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Non-Hermitian time evolution: From static to parametric instability
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Eigenmode coalescence imparts remarkable properties to non-Hermitian time evolution, culminating in a
purely non-Hermitian spectral degeneracy known as an exceptional point (EP). Here, we revisit time evolution
around EPs, looking at both static and periodically modulated non-Hermitian Hamiltonians. We connect a
Möbius group classification of two-level non-Hermitian Hamiltonians with the theory of Hill’s equation, which
unlocks a large class of analytical solutions. Together with the classification, this allows us to investigate the
impact of the shape of the temporal modulation on the long-term dynamics of the system. In particular, we find
that EP encircling does not predict the temporal class, and that the elaborate interplay between non-Hermitian
and modulation instabilities is better understood through the lens of parametric resonance. Finally, we identify
specific signatures of complex parametric resonance by exhibiting stability diagrams with features that cannot
occur in traditional parametric resonance.
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I. INTRODUCTION

Non-Hermitian Hamiltonians model nonconservative sys-
tems, such as paraxial waveguides or coupled resonators with
gain and loss [1]. Such traditional non-Hermitian systems
are usually time invariant and exhibit standard instabilities
originating from gain of static nature. More interestingly, the
absence of a spectral theorem for these Hamiltonians gives
rise to unconventional behavior. The most striking example
is a type of purely non-Hermitian spectral degeneracy in
which the eigenvectors collapse as well: the so-called ex-
ceptional point (EP) [1–7]. These degeneracies have a long
history, dating back to studies of nondiagonalisable dielectric
tensors by Pancharatnam [2] and mathematical studies of lin-
ear operators [3] with a turning point marked by the advent
of pseudo-Hermitian quantum theory [8–10]. Both theoreti-
cal and experimental studies have proposed EPs for superior
sensors [11–14], whereas recent theoretical studies started
delineating the limitations of such EP-based sensing [15,16].
Another promising application is that of EP-based polarizers,
which have been explored in several studies [17–21].

Lifting an EP degeneracy defines a Riemann surface,
namely, a complex manifold that locally looks like the com-
plex plane but may have a different topology [22]. In order to
explore EP properties associated with these surfaces, a fruitful
strategy consists of varying the Hamiltonian’s parameters in
time in order to encircle the EP, a feat known as dynamical
EP encircling [17,23–25]. This process has been theorized to
give rise to chiral mode conversion and has since been realized
in many experimental settings [17,19,26–28]. In adiabatic EP
encircling, the behavior of the system is well understood with
respect to the properties of the instantaneous Hamiltonian over
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the modulation trajectory. This is, however, not the case for
general nonadiabatic periodic modulations, which unleash a
whole new class of Floquet non-Hermitian systems [29–38]
that may exhibit gain of parametric nature [33,35,36,38].
Deviations from the adiabatic theorem have been studied in
the case of particular modulation schemes, mostly circular tra-
jectories [18,39,40], but also modulations involving multiple
frequency components [41]; however, the role of EP encir-
cling and the importance of the modulation details (speed,
strength, and center) is not well understood. A general theory
of static and Floquet non-Hermitian time evolution is still
missing and crucial to understand the interplay between the
static non-Hermitian properties of the unmodulated system
and periodic dynamic modulation.

In this paper, we extend a classification of non-Hermitian
time evolution [42] to larger Hilbert spaces and time-
modulated Hamiltonians. Equipped with this tool, we unveil
the relationship between non-Hermitian and parametric insta-
bilities, including the role of EP encircling. In the first section,
we focus on time-independent non-Hermitian systems and
explain how time evolution works in the absence of a full
set of eigenmodes (i.e., at the EP). To see how this relates to
the situation at neighboring points, we present a classification
of 2×2 non-Hermitian Hamiltonians based on the Möbius
group, previously introduced in Ref. [42], which character-
izes the dynamics of the state’s polarization, regardless of
underlying symmetries. We then extend this Möbius group
picture to higher-order Hamiltonians, using a generalization
of hyperbolic functions. In the second part of the paper, we
introduce a map from periodically modulated Hamiltonians to
a Hill differential equation [43], which yields exact solutions
that we can also interpret in terms of the Möbius group. On
the basis of these solutions, we gain insight on the long-
time dynamics of Floquet systems: We provide examples of
various Möbius classes in this time-modulated setting and
probe their dependency on the modulation parameters. As a
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by-product, we also demonstrate that Floquet EPs can arise
for time modulations that are neither close to nor encircle the
static EP. Then, we unveil the origin of the different Floquet
non-Hermitian classes by connecting them to the phenomenon
of parametric resonance. Finally, our explicit connection to
Hill’s equation allows us to precisely qualify some of the
exotic stability properties that can only arise at the intersection
of non-Hermiticity and temporal modulation.

