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We investigate the delocalization of quantum information in the nonequilibrium dynamics of the XY spin chain
with asymptotically decaying interactions ∼1/rα . As a figure of merit, we employ the tripartite mutual informa-
tion (TMI), the sign of which indicates if quantum information is predominantly shared globally. Interestingly,
the sign of the TMI distinguishes regimes of the exponent α that are known for different behaviors of information
propagation. While an effective causal region bounds the propagation of information, if interactions decay
sufficiently fast, this information is mainly delocalized, which leads to the necessity of global measurements.
Furthermore, the results indicate that mutual information is monogamous for all possible partitionings in this
case, implying that quantum entanglement is the dominant correlation. If interactions decay sufficiently slow,
though information can propagate (quasi-)instantaneously, it is mainly accessible by local measurements at early
times. Furthermore, it takes some finite time until correlations start to become monogamous, which suggests that
entanglement is not the dominant correlation at early times. Our findings give new insights into the dynamics
and structure of quantum information in many-body systems with long-range interactions, and might get verified
on state-of-the-art experimental platforms.
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I. INTRODUCTION

Entanglement, a key resource in quantum information pro-
cessing [1], is believed to give precious insights into exciting
physical phenomena in a variety of fields [2]. Driven by recent
progress on experimental platforms such as trapped ions [3],
ultracold atoms in optical lattices [4,5], and Rydberg atoms
[6,7], quantum many-body systems out of equilibrium have
gained a lot of attention lately [8]. How quantum information
propagates and distributes over the degrees of freedom of a
many-body system is fundamental for a plethora of subjects,
ranging from the simulability of these systems on classical
computers [9], to the correspondence between anti-de Sitter
spaces and conformal field theories (AdS/CFT) [10].

A few decades ago, Lieb and Robinson [11] proved the
emergence of a causal region, or light cone, in nonrelativistic
systems with sufficiently local interactions. That is to say,
there exists a finite speed vLR at which correlations and,
therefore, information can propagate through the system. In
consequence, correlations among remote regions get expo-
nentially suppressed until some time that is proportional to
their distance, t ∼ r. Today’s experimental platforms offer
vast possibilities to explore the physics of quantum lattice
models with increasing accuracy and system size. In some
cases, the systems’ constituents couple through long-range
forces, which can result in interactions proportional to a power
law ∼1/rα . If the exponent α is small, interactions are not
sufficiently local anymore. As these platforms aim to serve
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as reliable quantum simulators [12] in the future, this has led
to a renewed theoretical interest in many-body systems with
long-range interactions.

It is particularly intriguing that the notion of causality
does not necessarily apply to long-range interacting systems,
and information propagation can differ substantially [13–15].
While the causal region continuously alters with decreasing
α, it even can be absent if the exponent of the power-law
decay is smaller than the systems’ dimension, α < D. Thus,
information can propagate (quasi-)instantaneously between
remote regions. Counterintuitively, this regime was further as-
sociated with slower growth of bipartite entanglement [14,16].
The exponent of the power-law decay, therefore, strongly af-
fects the nonequilibrium properties of a many-body system,
and subsequent works aimed to improve the understanding
of information propagation in long-range interacting systems
[17–20]. Here, we want to shed more light on the particular
structure of quantum information. Especially, we investigate
how the exponent α determines if quantum information is
delocalized, i.e., if information is rather shared globally than
among individual subsystems.

This paper is structured as follows. In Sec. II, we intro-
duce the quantities we use to probe the correlation structure
of a many-body system, namely, the von Neumann entropy,
the mutual information, and the tripartite mutual information
(TMI). The TMI accounts for the delocalization of quantum
information. Thereafter, in Sec. III, we investigate the TMI
in the nonequilibrium dynamics of the long-range XY spin
chain. At first, we provide analytical arguments that quan-
tum information does not delocalize in the one-excitation
subspace, which can be understood by the limited amount
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FIG. 1. Correlations in a closed quantum system � . (a) The
von Neumann entropy (1) of some subsystem A ⊂ � measures the
amount of entanglement between this subsystem and its environ-
ment. (b) Given two subsystems A and B, the mutual information (3)
determines their total correlation, which is illustrated as the intersec-
tion of both entropies in the Venn diagram. (c) The TMI (4) probes
the distribution of quantum information among three subsystems
A, B, and C. In the language of Venn diagrams, this corresponds
to the intersection of all three entropies. A large negative value
suggests that most information about A is only accessible by joint
measurements on BC.

