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In quantum error correction using imperfect primitives, errors of high weight arising from a few faults
are major concerns since they might not be correctable by the quantum error correcting code. Fortunately,
some errors of different weights are logically equivalent, and the same correction procedure is applicable to
all equivalent errors; thus correcting high-weight errors is sometimes possible. In this work, we introduce a
technique called weight parity error correction (WPEC) which can correct Pauli error of any weight in some
stabilizer codes provided that the parity of the weight of the error is known. We show that the technique is
applicable to concatenated codes constructed from the [[7, 1, 3]] Steane code or the [[23, 1, 7]] Golay code. We
also provide a fault-tolerant error correction protocol using WPEC for the [[49, 1, 9]] concatenated Steane code
which can correct up to three faults and requires only two ancillas.
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I. INTRODUCTION

One crucial component for large-scale quantum computers
is fault-tolerant error correction (FTEC), which suppresses
error propagation throughout the circuits. An arbitrarily small
logical error rate can be achieved through code concatenation,
given that the physical error rate is below some constant
threshold value [1–5]. However, increasing overheads are
needed for decreasing logical error rate [6–9]. Conventional
FTEC schemes require many ancillas during error syndrome
measurements. For example, the Shor-style [1,10] and the
Knill-style [11] error corrections, which apply to any stabi-
lizer code, require as many ancillas as the maximum weight
of the stabilizer generators and twice the blocklength, respec-
tively. Steane-style error correction [12,13] which applies to
any CSS code requires one code block of ancillas.

Recently, several FTEC schemes that use only a few ancil-
las and are applicable to the [[7, 1, 3]] Steane code [14] have
been proposed. The scheme due to Yoder and Kim for the
[[7, 1, 3]] code uses two ancillas (nine qubits in total) [15].
Their ideas are further developed to a “flag FTEC” scheme
which, for the [[7, 1, 3]] code, also uses two ancillas [16]. A
flag FTEC scheme for any [[n, k, d]] stabilizer code requires
d + 1 ancillas [17], where the schemes for some specific code
families may require fewer [16,18–21]. The flag technique
that uses a few ancillas to detect high-weight errors can also
be applied to various fault-tolerant schemes [22–32]. Another
FTEC scheme applicable to the [[7, 1, 3]] code was proposed
by Reichardt; the scheme extracts several syndrome bits at
once and requires no ancillas, provided that there are at least
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two code blocks (so at least 14 qubits are required in total)
[33].

In order to achieve an arbitrarily low error rate through
code concatenation, the FTEC scheme used with the code
must be modified accordingly. One way to do this is replacing
all physical qubits with code blocks and replacing all physical
gates with corresponding logical gates [5]. For the [[7, 1, 3]]
code, each qubit (including each ancilla qubit) required in
an FTEC scheme will become a block of seven physical
qubits in the modified scheme. Following this modification,
the schemes in [15,16] applied to the [[49, 1, 9]] concatenated
Steane code will require 63 qubits in total. Meanwhile, the
scheme in [33] requires 98 qubits in total, encoding two log-
ical qubits. Note that the maximum weight for the stabilizer
generators increases quickly with concatenation. These diffi-
culties motivate our main question: how to reduce the number
of ancillas required for an FTEC scheme for a concatenated
code?

In this paper, we introduce a technique called weight parity
error correction (WPEC) and construct an FTEC scheme for
the [[49, 1, 9]] concatenated Steane code using only two ancilla
qubits. The scheme relies on the fact that, for the [[7, 1, 3]]
code, errors with the same syndrome and weight parity differ
by the multiplication of some stabilizer; these errors are thus
logically equivalent and need not be distinguished from one
another. Therefore, error correction on each subblock of seven
qubits in the [[49, 1, 9]] code can be accomplished using only
two ingredients: the error syndrome and the weight parity of
error in each subblock. Most importantly, the weight parity
for each subblock of seven qubits in the [[49, 1, 9]] code can be
obtained from the full syndrome measurement. Using this idea
in conjunction with two ancilla qubits, our FTEC protocol for
the [[49, 1, 9]] code can correct up to three faults. As a result,
our protocol can suppress the error rate from p to O(p4) using
51 qubits in total.
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The paper is organized as follows: In Sec. II we observe
the aforementioned equivalence between errors of any weight
with the same syndrome and weight parity, and describe
WPEC. In Sec. III we provide sufficient conditions for WPEC,
and then we provide syndrome extraction circuits and an
FTEC protocol for the [[49, 1, 9]] concatenated Steane code
using only two ancilla qubits. In Sec. IV WPEC is extended
to the [[23, 1, 7]] Golay code and concatenated Steane codes
with more than two levels of concatenation. Last, we discuss
our results and directions for future works in Sec. V.

II. WEIGHT PARITY ERROR CORRECTION FOR THE
STEANE CODE

The Steane code [14], also known as the [[7, 1, 3]] code, is a
quantum error correcting code that encodes one logical qubit
into seven physical qubits and can correct any error on up to
one qubit. It has several desirable properties for fault-tolerant
quantum computation, e.g., logical Clifford operations are
transversal [1]. The Steane code is a code in the Calderbank-
Shor-Steane (CSS) code family [14,34] where X - and Z-type
errors can be detected and corrected separately. The Steane
code in the stabilizer formalism can be constructed from the
parity check matrix of the classical [7,4,3] Hamming code
through the CSS construction [35]. In addition, it is known
that any classical Hamming code can be rearranged into a
cyclic code, a binary linear code in which any cyclic shift of a
codeword is also a codeword [36]. We can describe the Steane
code in cyclic form with the following stabilizer generators:

gx
1 : X I X X X I I, gz

1 : Z I Z Z Z I I,
gx

2 : I X I X X X I, gz
2 : I Z I Z Z Z I,

gx
3 : I I X I X X X, gz

3 : I I Z I Z Z Z.

(1)

The generators of a stabilizer code define not only the
codespace, but also the measurements that give rise to the
error syndrome. When these measurements are imperfect, dif-
ferent sets of generators for the same code can have different
fault-tolerant properties. The use of the Steane code in cyclic
form gives some advantages in distinguishing high-weight
errors in consecutive form [19] (see Sec. V for more details).
We can choose the logical X and logical Z operators to be
X ⊗7S and Z⊗7T for any stabilizer operators S, T . With this
convention, we state the following crucial property of the
Steane code that goes into our construction.

Fact 1. Let M be any Z-type operator (a tensor product
of Is and Zs) defined on seven qubits. Suppose M commutes
with all X-type generators of the [[7, 1, 3]] code. If M has even
weight, then it is a logical I; otherwise, if M has odd weight,
then it is a logical Z .