II. NON-HERMITIAN DYNAMICS
WITH CONSTANT HAMILTONIANS

In this section, we discuss the time evolution at an EP and
present a classification of 2×2 non-Hermitian Hamiltonians,
which was previously introduced in Ref. [42] in the context of
classical spin dynamics. We then extend this interpretation to
higher-order Hamiltonians. Let us begin with a short reminder
of time evolution in Hermitian quantum mechanics to bring
contrast with the non-Hermitian situation. In the Hermitian
case, the Schröödinger equation,

ih̄
∂

∂t
|ψ (t )〉 = ˆ(h) |ψ (t )〉 (1)

can, in principle, be solved by putting the Hamiltonian ˆ(h) in
diagonal form, thus, effectively decoupling the evolution of
all eigenstates |φk〉. They all follow a simple oscillating time
evolution,

|φk (t )〉 = e(iEk/h̄)t |φk (0)〉 . (2)

The time evolution for arbitrary states is, thus, easily de-
termined by expressing them in the eigenstate basis of H
and then evolving each component according to Eq. (2). This
is always possible in principle since the spectral theorem
guarantees that Hermitian matrices are diagonalizable. In the
following, we lift this Hermiticity restriction and derive the
consequences for time evolution, starting with the extreme
case of an EP.

A. Exceptional points

We consider a general 2×2 Hamiltonian,

H :=
(

a b
c d

)
, (3)

with unrestricted complex entries. Since we are interested in
EPs, let us see when the eigenvalues coalesce. To this end,
we compute the characteristic polynomial and complete the
square,

χ (λ) = (a − λ)(d − λ) − bc

=
(

λ − a + d

2

)2

+ ad − bc − (a + d )2

4
. (4)

Introducing the variables τ = a+d
2 and η = a−d

2 , we get the
following condition for eigenvalue collapse:

bc = −η2. (5)

Eigenvalue collapse is a necessary but insufficient condi-
tion for EPs to occur. Indeed, the case of an already diagonal
H with equal eigenvalues fullfills this condition but possesses

two independent eigenvectors. We leave out this case since it
leads to decoupled subsystems with trivial dynamics. Without
loss of generality, we, thus, set b �= 0. Introducing μ = c +
η2

b , we obtain a convenient parametrization of nondiagonal
complex 2×2 Hamiltonians,

H =
(

τ + η b

μ − η2

b τ − η

)
, (6)

whose eigenvalues collapse if and only if μ = 0. We now
enforce this restriction, making τ the only eigenvalue of H .
Proceeding towards the Jordan normal form, we define

N := H − τI =
(

η b

− η2

b −η

)
, (7)

which is nilpotent as a direct computation shows. We can
bring it to the canonical form using a similarity transform,

S−1NS =
( 1

b 0
η

b 1

)
N

(
b 0

−η 1

)
=

(
0 1

0 0

)
. (8)

Applying the same transformation to the Hamiltonian
yields its Jordan normal form

S−1HS =
(

τ 1

0 τ

)
, (9)

where the single eigenvector associated with τ is given by

|φ〉 =
(

b

−η

)
, (10)

in the original basis. The time evolution of |φ〉 then
obeys Eq. (2); the eigenstate simply undergoes damped or
amplified oscillations which leave the ratio of the two compo-
nents unaffected, exactly as eigenstates in the diagonalizable
case. The key difference with Hermitian time evolution is
this: we can no longer express the time evolution of arbitrary
states by projecting them on the eigenstates and evolve them
separately since they do not span the full Hilbert space. The
remainder of the Hilbert space did not disappear, we simply
cannot compute the time evolution in this subsector the usual
way.

B. Time evolution at the EP

To see what happens when the initial state is not fully
aligned with the single eigenstate |φ〉, we compute the evolu-
tion operator U (t ), a matrix exponential, by using the fact that
the identity commutes with all other matrices. This allows us
to use the Baker-Campbell-Hausdorff formula,

U (t ) = e−(it/h̄)H = e−(it/h̄)(τI+N ) = e−(it/h̄)τIe−(it/h̄)N

= e−(it/h̄)τ
∞∑

k=0

1

k!

(
− it

h̄

)k

Nk

= e−(it/h̄)τ
n∑

k=0

1

k!

(
− it

h̄

)k

Nk, (11)

where n is the order of the EP. An implicit version of this result
was presented in Ref. [5]. For the Hamiltonian of Eq. (6), the
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sum is cut off at n = 1 since N2 = 0, but this formula is also
valid for EPs of higher order. This yields the solution,

|ψ (t )〉 = U (t ) |ψ (0)〉 = e(−iτ/h̄)t

(
I − it

h̄
N

)
|ψ (0)〉 . (12)

On one hand, we see that applying Eq. (12) to the
coalesced eigenstate |φ〉 yields the expected time evolution
since N |φ〉 = 0. On the other hand, states that are not propor-
tional to |φ〉 generate components along |φ〉 linearly in time
as the image of N is spanned by |φ〉. Arbitrary states, there-
fore, get closer and closer to the eigenstate as time passes.
Time evolution at EPs, thus, differs from generic Hamilto-
nians in the sense that only one state evolves with the usual
oscillations (possibly with overall damping or amplification),
whereas other states remain inextricably coupled to this single
eigenstate. In the case of a higher-order EP [Eq. (11)], this
translates into a cascading temporal evolution where the gen-
eralized eigenvector of order k (a vector in the kernel of Nk but
not of Nk−1) generates each generalized eigenvector of lower
order according to a power law in time. Note that the highest
power in time is associated with the generalized eigenvector
of lowest order, namely, the EP eigenstate. This cascading
evolution remains decoupled from generalized eigenstates of
order higher than k; in particular, the coalesced eigenstate
is the only one with fully decoupled dynamics. The only
way to escape the EP eigenstate dominance as experimentally
realized in Ref. [7] is to introduce a source, thus, rendering
Eq. (1) inhomogeneous.

