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Application of the small-tip-angle approximation in the toggling frame for the design
of analytic robust pulses in quantum control
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We apply the small-tip-angle approximation in the toggling frame in order to analytically design robust pulses
against resonance offsets for state to state transfer in two-level quantum systems. We show that a broadband or a
local robustness up to an arbitrary order can be achieved. We provide different control parametrizations to satisfy
experimental constraints and limitations on the amplitude or energy of the pulse. A comparison with numerical
optimal solutions is made.
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I. INTRODUCTION

Manipulating quantum systems by means of time-
dependent external controls has been a topic of increasing
interest in the past decades. It has become a well-recognized
field of research with applications ranging from molecular
physics [1–3] to nuclear magnetic resonance (NMR) [4–9]
and nowadays quantum technologies [4,10,11]. In this con-
text, progress has been made for the design of efficient
pulses able to realize specific tasks. On the theoretical side,
such advances extend from the discovery of elementary ba-
sic mechanisms of field-induced dynamics such as adiabatic
protocols [12], to shortcut to adiabaticity [13–16] and opti-
mal control procedures [17–24], which have made possible
the control of systems of growing complexity. However,
in order to be effective for experimental applications, such
open-loop control methods require the accurate knowledge
of system dynamics. This problem can be solved by consid-
ering pulses robust against variations of specific parameters
of the system [25]. The basic idea is generally to consider
the simultaneous control of an ensemble of quantum systems
which differ by the value of one or several parameters. A
large amount of solutions have been proposed in the literature
to date, with their own advantages and limitations [26] in
terms of pulse duration and energy or efficiency of the control
protocol. Among recent propositions for two-level quantum
systems, we mention composite pulses [27–31], procedures
based on shortcut controls [32–34], learning control [35,36],
and optimal control methods [4,37–44]. As an illustrative
example of this control issue, we consider in this study the
control of two-level quantum systems with different resonance
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offsets, which can be viewed as a reference problem for robust
protocols in quantum control.

In this context, the design of robust pulses is a nontrivial
task due to the bilinearity of the controlled Schrödinger (or
Bloch) equation. Ideally, the system dynamics and the cor-
responding control should be expressed in terms of simple
functions with a minimum number of free parameters. This
aspect is important to reveal the control mechanism or to apply
quickly and efficiently the control protocols in a given experi-
mental setup. However, the time evolution of the Schrödinger
equation for two-level quantum systems can be analytically
computed only for some simple controls, such as constant
pulses with a constant phase. Most of the robust pulses have
therefore been built on the basis of numerical optimizations
of a large number of parameters, for which the integration of
the dynamics is made by a numerical propagation. Analytical
studies of the control of an ensemble of two-level quantum
systems is much more difficult and requires in general some
approximations to simplify the dynamics. For this purpose,
average Hamiltonian theory (AHT) [45,46] uses a Magnus
expansion to express the propagator. This expansion becomes
extremely complicated above the second order, which limits
the efficiency of this approach. The small-tip-angle approxi-
mation (STA) [5,47] is another way to deal with the control
problem and gives interesting results for state to state trans-
fers. STA linearizes the Bloch equation which allows one to
compute explicitly its solutions. However, this method only
works for transfers involving relatively small flip angles on
the Bloch sphere and not, e.g., for an inversion process. The
combination of STA and optimal control has been recently
investigated in detail [16,48]. These two methods are much
more efficient in the so-called toggling frame (or interaction
frame) [45,46], hereafter denoted TF. The latter is a time-
dependent frame which follows the state of a resonant spin.
Recently, Zeng et al. published a series of papers about the ap-
plication of AHT in TF [49–51]. They found a way to improve
the pulse robustness by making use of three-dimensional
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curves derived from the first-order Magnus expansion. Their
procedure allows one to control the robustness of unitary gates
by canceling the effect of offset inhomogeneities in higher and
higher orders of the Magnus expansion. Due to its complexity,
the computation of high orders requires numerical techniques.
Moreover, this method improves locally the robustness (i.e.,
for small resonance offsets), but, as far as we know, broad-
band robust pulses for a large range of frequencies cannot be
derived.

In this paper, we propose to revisit this approach by ap-
plying STA in TF. Many original results can be found for
state to state transfers. This method has the decisive advantage
of being simpler and more efficient than AHT, even if its
generalization to unitary transformations seems more difficult.
This paper focuses mainly on robust inversion pulses against
offset inhomogeneities (or B0 inhomogeneities), but we show
that our approach can be generalized to any state to state
transfer. The evaluation of the robustness is made through the
distance of the final state to the target one as a function of
the offset parameter relative to the resonance frequency. This
description corresponds to the current experimental uncertain-
ties that can be encountered in molecular physics, NMR, or
quantum technologies. We consider two different definitions
of robustness, either global or local. In the first case, the
problem is to control an inhomogeneous ensemble of spins of
different offsets, while in the second framework the system is
expanded order by order with respect to the offset parameter.

The paper is organized as follows. In Sec. II, we introduce
the model system and we express its dynamics in TF by
using STA. We also describe the general methodology used to
design robust control pulses. Section III is mainly dedicated
to the inversion process. We derive a series of analytical so-
lutions both with broadband or local robustness properties.
A generalization to any state to state transfer is presented
in Sec. III C. A comparison with numerical optimal control
protocols is presented in Sec. IV. Conclusion and prospective
views are given in Sec. V. Technical details are reported in
Appendixes A, B, and C.

II. METHODOLOGY

A. Model system

We consider an inhomogeneous ensemble of uncoupled
two-level quantum systems with different resonance offsets
neglecting relaxation. In a given rotating frame, the dynamics
of the Bloch vector describing the state of a system are given
by

�̇M(δ, t ) = [H0(t ) + δH1] �M(δ, t ), (1)

with

H0(t ) =
⎛
⎝ 0 0 −uy(t )

0 0 ux(t )
uy(t ) −ux(t ) 0

⎞
⎠,

H1 =
⎛
⎝ 0 1 0

−1 0 0
0 0 0

⎞
⎠, (2)

where δ is the resonance offset and ux(t ) and uy(t ) are the
components of the control pulse. The control would be in-

finitely robust if �M(δ, T ) reaches a given target state for all δ.
For an inversion pulse, the cost profile (i.e., the error of the
transfer as a function of δ) is measured by

JBLOCH(δ) = 1 + Mz(δ, T ), (3)

which is zero if the inversion is perfectly realized for an offset
δ [we have in this case Mz(δ, T ) = −1] and 2 if the spin is not
excited at all. TF (or interaction frame) [46,52,53] is defined
by a propagator whose dynamics are governed by H0 only. In
other words, it corresponds to a rotation matrix R0 ∈ SO(3)
which fulfills Ṙ0 = H0R0. R0 is an orthogonal 3 × 3 matrix
that can be expressed as

R0(t ) =
⎛
⎝qx(t ) qy(t ) qz(t )

px(t ) py(t ) pz(t )
vx(t ) vy(t ) vz(t )

⎞
⎠, (4)

where we have introduced the vectors �q = (qx, qy, qz )ᵀ, �p =
(px, py, pz )ᵀ, and �v = (vx, vy, vz )ᵀ. These vectors correspond
to the three axes of the original frame expressed in the tog-
gling frame. The vector �q is the x axis of the original frame
expressed in TF, �p is the y axis, and �v is the z axis. Since
initially we have R0(0) = I (the two frames are equal at
the beginning of the process), we obtain �q(0) = (1, 0, 0)ᵀ,
�p(0) = (0, 1, 0)ᵀ, and �v(0) = (0, 0, 1)ᵀ. We denote as �L the
Bloch vector described in TF, i.e., such that its components
Lx, Ly, and Lz correspond to the projection of �M onto the three
axes of TF. The dynamics of �L can be derived by applying the
transformation �L = Rᵀ

0
�M. Using Eq. (1), we obtain

�̇L(δ, t ) = δH̃1(t )�L(δ, t ), (5)

where H̃1 = Rᵀ
0 H1R0 is the so-called interaction Hamiltonian.