Proof. Because M is a Z-type operator that commutes with
all X -type generators, M is either a stabilizer of Z type or a
logical Z operator. Let E1 and E2 be Z-type operators with
weights w1 and w2. Then E1E2 is an operator of weight
w1 + w2 − 2c, where c is the number of qubits supported
by both E1 and E2. Observe that all stabilizer generators of
the Steane code have even weight, and a multiplication of
two operators with even weight always gives an operator with
even weight. Thus, all stabilizers of Z type (which are logical
I operators) have even weight. Moreover, a Z-type operator
which is a logical Z operator is of the form Z⊗7T where T is

a stabilizer of Z type. Therefore, all logical Z operators of Z
type have odd weight. �

For a Pauli error E on a block of seven qubits, the syndrome
is a six-bit string denoted by s(E ) = (sx|sz ) where sx, sz ∈ Z3

2.
The ith bit of sx (or sz) is 0 if E commutes with gx

i (or gz
i), and

1 if E anticommutes with gx
i (gz

i). If E occurs to a codeword
of the Steane code, s(E ) corresponds to the outcomes of
measuring the six generators (0 and 1 correspond to +1 and
−1 outcomes, respectively). The Steane code is a perfect CSS
code of distance 3 meaning that for each sx, (sx|000) is the
syndrome of a unique weight-1 Z-type error, which we denote
as Ez

wt−1(sx ), and similarly each (000|sz ) is the syndrome of a
unique X -type error.1 For CSS codes, the X - and Z-type error
corrections are independent of one another. Furthermore, we
focus on CSS codes in which X - and Z-type generators have
the same form, and the same method applies to both types of
error correction. So we focus on Z errors for simplicity. Since
Z-type errors have trivial sz, we focus on sx from now on.

With the above notations, consider the following simple
error correction procedure on the Steane code: if the syn-
drome is (sx|000), do nothing if sx is trivial, apply Ez

wt−1(sx )
otherwise. We observe that if the syndrome is caused by a
Z-type error, then the procedure outputs the encoded data
transformed by a logical I or logical Z . This is because the
actual Z-type error combined with the correction remains Z-
type and commutes with all of gx

1,2,3, so the conclusion follows
from Fact 1.

If a codeword is corrupted by an arbitrary Z-type error
E , the above procedure always recovers the codeword, but
sometimes with an undesirable logical Z error. The technique
of weight parity error correction, to be developed next, is a
revised procedure that will always correct the error E , but it
requires knowing whether E has odd or even weight. Mea-
suring the error weight parity should not be done on a single
layer of Steane code since it measures a logical operator on the
Steane code. Fortunately, the parity information can be safely
learnt for the constituent blocks when we concatenate the
Steane code with itself. We will describe these ideas in detail
in the rest of this section, and apply them for fault-tolerant
error correction in the next section.

First, we use Fact 1 to show that Z-type errors with the
same syndrome and the same weight parity (whether odd or
even) differ by the multiplication of some stabilizer.

Claim 1. Logical equivalence of errors with the same syn-
drome and weight parity for the [[7, 1, 3]] code

Suppose E1, E2 are arbitrary Z-type errors (of any weights)
on the [[7, 1, 3]] code with the same syndrome. Then E1

and E2 have the same weight parity iff E1 = E2S for some
stabilizer S.

Proof. Let w1,w2 be the weights of E1, E2, respectively.
Let N = E1E2 (so E2 = E1N as E1 = E†

1 ). The weight of N
is equal to w1 + w2 − 2c where c is the number of qubits
supported by both E1 and E2. As N commutes with all of

1This is from the fact that the [[7, 1, 3]] Steane code can be
constructed from the classical [7,4,3] Hamming code, which is a
classical perfect code, a code which saturates the classical Hamming
bound [36].
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gx
1,2,3, from Fact 1, N is a logical I if and only if w1 + w2 − 2c

is even (when E1 and E2 have the same weight parity). �
Second, we use Claim 1 to provide a method for error

correction of Z-type error of arbitrary weight on the Steane
code, if the weight parity of the error is known.

Definition 1. Weight parity error correction (WPEC) for
the [[7, 1, 3]] code

Suppose a Z-type error E occurs to a codeword of the
[[7, 1, 3]] code. Let sx and w be the syndrome and the weight
of E , Ez

wt−1(sx ) be the weight-1 Z-type operator with syn-
drome sx, and Ez

wt−2(sx ) be any weight-2 Z-type operator with
syndrome sx, respectively. The following procedure is called
weight parity error correction (WPEC):

(1) If sx is trivial, do nothing if w is even, or apply any
logical Z if w is odd.

(2) If sx is nontrivial, apply Ez
wt−1(sx ) if w is odd, or apply

Ez
wt−2(sx ) if w is even.

WPEC always returns the original codewords because in
each case, the error E and the correction operation have the
same syndrome and weight parity, so by Claim 1, the correc-
tion is logically equivalent to E .

WPEC allows us to correct high-weight errors in the Steane
code, but we need to know the weight parity of the error. The
weight parity of a Z-type error is the outcome of measuring
X ⊗7, so learning the weight parity is equivalent to a logical
X measurement, which can destroy the superposition of the
logical state. Fortunately, there is a setting in which the weight
parity can be obtained without affecting the encoded data.
Consider code concatenation in which each qubit of an error
correcting code C2 is encoded into another quantum error
correcting code C1. If C1 is chosen to be the Steane code,
the weight parity of each codeblock can potentially be learnt
from the syndrome of C2. We will develop WPEC for the
concatenated Steane code in the rest of this section and show
the advantage in the context of fault tolerance in the next
section.

Consider code concatenation using two Steane codes
in cyclic form. The resulting code which is a [[49, 1, 9]]
code can be described by 48 stabilizer generators. The
first group of 42 generators, called first-level generators,
have the form gx

i ⊗ I⊗42, gz
i ⊗ I⊗42, I⊗7 ⊗ gx

i ⊗ I⊗35, I⊗7 ⊗
gz

i ⊗ I⊗35, . . . , I⊗42 ⊗ gx
i , I⊗42 ⊗ gz

i for i = 1, 2, 3. The re-
maining six of these generators, called second-level genera-
tors, have the form

g̃x
1 : X I X X X I I, g̃z

1 : Z I Z Z Z I I,
g̃x

2 : I X I X X X I, g̃z
2 : I Z I Z Z Z I,

g̃x
3 : I I X I X X X, g̃z

3 : I I Z I Z Z Z,

(2)

where I = I⊗7, X = X ⊗7, and Z = Z⊗7. The logical X and
logical Z operators can be chosen to be X̄ = X ⊗49S and
Z̄ = Z⊗49T for any stabilizer operators S, T . Relevant parts
of the error syndrome corresponding to the first- and the
second-level generators will be called first- and second-level
syndromes, respectively.