of entanglement that emerges. Subsequently, we numerically
investigate the dynamics in the largest subspace of the model.
In this case, we deduce regimes for the exponent α which
exhibit different structures of quantum information at early
times. How one can test our findings in the laboratory is
briefly touched upon in Sec. IV. Finally, in Sec. V, we discuss
our results, pose some open questions, and talk about future
directions.

II. ENTROPY AND CORRELATION MEASURES

Let us establish what quantities we henceforth use to probe
the correlation structure of a quantum many-body system. To
capture correlations as a property of the quantum state itself,
we are mainly concerned with operator-independent quanti-
ties. We shall, therefore, introduce the fundamental quantity
in this regard: the von Neumann entropy. Given a quantum
system � that is described by a pure state ρ = |�〉〈�|, asso-
ciated with some finite-dimensional Hilbert space H, the von
Neumann entropy for a subsystem A ⊂ � is defined as

SA = −Tr[ρA log2 (ρA)] = −
∑

λ∈σ (ρA )

λ log2 (λ). (1)

In Eq. (1), ρA = TrĀ(|�〉〈�|) is the reduced state associated
with A, σ (ρA) denotes the spectrum of ρA, and Ā = � \ A is
the complement of A. The logarithm is taken to base 2, if not
mentioned otherwise.

Since the overall system � has zero entropy, a nonvanish-
ing entropy for subsystem A indicates that we lose information
about the state of A if we neglect its environment Ā. Hence,
Eq. (1) is a natural measure of entanglement between subsys-
tem A and its environment Ā [see Fig. 1(a)]. The entropy is in
general bounded by

0 � SA � log2 [min (dA, dĀ)], (2)

where dA is the dimension of the Hilbert space associated with
A. The right equality in (2) holds if and only if A is maximally
entangled with Ā, while the left equality holds if and only if

the systems’ state is separable with respect to the bipartition
{A, Ā}, i.e., |�〉 = |�〉A ⊗ |�〉Ā.

The von Neumann entropy is frequently applied to probe
nonequilibrium many-body physics. If we consider a one-
dimensional spin chain, the time-dependent growth of the
half-chain entropy gives rise to the buildup of bipartite entan-
glement in the system. While sufficiently local Hamiltonians,
i.e., large values of the exponent α, are associated with a linear
entropy growth, this growth is only logarithmic for very long-
range interactions [14]. The quasiparticle contribution, that is
responsible for the linear growth [21], is increasingly sup-
pressed by collective excitations with decreasing α, leading
to a slowdown of entanglement production [16]. Later on, we
will see that the particular structure of quantum information is
widely different in these scenarios.

For many occasions, though, it is of particular interest how
two subsystems A and B are correlated to each other, where
A ∪ B ⊂ � and A ∩ B = ∅, for instance, two distant spins that
are part of a larger spin chain. Based on the von Neumann
entropy, one can define the mutual information

IA:B = SA + SB − SAB, (3)

where AB := A ∪ B. One might be tempted to think that
Eq. (3) is a measure of entanglement between A and B;
however, the mutual information contains both classical and
quantum correlations, and is considered as a measure of total
correlation between the two subsystems [22] [see Fig. 1(b)].
The mutual information is strictly non-negative, IA:B � 0,
where the equality holds if and only if A and B are uncorre-
lated, ρAB = ρA ⊗ ρB. Furthermore, it is nonincreasing under
reduction, i.e., IA:BC � IA:B. Given, for example, a many-body
system out of equilibrium with interactions ∼1/rα , Eq. (3) can
probe the aforementioned different regimes of information
propagation associated with the exponent α.