Since R0 is an orthogonal matrix, we deduce that �q × �p = �v,
which allows one to explicitly write H̃1 as

H̃1(t ) =
⎛
⎝ 0 vz(t ) −vy(t )

−vz(t ) 0 vx(t )
vy(t ) −vx(t ) 0

⎞
⎠. (6)

Note that, at the resonance, we have �̇L(δ = 0, t ) = 0, i.e.,
the Bloch vector is a constant of the motion. This vector
stays along the z axis of TF during the dynamics. Since the
dynamics of R0 are controllable, the functions vx, vy, and
vz can be chosen arbitrarily and Eq. (5) can be viewed as
a new control problem, where vx, vy, and vz are the new
control variables. Note that, in the system (5), the interaction
Hamiltonian generates rotations about �v; hence �v can be seen
as a control pulse by analogy with the transverse control field
in the original Bloch equation. The fact that R0 is orthogonal
leads to the constraint

v2
x (t ) + v2

y (t ) + v2
z (t ) = 1. (7)

As we explained above, the vector �v is also equal to the unit
vector along the z axis of the laboratory frame (see Fig. 1). It
can be shown that the original pulse can be computed from �v
as [51]

�(t ) = ‖�̇v(t )‖, φ(t ) =
∫ t

0

[�v(t ′) × �̇v(t ′)] · �̈v(t ′)
�2(t ′)

dt ′, (8)
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FIG. 1. Panel (a): representation of the z axis of TF (ZT in blue
or dark gray) moving on the Bloch sphere together with a resonant
Bloch vector �M0 ≡ �M(0, t ) and a nonresonant one �Mδ ≡ �M(δ, t ).
The vector �u(t ) is the transverse control �u = (� cos φ, � sin φ, 0)ᵀ.
The resonant Bloch vector remains along ZT during the whole pro-
cess. The angle between ZT and �M(δ, t ) is denoted as α(t ). If α is
small enough during the dynamics, �M(δ, t ) moves approximately in
the gray plane and STA holds in TF. The angle α(t ) is measured
by

√
�2

x (δ, t ) + �2
y (δ, t ), which is also the distance between ZT and

�M(δ, t ) (red or gray line). Panel (b): representation of the z- axis of
the laboratory frame (Z in black) moving in TF. In this framework,
the vector �v(t ) plays the role of a pulse (by analogy with �u in the
original frame) with a norm ‖�v‖ = 1, and remains along Z during
the whole process. Here α(t ) is the polar angle describing the dy-
namics of �L(δ, t ). The vectors �M of panel (a) and �L of panel (b) are
the same but expressed in different frames. Quantities plotted are
dimensionless.

where � =
√

u2
x + u2

y and φ = arctan(uy/ux ) are respectively
the amplitude and the phase of the pulse. We stress that � is
the norm of the derivative of �v and not the derivative of the
norm. Instead of optimizing directly ux(t ) and uy(t ), we can

optimize �v(t ) in Eqs. (5) and (6) and deduce the pulse through
Eq. (8).

B. Boundary constraints

The main difference between the new dynamical system
and the original one is that the vector �v(t ) must satisfy bound-
ary constraints at t = 0 and t = T . This point is due to the fact
that TF is not a static frame. It has to realize a certain transfer
which depends on the target state of the control problem. TF
is equal to the original frame at t = 0, i.e., R0(0) = I, which,
from Eq. (4), leads to

�v(0) = (0, 0, 1)ᵀ, (9)

while �v(T ) depends on the target state. For the design
of an inversion pulse, TF has to be flipped, i.e., R0(T ) =
diag(1,−1,−1), leading to

�v(T ) = (0, 0,−1)ᵀ. (10)

A pulse is said to be robust against offset variations if, for any
offset δ, the Bloch vector remains in a neighborhood of the z
axis of TF. As explained above, a resonant Bloch vector with
δ = 0 stays exactly along the z axis of TF during the control
process, i.e., �L(0, t ) = (0, 0, 1)ᵀ. Ideally, if, at the final time,
we have �L(δ, T ) = (0, 0, 1)ᵀ ∀δ, then the associated pulse
is infinitely robust. In other words, in TF, a robust control
process steers the systems from the z axis back to the z axis.
The final angle between the Bloch vector and the z axis of TF
is measured by arccos [Lz(δ, T )]. The cost profile can thus be
defined as follows:

JTF(δ) = 1 − Lz(δ, T ), (11)

which is zero for a perfect return to the z axis [Lz(δ, T ) = 1].
It is worth noting that the cost does not depend explicitly
on the target state, this latter being determined by the fi-
nal constraint �v(T ). For an arbitrary target flip angle θT on
the Bloch sphere, the constraint (10) can be generalized to
�v(T ) = (sin[θT ], 0, cos[θT ])ᵀ, while the cost profile is still
given by (11). The azimuthal target angle does not appear
in this constraint, but it can be set by adding an appropriate
constant to the phase of the pulse.

In general, Eq. (5) is not simpler to solve than the original
Bloch equation and does not provide any advantage. However,
some approximations can be made such as AHT, which is
much more accurate in TF [45,46]. Another solution is to use
STA [47], which is particularly efficient for state to state trans-
fers. We show in Sec. II C that it is a very natural approach in
this control problem.

C. Application of the small-tip-angle approximation

A large amount of work has used STA for the design of
robust or selective pulses in NMR and magnetic resonance
imaging (MRI) due to its very good efficiency in state to
state transfers. Among others, we mention the small-tip-angle
spokes [54], kT -point pulses [55,56], SPINS [57], and fast kz

pulses [58]. The unit vector �L can be represented in polar
coordinates as

�L = (sin α cos β, sin α sin β, cos α)ᵀ,
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with α being the flip angle and β the azimuthal one. If α is
small enough, we have cos α 	 1 and the vector �L moves in a
plane tangent to the sphere in Lz = 1. We thus have �L 	 �� =
(�x, �y, 1)ᵀ, which is however not of norm unity. If needed,
the mapping between �� and �L is given by α =

√
�2

x + �2
y and

β = arctan( �y

�x
).

STA can be applied for flip angles less than 30◦ [47], but
some studies use this approximation up to 105◦, which still
works surprisingly well [59,60]. It is particularly relevant in
TF. Since the resonant Bloch vector is static and stays along
the z axis of TF, we deduce that, if δ is small enough, the
corresponding vector stays in a neighborhood of the z axis
of TF, which means that the flip angle remains small. Since
STA is valid even for relatively large flip angles, we expect
that it can be applied over a relatively large range of offsets.
Figure 1 depicts the z axis of TF, the tangent plane where the
STA holds, and the flip angle α.