Let us consider error correction on the [[49, 1, 9]] code and
assume for now that error syndromes are reliable (which can
be obtained from repetitive measurements). First, consider a
simple motivating example, and suppose that a Z-type error
E acts nontrivially on at most one subblock of seven-qubit
code. In order to perform WPEC, the weight parity of E and

the subblock in which E occurs must be known. Suppose
that E has nontrivial first-level syndrome. The subblock in
which E occurs is actually the subblock whose corresponding
first-level syndrome is nontrivial, while the weight parity of E
is a measurement result from a second-level generator which
acts nontrivially on that subblock (note that the second-level
generator must act nontrivially on all qubits in such a sub-
block; thus a choice of second-level generators is important).
Now, suppose that E has trivial first-level syndrome. The
subblock in which E occurs can no longer be identified by
the first-level syndrome. Fortunately, since the second-level
Steane code (C2) is a distance-3 code, it can identify if any
of the seven subblocks of [[7, 1, 3]] code (the C1 subblocks)
has a Z-type error logically equivalent to Z⊗7, thus providing
the weight parity for each subblock of [[7, 1, 3]] code. That
is, if E has trivial first-level syndrome and its weight is odd,
the weight parity of E and the subblock in which E occurs
can be determined using only the second-level syndrome. (If
E has trivial first-level syndrome and has even weight, it is a
stabilizer and no error correction is needed.)

If the Z-type error is more general and may act on multiple
subblocks, the second-level syndrome may not provide the
weight parities of the subblocks. Instead, we consider only Z-
type errors that arise from a small number of faults in specially
designed generator measurements. We will show that for these
errors, the weight parity for each subblock can be determined
by the second-level syndrome along with the information
whether each subblock has trivial first-level syndrome or not.

In particular, let block parity px ∈ Z7
2 be a bitstring, where

each bit is the weight parity of the Z error in one subblock,
and 0 and 1 represent even and odd weights, respectively.
Also, define the triviality of a subblock to be 0 or 1 if the
subblock has trivial or nontrivial first-level syndrome, and let
block triviality τx ∈ Z7

2 be a seven-bit string in which the ith
bit represents the triviality of the ith subblock. If the block
parity can be accurately determined using the second-level
syndrome together with the block triviality (we will elaborate
how this can be done later), then we can blockwisely perform
WPEC as described in Definition 1 by using the first-level
syndrome and the weight parity of each subblock.

In this work, we develop an FTEC protocol that uses
WPEC to correct high-weight errors arising from up to
three faults. As an example, consider the measurement of
g̃z

1 using the circuit depicted in Fig. 1(a). Here we as-
sume that a fault from any two-qubit gate can cause any
two-qubit Pauli errors on the qubits where the gate acts
nontrivially, and X - and Z-type errors can be detected sepa-
rately. Thus, we may assume that high-weight errors arising
from a single controlled-NOT (CNOT) fault is of the form
PIZZZII, IIPZZII, IIIPZII, or IIIIPII, where Z = Z⊗7,
P = I⊗7−m ⊗ Z⊗m, and m ∈ {1, . . . , 7} (see the analysis of
possible errors in [19] for more details). It is not hard to
find second-level syndrome, block triviality, and block par-
ity corresponding to each possible error. For example, error
PIZZZII with m = 6 anticommutes with gx

1 and g̃x
1, and

commutes with the other generators. Thus, its corresponding
second-level syndrome, block triviality, and block parity are
(1, 0, 0), (1, 0, 0, 0, 0, 0, 0), and (0,0,1,1,1,0,0), respectively.
Table I displays all possible high-weight errors arising from
a single fault during g̃z

1 measurement and their corresponding
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FIG. 1. (a) An example of circuit for measuring generator g̃z
1 =

ZIZZZII. Here we display only the subblocks in which the operator
acts nontrivially (the first, second, third, and fourth subblocks in the
figure correspond to the first, third, fourth, and fifth subblocks of g̃z

1).
A circuit for measuring X -type operator such as g̃x

1 = XIXXXII can
be obtained by replacing each controlled-NOT (CNOT) gate in (a)
with the gate illustrated in (b).

second-level syndrome, block triviality, and block parity. Note
that except for the first and the last row (with errors differ-
ing by multiplication of a stabilizer), each row has a unique
combination of second-level syndrome and block triviality, so
the block parity can be determined from the table. Since the
second-level syndrome and the block triviality can in turn be
obtained from the generator measurements, all possible errors
arising from a single CNOT fault during the measurement
of g̃z

1 can be corrected using WPEC. In addition, observe

TABLE I. All possible forms of data errors arising from a sin-
gle fault occurred during syndrome measurement using a circuit in
Fig. 1(a) (where P = I⊗7−m ⊗ Z⊗m). The block parity correspond-
ing to each form of error can be determined by the second-level
syndrome and the block triviality obtained from a full syndrome
measurement. By knowing the block parity, high-weight errors can
be corrected using WPEC.

Form of Second-level Block
error m syndrome triviality Block parity

PIZZZII 7 (0,0,0) (0,0,0,0,0,0,0) (1,0,1,1,1,0,0)
2,4,6 (1,0,0) (1,0,0,0,0,0,0) (0,0,1,1,1,0,0)
1,3,5 (0,0,0) (1,0,0,0,0,0,0) (1,0,1,1,1,0,0)

IIPZZII 7 (1,0,0) (0,0,0,0,0,0,0) (0,0,1,1,1,0,0)
2,4,6 (0,0,1) (0,0,1,0,0,0,0) (0,0,0,1,1,0,0)
1,3,5 (1,0,0) (0,0,1,0,0,0,0) (0,0,1,1,1,0,0)

IIIPZII 7 (0,0,1) (0,0,0,0,0,0,0) (0,0,0,1,1,0,0)
2,4,6 (1,1,1) (0,0,0,1,0,0,0) (0,0,0,0,1,0,0)
1,3,5 (0,0,1) (0,0,0,1,0,0,0) (0,0,0,1,1,0,0)

IIIIPII 7 (1,1,1) (0,0,0,0,0,0,0) (0,0,0,0,1,0,0)
2,4,6 (0,0,0) (0,0,0,0,1,0,0) (0,0,0,0,0,0,0)
1,3,5 (1,1,1) (0,0,0,0,1,0,0) (0,0,0,0,1,0,0)

I⊗7 – (0,0,0) (0,0,0,0,0,0,0) (0,0,0,0,0,0,0)

that ZIZZZII and I⊗7 are equivalent up to a multiplication
of g̃z

1 but their block parities are different. Here we can see
that multiplying an error with some second-level generators
may change its block parity, but its second-level syndrome
and block triviality (which is deduced from its first-level
syndrome) remain the same. In this case, WPEC is still ap-
plicable. We say that block parities are equivalent whenever
they can be transformed to one another by multiplying the
corresponding errors with some stabilizer.

In an actual fault-tolerant protocol, we want to distinguish
all possible high-weight errors arising from various types
of faults up to three faults, including any gate faults, faults
during the preparation and measurement of ancilla qubits, and
faults during wait time. The circuit construction in Fig. 1(a),
however, might not cause errors that can be distinguished.
Note that possible errors arising from CNOT faults heavily
depend on the ordering of CNOT gates being used in the
measurement circuit. In Sec. III we will discuss conditions in
which WPEC can be applied. We will also provide a family of
circuits with specific CNOT ordering and an FTEC protocol
for the [[49, 1, 9]] code which can correct high-weight errors
arising from up to three faults.