Even though the von Neumann entropy (1) and the mutual
information (3) offer vast insights into a quantum many-body
system, they both quantify some type of correlation between
two parties, i.e, bipartite correlations. However, correlations
can emerge among various parties, and it is far from trivial
to grasp and quantify these multipartite correlations. In par-
ticular, multipartite entanglement has evolved to be a field of
research on its own over the last decades [23].

To probe correlations beyond the bipartite regime, we con-
sider the TMI [24]

IA:B:C = IA:B + IA:C − IA:BC, (4)

where A, B, and C are three disjoint subsystems of �. The
TMI was introduced in Ref. [25] as topological entanglement
entropy, where the authors used it to characterize multipar-
tite entanglement in ground states of topologically ordered
two-dimensional systems. In the case of an overall pure state,
the TMI (4) is symmetric under permutations of A, B,C, and
D, where D refers to the complement of ABC. Moreover,
IA:B:C = 0, if the systems’ state is separable with respect to any
partitioning of these subsystems, for instance, |�〉 = |�〉AB ⊗
|�〉CD. Thus, if Eq. (4) acquires a finite value, the systems’
state is at least four-partite entangled.

From an information-theoretic point of view, the TMI (4)
quantifies how quantum information distributes among the
subsystems A, B, and C. Unlike mutual information, the TMI
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has no definite sign. While IA:B:C > 0 indicates that more
quantum information is shared among individual subsystems,
information is rather shared globally if IA:B:C < 0. Further-
more, if the TMI has a large magnitude and a positive sign,
local measurements on B and C are sufficient to extract most
of the information shared with A. In the case of a negative
sign, however, joint global measurements on BC are required.
In the latter case, quantum information is said to be delocal-
ized with respect to the three subsystems [see Fig. 1(c)].

Moreover note that, if IA:B:C � 0, mutual information is
monogamous, i.e.,

IA:BC � IA:B + IA:C . (5)

Monogamy, a common notion in quantum information theory,
is known to apply to quantum entanglement [26]. There-
fore, entanglement is not a shareable resource, implying that
strong entanglement between A and B limits the amount of
entanglement between A and C. This is formalized by in-
equalities of the form EA:BC � EA:B + EA:C , where E is some
measure of entanglement. Since mutual information is a mea-
sure of total correlation; it is not monogamous in general.
However, delocalization of quantum information among A, B,
and C also implies the validity of the monogamy condition
(5). If the latter holds for arbitrary partitionings, one might
argue that entanglement is the dominant correlation in the
system [27,28].

Recently, the TMI is applied to probe nonequilibrium
physics, in the context of either unitary quantum channels
[24,29] or quantum many-body dynamics [30–32]. In the next
section, we will examine how the exponent of the power-law
decay affects the distribution of quantum information in the
nonequilibrium dynamics of a quantum spin chain. Especially,
we identify regimes of the exponent α that are associated with
a sign change of the TMI at early times and, therefore, a
qualitative change in the quantum information structure.

III. DELOCALIZATION OF QUANTUM INFORMATION

To study how quantum information distributes over the
degrees of freedom of a many-body system, we consider
a one-dimensional chain of N pairwise interacting spins
(qubits) with open boundary conditions, described by the XY
Hamiltonian

H =
∑

m<n

Jmn(XmXn + YmYn). (6)

Here, Xm and Ym denote the standard Pauli X and Y op-
erators, acting on the lattice site m. We further choose the
eigenbasis of the Pauli Z operator as the local basis for each
spin, Zm |0m〉 = − |0m〉 and Zm |1m〉 = |1m〉. The interaction
strength Jmn between two spins is given by a power law

Jmn = J0

|m − n|α , (7)

where J0 is the nearest-neighbor interaction strength, and
the exponent α � 0 determines its spatial decay. Since the
Hamiltonian (6) conserves the number of excitations, i.e.,
[H,

∑
m Zm] = 0, the Hilbert space decomposes into a direct

sum of invariant subspaces H = ⊕
k Sk , where each subspace

Sk is associated with a particular number k of excitations.