C. The four Möbius classes

How different can the situation be at a point close to the
EP? Setting μ to be nonzero again, we find that the character-
istic polynomial becomes

χ (λ) = (λ − τ )2 − bμ, (13)

yielding the eigenvalues,

λ = τ ±
√

bμ. (14)

Interpreted as a function of μ, Eq. (14) defines the square-
root Riemann surface that is often seen as the hallmark of
EPs. Other parametrizations can lead to different eigenvalue
surfaces [44]; selecting μ as a parameter has the added benefit
of lifting the spectral degeneracy whereas keeping both the
sum of the eigenvalues and the sum of the eigenvectors con-
stant. Naturally, the splitting induced by μ also occurs at the
eigenvector level with |φ〉 turning into a pair of eigenvectors,

|φ〉±μ = |φ〉 ±
(

0√
bμ

)
. (15)

In principle, we now have a complete eigenbasis with
simple time evolution on which we can project and evolve
arbitrary states as in the Hermitian case. Nevertheless, the
corresponding evolution operator relates continuously to the
EP evolution operator. Indeed, an explicit computation yields

Uμ(t ) = e−(it/h̄)H = e(−iτ/h̄)t

[
cos

(√
bμ

h̄
t

)
I − it

h̄
sinc

(√
bμ

h̄
t

)
N

]
, (16)

which reduces to the form given in Eq. (12) when μ → 0 with the leading term of the difference being linear in μ. To gain insight
on the qualitative effect of this degeneracy lifting, we can start from the following observation: In general, nonzero values of√

bμ will not only lead to a separation of eigenstates, but also dampen one of them and amplify the other due to the imaginary
part of the eigenvalue. In this situation, any fluctuation away from the decaying eigenstate will, therefore, be amplified and tend
to align more and more with the dominating eigenstate. We can make this statement quantitative by investigating the temporal
evolution of the state’s polarization. Defining the latter as p(t ) := ψ2(t )

ψ1(t ) , we get

p(t ) = ψ2(t )

ψ1(t )
=

[
cos

(√
bμ
h̄ t

) + iη√
bμ

sin
(√

bμ
h̄

)]
p0 + [ i(η2−bμ)

b
√

bμ
sin

(√
bμ
h̄ t

)]
[− ib√

bμ
sin

(√
bμ
h̄ t

)]
p0 + [

cos
(√

bμ
h̄ t

) − iη√
bμ

sin
(√

bμ
h̄ t

)] , (17)

which constitutes a time-dependent Möbius transforma-
tion of the initial polarization p0 as previously shown in
Ref. [42] for η = 0 Hamiltonians. Such transformations are
elements of the Möbius group. After properly normalizing the
factors appearing in Eq. (17), we can use the square of the
trace of the associated matrix [22] to classify the transfor-
mation: σ := Tr2(U/e(−iτ/h̄)t ) = 4 cos2(

√
bμ
h̄ t ). The Möbius

group then splits into four classes:
(1) The hyperbolic class [Fig. 1(a)] corresponds to σ real

with σ > 4. For bμ real and negative, the transformation is
hyperbolic at all times. In this case, all initial polarizations
converge towards the attractive eigenstate along direct arcs
with the exception of an unstable initial condition correspond-
ing to the repulsive eigenstate.

(2) The elliptic class [Fig. 1(b)] corresponds to σ real
with σ < 4. For bμ real and positive, the transformation

stays elliptic at all times except for the periodic return to
the initial polarization. This case is the most Hermitian-
like: All polarizations oscillate in time and no eigenvector
dominates.

(3) The loxodromic class [Fig. 1(c)] is the most generic
one; it occurs for Im(σ ) �= 0. For complex bμ, the transforma-
tion stays loxodromic almost all the time except for isolated
hyperbolic points that occur for Re(

√
bμ
h̄ t ) = n π

2 , n ∈ N. This
class can be considered as an intermediary between elliptic
and hyperbolic classes. As in the latter case, one eigenstate
dominates, but the trajectories are now spiraling to some
degree.

(4) The parabolic class [Fig. 1(d)] arises for nonidentity
transformations with σ = 4. This occurs when the two fixed
points of the other classes merge, which happens for bμ = 0;
we then have an EP and the system stays parabolic at all times.
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FIG. 1. The coalescence of polarization. Stereographic projec-
tion on the top hemisphere of the Poincaré sphere with 1000 random
initial polarizations evolving under a Hamiltonian that corresponds
to (a) hyperbolic, (b) elliptic, (c) loxodromic, (d) parabolic Möbius
transformations, respectively. The polarizations of the eigenvectors
are marked with blue stars.

All polarizations eventually converge to the unique fixed point
corresponding to the coalesced eigenstate.

The value of bμ, therefore, largely determines the nature
of the Möbius transformation that acts on the polarization.
Hence, we will term the Hamiltonians themselves hyperbolic,
elliptic, parabolic, and loxodromic depending on the value of
bμ. In terms of the original Hamiltonian of Eq. (3), the EP
occurs when the product of the coupling terms bc matches the
square of the detuning ( a−d

2 )2 with the correct phase and am-
plitude. If this condition is not met, the coalesced eigenstate
can split in three different ways: elliptic, hyperbolic, and lox-
odromic. Let us focus on the latter two, which correspond to
the generic case of Im(

√
bμ) �= 0. Using limt→∞ tan(

√
bμ
h̄ t ) =

±i, we get

lim
t→∞ p(t ) = lim

t→∞
b
√

bμp0 + i(bp0η + η2 − bμ) tan
(√

bμ
h̄ t

)
b
√

bμ − ib(bp0 + η) tan
(√

bμ
h̄ t

)
= −η ± √

bμ

b
, (18)

which corresponds to the polarization of the dominating
eigenstate, namely, the one with the eigenvalue of largest
positive imaginary part. As in the parabolic (EP) case,
the long-term fate of the polarization does not depend
on the initial condition for these generic non-Hermitian

Hamiltonians, unless the system is initialized exactly in the
repulsive eigenstate of the system.