III. FAULT-TOLERANT ERROR CORRECTION
PROTOCOL FOR THE [[49, 1, 9]] CODE

Fault-tolerant error correction is one of the most essential
gadgets for constructing large-scale quantum computers. Ev-
ery FTEC protocol must satisfy the following conditions.

Definition 2. Fault-tolerant error correction [5]
For t = �(d − 1)/2�, an error correction protocol using a

distance-d stabilizer code is t -fault tolerant if the following
two conditions are satisfied:

(1) For any input codeword with error of weight v1, if
v2 faults occur during the protocol with v1 + v2 � t , ideally
decoding the output state gives the same codeword as ideally
decoding the input state.

(2) If v faults happen during the protocol with v � t , no
matter how many errors are present in the input state, the
output state differs from any valid codeword by an error of
at most weight v.

In this work, we develop an FTEC protocol for the
[[49, 1, 9]] code that can correct up to three faults. The circuits
for measuring first- and second-level generators are shown in
Fig. 2. The types of faults being considered include faults that
happen to the physical gates, faults during the preparation and
measurement of ancilla qubits in the circuits, and faults during
wait time.

Let fault combination be a collection of faults up to three
faults (which may be of different types and can cause errors of
weight much higher than three on the data qubits). Our goal is
to distinguish all fault combinations that can be confusing and
may cause WPEC to fail. Similar to an example of WPEC in
Sec. II, we can categorize all possible fault combinations into
subsets by their second-level syndrome and block triviality.
The following sufficient condition can determine when the
WPEC technique can be applied.

Claim 2. Sufficient condition for WPEC
Let F be the set of all possible fault combinations during

an FTEC protocol for the [[49, 1, 9]] code and let Fk ⊆ F
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FIG. 2. Circuits for measuring second- and first-level generators
being used in this work are shown in (a) and (b), respectively. With
this gate permutation, the block parity corresponding to every possi-
ble high-weight error arising from up to three faults can be accurately
determined. As such, our protocol can correct up to three faults.

be a subset of fault combinations with the same second-level
syndrome and the same block triviality (where

⋃
k Fk = F).

WPEC is applicable in the FTEC protocol if each Fk satisfies
one of the following conditions:

(1) Data errors from all fault combinations in Fk give
equivalent block parities.

(2) Not every data error from a fault combination in Fk

gives the same block parity (or its equivalence), but for each
pair of fault combinations in Fk whose block parities of their
data errors are not equivalent, their first-level syndromes or
flag measurement results (or both) are different.

Proof. Whenever subset Fk satisfies the first condition in
Claim 2, we can find a block parity that works for all fault
combinations in Fk using only the second-level syndrome
and the block triviality. A correction operator for each fault
combination can be found following the definition of WPEC
(Definition 1) using the first-level syndrome and the block
parity. On the other hand, if Fk satisfies the second condition
in Claim 2, a block parity cannot be accurately determined
using only the second-level syndrome and the block triviality.
Fortunately, with the assistance of the first-level syndrome
and the flag measurement result, fault combinations that cor-
respond to nonequivalent block parities can be distinguished
and the block parity of each fault combination can be found.
Similarly, a correction operator for each fault combination can
be determined following Definition 1. �

Whether possible fault combinations satisfy Claim 2 or not
depends heavily on the ordering of the CNOT gates and the
use of flag qubits in the circuits for syndrome measurements.
In our FTEC protocol for the [[49, 1, 9]] code, the CNOT
gates being used in the circuits for measuring second-level
generator are applied in the following ordering:

(1, 8, 15, 22, 2, 9, 16, 23, . . . , 7, 14, 21, 28), (3)

where the numbers 1 to 28 represent the qubits in which g̃z
i acts

nontrivially. That is, CNOT gates are applied on the first qubit
in each subblock for all subblocks, then on the second qubit
in each subblock for all subblocks, and so on. The circuit for
measuring g̃z

1 is shown in Fig. 2(a). In addition, CNOT gates
being used in the circuits for measuring first-level generator
are in the normal ordering as shown in Fig. 2(b). Note that
there is no flag qubit involved in the measurement of a second-
level generator, and there is one flag qubit in the circuit for
measuring a first-level generator.

Consider the case that there are some faults during Z-type
generator measurements. Faulty circuits can produce nontriv-
ial flag measurement results and cause error of any weight on
the data qubits. Our goal is to detect and correct such an error
using the flag measurement results from the faulty circuits,
together with first- and second-level syndromes obtained from
subsequent syndrome measurements. In particular, let the flag
vector ∈ Z21

2 be a bitstring wherein each bit is the flag mea-
surement result from each circuit for measuring gz

i on each
of the seven subblocks. We define the cumulative flag vector
fx ∈ Z21

2 to be the entry-wise sum of flag vectors (modulo 2)
obtained from gz

i measurements accumulated from the first
round up until the current round of measurements (see the
protocol described below for the definition of a round of
measurements). Cumulative flag vector fx together with first-
level syndrome sx ∈ Z21

2 , second-level syndrome s̃x ∈ Z3
2, and

block triviality τx ∈ Z7
2 from the latest round of measurements

will be used for distinguishing all possible fault combinations
that can occur during the syndrome measurements as de-
scribed in Claim 2. Using the computer simulation described
in Appendix A, we can verify that Claim 2 is satisfied when
the number of input errors v1 and the number of faults v2

satisfy v1 + v2 � 3. A table of possible data errors and their
corresponding sx, s̃x, τx, fx, and block parity px (similar to
Table I) can also be obtained from the simulation. Moreover,
the subsets Fk can be deduced from this table (see Appendix A
for more details).

Let the outcome bundle be the collection of first-level syn-
drome s = (sx|sz ), second-level syndrome s̃ = (s̃x|s̃z ), block
triviality τ = (τx|τz ), and cumulative flag vector f = ( fx| fz )
obtained during a single round of full syndrome measurement,
where subscripts x and z denote results corresponding to X -
and Z-type generator measurements. Using the simulation
result together with the fact that X - and Z-type errors can be
corrected separately, an FTEC protocol for the [[49, 1, 9]] code
can be constructed as follows.

FTEC protocol for the [[49, 1, 9]] code

A full syndrome measurement, or a round of measure-
ments, measure the generators in the following order: measure
all g̃z

i’s, then all g̃x
i ’s, then all gz

i’s, then all gx
i ’s. Perform full

syndrome measurements until the outcome bundles are re-
peated four times in a row. Afterwards, perform the following
error correction procedure:

(1) Find the subset Fk corresponding to s̃x and τx from
the table of possible errors (obtained from the simulation in
Appendix A).

(a) If Fk satisfies Condition 1 in Claim 2, use a block
parity of any fault combination in Fk .
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(b) If Fk satisfies Condition 2 in Claim 2, use a block
parity of any combination in Fk that corresponds to sx

and fx.
(c) If there is no Fk from the table of possible errors

which corresponds to s̃x and τx, use the block parity with
all 1’s.
(2) Let sx,i be the first-level syndrome and wi be the weight

parity of the ith subblock. Apply Z-type error correction on
each subblock as given by Definition 1. In particular:

(a) If sx,i is trivial, apply ZZIZIII (logically equivalent
to Z⊗7) to the ith subblock when wi is odd, or do nothing
when wi is even.