Equation (7) results in nearest-neighbor interactions in the
limit α → ∞. In this case, the XY model (6) can be mapped
onto a model of free fermions via a Jordan-Wigner transfor-
mation, and subsequent diagonalization in quasimomentum
space, i.e.,

H =
∑

k

εkη
†
kηk, (8)

where η
(†)
k annihilates (creates) a fermionic quasiparticle with

quasimomentum k. The Lieb-Robinson velocity is then de-
termined by the maximal group velocity vLR = max( dkεk

dk ),
where vLR = 4J0 for the model at hand.

In what follows, we explore the delocalization of quantum
information, measured by the TMI (4), in the nonequilibrium
dynamics induced by the Hamiltonian (6). Initially, the system
is in a product state |�0〉 that is not an eigenstate of its
Hamiltonian. We are, hence, interested in the nonequilibrium
dynamics of the many-body state

|�t 〉 = e−iHt |�0〉, (9)

where h̄ = 1. This scenario is well suited to be performed on
current experimental platforms. In the following section, we
will describe in more detail how one can test our findings in
the laboratory.

We first consider a simple scenario with an initial state that
has just one localized excitation, for instance, at lattice site
i: |�0〉 = |0 . . . 1i . . . 0〉. The symmetry of the Hamiltonian
then confines the dynamics of the system to the smallest (non-
trivial) subspace S1, which has dimension N . Accordingly,
the state of the system (9) can at any time be written as a
superposition of basis states of this subspace:

|�t 〉 =
∑

m

cm|m〉, (10)

where the cm are time-dependent coefficients, |m〉 :=
|0 . . . 1m . . . 0〉, and cm = δmi at t = 0. During the nonequi-
librium dynamics, the initially localized excitation coherently
disperses and correlations between different regions of the
system emerge.

To study the TMI in this scenario, we shall compute the
entropy SA of some subsystem A that consists of a set of lattice
sites. If we take the state (10) and trace out all sites that are
not associated with A, we obtain

ρA =
∑

m,n∈A

cmc∗
n|mA〉〈nA| +

∑

m/∈A

|cm|2|0A〉〈0A|, (11)

where |mA〉 is the state of A with excitation at site m and
|0A〉 := ⊗

m∈A |0m〉 is the state with all sites that belong to A
in the zero state. If we define pA := ∑

m∈A |cm|2 and

|1A〉 := (pA)−1/2
∑

m∈A

cm|mA〉,

we can diagonalize Eq. (11) in accordance with

ρA = pA|1A〉〈1A| + (1 − pA)|0A〉〈0A|.
The entropy of A is then given by the binary entropy

H (pA) = (pA − 1) log2 (1 − pA) − pA log2 (pA) � 1, (12)
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and is, thus, tighter bounded than Eq. (2) if A contains more
then one lattice site. The amount of entanglement between
A and its environment is, therefore, restricted to one “e bit”
independent of the size of A.

Moreover, given two disjoint subsystems A and B, it fol-
lows straightforwardly that the entropy of the union SAB is
determined by H (pA + pB). The TMI (4) then takes the form

H (pA) + H (pB) + H (pC ) + H (pA + pB + pC )

− H (pA + pB) − H (pA + pC ) − H (pB + pC ). (13)

According to Eq. (13), the TMI is a function of the variables
pA, pB, and pC , where pA can be interpreted as the probability
of finding the excitation if we perform a measurement on A.
At the boundaries of the parameter space, that is, pA ∨ pB ∨
pC = 0 and pA + pB + pC = 1, Eq. (13) vanishes, implying
IA:B:C = 0. Furthermore, one can find a maximum of Eq. (13)
at pA = pB = pC = 1/4. Due to the concavity of entropy, we
can then conclude that IA:B:C � 0 for all possible partitionings
A, B,C.

Thus, in this particular scenario, quantum information does
not delocalize among spatial regions (in terms of the TMI),
irrespective of the Hamiltonians’ parameters. The effective
size of the Hilbert space is just not sufficient for quantum
information to spread properly over many degrees of freedom.
This further implies that mutual information is either ex-
actly extensive, i.e., IA:BC = IA:B + IA:C , or nonmonogamous.
Hence, entanglement cannot dominate correlations overall,
because the symmetry of the Hamiltonian strongly constrains
the amount of entanglement that can emerge [see Eq. (12)].
This result is in agreement with Ref. [30], where only for a few
initial states with low effective dimension a negative value for
the TMI could not be observed. Noteworthy, delocalization of
quantum information and monogamy of mutual information
require more than just nonseparability of the quantum state.
For instance, it follows from the derivation above that gener-
alized W states [33], which belong to one class of multipartite
entanglement, will never lead to a negative TMI.