What about the nongeneric cases we set aside? They cor-
respond to μ = sb∗ with s real. Recalling Eq. (14), we see
that the spectrum is either purely real in the elliptic case or
consists of a complex-conjugate pair in the hyperbolic case.
It was shown in Ref. [9] that Hamiltonians have such spec-
tra if and only if they commute with an invertible antilinear
operator A,

[H, A] = 0, (19)

which is also equivalent to the property of pseudo-Hermiticity,
introduced in Ref. [10]. In the particular case of parity-time
(PT ) symmetry [8], the hyperbolic and elliptic classes, re-
spectively, are known as “PT -broken” and “PT -unbroken”
phases. Other antilinear symmetries, such as anti-PT sym-
metry [45], can play the same role.

In addition to the polarization effects we discussed at
length, we must also mention that for τ = 0, the imaginary
parts of the eigenvalues lead to an exponential growth in
the loxodromic and hyperbolic classes. The parabolic class
presents a different instability due to the linearly growing term
in Eq. (12). Introducing an imaginary part in τ can stabilize all
of these cases.

D. The higher-dimensional case

How does this Möbius transformation approach general-
ize to larger Hamiltonians? Consider the neighborhood of an
EP of arbitrary order n. In the case of nth root splitting of
the eigenvalue τ—the case typically considered in sensing
applications—the characteristic polynomial can be written as

χ (λ) = (τ − λ)n − γ n = 0, (20)

leading to the n eigenvalues λ = τ + γ eim2π/n, where m ∈
[0, n − 1]. Since all eigenvalues are different, the correspond-
ing Hamiltonian is diagonalizable and can be brought into the
form

H =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

τ 1

τ 1

τ
. . .

. . . 1

τ 1

γ n τ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (21)

through a similarity transform. Equation (16) then read-
ily generalizes through the introduction of the following
functions:

K (n, m, z) = 1

n

n−1∑
k=0

eimk(2π/n)eeik(2π/n)z, (22)

which are generalizations of the hyperbolic sine and cosine
that are symmetric under the action of the cyclic group of
order n. The idea that underlies our definition is analogous to
the standard process of symmetrizing multivariate functions
under permutation of their arguments, by averaging the func-
tion over the symmetric group [46]. Our K functions can also
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be seen as the discrete Fourier transform [47] of the image of
the n roots of unity under an exponential map. In Appendix A,
we discuss this in more detail, along with other properties
of K functions. Most importantly, these functions allow us
to compute the evolution operator for the Hamiltonian of
Eq. (21)

U (t ) = e−(it/h̄)H = e−(it/h̄)[τ+(H−τ )] = e−(it/h̄)τ e−(it/h̄)(H−τ )

= e−(it/h̄)τ
n−1∑
m=0

K (n,−m,−iγ t )

(
H − τ

γ

)m

, (23)

where we used (H − τ )n+1 = γ n. As for Eq. (16), the EP case
of Eq. (11) arises when taking the limit γ → 0. Component-
wise, Eq. (23) reduces to the simple form

Upq(t ) = γ p−qK (n, p − q,−iγ t )e−(it/h̄)τ , (24)

which is useful to investigate polarization properties. We now
define n − 1 such polarizations with respect to the first com-
ponent of our state vector as pk (t ) := ψk (t )

ψ1(t ) . The temporal
evolution of these polarizations is then given by

pk (t ) =
∑n

q=1 Ukq(t )pq(0)∑n
j=1 U1 j (t )p j (0)

, (25)

which still constitutes a Möbius transformation of pk (0) but
now also depends on the other polarizations, preventing a
direct classification as in the two-level case. Nevertheless,
we can investigate the long-term behavior by adapting the
strategy of Eq. (18). We start by introducing higher-order
equivalents of the tangent function,

T (n, m, z) = K (n, m, z)/K (n, 0, z). (26)

The graph of a T function is depicted in Fig. 2. It highlights
a useful property: for θ in the jth sector, which we define as
j2π

n − π
n < θ <

j2π

n + π
n , we have the limit,

lim
t→∞ T (n, m, eiθ t ) = e−im j(2π/n), (27)

which makes Eq. (25) time independent; indeed, we can write

pk (t ) =
∑n

q=1 γ k−qT (n, k − q,−iγ t )pq(0)∑n
l=1 γ 1−l T (n, 1 − l,−iγ t )pl (0)

. (28)

For arg(−iγ ) in the jth sector, this yields

lim
t→∞ pk (t ) =

∑n
q=1(γ e−i( j2π/n) )k−q pq(0)∑n
l=1(γ e−i( j2π/n) )1−l pl (0)