A decisive advantage of using STA in TF is that the solu-
tion of the Bloch equation can be expressed through a simple
integral. The z component of the Bloch vector �L being equal
to 1, we deduce from Eq. (5) that the dynamics of the x and y
coordinates are given by

�̇x(δ, t ) = δ[vz(t )�y(δ, t ) − vy(t )],

�̇y(δ, t ) = δ[vx(t ) − vz(t )�x(δ, t )]. (12)

We consider the complex component � = �x + i�y. We have

�̇(δ, t ) = −iδvz(t )�(δ, t ) + iδ[vx(t ) + ivy(t )]. (13)

Introducing the functions

kx(t ) =
∫ t

0
vx(t ′)dt ′,

ky(t ) =
∫ t

0
vy(t ′)dt ′,

kz(t ) =
∫ t

0
vz(t ′)dt ′, (14)

one can check that the solution of (13) is of the form

�(δ, T ) = iδ e−iδkz (T )
∫ T

0
[k̇x(t ) + ik̇y(t )]eiδkz (t )dt . (15)

All the nonlinear properties of the Bloch equations are now
contained in the functions kx, ky, and kz. In this system, the an-
gle between the Bloch vectors and the z axis of TF is measured
by α = |�| with |�| =

√
�2

x + �2
y . In order to be consistent with

Eq. (11), we define the cost profile as

JSTA(δ) = 1 − cos[|�(δ, T )|]. (16)

This cost is nullified for |�(δ, T )| = 0. Note that it is also equal
to 0 when |�(δ, T )| is a multiple of 2π . However, in this later
case, the angle between the Bloch vectors and the z axis of
TF is too large to consider STA as a valid approximation.
Equation (15) is very similar to the master equation involved
in k-space analysis in MRI [47]. The function kz plays here
the role of a one-dimensional k space and k̇x and k̇y are
analog to a rf pulse. However, while in a standard application
of STA, kx(t ), ky(t ), and kz(t ) would be independent, here
Eq. (7) involves that their derivatives satisfy k̇2

x + k̇2
y + k̇2

z =

1, which might result in difficulties for solving analytically
the integral (15). A technique that allows one to overcome this
problem is presented in Sec. II E.

D. Local robust control

We also consider the robustness against local variations
of the offset [33,41,51,61,62]. In this case, since δ → 0, the
solution of the Bloch equation can be approximated by a
Taylor series of the form

�L(N )(δ, t ) = �L0(t ) + δ �L1(t ) + δ2 �L2(t ) + · · · + δN �LN (t ).

Instead of minimizing a cost function over a certain range of
offsets, all the vectors �Lk can be canceled up to the order k =
N at the final time to ensure that the inhomogeneities do not
disturb the system up to an error δN . This results in a very good
fidelity in a neighborhood of δ = 0, i.e., in a local robustness.
The method is relevant for our problem since the precision of
STA increases as δ becomes smaller. Its application is natural
in this framework as it consists in truncating the generating
series of the exponential of Eq. (15), i.e.,

�(N )(δ, T ) = iδ e−iδkz (T )
∫ T

0
[k̇x(t ) + ik̇y(t )]

×
N∑

k=1

[iδkz(t )]k−1

(k − 1)!
dt . (17)

An N th order robust process is realized by nullifying both
the real and imaginary part of this integral, i.e., by finding
functions kx(t ), ky(t ), and kz(t ) such that the N following
integrals cancel:

Ck ≡
∫ T

0
[k̇x(t ) + ik̇y(t )]kk−1

z (t )dt = 0, k = {1, . . . , N}.
(18)

For N = 0 we have �(0)(δ, T ) = 0, since the Bloch vector
stays along the z axis of TF at the resonance (the trans-
verse component of the Bloch vector is null in TF). Zeng
et al. have analyzed the problem of local robustness in a
series of papers [49–51] through 3D curves that are in our
case 
 = (kx, ky, kz ). However, they focused on the geometric
properties of these curves and not on the derivation of explicit
analytic pulses. The resulting pulses can be of very high peak
amplitude, which may make them unrealistic experimentally.
We use here a slightly different approach that allows us to
find analytic expressions of the controls that are suitable for
practical implementation in the case of the robust inversion
problem.

E. Analytical pulse design

Whether it is for broadband or local robustness purposes,
our study consists in finding appropriate functions kx, ky, kz

and deducing the pulse. In the broadband case, the functions
are chosen to improve the cost profile given by Eq. (16) over
a wide range of δ, while in the local case, they have to cancel
the integrals Ck in Eq. (18). The choice of these functions must
nevertheless be made very carefully. The boundary constraints
on �v described in Sec. II B, which determine the transfer, im-
ply that the time derivative of the functions kx, ky, and kz fulfill
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�̇k(0) = (0, 0, 1)ᵀ, and �̇k(T ) = (0, 0,−1)ᵀ for an inversion.

An additional constraint discussed in Sec. II C is that ‖�̇k‖ = 1.
This latter restricts dramatically the choice of �k(t ). Finding

a suitable basis of functions satisfying ‖�̇k‖ = 1 is possible
only in some simple cases. This problem has been solved
in Refs. [49–51] and we use here the same method. For any
function s increasing monotonously from s(0) = s0 to s(T ) =
sT , it is straightforward to show that the integral (15) can be
rewritten as

�(δ, T ) = iδ e−iδkz (sT )
∫ sT

s0

(
dkx

ds
+ i

dky

ds

)
eiδkz (s)ds. (19)

Therefore, one can choose some functions kx(s), ky(s), and
kz(s) such that ‖d�k(s)/ds‖ �= 1, while the function s(t ) is
deduced from ‖d�k(t )/dt‖ = 1. Indeed, we have∥∥∥∥d�k

dt

∥∥∥∥ = 1 ⇒
∥∥∥∥d�k

ds

∥∥∥∥ds

dt
= 1 ⇒

∥∥∥∥d�k
ds

∥∥∥∥ds = dt . (20)

Integrating from s0 to s, we obtain∫ s

s0

∥∥∥∥d�k(s′)
ds′

∥∥∥∥ds′ = t, (21)

while the duration T of the pulse is given by integrating until
s = sT . The function s(t ) is thus obtained by inverting this
integral, which can be done numerically if necessary. The
boundary constraints are also slightly relaxed. For an inver-
sion, it is now sufficient to select functions such that

dkx

ds
= 0,

dky

ds
= 0,

dkz

ds
> 0 at s = s0,

dkx

ds
= 0,

dky

ds
= 0,

dkz

ds
< 0 at s = sT . (22)

Finally, we show in Appendix A that the control pulses given
by (8) can be expressed using the formula

�[s(t )] =
∥∥∥∥d�k

ds
× d2�k

ds2

∥∥∥∥
∥∥∥∥d�k

ds

∥∥∥∥
−3

,

φ[s(t )] =
∫ s(t )

s0

(
d�k
ds × d2�k

ds2

) · d3�k
ds3∥∥ d�k

ds × d2�k
ds2

∥∥2

∥∥∥∥d�k
ds

∥∥∥∥ds. (23)

The advantage of this expression is that it can be derived with-
out knowing explicitly s(t ). The problem is thus simplified to
the search of some functions kx(s), ky(s), and kz(s) under the
constraints (22). The derivative d�k/ds does not need to belong
to S2. The pulse is given by (23) and the function s(t ) by (21).