(b) If sx,i is nontrivial, apply Ez
wt−1(sx,i) to the ith sub-

block when wi is odd, or apply Ez
wt−2(sx,i) when wi is even.

(3) If there is no Fk from the table of possible errors
which corresponds to s̃x and τx, further apply the follow-
ing error correction procedure: find a Pauli operator from
{ZIIIIII, IZIIIII, . . . , IIIIIIZ} which corresponds to s̃x, then
apply such an operator (or its logically equivalent operator) to
the data qubits.

(4) Repeat steps 1–3 but use s̃z, sz, τz, and fz to deduce the
X -type error correction (Ex

wt−1(sz,i ), Ex
wt−2(sz,i ), or XXIXIII)

for each subblock.
Here we will assume that there are at most three faults

during the protocol and the error is of Z type. The assumption
on the number of faults guarantees that the outcome bundles
must be repeated four times in a row within 16 rounds (the
outcome bundle cannot keep changing forever since the num-
ber of faults is limited). To verify that the protocol above
is three-fault tolerant, i.e., it satisfies the FTEC conditions
in Definition 2 with t = 3 (the [[49, 1, 9]] code acts as a
distance-7 code), first let us consider the case that there are
no faults during the last round of full syndrome measurement.
In this case, the outcome bundle corresponds to the actual
data error. From the simulation in Appendix A, we know that
whenever v1 + v2 � 3, one of the conditions in Claim 2 is
satisfied and the block parity can be accurately determined.
The operation in Step 2 will give the correct output state; thus
both of the FTEC conditions are satisfied. On the other hand,
if v1 + v2 > 3 but v2 � 3, s̃x and τx may not correspond to
any error in the table of possible errors. By using the block
parity with all 1’s, the operation in Step 2 will project the state
in each subblock back to the subspace of the [[7, 1, 3]] code,
where each subblock has an error equivalent to either I or Z

after the operation. Afterwards, the operation in Step 3 will
project the output state back to the subspace of the [[49, 1, 9]]
code. Thus, the second condition in Definition 2 is satisfied.

Now let us consider the case that there are some faults
during the last round of full syndrome measurement. The
outcome bundle we obtained from the last round may not
correspond to the data error since some errors arising during
the last round may be undetectable. Since we perform full syn-
drome measurements until the outcome bundles are repeated
four times in a row and there are at most three faults during
the whole protocol, at least one of the last four rounds of full
syndrome measurement must be correct. From the simulation
result in Appendix A, the outcome bundle obtained from the
last round (which is equal to that obtained from any correct
round in the last four rounds) can definitely correct the error
occurred before the last correct round. Here we want to verify
that whenever the last four rounds have v faults (where v � 3),
after the last round, the weight of the data error is increased
by no more than v. This can be verified using the computer
simulation described in Appendix B. By applying operation in
Step 2 (and possibly Step 3) as previously discussed, the out-
put state differs from a valid codeword by an error of weight
at most v, regardless of the number of input errors. Thus,
the second condition in Definition 2 is satisfied. Furthermore,
whenever v1 + v2 � 3, we will obtain an output state which
differs from a correct output state by an error of weight at
most 3. Therefore, the first condition in Definition 2 is also
satisfied.

The analysis for X -type errors is similar to that of Z-type
errors. Note that during the measurement of Z-type genera-
tors, a single gate fault can cause an X -type error of weight
1 on the data qubits. This error can be considered as an input
error for the measurement of X -type generators; thus the same
analysis is applicable.

IV. WEIGHT PARITY ERROR CORRECTION FOR
OTHER CODES

Besides the Steane code, we find that the WPEC technique
is applicable to the [[23, 1, 7]] Golay code [6], which is a
perfect CSS code of distance 7. The [[23, 1, 7]] Golay code
can correct up to three errors and can be constructed from the
parity check matrix of the classical [23,12,7] Golay code [36].
In cyclic form, the [[23, 1, 7]] Golay code can be constructed
from the parity check matrix,

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0 0
0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0 0
0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0 0
0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0 0
0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0 0
0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0 0
0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0 0
0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0 0
0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0 0
0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1 0
0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 0 0 1 0 0 1 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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which can be generated from the check polynomial h(x) =
x12 + x10 + x7 + x4 + x3 + x2 + x + 1 [36]. The ith Z-type
(or X -type) generator of this code will be denoted as gz

i (or gx
i )

where i = 1, . . . , 11. The logical X and logical Z operators of
this code can be chosen to be X̄ = X ⊗23S and Z̄ = Z⊗23T for
any stabilizer operators S, T .

Similar to the [[7, 1, 3]] code, we can prove the equivalence
of errors with the same syndrome and the same weight parity
as follows.

Claim 3. Logical equivalence of errors with the same syn-
drome for the [[23, 1, 7]] Golay code

Suppose E1, E2 are arbitrary Z-type errors (of any weights)
on the [[23, 1, 7]] code with the same syndrome. Then E1

and E2 have the same weight parity iff E1 = E2S for some
stabilizer S.

Proof. We can verify that every Z-type stabilizer in the
stabilizer group of the [[23, 1, 7]] code has even weight, and
every logical Z operator has odd weight. The rest of the proof
follows the proof of Claim 1. �

Let us consider Z-type error correction for the [[23, 1, 7]]
code. Since the code is a perfect CSS code of distance 7, for
each sx ∈ Z11

2 , (sx|0 . . . 0) is the syndrome of a unique Z-type
error of weight � 3. Suppose that a codeword is corrupted
by a Z-type error with syndrome sx. If we apply the minimal
weight error correction corresponding to sx, we sometimes
obtain the codeword with undesirable logical Z operator. For-
tunately, by knowing the weight parity of the error, the WPEC
technique can be applied. The error correction procedure for
the [[23, 1, 7]] code is defined as follows.

Definition 3. Weight parity error correction for the
[[23, 1, 7]] Golay code

Suppose a Z-type error E occurs to a codeword of the
[[23, 1, 7]] code. Let sx and w be the syndrome and the weight
of E , and let Ez

min(sx ) be the unique minimal weight error
correction corresponding to the syndrome sx. The following
procedure is called weight parity error correction (WPEC):

(1) If Ez
min(sx ) has even weight (0 or 2), apply Ez

min(sx )
to the data qubits whenever w is even, or apply any Z-type
operator P that has odd weight and corresponds to sx to the
data qubits whenever w is odd.

(2) If Ez
min(sx ) has odd weight (1 or 3), apply Ez

min(sx )
to the data qubits whenever w is odd, or apply any Z-type
operator P that has even weight and corresponds to sx to the
data qubits whenever w is even.