= (γ e−i( j2π/n) )k−1. (29)

which shows that time evolution is dominated by a single fixed
point in the generic (loxodromic) case arg(−iγ ) �= j2π

n + π
n

for some integer j. As in the second-order case, an exception
occurs when arg(−iγ ) is at the interface between two sectors;
we then recover elliptic behavior in the long term. To prove
this, we select −iγ = e−i(π/n)g with g real and leverage an-
other property of T functions, namely,

T (n, m, e−i(π/n)gt )

≈ eim(π/n)

{
cos

(
π

n

)
− tan

[
sin

(
π

n

)
gt

]
sin

(
m

π

n

)}
(30)

FIG. 2. Möbius transform in higher dimensions. (a) Plot of the
T (7, 1, z) function with colors encoding the phase of the function.
(b) Projection of the p2(t ) polarization on the Poincaré sphere for a
third-order elliptic Hamiltonian with p2(0) lying on the fixed points
and p3(0) deviating from the fixed point condition. (c) Projection of
the p3(t ) polarization on the Poincaré sphere for a third-order EP
with p3(0) randomly distributed in a square domain with corners
±(1 + i) and p2(0) = 0.

for gt 
 1. Insertion in Eq. (28) then reveals that at times suf-
ficiently larger than 1

g , the polarizations become periodic with
angular frequency sin( π

n )g. Furthermore, the initial conditions
pk (0) = γ k−1 and pk (0) = (γ ei(2π/n) )k−1 cancel out the time
dependency altogether and correspond to the two fixed points
of the system. An example of such higher-order elliptic evo-
lution is provided in Fig. 2(b), which depicts the evolution
of p2(t ) in a third-order system with μ = 1

2 eiπ/n/2(n−2) and
p2(0) = 1

2 eiπ/n/2(n±2), which corresponds to the fixed points
of the system. The variations in the trajectories come from
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p3(0) = ( 1
2 eiπ/n/2(n±2))2 + s deviating from the fixed point

condition by some amount s. The value of s determines the
final circle on which the trajectory stabilizes. In Fig. 2(b),
the trajectories associated with 14 different values of s are
depicted.

Finally, we turn to the parabolic case. At the EP, time
evolution follows Eq. (11). If the state vector deviates from
the single eigenstate only in the kth component, we have
p j (0) = 0 ∀ j �= k and

pk (t ) = pk (0)
1
k!

(−it
h̄

)k
pk (0) + 1

, (31)

which is a parabolic transformation of the initial deviation
pk (0). The evolution speed and preferred direction towards
the fixed point change depending on k. When more than
one initial polarization is nonzero, these convergence patterns
enter in competition, adding a transient response that deforms
the curves, but the attractive parabolic fixed point remains
unique. Hence, Möbius classes are relevant at higher order;
the loxodromic class occurs generically when μ lies within
a sector. When μ falls precisely at the interface between two
sectors, we have the elliptic case. Finally, the parabolic case
occurs for μ = 0. The additional degrees of freedom due to
the higher order add a layer of complexity to these polariza-
tion transformations.

III. FLOQUET NON-HERMITIAN HAMILTONIANS

So far, we have studied non-Hermitian time evolution both
at EPs and under nth root splitting of the eigenvalues. How-
ever, some of the most interesting properties of EPs only arise
when the parameters of the Hamiltonian are modulated in
order to move around the Riemann surfaces associated with
such splittings. In particular, EP encircling has been shown
to result in asymmetric mode switching [17]. On the other
hand, Eqs. (18) and (29) show that the closely related prop-
erty of polarization convergence is a rather general feature
of non-Hermitian Hamiltonians; It is, therefore, natural to
explore the repartition of Möbius classes under such temporal
modulations to see whether EP encircling impacts the Möbius
class in some way. To do so, we derive exact solutions for time
evolution under periodically modulated Hamiltonians and in-
terpret them in terms of the Möbius group. The modulations
we will study keep the EP Riemann surface fixed with μ(t )
and η(t ) describing some trajectories on the complex plane.
Without loss of generality, we can set τ = 0 since it only
gives rise to an exponential prefactor. We then rewrite Eqs. (1)
and (6) as

ih̄ ∂tη ψ1 = ih̄(∂tη)ψ1 + η2ψ1 + bηψ2, (32)

ih̄ ∂t bψ2 = bμψ1 − η2ψ1 − bηψ2, (33)

which we sum to obtain

p(t )ψ1 = −h̄2∂2
t ψ1, (34)

where p(t ) := bμ + ih̄ ∂tη. One can treat cases where τ and
b are also time modulated in an analogous manner, but this
will, in general, give rise to an additional damping term. For
periodic modulations, Eq. (34) is the Hill equation [48], which

FIG. 3. Time modulation curves. Circular (a)–(c), rectangular
(d)–(f), and quadratic (g) modulation curves. The yellow curves lead
to loxodromic evolution, the black curves lead to parabolic evolution,
and the blue curves lead to elliptic evolution. The time-independent
EP is denoted by a red star. The rectangular curves have the same
aspect ratio and center, the latter being marked with a green star. The
gray dashed line corresponds to Im(

√
μ) = 0.

has no general closed-form solutions. A particularly important
subcase is Mathieu’s equation [49], which corresponds to a
purely real cosine modulation, giving rise to the phenomenon
of parametric resonance [50]. Since our motivation lies in EP
encircling, we consider modulations that describe loops on
the complex plane, instead, with segments for which Eq. (34)
has analytical solutions. For any such segment, we obtain two
solutions ψ1 and ψ ′