III. APPLICATION FOR INVERSION PULSES

A. Broadband pulses

This section focuses on the broadband case. We propose
various parametrizations of �k(s) and we derive the pulse
according to Eq. (23). The local robust control problem is
studied in Secs. III B and III C. Roughly speaking, Eq. (19)
suggests that, if dkx/ds and dky/ds are two fast oscillating
functions, the integral (19) is close to zero as well as the
cost profile (16). The main idea of this section is to define
a parameter, hereafter referred to as ν, which determines the

oscillating frequency of these functions. We expect that the
robustness of the pulse increases with ν. For each pulse, the
robustness is verified using a numerical integration of the
original Bloch equation (1) and a computation of the cost
profile (3). In all the following results, the bounds of s(t ) are
given by

s0 = 0 −→ sT = π. (24)

An infinity of solutions could be derived. Only a few are de-
scribed in this paper. We stress that the technical computations
are not straightforward. The use of a symbolic computa-
tion software such as MATHEMATICA [63], XMAXIMA [64], or
MAPLE [65] is particularly helpful.

Anger-Weber solution. In this paragraph, we present all
the steps of the method for the design of a simple analytic
inversion pulse. Let us consider some functions kx(s), ky(s),
and kz(s) satisfying

dkx

ds
= sin(s) cos(νs),

dky

ds
= sin(s) sin(νs),

dkz

ds
= cos(s), kz(s) = sin(s), (25)

where ν is an arbitrary parameter introduced above that sets
the oscillating frequency of the functions. We can show that
the complex transverse component given by Eq. (19) reads

�(δ, T ) = iδ
∫ π

0
sin(s)eiνseiδ sin(s)ds

= δ

2

∫ π

0

(
ei[(ν+1)s+δ sin(s)] − ei[(ν−1)s+δ sin(s)]

)
ds

= −δπ eiνπ

2
[Jν+1(δ) − Jν−1(δ) − i[Eν+1(δ)

− Eν−1(δ)]], (26)

where J and E are the Anger and Weber functions, respec-
tively [66]. An interesting characteristic of these functions
is that, when ν increases, both Eν (δ) and Jν (δ) get closer
to zero [and thus |�(δ, T )| as well] over a wider range of δ.
Since the cost profile is given by 1 − cos[|�(δ, T )|] in STA,
the parameter ν can be used to improve the robustness, as
expected (see Fig. 2). To make it more evident, let us consider
the case ν → ∞. We obtain [67]

�(δ, T ) 	
ν→∞ −iδ

(
1 + eiνπ

ν2 − 1
− 2δ

1 − eiνπ

ν(ν2 − 4)

)
,

and we can show that

|�(δ, T )| 	
ν→∞ 2|δ|

√[
cos

(
πν
2

)
ν2 − 1

]2

+
[

2δ sin
(

πν
2

)
ν(ν2 − 4)

]2

.

This latter equation shows that, for a fixed range of δ, |�(δ, T )|
tends to zero as ν becomes larger. The cost profile is thus im-
proved. Let us compute the corresponding pulse. The function
s(t ) is given by Eq. (21), which leads to

s(t ) = t, (27)

and the total duration is T = π . The amplitude � and the
phase φ are derived by using Eq. (23). We used the free

042226-5



L. VAN DAMME, D. SUGNY, AND S. J. GLASER PHYSICAL REVIEW A 104, 042226 (2021)

-10

-5

0

5

10

-10

-5

0

5

10

0 1 2 3
-10

-5

0

5

10

0 2 4 0 1 2 3 4

0

0.5

1

1.5

2

0

0.5

1

1.5

2

-5 0 5
0

0.5

1

1.5

2

FIG. 2. First column: Anger-Weber (or Jacobi with m = 0) pulse amplitude �(t ) (blue or dark-gray line), x component � cos φ (red
or gray line) and y component � sin φ (yellow or light-gray line) computed with Eq. (28) for various values of ν. Second column: Jacobi
pulse amplitude [Eq. (30)] and components computed for m = 0.95. Third cloumn: Jacobi pulse amplitude and components computed for
m = ν2/(2ν2 + 1). From top to bottom, the values of ν are ν = 0, ν = 4, and ν = 10, respectively. Last column: associated cost profile
computed from Eq. (11) for the Anger-Weber pulse (blue or dark gray), the Jacobi pulse with m = 0.95 (red or gray), and the Jacobi pulse with
m = ν2/(2ν2 + 1) (yellow or light gray). Quantities plotted are dimensionless.

software XMAXIMA to simplify the latter formula. We obtain

�(t ) =
√

1 + ν2 sin2 t,

φ(t ) = ν sin t + arctan(ν sin t ). (28)

Note that, in the limit ν = 0, the pulse is a simple square π

pulse of amplitude 1. When ν tends to ∞, this pulse becomes
infinitely robust. The left panels of Fig. 2 display the pulse and
its efficiency for different values of ν.

The Anger-Weber solution is an example that allows one
to fully understand the process, but since it depends only on
ν one cannot control the shape of the pulse for satisfying
given experimental constraints. In the following, we present
other solutions giving more flexible pulses. However, the cost
profile in STA cannot be explicited in terms of simple func-
tions. We assume that the parameter ν has the same effect of
improving the robustness without giving rigorous proof. Cost
profiles are shown to confirm this assumption.

Jacobi pulse. Let us choose the functions kx, ky, and kz such
that

dkx

ds
= sin s cos(νs)√

1 − m sin2 s
,

dky

ds
= sin s sin(νs)√

1 − m sin2 s
,

dkz

ds
= cos s√

1 − m sin2 s
, kz(s) = arcsin[

√
m sin(s)]√
m

, (29)

where m is an arbitrary modulus with m ∈ [0, 1]. Here, the
cost profile cannot be expressed in terms of simple functions.
Indeed, the final transverse magnetization is given by the
integral

�(δ, T ) = iδ
∫ T

0

sin(s)ei(νs+ δ√
m

arcsin[
√

m sin(s)])√
1 − m sin2 s

ds.

We assume that, for a given m, increasing ν reduces |�(δ, T )|
as for the Anger-Weber solution, resulting in an improvement
of the cost profile. To show this feature, the pulse is explicitly
derived using Eq. (23) and its performances are computed
numerically by integrating the original Bloch equations (1).
One can show that the function s(t ) and the pulse are given by

s(t ) = am(t, m),
ds

dt
=

√
1 − m sin2[s(t )],

�(t ) =
√

1 − m sin2[s(t )]
√

1 + ν2 sin2[s(t )],
φ(t ) = ν sin[s(t )] + arctan {ν sin[s(t )]},

T = 2K(m),

(30)

where K(m) is a complete elliptic integral of the first kind
and am(t, m) is the Jacobi amplitude [66]. In this solution, ν

improves the robustness profile while the modulus m can be
used to shape the pulse amplitude. Note that the case m = 0
leads to the Anger-Weber solution computed in the previous
paragraph. Figure 2 displays some of these pulses together
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with their performances. As can be seen, the parameter m al-
lows one to reduce the maximum amplitude while increasing
the time. The particular choice m = ν2/(2ν2 + 1) involves
that �(t ) is very flat about t = T/2. The reason is that it
cancels the second derivative of �(t ) at t = T/2. The shape
of the cost profile is also affected by m. A deeper study would
be necessary to choose a suitable m for a given offset range
and specific experimental constraints.