For a more sophisticated picture, we consider an initial
state that leads to richer dynamics. This state is chosen to
be a Néel ordered state |�0〉 = |0101 . . .〉. In line with the
ground state of the model, this state is an element of the
largest subspace S�N/2�. In that case, an analytical treatment
is rather difficult, and we therefore resort to numerical calcu-
lations. In the spirit of the half-chain von Neumann entropy,
we divide the system into four connected regions A, B,C, D
of equal size, to probe delocalization of quantum information
in general. In particular, we calculate the time evolution (9)
numerically, and evaluate the TMI (4) for this partitioning at
every time step.

In Fig. 2, the TMI is displayed in the (α, t ) plane for a
system of N = 20 spins. For larger exponents, i.e., α � 2, the
TMI remains zero at early times and then attains a negative
value. As this regime is associated with a clear light cone
[13], correlations between distant regions get exponentially
suppressed at early times. The systems’ state is, therefore, in
good approximation still separable with respect to the subsys-
tems A, B, C, leading to a vanishing TMI at early times. The
time at which the TMI gets sizable can be estimated via the
Lieb-Robinson velocity from the nearest-neighbor version of
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FIG. 2. Nonequilibrium dynamics of the TMI (4)
following from a Néel ordered state |�0〉 = |0101 . . .〉 in the
(α, t ) plane for a system of N = 20 spins, and A, B,C =
{1, 2, 3, 4, 5}, {6, 7, 8, 9, 10}, {11, 12, 13, 14, 15}. The dashed
line shows the time it takes until the TMI can get sizable in the
nearest-neighbor limit, i.e., α → ∞, which is determined by the
Lieb-Robinson velocity

the model (gray dashed line). The qualitative agreement of this
estimate with the numerical data implies that the light cone
is (almost) linear in this regime. Once sizable correlations
among the subsystems start to build up, quantum informa-
tion is delocalized, which follows from the negative value of
the TMI. Oppositely, with increasing interaction range (de-
creasing α), quantum information does not delocalize at early
times. This effect, however, is only present at early times and
the TMI also decays to a negative value for longer times,
except for very small exponents, α → 0. Note that we observe
similar behavior for other choices of the partitioning A, B,C.
To put this result in perspective, Fig. 3 compares the TMI
with the half-chain entropy for a system of N = 24 spins,
and particular values of the exponent α. Here, time is rescaled
by the Kac normalization [34] K = ∑

m<n Jmn/N , to properly
compare various values of the exponent α. This rescaling fixes
the average energy per spin independent of the exponent α.
On the shown timescale, the half-chain entropy is still in its
growth phase. The linear growth in the nearest-neighbor case
(black line) is increasingly suppressed to a logarithmic growth
with decreasing α. On the same timescale, the TMI undergoes
a sign change for small exponents α, i.e., an initial growth
to a positive value following a decay to a negative one. The
suppression of the positive peak at early times with increasing
α can be nicely observed. Thus, for small exponents α, the
TMI clearly diagnoses a qualitative change in the quantum
information structure at early times that is not covered by
the half-chain entropy. These results demonstrate that the
exponent of the power-law decay shapes the distribution of
quantum information. Interestingly, regimes that are associ-
ated with a strongly altered causal region do not delocalize
quantum information at early times.