1. As for ψ2 and ψ ′
2, they can be evaluated

from ψ1 through Eq. (32). From these solutions, we then build
a fundamental matrix,

(t ) :=
(

ψ1(t ) ψ ′
1(t )

ih̄
b ∂tψ1(t ) − η

bψ1(t ) ih̄
b ∂tψ

′
1(t ) − η

bψ ′
1(t )

)
,

(35)
from which the evolution operator follows:

U (t ) = (t )−1(0). (36)

If the modulation changes after a time tc elapsed, the over-
all evolution operator becomes

U (t ) = [1 − �(t − tc)]Ua(t ) + �(t − tc)Ub(t )Ua(tc), (37)

where Ua and Ub, respectively, are the evolution operators
associated with the first and second phases of the modula-
tion. We can, therefore, form solutions for a large variety of
piecewise defined modulation curves on the complex plane. In
general, a given second-order differential equation can be real-
ized by infinitely many different Hamiltonians, corresponding
to different choices of μ and η. For the sake of simplicity, we
will, therefore, set η = 0 from now on, keeping in mind that
U can be deformed using Eqs. (34) and (35) to accommodate
for a time-dependent detuning η.

We apply this method to three different families of
periodically time-modulated Hamiltonians with modulation
curves that are constituted of circular [Figs. 3(a)–3(c)], linear
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[Figs. 3(d)–3(f)] and quadratic [Fig. 3(g)] segments. The
corresponding solutions to Eq. (34) are Bessel, Airy, and
parabolic cylinder functions, respectively [51].

Möbius classes in the Floquet setting

Floquet’s theorem [52] tells us that for such periodically
modulated Hamiltonians, the evolution operator decomposes
as U (t ) = Q(t )eBt , where Q(t ) has the same periodicity as
the modulation and B is a constant matrix. The long-term
behavior of the system is, therefore, determined by the nonpe-
riodic envelope eBt , which has the same form as the evolution
operator for time-independent Hamiltonians. Hence, we can
also classify Floquet non-Hermitian systems in terms of the
Möbius group by diagonalizing the exact expression from
Eq. (36) (a representative example is given in Appendix B). In
the following, λF will denote the logarithm of the eigenvalues
of U (t ) after one period; we will refer to this quantity as a
Floquet exponent of the system. Since this quantity is only
defined up to a multiple of 2π i, we need to exercise special
care when the Floquet exponents coincide; in this situation,
the eigenvectors determine whether the parabolic class occurs
or not. We start with a modulation curve commonly con-
sidered in theoretical studies, namely, a circular modulation
[Figs. 3(a)–3(c)], which has the form

μ(t ) = � + ρeiωt . (38)

It can be solved in terms of Bessel functions as performed
in Ref. [39]. Diagonalizing U in Eq. (36) yields a particu-
larly simple result in the circular case; the Floquet exponents
evaluate to λF = √

b�. This reveals that the time-dependent
case is in close correspondence to the static one, in the sense
that the Möbius class solely depends on the modulation center
for circular curves and that this dependency has the same form
as in the static case. As we will later see, this correspon-
dence completely breaks down for noncircular modulation
curves. This dependency on � reveals that generic parameters
[Fig. 3(a)] lead to loxodromic evolution. In this case, the
dominant eigenstate expands following a logarithmic spiral
[Fig. 4(a)], whereas the other eigenstate spirals towards the
origin [Fig. 4(b)].

Most modulation curves that are centered on the positive
real axis lead to stable trajectories, which can be periodic
[Figs. 3(b), 4(c), and 4(d)] or form rosettes for irrational
Floquet exponents. In particular, periodic trajectories can
have periods much larger than the modulation. As shown
by Berry and Uzdin in [39], additional Floquet EPs occur
when the Floquet exponents become multiples of π . When
the modulation circle is centered on the static EP, we get
a Floquet EP [Figs. 3(c), 4(e), and 4(f)], regardless of the
radius and modulation frequency. In Fig. 4(e), we see that
the eigenstate describes a cycle on the complex plane with
every modulation period. In line with our earlier description
of the time-independent case, Fig. 4(f) shows that other states
tend to acquire the polarization of the eigenstate, leading to a
characteristic Archimedean spiral pattern.

Crucially, the modulation depth ρ does not affect the
Floquet exponents. However, it does impact the periodic
component of the time-evolution Q(t ). For instance, if the
modulation curve is a decentered loop that dynamically

FIG. 4. Circular modulations. (a)–(e) Time evolution of strobo-
scopic eigenstates for various parameters. (a) and (b) Noncentered
EP encircling with � = 0.700 145 + 0.254 176i and ρ = 1.357 497.
(c) and (d) Loop crossing the static EP � = ρ = 1. (e) Centered EP
encircling, with � = 0 and ρ = 1. (f) Evolution of a noneigenstate
under the same parameters. The state’s two components are repre-
sented in each plot with time encoded as color.

crosses the static EP [Fig. 3(b)], the evolution presents a
cusp point at the time for which the EP condition is met
[Figs. 4(c) and 4(d)]. For larger radii, the cusps turn into self-
intersections [Figs. 4(a) and 4(b)]. This is not a topological
property since self-intersections can be created in other ways.
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Is the Möbius class always neatly determined by the mod-
ulation center � as in the circular case? To answer this
question, we consider a time modulation with linear segments,
which can be solved in terms of Airy functions. Our example
comprises four such segments, defined by