Generalized Jacobi pulse. Many more parameters can be
used to shape the pulse. We consider the functions kx, ky, and
kz defined as

dkx

ds
= sin s cos(νs)

PN (s)
,

dky

ds
= sin s sin(νs)

PN (s)
,

dkz

ds
= cos s

PN (s)
, (31)

where the function PN is given by

PN (s) =
√

1 − m1 sin2 s
√

1 − m2 sin2 s · · ·
√

1 − mN sin2 s,
(32)

and m1, . . . , mN are arbitrary moduli belonging to [0,1]. The
pulse can be expressed as

s(t ) = amN (t, m1, . . . , mN ),
ds

dt
= PN [s(t )],

�(t ) = PN [s(t )]
√

1 + ν2 sin2[s(t )],
φ(t ) = ν sin[s(t )] + arctan {ν sin[s(t )]},

T = 2KN (m),

(33)

where amN (t, m1, . . . , mN ) is the generalized Jacobi ampli-
tude and KN the generalized elliptic integral of the first kind
(see Ref. [68] for a complete description of these functions in
the case N = 2 and Appendix B for the necessary properties).
Again, increasing ν improves the robustness, while the extra
parameters mi can be used to shape the pulse.

Amplitude-fixed pulse. From a practical point of view, it is
often necessary to have a pulse with a constant amplitude set
by the experimental setup. This constraint can be satisfied by
choosing the following parametrization of the functions ki:

dkx

ds
=

√
1 + ν2 sin s cos

{
ν ln

[
tan

( s

2

)]}
,

dky

ds
=

√
1 + ν2 sin s sin

{
ν ln

[
tan

( s

2

)]}
,

dkz

ds
=

√
1 + ν2 cos s. (34)

Indeed, applying Eqs. (23) leads to a pulse of the form

s(t ) = t/
√

1 + ν2,

�(t ) = 1,

φ(t ) = ν ln{sin[s(t )]},
T = π

√
1 + ν2.

(35)

The parameter ν improves the robustness by changing only
the duration and the phase of the pulse, while keeping the
amplitude equal to 1. Figure 3 depicts some pulses and their
performance. The case ν = 0 is a standard square π pulse,
which can be used as a reference for comparing the efficiency
of the different pulses. Note that the phase is a fast oscil-
lating function at the beginning and the end of the pulse. If
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FIG. 3. Three upper panels: amplitude-fixed pulse given by
Eq. (35) for various values of ν. The blue (dark gray) line represents
the amplitude �(t ) = 1, the red (gray) line � cos φ, and the yellow
(light-gray) line � sin φ. Lower panel: cost profile associated to each
pulse. Quantities plotted are dimensionless.

necessary, these parts can be truncated while keeping a good
robustness.

Many more solutions, maybe simpler or more efficient,
could be derived easily using this method. As long as the
functions kx, ky, and kz satisfy the boundary constraints, the
inversion is realized at the resonance, i.e., for δ = 0. Since
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many functions satisfy the boundary constraints, we can con-
struct an infinity of pulses with robust properties.

B. Local robustness and orthogonal polynomial solutions

The pulses presented in the previous section have been
derived by guessing that, if dkx/ds and dky/ds oscillate with
a high frequency, the integral (19) is small over a large range
of offset, leading to a good robustness profile. Let us now con-
sider the problem of local robustness that has been introduced
in Sec. II D. We show that this problem can be solved by using
orthogonal polynomials in the interval [−1, 1], which have the
following property:∫ 1

−1
ν(x)pn(x)pm(x)dx = 0 if n �= m, (36)

where ν(x) is called the weight function and pn is a poly-
nomial of degree n. While many families of orthogonal
polynomials could be used, we prefer to focus on one solu-
tion based on Chebyshev polynomials of the first and second
kinds. The function s fulfills

s0 = −1 → sT = 1, (37)

and we consider functions kx, ky, and kz that satisfy

dkx

ds
= (1 − s2)

√
1 − s2U2n(s),

dky

ds
= (1 − s2)T2n+1(s),

dkz

ds
= −2s, kz(s) = 1 − s2, (38)

where Tn and Un are Chebyshev polynomials of the first
and second kinds, respectively [66]. Note that the boundary
constraints (22) are satisfied for an inversion process. The
transverse term given by Eq. (19) becomes

�(δ, T ) = iδ
∫ 1

−1
(1 − s2)(

√
1 − s2U2n(s) + iT2n+1(s))

× eiδ(1−s2 )ds. (39)

Considering δ as a small perturbation, the exponential func-
tion can be truncated up to an arbitrary order N . We obtain

�(N )(δ, T ) =
N∑

k=1

(iδ)k

(k − 1)!

∫ 1

−1
(
√

1 − s2U2n(s) + iT2n+1(s))

× (1 − s2)kds. (40)

The problem is then to cancel N integrals that are given by

Ck =
∫ 1

−1
(
√

1 − s2U2n(s) + iT2n+1(s))(1 − s2)kds, (41)

for k = {1, . . . , N}. Note that each term (1 − s2)k is a sym-
metric function on [−1, 1]. Moreover, the polynomial T2n+1(s)
is antisymmetric, which involves that the imaginary part of
Ck cancels for all k. Since (1 − s2)k is a polynomial of
order 2k and U2k is also a polynomial of order 2k, each
term (1 − s2)k can be expressed as a linear combination of
{U2k,U2k−1, . . . ,U0}. In other words, each integral (41) can

be written as

Ck =
2k∑

�=1

a�

∫ 1

−1

√
1 − s2U2n(s)U�(s)ds, (42)

for k = {1, . . . , N} and where the a�’s are some coefficients
that can be derived using a Chebyshev expansion, which is
not necessary here. The weight function of the Chebyshev
polynomials Uk (s) is given by

√
1 − s2. Therefore, using the

orthogonality property (36) and choosing n = N + 1, all the
terms of the sum cancel for every k, i.e.,

Ck = 0 ∀k ∈ {1, . . . , N}, (43)

and the problem is solved.
The final step consists in computing the associated pulse.

The details of the computation can be found in Appendix C.
We obtain

s(t ) =
[√

1 + (4 − 3t )2

4
− 4 − 3t

2

] 1
3

−
[√

1 + (4 − 3t )2

4
+ 4 − 3t

2

] 1
3

,

�(t ) =
√

4 + (2n + 1)2[1 − s2(t )]

[1 + s2(t )]2
,

φ(t ) =
√

2(2n + 1)arctanh

(√
1 − s2(t )

2

)

+ arctan

(
(2n + 1)

√
1 − s2(t )

2

)
,

T = 8/3. (44)

Choosing n = 2 for this pulse cancels the first order perturba-
tion term, i.e., the integral C1. For n = 3, the integrals C1 and
C2 are nullified, while, in the case n = 4, C1, C2, and C3 are
zero, and so on. Generally, choosing n = N + 1 cancels the
integrals C1 to CN . The robustness is then locally improved up
to an arbitrary order. Figure 4 shows the pulse for different
values of n and the associated cost computed by propagating
numerically the original Bloch equation (1). A linear and a
logarithmic scale is used for the cost profile to emphasize the
very high precision of the transfer close to δ = 0.