Note that the [[23, 1, 7]] Golay code can be made cyclic;
thus it can distinguish high-weight errors in consecutive
form [19]. Claim 3 together with the cyclic property give
us some possibilities to construct an FTEC protocol for the
[[529, 1, 49]] concatenated Golay code in the same way as
what we have done for the [[49, 1, 9]] code. We expect that
our technique can lead to a protocol which can correct a large
number of faults and will compare well with other FTEC
schemes. To reach this goal, syndrome extraction circuits
with appropriate permutation of gates (and possibly with flag
qubits) must be found so that conditions similar to those in
Claim 2 are satisfied. The search for such circuits with careful
numerical verification of fault tolerance is a challenging and
interesting future research direction.

The WPEC technique may also apply to the code obtained
from concatenating the Steane code to the kth level, e.g., the

[[7k, 1, 3k]] code. Since the kth-level Steane code is a distance-
3 code, we expect that a block of errors in the (k − 1)-th level
can be determined and corrected using the syndrome and the
block parity defined at the kth level. Again, however, appro-
priate syndrome extraction circuits must be found, which is
beyond the scope of this work.

V. DISCUSSION AND CONCLUSIONS

In this work, we prove the logical equivalence between
errors of any weight on seven qubits which have the same
weight parity and correspond to the same error syndrome
when error detection is performed by the [[7, 1, 3]] code in
Claim 1. From this result, we introduce the WPEC technique
in Definition 1, which can correct errors of any weight on
seven qubits whenever their weight parity is known. We show
that the WPEC technique can be extended to error correc-
tion in subblocks of the [[49, 1, 9]] code, and we prove the
sufficient condition for WPEC in Claim 2. Afterwards, we
provide a family of circuits and an FTEC protocol for the
[[49, 1, 9]] code which can correct up to three faults. We also
point out that the WPEC technique seems applicable to FTEC
schemes for other codes such as the concatenated Golay code
and concatenated Steane code with more than two levels of
concatenation.

Since the FTEC protocol provided in this work satisfies
the definition of FTEC in Definition 2 with t = 3, we can
guarantee that the logical error rate is suppressed to O(p4)
whenever the physical error rate is p under the random Pauli
noise model. Note that we did not use the full ability of a code
with distance 9, which, in principle, can correct up to four
errors. In terms of error suppression, our FTEC protocol is as
good as typical FTEC protocols for a concatenated code which
are constructed by replacing each physical qubit with a code
block and replacing each physical gate with the corresponding
logical gate [5].

One major advantage of our FTEC protocol is that only
two ancillas are needed: one ancilla for a syndrome mea-
surement result and another ancilla for a flag measurement
result (assuming that the qubit preparation and measurement
are fast compared to the gate operation time). As a result, our
protocol requires 51 qubits in total. The number of required
qubits is very low compared to other FTEC protocols for the
[[49, 1, 9]] code; the FTEC schemes in [15,16] extended to
the [[49, 1, 9]] code require 63 qubits in total (the minimum
number of required ancillas is 14 assuming that they are recy-
clable). Meanwhile, the FTEC protocol in [33] which extracts
multiple syndromes at once encodes two logical qubits and
requires no ancilla, but needs to work on two code blocks of
98 qubits in total. Our protocol might not have the fewest total
number of qubits compared with other protocols for a different
code which can correct up to three faults; for example, the
flag FTEC protocol in [17] applying to the [[37, 1, 7]] 2D color
code requires 45 qubits in total. Nevertheless, our work pro-
vides a substantial improvement over other FTEC protocols
for a concatenated code, an approach that is still advantageous
in some circumstances. Furthermore, the use of weight pari-
ties in error correction may be extended to other families of
codes as well [37]. We believe that if the protocol requires
fewer ancillas, the number of total locations will decrease,

042410-7



THEERAPAT TANSUWANNONT AND DEBBIE LEUNG PHYSICAL REVIEW A 104, 042410 (2021)

which can result in higher accuracy threshold. However, a
simulation with careful analysis is required for the accuracy
threshold calculation; thus we leave this for future work.

The protocol in Sec. III which can correct up to three faults
exploits two techniques: the flag technique which partitions
set of possible errors using flag measurement results, and the
WPEC technique which corrects errors of any weight using
their syndromes and weight parities. It should be emphasized
that flag ancillas are not necessarily required for a protocol
exploiting WPEC technique; we find that a protocol which
uses circuits similar to a circuit in Fig. 2(a) for second-level
syndrome measurements and uses nonflag circuits for first-
level measurements can correct up to two faults.

We point out that the permutation of CNOT gates in the
syndrome extraction circuits that make the protocol satisfies
Claim 2 is not unique. We choose the permutation in Eq.
(3) by using the fact that a CSS code constructed from clas-
sical cyclic codes can distinguish high-weight errors in the
consecutive form [19]. In particular, the circuit is designed
in the way that high-weight errors arising in each subblock
can be determined by the underlying [[7, 1, 3]] code in cyclic
form. We did not prove the optimality of the choice of gate
permutation in our protocol, so an FTEC protocol for the
[[49, 1, 9]] code with only one ancilla or a protocol that can
correct up to four faults might be possible.

Last, we note that the WPEC technique introduced in this
work is not limited to the [[49, 1, 9]] code. In Sec. IV we prove
the logical equivalence of errors with the same syndrome and
weight parity for the [[23, 1, 7]] Golay code in Claim 3 and
provide a WPEC scheme in Definition 3, which shows that
WPEC can correct some high-weight errors in a subblock
of the [[529, 1, 49]] concatenated Golay code. In addition,
we expect that WPEC can be applied to any concatenated
Steane code with more than two levels of concatenation in
a similar fashion. However, circuits and a protocol must be
carefully designed so that the full error correction ability of
the code can be achieved. Another interesting future direction
would be extending the WPEC technique to other families of
quantum codes.
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APPENDIX A: SIMULATION OF POSSIBLE FAULTS
DURING THE FTEC PROTOCOL ASSUMING THAT THE
LAST ROUND OF FULL SYNDROME MEASUREMENT

HAS NO FAULTS

As discussed in Sec. III, in order to verify that the FTEC
protocol for the [[49, 1, 9]] code satisfies the FTEC conditions
in Definition 2, we consider two separate cases: the case that
there are some faults during the last round of full syndrome
measurement, and the case that there are not. In this section,

we provide details of a simulation to show that whenever the
number of faults is at most three and none of the faults occurs
during the last round, all possible fault combinations satisfy
Claim 2 and our protocol can correct errors on the data qubits.

In our protocol, we will perform full syndrome measure-
ments until the outcome bundles are repeated four times in
a row. Since there are at most three faults, the repetition
condition will be satisfied within 16 rounds of full syndrome
measurement. In this simulation, we assume that the last round
of measurement has no faults; thus the high-weight error on
the data qubits arising from at most three faults is accumu-
lated from up to 15 rounds. We will use the outcome bundle
(syndromes and flag vector) obtained from the last round to
determine the fault combination that cause the error so that
the corresponding weight parity can be found and the WPEC
can be done.