μa(t ) = � − ρ

2
+ iα

ρ

2
+ ρt, (39)

μb(t ) = � + ρ

2
+ iα

ρ

2
− iαρt, (40)

μc(t ) = � + ρ

2
− iα

ρ

2
− ρt, (41)

μd (t ) = � − ρ

2
− iα

ρ

2
+ iαρt, (42)

which build a rectangle; Figs. 3(d)–3(f)] of aspect ratio α and
width ρ. Fixing the modulation depth at � = 2.394 756 696,
we vary ρ. For ρ = 4.2 [Figs. 3(d), 5(a), and 5(b)], the
evolution is of the hyperbolic type. For ρ = 0.6 [Figs. 3(e),
5(c), and 5(d)], we get the parabolic type, and finally for
ρ = 0.24 [Figs. 3(f), 5(e), and 5(f)], we get elliptic evolution.
The modulation depth clearly impacts the Möbius class of
rectangular modulations, and the Floquet exponents do not
assume a practical closed form.

We have seen that under both circular and rectangular mod-
ulations, Floquet EPs can occur far away from the static EP
without encircling it. We can complete the picture by showing
that Floquet EPs can also arise for nonencircling trajectories
in the direct vicinity of the static EP. To that end, and in order
to demonstrate a third family of exact solutions, we consider
a concave modulation curve made of two quadratic segments,

μa(t ) = � − (1 + i)/2 + (1 + 4i)t − 4it2, (43)

μb(t ) = � − (1 + i)/2 + (1 + 3i)(2 − t ) − 3i(2 − t )2.

(44)

This case is solved in terms of parabolic cylinder func-
tions. For � = −0.005 861 59 − 0.083 075 2i [Fig. 3(g)], we
obtain a Floquet EP without encircling the static EP. Indeed,
the system possesses a single eigenstate [Fig. 5(g)], whereas
noneigenstate initial conditions lead to an Archimedean-
spiral-like behavior [Fig. 5(h)] that stroboscopically tends
towards a unique fixed point in polarization.

With these various examples, we have shown that the
Möbius class, which captures the nature of the time evolution,
is logically decoupled from EP encircling. The latter does not
seem to be a particularly relevant parameter in understanding
time evolution under modulated non-Hermitian Hamiltonians,
apart from creating cusps in the resulting trajectories. In the
next section, we show that such phenomena are better under-
stood in terms of parametric resonance.

IV. COMPLEX PARAMETRIC RESONANCE

The close correspondence between the static and the cir-
cular Floquet case is atypical; the other cases we studied hint
at a much more intricate distribution of Möbius classes with
the latter depending on the modulation depth [Figs. 5(a)–5(f)]
and hyperbolic Floquet systems sometimes occurring for �

real and positive [Figs. 5(a) and 5(b)]. We now study these
distributions in more detail by comparing stability diagrams

FIG. 5. Noncircular modulations. (a)–(f) Time evolution under
rectangular modulations with � = 2.394 756 696, α = 2 and vary-
ing modulation depth: (a) and (b) stroboscopic eigenstates with
ρ = 4.2 [Fig. 3(d)]. (c) and (d) Two degenerate eigenstates for ρ =
0.6 [Fig. 3(e)]. (e) and (f) stroboscopic eigenstates with ρ = 0.24
[Fig. 3(f)]. (g) Single eigenstate for the quadratic curve of Fig. 3(g).
(h) Evolution of a noneigenstate under the same modulation. The
state’s two components are represented in each plot with time
encoded as color.
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FIG. 6. Complex parametric resonance. Stability diagrams for
rectangular (a)–(c) and elliptic (d)–(f) modulations of varying as-
pect ratios. Black points denote EPs. The blue regions are in the
stable (elliptic) phase, whereas the yellow regions are in the unstable
(hyperbolic) phase. The aspect ratios are α = 0 (a), α = 0.475 (b),
α = 1.0 (c), α = 0.0 (d), α = 0.8 (e), and α = 1.0 (f). The corre-
sponding modulation curves are represented in the insets.

for modulation curves describing rectangles [Figs. 6(a)–6(c)]
and ellipses [Figs. 6(d)–6(f)] on the complex plane. Since we
mapped the problem to Hill’s equation, we can leverage the
associated literature [43,50,53,54] to identify features that are
exclusive to complex modulation curves.

We start with a rectangular trajectory chosen to mimic
Mathieu’s equation by setting the aspect ratio to α = 0. The
modulation is then purely real and approximates a cosine.
The corresponding stability diagram [Fig. 6(a)] is qualitatively
similar to the one obtained for a purely real cosine modu-
lation [Fig. 6(d)], which is known as a Strutt diagram [50].
Both exhibit the essential features of parametric resonance,
namely, domains of stability (blue, elliptic) and instability
(yellow, hyperbolic) that interpenetrate through several very
thin “tongues” of instability (respectively, stability.), whose
boundaries (black lines) correspond to Floquet EPs. Only one
essential difference appears: In the rectangular case, the insta-
bility tongues all present a self-crossing (a coexistence [43])
of their two EP boundaries.