Finally, we want to shed more light on the general structure
of correlations in the identified regimes of the TMI. To this
end, we calculate the minimal and maximal TMI out of all
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FIG. 3. Nonequilibrium dynamics of the TMI (4) (a) and
the half-chain entropy (b) following from a Néel ordered state
|�0〉 = |0101 . . .〉 for a system of N = 24 spins, and α =
0.3, 0.5, 1.0, 2.0, 3.0, ∞, respectively. Time is rescaled by the Kac
normalization K = ∑

m<n Jmn/N . Darker color indicates larger val-
ues of α. Each of A, B,C, D is again a connected quarter of the chain.

possible partitionings A, B,C for a smaller system of N = 12
spins. In Fig. 4, the result of this calculation is shown for
α = 0.2 and 3.0, respectively. We observe that for α = 3.0
the maximal TMI stays close to zero, while the minimal
TMI monotonically decreases until saturation. In addition,
the largest value of the maximal TMI in the considered time
interval decays rapidly as a function of α as it can be seen in
the left inset of Fig. 4. This suggests that mutual information is
monogamous overall in the nearest-neighbor limit, that is, the
monogamy condition (5) holds for all possible partitionings.
As previously mentioned, this indicates that entanglement is
the dominant correlation in the system. On the contrary, for
α = 0.2, both minimal and maximal TMI are positive and
growing at early times. Hence, there is not a single partitioning
A, B,C that fulfills the monogamy condition (5) until the mini-
mal TMI changes its sign. We further investigate this behavior
in the right inset of Fig. 4, where the time τ it takes until the
minimal TMI acquires a negative sign is displayed in depen-
dence of the exponent α. Surprisingly, one can observe that
this time is finite for α � 0.5, and vanishes for α > 0.5. Thus,
for α � 0.5, correlations are nonmonogamous in general for
t < τ , which signifies that entanglement is not the dominant
correlation at early times for very long-range interactions. In-
terestingly, even for α = 0.2 the maximal TMI decays towards
zero at later times, and we observe this behavior for all α

except the fully connected case α = 0. The data therefore sug-
gest that if α �= 0 entanglement will dominate correlations at
late times and quantum information is in general delocalized
(in terms of the TMI). The longer the interaction range, the
longer it takes until entanglement dominates.

Our interpretation of these results is as follows. For large
exponents, i.e., α � 2, the nearest-neighbor contribution (8)
is the dominant part of the Hamiltonian (6). The systems’
dynamics is then understood by the propagation of quasi-
particles, entangling different regions of the system as they
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FIG. 4. Maximal (dashed) and minimal (solid) TMI obtained
from evaluation of Eq. (4) for all possible partitionings A, B,C for
a system of N = 12 spins. Red color (dark gray) is associated with
α = 0.2 and blue color (light gray) with α = 3.0. Time is rescaled
by the Kac normalization K = ∑

m<n Jmn/N . The left inset shows the
largest value of the maximal TMI in the time interval of the main
plot in dependence of α. The rapid decay with increasing α suggests
monogamy of mutual information in the nearest-neighbor limit. The
right inset displays the time τ at which the minimal TMI out of all
possible partitionings A, B,C acquires a negative sign.

propagate. Information that is initially localized in some re-
gion is spread by these quasiparticles, which move at different
velocities. Thus, this information will disperse, leading in
general to delocalized information among subsystems, and
entanglement being the dominant correlation. With increasing
interaction range (decreasing α), the Hamiltonian becomes
more symmetric, and collective excitations more dominant.
In the fully connected case, α = 0, where all excitations are
of collective nature, the Hamiltonian is fully permutation
symmetric. Similar to the one-excitation subspace, the ad-
ditional permutation symmetry reduces the effective Hilbert
space of the dynamics such that quantum information can-
not spread properly over many degrees of freedom. In other
words, collective excitations spread predominantly redundant
information. Accordingly, we do not observe delocalization
of quantum information for α = 0. Note that in Ref. [32] it
has been shown that the TMI of permutation symmetric states
is typically positive. We can, thus, understand the qualita-
tively different dynamics of the TMI for small exponents as
a remnant of this permutation symmetry. Due to the strong
collective excitations in this regime, the state of the system
accesses only a small portion of the Hilbert space at early
times. Thus, for very long-range interactions, it takes more
time for quantum information to delocalize, and entanglement
to dominate.