We first define mathematical objects being used in our sim-
ulation. Let fault be an object with two associated variables:
Pauli error defined on the code block of 49 qubits arising
from the fault, and flag vector ∈ Z21

2 which indicates the flag
measurement results associated with the fault. There are four
types of possible faults: faults during wait time (denoted by
W ), faults arising from the measurement of first- and second-
level generators (denoted by G1 and G2, respectively), and
flag measurement faults (denoted by F ). A fault combination
can be constructed by combining faults of same or different
types up to three faults, i.e., multiplying their Pauli errors and
adding their flag vectors. The errors on the input codeword
can be considered as wait time faults in which associated
Pauli errors do not propagate to other data qubits during the
FTEC protocol. In addition, the X -type errors on the data
qubits arising from the faults during the measurement of Z-
type generators can be considered as wait time faults during
the measurement of subsequent X -type generators, in which
our simulation is also applicable. (Since the last round of
measurement has no faults, we can assume that the syndromes
obtained from the last round are correct and the syndrome
measurement faults can be neglected.)

Next, we define fault set as follows: for faults of type G1

(or type G2), we denote F G1
i, j (or F G2

i, j′ ) to be sets of possible
G1 (or G2) faults arising from a circuit for measuring gz

j , j =
1, . . . , 21 (or g̃z

j′ , j′ = 1, 2, 3) where the number of faults is
i ∈ {0, 1, 2, 3} (gz

j refers to the generator gz
( j−1) mod 3+1 on the

� j/3	-th subblock). Also, we denote FW
i and F F

i to be sets
of possible faults of type W and F , respectively, where the
number of faults is i ∈ {0, 1, 2, 3}. In addition, we define fault
set combination to be a set of fault sets up to three sets.

Last, let vG1 , vG2 , vW , vF be the number of faults of
type G1, G2,W, and F , respectively. (vG1 , vG2 , vW , vF ) that
satisfies vG1 + vG2 + vW + vF � 3 is called fault number
combination.

With the definitions of fault, fault combination, fault set,
fault set combination, and fault number combination, now we
are ready to describe the simulation.

Pseudocode for a simulation of possible faults assuming that the
last round of full syndrome measurement has no faults

(1) Construct fault sets F G1
i, j , F G2

i, j′ , FW
i , and F F

i for all i =
0, 1, 2, 3, j = 1, . . . , 21, j′ = 1, 2, 3.

042410-8



FAULT-TOLERANT QUANTUM ERROR CORRECTION USING … PHYSICAL REVIEW A 104, 042410 (2021)

(2) Construct all possible fault number combinations that
satisfy vG1 + vG2 + vW + vF � 3.

(3) For each (vG1 , vG2 , vW , vF ), find all possible fault set
combinations from vG1 , vG2 , vW , vF . Note that if vG1 is 2, the
fault set combination can have F G1

i, j and F G1
i′, j′ with i = i′ = 1,

or have F G1
i, j with i = 2. Also, if vG1 is 3, the fault set combi-

nation can have F G1
i, j , F G1

i′, j′ , and F G1
i′′, j′′ with i = i′ = i′′ = 1, or

have F G1
i, j and F G1

i′, j′ with i = 2, i′ = 1, or have F G1
i, j with i = 3.

The same goes for vG2 .
(a) For each fault set combination, find all possible

fault combinations. Each fault combination can be found
by picking one fault from each fault set (up to three sets) in
the fault set combination, then combine the faults to get the
Pauli error E and the cumulative flag vector fx associated
with the fault combination.

(b) For each fault combination, find first-level syn-
drome sx, second-level syndrome s̃x, block triviality τx, and
block parity px from the associated Pauli error E . Store
(sx, s̃x, τx, fx, px ) for each fault combination in a lookup
table.
(4) After the lookup table is complete, categorize fault

combinations by their second-level syndromes and block triv-
ialities in order to get Fk’s as in Claim 2.

(5) For each Fk , verify whether Condition 1 or 2 in Claim
2 is satisfied.

From the simulation above, we find that all possible fault
combinations satisfy Claim 2. That is, for each fault combi-
nation, we can determine the weight parity from the outcome
bundles obtained from the last round of full syndrome mea-
surement by looking at the table constructed in Step 3b. The
weight parity can be later used to perform WPEC on the code
block. With this simulation result, we can verify our FTEC
protocol for the [[49, 1, 9]] code satisfies FTEC conditions as
previously discussed in Sec. III.

APPENDIX B: SIMULATION OF POSSIBLE FAULTS
DURING THE FTEC PROTOCOL ASSUMING THAT THE
LAST ROUND OF FULL SYNDROME MEASUREMENT

HAS SOME FAULTS

In Appendix A, we describe the simulation of possible
faults during the FTEC protocol for the [[49, 1, 9]] code which
is applicable to the case that there are no faults during the last
round of full syndrome measurement. In this Appendix, we
will extend the ideas and construct a simulation of possible
faults for the case that some faults occur during the last round.

As previously described, we will perform full syndrome
measurements in the protocol until the outcome bundles are
repeated four times in a row. Now, suppose that the last round
of full syndrome measurement has some faults. In this case,
we cannot be sure whether the outcome bundle from the last
round exactly corresponds to the error in the data qubits. For-
tunately, since there are at most three faults during the whole
protocol, at least one outcome bundle obtained from the last
four rounds must be correct. Note that the outcome bundles
from the last four rounds are identical. From the simulation
result discussed in Appendix A, the outcome bundle from the
last round can be used to correct the data error occurred before
any correct round using the WPEC technique (see Fig. 3 for

FIG. 3. At least one of the last four rounds of full syndrome
measurement is correct since there are at most three faults. Because
the outcome bundles from the last four rounds are identical, the
outcome bundle from the last round can be used in WPEC to correct
both errors E1 and E2 (even though E1 and E2 may not be equal).

more details). The goal of the simulation in this section is to
verify that all possible fault combinations which can happen
after the last correct round give data error of weight no more
than 3.

A straightforward way to verify the claim above is to find
all possible fault combinations and check the weight of their
associated Pauli errors. Unfortunately, this process requires
many computational resources. Thus, we will use “relaxed
conditions” for the verification instead; for each fault com-
bination, if the associated Pauli error and flag vector satisfy
all relaxed conditions, the fault combination will be marked
(indicating that the fault combination might cause the protocol
to fail). We want to make sure that for all fault combination
that can cause the protocol to fail (i.e., its associated error has
weight more than 3), the fault combination will be marked.
Note that some fault combinations may be marked by the
relaxed conditions but will not cause the protocol to fail. For
this reason, all of the marked fault combinations must be
examined after the simulation is done.

