n) copies of the graph state. Similarly, if we require
the protocol of Ref. [36] to achieve the same fidelity as
Protocol 3,

1 − 1 + (m/2 + 1/4)
√

λ3

n
= 1 − 1 + 2

√
c

n
(32)

leads to c = (m/2 + 1/4)2λ3/4. Furthermore, when n � 18
and m � 9,

1 − 2mn−λ3/2 > 1 − n1−5(m/2+1/4)2λ3/256 (33)

shows that Protocol 3 has a better significance level.
Let us give two numerical examples to compare intuitively

the soundness of our protocols with Ref. [36]. We first con-
sider that the number of qubits of the graph state is 50 and
the graph state used in Protocol 2 and Protocol 3 is three-
colorable, i.e., n = 50, m = 3. According to Eqs. (21), (27),
and (31), the comparison is shown in Fig. 3(a). The result
indicates that the fidelity of our strategies is higher than that
of Ref. [36] when the confidence probability is the same. In
Fig. 3(b) we plot the case of n = 500, m = 2. Note that the
fidelity of the traditional method can approach 0.98 with al-
most 100% confidence probability. Relatively speaking, there
is a high confidence probability that the fidelity of Protocol 3
will reach 0.995.

Obviously, observing all our protocols shows that
Protocol 3 is optimal because the graph state used in
Protocol 3 can be any-colorable and the overhead is minimal.
In fact, most of graph states used for MBQC are two-colorable
or three-colorable, and the number n of qubits required for
MBQC is usually large enough. The number n depends on the
specific computing task and the graph state. For example, if
we intend to implement the four-qubit SWAP gate on the cluster
state, then 57 qubits are required [59]. Generally speaking,
hundreds of qubits are necessary for complex tasks. We have
already considered this point in previous analysis comparing
our protocols with Ref. [36]. It is thus interesting to note that
our protocols are applicable for verifying a quantum computa-
tion task in practice. Furthermore, our protocols can be made
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FIG. 3. The soundness of our strategies compared with the tra-
ditional method introduced in Ref. [36] for (a) n = 50, m = 3 and
(b) n = 500, m = 2. The soundness is shown by the confidence prob-
ability as a function of the fidelity. Interestingly, our protocols lead
to a better soundness than the traditional method.

robust to noise by encoding graph states with a topological
error correcting code [31,52].

IV. CONCLUSIONS

We have applied entanglement witnesses to design verifi-
able blind quantum computation protocols. To do so, we have
shown that the fidelity of the prepared graph state can be
estimated from the measured expectation values of entangle-
ment witnesses. With the help of the estimation of the fidelity,
verification protocols corresponding to different entanglement
witnesses have been proposed. Finally, we have demonstrated
the completeness and soundness for our protocols. For all we
know, the most efficient VBQC protocol using the verification
of the graph state is the protocol of Ref. [36], whose overhead
in terms of the copies of the graph state is O(n5 log n). In
contrast to their protocol, the protocol described in this paper
requires an overhead that scales as O(n2 log n). In addition,
the soundness of our protocol is better than that in Ref. [36].
The main reason is that the copies of the graph state required
for different stabilizer tests in Ref. [36] do not overlap. This
leads to extra overhead that is dependent on the number n
of stabilizer tests. However, our method has removed it since
the extra overhead caused by implementing the entanglement
witnesses is related to the number of measurement settings,
which is a constant number irrelevant to the size n of the graph
state.

Although we have focused on the task of verifying
graph states, one could consider entanglement witnesses for
hypergraph states [60] or continuous-variable graph states
[61] to extend the verification of quantum states. Recently,
the trap-based verification protocols in Ref. [38] achieved
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quasilinear resources, where a classical client interacts with
noncommunicating servers that share entanglement. It is
meaningful to bring the technology of entanglement witnesses
to trap-based verification. Exploring these directions might
help us to further construct efficient VBQC protocols.
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APPENDIX A: PROOF OF THEOREM 1

Let us look back at Protocol 1. For the process of perform-
ing the first measurement setting on the K registers, we define
the set Π (1) to be the set which consists of these registers, and
the set consisting of the remaining 2K registers is denoted as

Π
(1)

. If we set T = 3K, N = 2K , and

Yk =
{

0, M
ρ ′

k
1 = 1

1, M
ρ ′

k
1 = 0

(A1)

in Lemma 1, where ρ ′
k is the quantum state of the kth register

in Π (1) or Π
(1)

depending on k ∈ Π (1) or k ∈ Π
(1)