C. Arbitrary flip angle excitation pulses

In this section, we generalize the method of local ro-
bustness to any flip angle excitation transfer. As explained
in Sec. II, the transfer is fixed by the final constraint
�v(T ). For a target flip angle θT , the constraint is �v(T ) =
(sin[θT ], 0, cos[θT ])ᵀ. With the change of variable t → s(t ),
the constraints (22) become

dkx

ds
= 0,

dky

ds
= 0,

dkz

ds
> 0 at s = s0,

dkx

ds
= A sin θT ,

dky

ds
= 0,

dkz

ds
= A cos θT at s = sT ,

(45)
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FIG. 4. Upper panels: pulse amplitude �(t ) (blue or dark-gray
line), x component � cos φ (red or gray line), and y component
� sin φ (yellow or light-gray line) computed with Eq. (44) for n = 2,
3, 4, and 5. Lower panels: cost computed with Eq. (11) associated to
n = 2 (blue or dark gray), n = 3 (red or gray), n = 4 (yellow or light
gray), and n = 5 (purple or black). The right panel represents the
profile in a logarithmic scale. Quantities plotted are dimensionless.

where A is an arbitrary multiplicative constant coming
from the fact that ‖d�k/ds‖ does not need to be equal to
1, unlike ‖�v‖. We define the bounds of the function s
as

s0 = −1 → sT = 1.

For the inversion process, the pulse symmetry allows us
to derive analytically the pulse. For other state to state
transfers, this trick cannot be used and both dkx/ds and
dky/ds have to be chosen such that each integral (18)
cancels due to the orthogonal properties of the polynomi-
als (in Sec. III B, dky/ds is antisymmetric which ensures
that the imaginary part of the integrals cancels). Additional
difficulties then appear in computing the pulse, as shown
below.

Let us choose the functions kx, ky, and kz, such that

dkx

ds
= (1 + s) sin θT

2

[
P(0,1)

n (s) + P(0,1)
n+1 (s)

]
,

dky

ds
= (1 + s)(n + 1)

2

[
P(0,1)

n (s) − P(0,1)
n+1 (s)

]
,

dkz

ds
= 2

[
cos2

(
θT

2

)
− s sin2

(
θT

2

)]
,

kz(s) = (1 + s)2 cos2

(
θT

2

)
+ 1 − s2, (46)

where P(a,b)
n is a Jacobi polynomial [66]. The weight function

of this polynomial being (1 − s)a(1 + s)b, we can show that
an N th order robust control can be found by choosing

n = 2N − 1. (47)

The function s(t ) cannot be explicitly found in this case be-
cause it is given by the inverse of the following integral:

dt =
√(

dkx

ds

)2

+
(

dky

ds

)2

+
(

dkz

ds

)2

ds

⇒ t (s) =
∫ s

−1

√(
dkx

ds

)2

+
(

dky

ds

)2

+
(

dkz

ds

)2

ds ≡ F (s)

⇒ s(t ) = F−1(t ), (48)

which cannot be computed analytically. However, the com-
putation of s(t ) can be easily done numerically. Indeed, t (s)
is always monotonous since it is the integral of a positive
function. Thus its inverse is simply the symmetric of F (t ) with
respect to the line of equation t = s. The second derivative of
�k(s) is given by

d2kx

ds2
= sin θT

2

[
P(0,1)

n (s) + P(0,1)
n+1 (s)

]
+ (1+s) sin θT

4

[
(n + 2)P(1,2)

n−1 (s) + (n + 3)P(1,2)
n (s)

]
,

d2ky

ds2
= n + 1

2

[
P(0,1)

n (s) − P(0,1)
n+1 (s)

]
+ (1+s)(n+1)

4

[
(n + 2)P(1,2)

n−1 (s) − (n + 3)P(1,2)
n (s)

]
,

d2kz

ds2
= −2 sin2

(
θT

2

)
, (49)

and the third derivative is

d3kx

ds3
= sin θT

2

[
(n + 2)P(1,2)

n−1 (s) + (n + 3)P(1,2)
n (s)

] + (1 + s)(n + 3) sin θT

8

[
(n + 2)P(2,3)

n−2 (s) + (n + 3)P(2,3)
n−1 (s)

]
,

d3ky

ds3
= (n + 1)

2

[
(n + 2)P(1,2)

n−1 (s) − (n + 3)P(1,2)
n (s)

] + (1 + s)(n + 3)(n + 1)

8

[
(n + 2)P(2,3)

n−2 (s) − (n + 3)P(2,3)
n−1 (s)

]
,

d3kz

ds3
= 0. (50)
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FIG. 5. Excitation pulse (θT = 90◦) robust up to the first (n = 1),
second (n = 3), and third (n = 5) orders and associated excitation
cost profile. Quantities plotted are dimensionless.

For n = 1, the terms P(2,3)
n−2 are zero. The pulse is then given

by Eq. (23), which cannot be simplified. Unfortunately, we do
not find any function �k(s) that allows one to derive a simple
analytic pulse as for the inversion process. Moreover, finding
polynomials that lead to some pulses of low amplitude seems
to be difficult in this context. Figure 5 displays the pulses that
cancel the offset inhomogeneities up to the third order for a
θT = 90◦ excitation transfer. As can be seen, the amplitude of
the pulse becomes very large when the robustness increases,

as compared to Fig. 4. However, note that these pulses are of
finite amplitude, i.e., they are not Dirac functions.

IV. NUMERICAL ANALYSIS

A. Comparison with GRAPE

This section compares the preceding results with a robust
inversion pulse optimized with the GRAPE algorithm [23].
GRAPE is a gradient-based optimization algorithm which
uses piecewise constant pulses. We consider time steps of
�τ = 0.5 μs and amplitude-constant pulses of amplitude
νmax = 10 kHz as in Refs. [37,39] corresponding to

ωmax = 2π × 104 rad/s.

We make a comparison with the amplitude-fixed pulse pre-
sented in Sec. III [Eq. (35)], which is properly scaled by
applying the formula

s(τ ) = ωmax τ/
√

1 + ν2, �p(τ ) = ωmax,

φ(τ ) = ν ln{sin[s(τ )]}, Tp = π
√

1 + ν2/ωmax, (51)

where τ is the time in seconds, Tp is the pulse duration, and
�p is the pulse amplitude in rad/s. We consider a pulse of
duration Tp = 250 μs by choosing ν = 4.8990. The numerical
pulse is of the same duration and is optimized over an offset
range δ ∈ [−ωmax, ωmax]. The algorithm is initialized using
Eq. (51) and is aimed to minimize the average of the cost
function [Eq. (3)] over the aforementioned range of offsets,
i.e.,

J =
∫ ωmax

−ωmax

[1 + Mz(δ, T )]dδ.

The resulting pulse and the cost profile are shown in Fig. 6.
As expected, the numerical pulse is more efficient over the
offset optimization range. However, the cost increases faster
outside of this box. This feature can be explained by the
fact that the amplitude-fixed pulse cannot be optimized over
a certain offset range since the only degree of freedom ν

is used to set the pulse duration. In contrast, GRAPE uses
all the available pulse energy to improve the cost within the
optimization range.