IV. EXPERIMENTAL REALIZATION

As current experimental platforms may be able to observe
our findings, we shall briefly touch upon the experimental
realization, and possible obstacles regarding the chosen sce-
nario. Our focus is on ion traps here, albeit other quantum
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simulation platforms are suited as well, especially in the
nearest-neighbor limit. For a more detailed description of
these platforms, see the references we mention in the intro-
duction of this paper.

In a linear ion trap, a string of atomic ions is confined
via harmonic potentials, and two internal states of each ion
serve as an effective spin-1/2 degree of freedom (qubit). The
vibrational modes of the ions mediate an effective spin-spin
interaction between these spins. This effective interaction can
then be shaped via laser or microwave pulses to follow a
power-law decay in accordance with Eq. (7). We note that
the interaction strength in reality deviates from the power-
law shape as one moves towards the edges of the ion string.
However, it has been shown lately that interactions can be
realized more appropriately by applying additional optical
tweezers [35].

The Hamiltonian and the dynamics following the initial
states we consider here have already been realized in systems
of trapped ions [36–38]. To probe the TMI in an experimental
environment, it is necessary to determine the von Neumann
entropy of different subsystems. The straightforward ap-
proach to accomplish this is quantum state tomography [39];
however, as this technique scales quite disadvantageously
with system size, it is only applicable to very small systems.
We are not aware of any technique that is able to determine the
von Neumann entropy, and in addition circumvents quantum
state tomography. Recently, though, a technique to determine
Rényi entropies was introduced [40–42], and numerical tests
indicate that Rényi entropies will lead to qualitatively similar
results. For cold atoms in optical lattices, there also exists a
method to determine the second-order Rényi entropy [43,44].
However, this method requires two identical copies of the
system.

Finally, we note that due to coupling to the environment
the state of the whole system is in general mixed in a real
experiment in contrast to our idealistic assumption of a pure
state. Hence, the whole system has a finite entropy unlike the
entropy of a pure state. Whether or not the purity of current
trapped ion systems is sufficient to observe our findings is an
open question, that might encourage researchers to further test
the limits of these platforms.

V. DISCUSSION

Our results demonstrate that, besides the speed of infor-
mation propagation, the exponent of the power-law decay
starkly influences the distribution of quantum information.
In regimes with an almost linear causal region, i.e., α � 2,

we find that quantum information is mainly delocalized. Fur-
thermore, the data show that nonmonogamous correlations
get strongly suppressed with increasing α, which suggests
that correlations are predominantly caused by entanglement
in this regime. Intuitively, this is understood via the picture of
fermionic quasiparticles that delocalize quantum information
as they propagate.

With increasing interaction range, the systems’ Hamil-
tonian becomes more symmetric, and collective excitations
more dominant. Hence, the state of the system accesses only
small portions of the Hilbert space at early times, protect-
ing quantum information from delocalization. For sufficiently
slow decaying interactions, α � 0.5, we find that mutual in-
formation is nonmonogamous overall for a finite time τ . Note
that for an initial product state this regime is associated with
distant independent propagation of information [15]. Thus,
it seems that a strongly altered causal region is accompa-
nied with sizable nonmonogamous correlations at early times.
Entanglement, therefore, needs some finite time to domi-
nate the systems’ dynamics in this case, which might be
linked to semiclassical descriptions of long-range interacting
systems [16,45].

Despite these exciting results, many questions remain
open. Although our results suggests that the structure of quan-
tum information vastly differs in the identified regimes, so
far we do not know how beneficial or disadvantageous these
structures are with respect to quantum information processing.
Moreover, as our calculations were carried out for relatively
small system sizes, and a specific model, it is natural to ask
how general these findings are. It would be fairly interest-
ing if one could lay out analytical arguments that mutual
information is monogamous in systems described by local
Hamiltonians, as it is the case for quantum field theories with
holographic duals [28]. At last, we want to emphasize that the
TMI indeed probes a many-body system beyond the insights
given by the von Neumann entropy, or mutual information.
It would be compelling to see what insights this measure
can provide regarding nonequilibrium phenomena like ther-
malization and many-body localization [8], for example. We
hope this paper stimulates further efforts in this direction both
theoretically and experimentally.
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