, we can
derive

Pr

⎛
⎝ ∑

k∈Π
(1)

Yk � 2K

K

∑
k∈Π (1)

Yk + 2Kv

⎞
⎠

� 1 − exp

(
− 2v22KK2

(2K + K )(K + 1)

)
. (A2)

This implies that once the first measurement setting is per-
formed on the remaining 2K registers, the maximal number
of registers satisfying Mρ

1 = 0 is 2
∑

k∈Π (1) Yk + 2Kv in the

set Π
(1)

. Similarly, for the process of performing the second
measurement setting on K registers, we define the set Π (2)

to be the set which consists of these registers, and the set

consisting of the remaining K registers is denoted as Π
(2)

.
If we set T = 2K, N = K , and

Yk =
{

0, M
ρ ′

k
2 = 1

1, M
ρ ′

k
2 = 0

(A3)

in Lemma 1, where ρ ′
k is the quantum state of the kth register

in Π (2) or Π
(2)

depending on k ∈ Π (2) or k ∈ Π
(2)

, we can
obtain

Pr

⎛
⎝ ∑

k∈Π
(2)

Yk � K

K

∑
k∈Π (2)

Yk + Kv

⎞
⎠

� 1 − exp

(
− 2v2KK2

(K + K )(K + 1)

)
. (A4)

This means that once the second measurement setting is per-
formed on the remaining K registers, the maximal number of

registers satisfying Mρ
2 = 0 is

∑
k∈Π (2) Yk + Kv in the set Π

(2)
.

According to the above analysis, if we perform the first
measurement setting on the final K registers that are not
measured, then there are at least K − (2

∑
k∈Π (1) Yk + 2Kv)

registers satisfying Mρ
1 = 1, i.e.,

K∑
k=1

Mρk
1 � K −

(
2

∑
k∈Π (1)

Yk + 2Kv

)
. (A5)

In addition, if we perform the second measurement setting on
the final K registers that are not measured, we have

K∑
k=1

Mρk
2 � K −

( ∑
k∈Π (2)

Yk + Kv

)
. (A6)

Using Lemma 2, we get

Pr

(
1

K

K∑
k=1

Mρk
1 − 1

K

K∑
k=1

Mρk
1 < t

)
� 1 − exp(−2Kt2).

(A7)

Relations (19) and (A5) allow us to transform this into

Pr

[
Tr

(∏
i∈S1

gi + I

2
ρtgt

)
> 1 − 1

K

(
2

∑
k∈Π (1)

Yk + 2Kv

)
− t

]

� 1 − exp(−2Kt2). (A8)

Similarly, we have

Pr

[
Tr

(∏
i∈S2

gi + I

2
ρtgt

)
> 1 − 1

K

( ∑
k∈Π (2)

Yk + Kv

)
− t

]

� 1 − exp(−2Kt2). (A9)

Using the estimation (9) of the fidelity in Sec. II, it follows
that

F � 1

2
− 1

2
Tr(W2ρtgt )

� −1 +
2∑

j=1

Tr

⎛
⎝∏

i∈S j

gi + I

2
ρtgt

⎞
⎠

� 1 − 3v − 2t − 1

K

(
2

∑
k∈Π (1)

Yk +
∑

k∈Π (2)

Yk

)

� 1 − 3v − 2t − 2

K

(
2∑

j=1

∑
k∈Π ( j)

Yk

)
, (A10)

where F = 〈G|ρtgt|G〉, and the second inequality and the third
inequality are obtained from Eqs. (2) and (A8) and (A9),
respectively. In addition, we can guarantee that Eq. (A10) is
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established with probability

P �
[

1 − exp

(
−2v2K

2

3(1 + 1/K )

)][
1 − exp

(
−v2K

1

1 + 1/K

)]
[1 − exp(−2Kt2)]2

�
[

1 − exp

(
−1

2
v2K

)]2

[1 − exp(−2Kt2)]2. (A11)

Let us set v = √
λ1/n and t = √

λ1/(2n), where λ1 is any constant satisfying logn 16 < λ1 < (n − 1)2/16 and n � 6.
Combining this with the condition (20) of accepting, we conclude that the fidelity satisfies