B. Comparison with AHT

A very interesting question would be to know if our method
could be used to derive such optimal pulses. If so, one should
have to apply the Pontryagin maximum principle [17] within
this framework, which involves more complexity. However,
this issue can be partially answered by verifying the validity
of our approximation for an optimal pulse by inverting the
general procedure, i.e., by (i) computing �v(t ) numerically
from the optimal pulse, (ii) computing �(δ, T ) from Eq. (15),
(iii) computing the cost profile under STA from Eq. (16),
and (iv) comparing it to the cost profile measured in TF (11)
determined numerically. The approximation is valid as long as
the exact cost profile is well approximated. Figure 7 displays
the cost profile of the GRAPE pulse with and without the
small-tip-angle approximation. As can be seen in Fig. 6,
STA is relevant over a range δ/2π ∈ [−4 kHz, 4 kHz] and
becomes completely wrong outside this range. It does not
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FIG. 6. Upper panel: plot of the x component (blue or dark-gray
line) and of the y one (red or gray line) of the amplitude fixed pulse
given by Eq. (51). Middle panel: plot of the x and y components of the
GRAPE pulse. Lower panel: cost profile associated to the amplitude-
fixed pulse (blue or dark-gray line) and to the GRAPE pulse (red or
gray line). The dotted black lines represent the limits of the GRAPE
optimization range (±ωmax/2π ).

cover the whole optimization offset range in this case. This
feature, however, depends on the dynamics and on the pulse. A
complete study would be necessary to figure out in which con-
ditions our approximation holds. A possible approach could
be to use the method of Ref. [48] in TF.

As a comparison, we compute the cost profile by using
AHT in TF up to the first order of the Magnus expansion. The
second order would have to be compared to a second-order
STA, which would involve much more complexity. The cost
profile obtained with AHT can be done by computing �L(δ, T )
from �v(t ) through the formula

�L(δ, T ) = U (δ, T )�L(δ, 0), (52)

-10 -8 -6 -4 -2 0 2 4 6 8 10
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10 0 JTF

JSTA

JAHT

FIG. 7. Logarithmic view of the cost profile resulting from the
GRAPE pulse, obtained using a numerical propagation and Eq. (11)
(blue or dark gray), using the STA approximation and Eq. (16) (red
or gray), and using the AHT theory (yellow or light gray). The
dotted black lines represent the limits of the optimization range of
the GRAPE pulse.

with �L(δ, 0) = (0, 0, 1)ᵀ and

U (δ, T ) = exp

[
δ

∫ T

0
H̃1(t )dt

]
, (53)

where H̃1(t ) is the 3 × 3 matrix given by Eq. (6). The cost
profile is then given by JAHT(δ) = 1 − Lz(δ, T ). We can see
on Fig. 7 that STA is valid over a larger range of offset than
AHT, the latter being relevant for δ/2π ∈ [−2 kHz, 2 kHz].
STA is thus a better tool here, but is still not enough to
study the properties of the pulse over the whole optimization
range. In fact, our results suggest that STA is more relevant
for long duration robust pulses, while AHT theory is a better
approximation for short pulses.

V. CONCLUSION

We apply in this study the small-tip-angle approximation
in the toggling frame for the design of robust state to state
transfers against offset inhomogeneities. Despite the apparent
complexity of the method, a series of analytic and experimen-
tally relevant pulses have been derived. Even if the final state
of each system cannot be generally found analytically due to
the complexity of the dynamics, the application of STA allows
us to express the cost profile through a simple integral that can
be computed explicitly in some cases. This approximation is
particularly relevant for local robustness (small offset range)
and for long duration pulses with a good performance over a
large offset range. Although only a few pulses are explicited
in this paper, the method can be used to derive an infinite
number of analytic pulses with different properties that could
be adapted to specific experimental constraints. Other state to
state transfers than the inversion process bring up additional
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difficulties for calculating analytic pulses with a reasonable
amplitude.

While STA is well known for state to state transfer in
quantum control and in NMR, it could also be used here for
unitary transformations. Indeed, it allows one to derive the flip
angle and the azimuthal angle as a function of time, that is
two of the three required angles for deriving the propagator
of the transformation. The third angle can be expressed as a
function of the two other angles at least implicitly through
an integral. Thus the application to unitary transformation
would involve more complexity, but could also be a better
approximation than AHT theory. Another extension of this
approach is to consider B1-field inhomogeneities. In this case,
the function �v(t ) is replaced by other functions with differ-
ent properties, which stems from the fact that the interaction
Hamiltonian changes. A more complex study would be to ap-
ply this method to a coupled spins system, similar to Ref. [69]
for state to state control problems.
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APPENDIX A: DERIVATION OF EQS. (23)

These equations are obtained from Eq. (8). Using the fact
that �v = d�k

dt = d�k
ds

ds
dt , we have

d�v
dt

= d

dt

(
d�k
ds

ds

dt

)
= d

ds

(
d�k
ds

ds

dt

)
ds

dt
. (A1)

Since ds
dt = ‖ d�k

ds ‖−1 [Eq. (20)], we arrive at

d�v
dt

= d

ds

(
d�k
ds

∥∥∥∥d�k
ds

∥∥∥∥
−1)∥∥∥∥d�k

ds

∥∥∥∥
−1

=
[∥∥∥∥d�k
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∥∥∥∥
−1

d2�k
ds2

−
(

d

ds

∥∥∥∥d�k
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∥∥∥∥
)∥∥∥∥d�k

ds

∥∥∥∥
−2

d�k
ds

]∥∥∥∥d�k
ds

∥∥∥∥
−1

.

(A2)

Using d
ds‖ d�k

ds ‖ = ( d�k
ds · d2�k

ds )‖ d�k
ds ‖

−1
, we get

d�v
dt

=
[∥∥∥∥d�k

ds

∥∥∥∥
−1

d2�k
ds2

−
(

d�k
ds

· d2�k
ds

)∥∥∥∥d�k
ds

∥∥∥∥
−3

d�k
ds

]∥∥∥∥d�k
ds

∥∥∥∥
−1

=
[∥∥∥∥d�k

ds

∥∥∥∥
2

d2�k
ds2

−
(

d�k
ds

· d2�k
ds

)
d�k
ds

]∥∥∥∥d�k
ds

∥∥∥∥
−4

=
[(

d�k
ds

· d�k
ds

)
d2�k
ds2

−
(

d�k
ds

· d2�k
ds

)
d�k
ds

]∥∥∥∥d�k
ds

∥∥∥∥
−4

. (A3)

From the vector triple product, the solution becomes

d�v
dt

=
[

d�k
ds

×
(

d2�k
ds

× d�k
ds

)]∥∥∥∥d�k
ds

∥∥∥∥
−4

. (A4)

Since d�k
ds is orthogonal to ( d2�k

ds × d�k
ds ), we have

‖ d�k
ds × ( d2�k

ds × d�k
ds )‖ = ‖ d�k

ds ‖‖ d2 �k
ds × d�k

ds ‖ and we obtain

�[s(t )] =
∥∥∥∥d�v

dt

∥∥∥∥ =
∥∥∥∥d2�k

ds2
× d�k

ds

∥∥∥∥
∥∥∥∥d�k

ds

∥∥∥∥
−3

, (A5)

according to the first equation of (23).
The derivation of the pulse’s phase requires one to compute

the second derivative �̈v. We have

d2�v
dt2

= d

ds

(
d�v
dt

)
ds

dt
(A6)

= d

ds

[
d�k
ds

×
(

d2�k
ds2

× d�k
ds

)]∥∥∥∥d�k
ds

∥∥∥∥
−5

(A7)

=
[

d2�k
ds2

×
(

d2�k
ds2

× d�k
ds

)
+ d�k

ds

×
(

d3�k
ds3

× d�k
ds

)]∥∥∥∥d�k
ds

∥∥∥∥
−5

. (A8)

On the other hand, we have

�v × �̇v = d�k
ds

×
[

d�k
ds

×
(

d2�k
ds2

× d�k
ds

)]∥∥∥∥d�k
ds

∥∥∥∥
−5

=
[[

d�k
ds

·
(

d2�k
ds2

× d�k
ds

)]
︸ ︷︷ ︸

=0

d�k
ds

−
∥∥∥∥d�k

ds

∥∥∥∥
2(

d2�k
ds2

× d�k
ds

)]∥∥∥∥d�k
ds
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−5

=
(

d�k
ds

× d2�k
ds2

)∥∥∥∥d�k
ds
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−3

. (A9)

Thus

(�v ×�̇v) · �̈v =
(

d�k
ds

× d2�k
ds2

)
·
[

d�k
ds

×
(

d3�k
ds3

× d�k
ds

)]∥∥∥∥d�k
ds
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−8

.