We should note that the order of generator measurements is
important for the fault tolerance of our FTEC protocol. Con-
sider the protocol description in Sec. III in which we measure
generator measurements in the following order during a single
round of full syndrome measurement: measuring all g̃z

i’s, then
all g̃x

i ’s, then all gz
i’s, then all gx

i ’s. Let us first consider the
errors that can be caught by the gx

i measurements of the last
round. Observe that all Z-type data errors that arise before
the gx

i measurements of the last round will be evaluated by
the first-level syndrome sx. However, some faults during gx

i
measurements of the last round may cause X - or Z-type errors
that will not be caught by any syndrome. Without loss of
generality, we will construct a simulation using an assumption
that faults before the gx

i measurements of the last round can
cause only Z-type errors, and faults during or after the gx

i
measurements can cause X - or Z-type errors. The simulation
is also applicable to the case of gz

i measurements.
Let E , Ẽa, and Ẽb be data errors arising from faults oc-

curred before the last correct round among the last four
rounds, faults occurred after the last correct round but before
the gx

i measurements of the last round, and faults occurred
during or after the gx

i measurements of the last round. The
errors can be illustrated as follows:
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The outcome bundle obtained from the last round is equal
to the outcome bundle obtained from the correct round and
can be used to correct E . Thus, we would like to mark ev-
ery fault combination that can occur after the correct round,
corresponds to the trivial outcome bundle (since the outcome
bundle obtained from the last round is the same as that ob-
tained from the correct round), and corresponds to a Pauli
error of weight more than 3. In particular, our relaxed con-
ditions will examine three objects for each fault combination:
the first-level syndrome, the cumulative flag vector, and the
weight of the Pauli error.

The mathematical objects being used in this simulation
are similar to those defined in Appendix A. In addition, we
will consider syndrome measurement faults (denoted by S) as
another type of faults in this simulation since we will assume
that the syndrome measurement during the last four rounds
can be faulty. Also, let vG1a be the number of G1 faults that
occur before the gx

i measurements of the last round, and let
vG1b be the number of G1 faults that occur during or after
the gx

i measurements of the last round. Fault number com-
bination is a tuple (vG1a , vG1b, vG2 , vW , vF , vS ) that satisfies
vG1a + vG1b + vG2 + vW + vF + vS � 3.

For the first relaxed condition, let us first assume that none
of the faults of type W occurs before or during the gx

i measure-
ments of the last round. For each (vG1a , vG1b, vG2 , vW , vF , vS ),
error Ẽa will be constructed from possible fault combinations
that correspond to vG1a and vG2 . We will mark every fault com-
bination whose associated Ẽa gives a first-level syndrome that
has Hamming weight no more than vS (where the Hamming
weight is the number of 1’s in a bitstring). This is because each
fault of type S can alter at most one syndrome bit. Now let us
consider the case that some faults of type W occurs before or
during the gx

i measurements. Each W fault (which corresponds
to error of weight 1) can change at most three bits of sx, but
the change will affect only the subblock in which the fault
acts nontrivially. We will define function σ (Ẽa, vW ) by the
following calculation:

(1) Find the first-level syndrome of Ẽa and calculate the
Hamming weight of the syndrome for each subblock.

(2) Sort the Hamming weights from all subblocks. The
function value is the the sum of the 7 − vW smallest Hamming
weights.

The value of σ (Ẽa, vW ) is the minimum Hamming weight
of the first-level syndrome when vW faults of type W occur.
Taking all fault types into account, our first relaxed condition
becomes

σ (Ẽa, vW ) � vS. (B1)

For the second relaxed condition, we will consider the
cumulative flag vector associated with each fault combination.
Note that a flag measurement result will be obtained during
any gx

i or gz
i measurement. Let f = ( fx| fz ) denote the cumu-

lative flag vector associated with each fault combination, and
let h( f ) denote the Hamming weight of f . Since each fault
of type F can alter at most one bit of f , our second relaxed
condition becomes

h( f ) � vF . (B2)

For the third relaxed condition, we will consider the weight
of the Pauli error associated with each fault combination.

The weight is evaluated at the end of the protocol where the
resulting error is caused by all faults of type G1, G2, and W
(errors arising during or after the gx

i measurements of the last
round can be X - or Z-type). If W faults do not occur before
or during the gx

i measurements at the last round, the weight of
the resulting error is the weight of Ẽa · Ẽb. If they do, each W
fault can increase the total weight by at most 1. Hence, our
third condition becomes

wt(Ẽa · Ẽb) + vW > 3. (B3)

Note that the weight of Ẽa · Ẽb can be reduced by multi-
plication of some stabilizer, and the fault combination will
not be marked unless (B3) is satisfied for all choice of
stabilizer.

Using the relaxed conditions in Eqs. (B1) to (B3), our
simulation to verify that all possible data errors arising after
the correct round have weight no more than three can be
constructed as follows.

Pseudocode for a simulation of possible faults assuming that the
last round of full syndrome measurement has some faults

(1) Construct fault sets F G1
i, j , F G2

i, j′ for all i = 0, 1, 2, 3, j =
1, . . . , 21, j′ = 1, 2, 3.

(2) Construct all possible fault number combinations that
satisfies vG1a + vG1b + vG2 + vW + vF + vS � 3.

(3) For each (vG1a , vG1b, vG2 , vW , vF , vS ), construct all
possible fault set combinations from only vG1a , vG1b , and vG2 .
During the construction of each fault set combination, label
fault sets that come from vG1a or vG2 with letter a, and label
fault sets that come from vG1b with letter b. Note that if
vG1a is 2, the fault set combination can have F G1

i, j and F G1
i′, j′

with i = i′ = 1, or have F G1
i, j with i = 2. Also, if vG1a is 3,

the fault set combination can have F G1
i, j , F G1

i′, j′ , and F G1
i′′, j′′ with

i = i′ = i′′ = 1, or have F G1
i, j and F G1

i′, j′ with i = 2, i′ = 1, or

have F G1
i, j with i = 3. The same goes for vG1b and vG2 .
(a) For each fault set combination, find all possible

fault combinations. Each fault combination can be found
by picking one fault from each fault set (up to three sets)
in the fault set combination. Ẽa associated with each fault
combination can be found by combining only faults from
fault sets with label a, while f and Ẽa · Ẽb can be found by
combining faults from all fault sets.

(i) For each fault combination, if Eqs. (B1) to (B3)
are all satisfied, the fault combination will be marked.
Note that for (B3), the weight of Ẽa · Ẽb must be mini-
mized by stabilizer multiplication.

From the simulation above, we find that there are six fault
combinations which are marked by the relaxed conditions in
Eqs. (B1) to (B3). All of them correspond to the case that
vG2 = 1, vW = 2, vG1a , vG1b, vF , vS = 0, and their associated
Pauli errors are trivial on five subblocks and have either
IIIIIIZ or ZIIIIII on two subblocks. We find that IIIIIIZ
and ZIIIIII correspond to first-level syndrome (001) and
(100), respectively. Since vS = 0, the associated first-level
syndrome must be trivial whenever errors from W faults are
taken into account. This can happen only when errors from
W faults cancel with the aforementioned Pauli error, which
means that the resulting error has weight 0. As a result, we
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find that all of the marked fault combinations cannot cause
data error of weight higher than 3. Similar simulations can be
done to show that whenever v faults occur where v = 0, 1, 2,

the weight of the output error is at most v. This result verifies
that the FTEC protocol for the [[49, 1, 9]] code satisfies FTEC
conditions as discussed in Sec. III.
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