F � 1 − 1 + 4
√

λ1

n
(A12)

with probability

P �
[

1 − exp

(
− λ1

2n2
n2 log n

)]2[
1 − exp

(
−2(n2 log n)

λ1

4n2

)]2

= (1 − n−λ1/2)4 � 1 − 4n−λ1/2. (A13)

APPENDIX B: PROOF OF THEOREM 2

Let us look back at Protocol 2. For the process of performing the jth ( j = 1, 2, . . . , m) measurement setting on the K registers,
we define the set Π ( j) to be the set which consists of these registers, and the set consisting of the remaining (m + 1 − j)K

registers is denoted as Π
( j)

. If we set T = (m + 2 − j)K , N = (m + 1 − j)K , and, for any l ∈ Sj ,

Y l
k =

{
0, M

ρ ′
k

l = 1

1, M
ρ ′

k
l = −1

(B1)

in Lemma 1, where ρ ′
k is the quantum state of the kth register in Π ( j) or Π

( j)
depending on k ∈ Π ( j) or k ∈ Π

( j)
, we can derive

Pr

⎛
⎝ ∑

k∈Π
( j)

Y l
k � (m + 1 − j)K

K

∑
k∈Π ( j)

Y l
k + (m + 1 − j)Kv

⎞
⎠ � 1 − exp

(
− 2v2(m + 1 − j)KK2

(m + 2 − j)K (K + 1)

)
. (B2)

This shows that once the jth measurement setting is performed on the remaining (m + 1 − j)K registers, the maximal number

of registers satisfying Mρ

l = −1 is (m + 1 − j)
∑

k∈Π ( j) Y l
k + (m + 1 − j)Kv in the set Π

( j)
.

According to the above analysis, if we perform the jth measurement setting on the final K registers that are not measured,
then there are at least K − [(m + 1 − j)

∑
k∈Π ( j) Y l

k + (m + 1 − j)Kv] registers satisfying Mρ

l = 1 for any l ∈ S j , i.e.,

K∑
k=1

Mρk

l � K − 2

(
(m + 1 − j)

∑
k∈Π ( j)

Y l
k + (m + 1 − j)Kv

)
. (B3)

Utilizing Lemma 2, it follows that for any l ∈ Sj ,

Pr

(
1

K

K∑
k=1

Mρk

l − 1

K

K∑
k=1

Mρk

l < t

)
� 1 − exp(−Kt2/2). (B4)

Relations (25) and (B3) allow us to transform this into

Pr

[
Tr(glρtgt ) > 1 − 2

K

(
(m + 1 − j)

∑
k∈Π ( j)

Y l
k + (m + 1 − j)Kv

)
− t

]
� 1 − exp(−Kt2/2). (B5)
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Using the estimation (10) of the fidelity in Sec. II, this yields

F � 1

2
− 1

2
Tr(W4ρtgt ) = 2 − n

2
+ 1

2

n∑
i=1

Tr(giρtgt )

� 2 − n

2
+ 1

2

n∑
i=1

[
1 − 2

K

(
[m + 1 − f (i)]

∑
k∈Π [ f (i)]

Y i
k + [m + 1 − f (i)]Kv

)
− t

]

= 1 −
n∑

i=1

1

K

(
[m + 1 − f (i)]

∑
k∈Π [ f (i)]

Y i
k + [m + 1 − f (i)]Kv

)
− 1

2
nt

� 1 − nmv − 1

2
nt − nm

K
max

i

∑
k∈Π [ f (i)]

Y i
k ,

(B6)

where the second inequality and the third inequality are obtained from Eqs. (4) and (B5), respectively. In addition, we can
guarantee that Eq. (B6) holds with probability

P �
{

n∏
i=1

[
1 − exp

(
− 2v2[m + 1 − f (i)]KK2

[m + 2 − f (i)]K (K + 1)

)]}[
1 − exp

(
−1

2
Kt2

)]n

�
[

1 − exp

(
−1

2
v2K

)]n[
1 − exp

(
−1

2
Kt2

)]n

. (B7)

Let us set v = √
λ2/n2 and t = √

λ2/n2, where λ2 is any constant satisfying 2 + logn 4 < λ2 < ( n−1
1/2+m )2. Combining this

with the condition (26) of accepting, we conclude that the fidelity satisfies

F � 1 − 1 + (1/2 + m)
√

λ2

n
(B8)

with probability

P �
[

1 − exp

(
− λ2

2n4
n4 log n

)]n[
1 − exp

(
−1

2
(n4 log n)