(A10)

From the vector triple product, we get

(�v ×�̇v) · �̈v = d�k
ds

·
[(

d3�k
ds3

× d�k
ds

)
×

(
d2�k
ds2

× d�k
ds

)]∥∥∥∥d�k
ds
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−8

=
[(

d�k
ds

× d2�k
ds2

)
· d3�k

ds3

](
d�k
ds

· d�k
ds

)∥∥∥∥d�k
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−8

=
[(

d�k
ds

× d2�k
ds2

)
· d3�k

ds3

]∥∥∥∥d�k
ds
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−6

. (A11)
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Thus

(�v ×�̇v) · �̈v
�2

=
(

d�k
ds × d2 �k

ds2

) · d3�k
ds3∥∥ d2�k

ds2 × d�k
ds

∥∥2 . (A12)

Finally, we obtain

φ[s(t )] =
∫ t

0

(
d�k
ds × d2 �k

ds2

) · d3�k
ds3∥∥ d2 �k

ds2 × d�k
ds

∥∥2 dt ′ (A13)

=
∫ s

s0

(
d�k
ds′ × d2 �k

ds′2
) · d3�k

ds′3∥∥ d2�k
ds′2 × d�k

ds′
∥∥2

dt ′

ds′ ds′ (A14)

=
∫ s

s0

(
d�k
ds′ × d2 �k

ds′2
) · d3�k

ds′3∥∥ d2�k
ds′2 × d�k

ds′
∥∥2

∥∥∥∥ d�k
ds′

∥∥∥∥ds′, (A15)

according to the second equation of (23).

APPENDIX B: GENERALIZED ELLIPTIC FUNCTIONS

We recall in this paragraph standard results about elliptic
functions.

Jacobi elliptic functions. The standard elliptic functions can
be defined through the Jacobi amplitude am(u|m), where u is
the argument and m the modulus such that m ∈ [0, 1] [66].
This function is defined as the inverse of an incomplete elliptic
integral of the first kind given by

F(u|m) =
∫ u

0

dφ√
1 − m sin2 φ

. (B1)

The Jacobi amplitude am is thus related to F and u via
F[am(u|m)|m] = u. The complete elliptic integral K(m) can
then be expressed as K(m) = F(π/2|m).

Generalized Jacobi elliptic functions. A possible gen-
eralization of these functions can be constructed through
the generalized incomplete elliptic integral of the first
kind Fn(u|m1, . . . , mn), where the mi’s are such that mi ∈
[0, 1], ∀i. This integral is defined as

Fn(u|m1, . . . , mn)

=
∫ u

0

dφ√
(1− m1 sin2 φ)(1− m2 sin2 φ) · · · (1− mn sin2 φ)

.

(B2)

The generalized Jacobi amplitude amn is the
inverse of this integral, i.e., it is such that
Fn(amn(u|m1, . . . , mn)|m1, . . . , mn) = u. The complete
version of the integral is given by Kn(m1, . . . , mn) =
Fn(π/2|m1, . . . , mn).

APPENDIX C: DERIVATION OF EQ. (44)

The derivation of s(t ) is made by using ds
dt = ‖ d�k(s)

ds ‖−1
.

The property of the Chebyshev polynomials (1 − s2)U 2
2n +

T 2
2n+1 = 1 involves

ds

dt
= 1√( dkx

ds

)2 + ( dky

ds

)2 + ( dkz

ds

)2
= 1

1 + s2
. (C1)

Thus we have

t (s) = s + s3

3
+ 2, (C2)

where the term 2 in the right-hand side of the equation ensures
that t (s0) = t (−1) = 0. Inverting this relation, we get that s(t )
is given by Eq. (44).

For the computation of the pulse, we start from Eq. (38)
that we write here for convenience as

dkx

ds
= (1 − s2)

√
1 − s2U2n(s),

dky

ds
= (1 − s2)T2n+1(s),

dkz

ds
= −2s. (C3)

Differentiating these equations with respect to s leads to

d2kx

ds2
= −

√
1 − s2[(2n + 1)T2n+1(s) + 2sU2n(s)],

d2ky

ds2
= −2sT2n+1(s) + (2n + 1)(1 − s2)U2n(s),

d2kz

ds2
= −2, (C4)

and differentiating one more time to

d3kx

ds3
= 3(2n + 1)√

1 − s2
sT2n+1(s) − [(2n + 1)2 + 2]U2n(s),

d3ky

ds3
= −[(2n + 1)2 + 2]T2n+1(s) − 3(2n + 1)sU2n(s),

d3kz

ds3
= 0. (C5)

The pulse is given by Eq. (23). The cross product between the
first and second derivatives of �k can be expressed as

d�k
ds

× d2�k
d2s

=

⎛
⎜⎝−2(1 + s2)T2n+1(s) + 2s(2n + 1)(1 − s2)U2n(s)√

1 − s2[2s(2n + 1)T2n+1(s) + 2(1 + s2)U2n(s)]
(2n + 1)(1 − s2)3/2

⎞
⎟⎠.

(C6)

We can show that

∥∥∥∥d�k
ds

× d2�k
d2s

∥∥∥∥ = (1 + s2)
√

4 + (2n + 1)2(1 − s2). (C7)

The control amplitude being �(s) = ‖ d�k
ds × d2�k

d2s ‖‖ d�k
ds ‖

−3
, we

obtain Eq. (44).
For the phase of the pulse, we have, in a first step

(
d�k
ds

× d2�k
d2s

)
· d3�k

ds3
= −2ks[(2n + 1)2(1 − s2) + s2 + 5]√

1 − s2
.

(C8)
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Since dφ/ds = ( d �k
ds × d2 �k

ds2 )· d3 �k
ds3

‖ d �k
ds × d2 �k

ds2 ‖2 ‖ d�k
ds ‖, we have

dφ

ds
= − 2ks[(2n + 1)2(1 − s2) + s2 + 5]

(1 + s2)
√

1 − s2[(2n + 1)2(1 − s2) + 4]

= − 2(2n + 1)s√
1 − s2[(2n + 1)2(1− s2)+ 4]

− 2(2n + 1)s

(1 + s2)
√

1 − s2
.

(C9)

Making the change of variable x = s
√

1−s2

2 , we obtain

dφ =
√

2

2 + x2
+

√
2

1 − x2

(2n+1)2

dx. (C10)

Integrating this equation and coming back to the variable s,
we arrive at the formula of Eq. (44).
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