λ2

n4

)]n

= (1 − n−λ2/2)2n � 1 − 2n1−λ2/2. (B9)

APPENDIX C: PROOF OF THEOREM 3

Let us look back at Protocol 3. For the process of performing the jth ( j = 1, 2, . . . , m) measurement setting on the K registers,
we define the set Π ( j) to be the set which consists of these registers, and the set consisting of the remaining (m + 1 − j)K

registers is denoted as Π
( j)

. If we set T = (m + 2 − j)K , N = (m + 1 − j)K , and

Yk =
{

0, M
ρ ′

k
j = 1

1, M
ρ ′

k
j = 0

(C1)

in Lemma 1, where ρ ′
k is the quantum state of the kth register in Π ( j) or Π

( j)
depending on k ∈ Π ( j) or k ∈ Π

( j)
, we can derive

Pr

⎛
⎝ ∑

k∈Π
( j)

Yk � (m + 1 − j)K

K

∑
k∈Π ( j)

Yk + (m + 1 − j)Kv

⎞
⎠ � 1 − exp

(
− 2v2(m + 1 − j)KK2

(m + 2 − j)K (K + 1)

)
. (C2)

This suggests that once the jth measurement setting is performed on the remaining (m + 1 − j)K registers, the maximal number

of registers satisfying Mρ
j = 0 is (m + 1 − j)

∑
k∈Π ( j) Yk + (m + 1 − j)Kv in the set Π

( j)
.

According to above analysis, if we perform the jth measurement setting on the final K registers that are not measured, then
there are at least K − [(m + 1 − j)

∑
k∈Π ( j) Yk + (m + 1 − j)Kv] registers satisfying Mρ

j = 1, i.e.,

K∑
k=1

Mρk
j � K −

(
(m + 1 − j)

∑
k∈Π ( j)

Yk + (m + 1 − j)Kv

)
. (C3)

Using Lemma 2, we get

Pr

(
1

K

K∑
k=1

Mρk
j − 1

K

K∑
k=1

Mρk
j < t

)
� 1 − exp(−2Kt2). (C4)
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Relations (19) and (C3) allow us to transform this into

Pr

⎡
⎣Tr

⎛
⎝∏

i∈S j

gi + I

2
ρtgt

⎞
⎠ > 1 − 1

K

(
(m + 1 − j)

∑
k∈Π ( j)

Yk + (m + 1 − j)Kv

)
− t

⎤
⎦ � 1 − exp(−2Kt2). (C5)

Using the estimation (15) of the fidelity in Sec. II, it follows that

F � 1 − 1

2
[Tr(W3ρtgt ) − (3 − 2m)] = 1 − 1

2

⎛
⎝Tr

⎧⎨
⎩

⎡
⎣3I − 2

m∑
j=1

⎛
⎝∏

i∈S j

gi + I

2

⎞
⎠

⎤
⎦ρtgt

⎫⎬
⎭ − (3 − 2m)

⎞
⎠

� 1 −
m∑

j=1

1

K

(
(m + 1 − j)

∑
k∈Π ( j)

Yk + (m + 1 − j)Kv

)
− mt � 1 − m2v − mt − m

K

m∑
j=1

∑
k∈Π ( j)

Yk,

(C6)

where the equality and the second inequality are obtained from Eqs. (3) and (C5), respectively. In addition, we can guarantee
that Eq. (C6) holds with probability

P �
{

m∏
j=1

[
1 − exp

(
− 2v2(m + 1 − j)KK2

(m + 2 − j)K (K + 1)

)]}
[1 − exp(−2Kt2)]m

�
[

1 − exp

(
−1

2
v2K

)]m

[1 − exp(−2Kt2)]m. (C7)

Let us set v = √
λ3/(2mn) and t = √

λ3/(4mn), where λ3 is any constant satisfying 2 logn 2m < λ3 < ( n−1
m/2+1/4 )2. Combining

this with the condition (30) of accepting, we conclude that the fidelity satisfies

F � 1 − 1 + (m/2 + 1/4)
√

λ3

n
(C8)

with probability

P �
[

1 − exp

(
−1

2

λ3

4m2n2
4m2n2 log n

)]m[
1 − exp

(
−2(4m2n2 log n)

λ3

16m2n2

)]m

= (1 − n−λ3/2)2m � 1 − 2mn−λ3/2. (C9)
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