We then introduce an imaginary part in the modulation
curves [Figs. 6(b) and 6(e)]. In Fig. 6(b), we show the case of a
rectangular modulation with an aspect ratio of α = 0.475. The
stability diagram shows many nontrivial features, which now
differ substantially from the ones observed in standard para-
metric resonance; for instance, some of the stability tongues
are no longer shooting off to infinity but instead form an
arch merging at some finite modulation depth. Similar struc-
tures have been reported in Ref. [55] for PT -symmetric
scattering systems. Interestingly, the presence of, at least,
the first of these arches is demonstrably forbidden for real
modulations and, therefore, constitutes a signature of com-
plex parametric modulation. Indeed, Theorem 4.4 in Ref. [43]
(due to Borg [54]) guarantees the existence of a strictly neg-
ative first interval of instability for all nonzero modulation
depths (the “inverted pendulum” interval). Furthermore, the
oscillation theorem (Theorem 2.1 in Ref. [43], originally due
to Lyapunov [53]) tells us that no interval of stability exists
for negative modulation centers exceeding the modulation
depth. The instability region directly above the first arch is
incompatible with these requirements, and such an arch could,
therefore, not occur for purely real time modulations.

Another remarkable change consists in the disappearance
of the coexistence points that were present in the instability
tongues of Fig. 6(a), splitting each instability tongue in an
isolated domain within the now fully connected stable region
and a part connecting to the larger instability domain. We
conjecture that this also constitutes a signature specific to
complex modulations.

In contrast, the effect of a nonzero aspect ratio is much sim-
pler when the modulation follows an ellipse on the complex
plane: Fig. 6(e) shows the stability diagram for an aspect ratio
of 0.8. The only effect is a vertical stretching of the diagram
that extends the reach of stability, ultimately culminating in
the ρ-independent stability diagram observed in Fig. 6(f),
which corresponds to the

√
b� Floquet exponents of the last

section. This explains how parametric resonance is hidden in
the specific case of circular modulation curves. It also implies
even a slight flattening of the circular trajectory introduces
parametric instability in the system with finite hyperbolic
intervals appearing. This behavior is unusual; for real mod-
ulations, stability diagrams of the type depicted in Fig. 6(f)
are forbidden. Indeed, the oscillation theorem implies that
“neither an interval of stability nor an interval of instability
can ever shrink to a point” (p. 14 in Ref. [43]). In addition, the
only real periodic function for which all intervals of instability
vanish is the constant function (Theorem 7.12 in Ref. [43],
first in Ref. [54]), which adds to the peculiarity of the complex
circular modulation.

If we try to imitate the circular case by selecting a square
time modulation (α = 1), something entirely different hap-
pens. The non-Hermitian stability features already observed
in Fig. 6(b) are only reinforced in Fig. 6(c). The number of
stability tongues is reduced, giving way to a larger instability
domain. An accompanying movie [56] shows the continuous
transition from Figs. 2(a) to 2(c); it exhibits intricate inter-
actions between the stability tongues as the height of the
rectangular loop increases.

Given their atypicality, the use of circular trajectories in
theoretical studies is rather unfortunate: for instance, one
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cannot hope to emulate a theoretical result based on circular
modulation through an experiment employing a rectangu-
lar modulation as the two differ greatly in their qualitative
behavior. Furthermore, even if circular loops were experimen-
tally accessible, parametric resonance would creep back in at
the slightest departure from circularity. Parametric resonance
clearly needs to be accounted for in theoretical treatments of
EP encircling.

V. CONCLUDING REMARKS

First, we have shown how the peculiar cascading temporal
dynamics of EPs relate continuously to that of neighboring
nonexceptional points. Classifying the possible temporal be-
haviors with the Möbius group illuminates the position of EPs
within the larger landscape of non-Hermitian Hamiltonians
and complements the usual approach based on restricting the
parameter space through an antilinear symmetry.

This led to our main result: Together with an analytical ap-
proach that highlights the connection to parametric resonance,
these classes allowed us to make sense of non-Hermitian
time-modulated systems. First, we have shown that encircling
is not related to the long-term behavior of the system; it is
relevant to the periodic part of the dynamics where it in-
duces the formation of self-intersections. Instead, we found
that the repartition of temporal Möbius classes constitutes a
complex parametric resonance phenomenon whose qualitative
features greatly depend on the shape of the modulation curve.
Our explicit link to Hill’s equation allowed us to delineate
specific signatures of complex parametric resonance: stability
arches and splitting coexistence points. Furthermore, we could
show that the choice of a single-frequency circular modula-
tion artificially conceals parametric resonance features; this
phenomenon is also unique to complex modulations. Further
research on that front could identify other restrictions of real
parametric resonance that are lifted in the complex realm; this
is especially interesting, given the numerous applications of
parametric oscillators. On another front, applying our theory
in a fully quantum setting calls for a Lindblad formulation in
order to account for quantum fluctuations [57]. Yet another
potential direction for future research lies in further explo-
ration of higher-order Hamiltonians. In the unmodulated case,
this would mean considering different eigenvalue splittings.
In the modulated case, one could consider equations with
higher-order derivatives. There are many exciting prospects
both in further exploration of the puzzling features of complex
parametric resonance and on the possibility of synthesizing
Floquet EPs through designed modulation schemes.
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APPENDIX A: PROPERTIES OF K FUNCTIONS

In this Appendix, we discuss some of the properties of the
K functions introduced in Eq. (22). As a starting point, note

that the hyperbolic cosine and sine are the even and odd part
of the exponential function, respectively. A fruitful alternative
is to think of cosh as being invariant under a rotation of its
argument by π , whereas sinh picks up a eiπ phase under
the same rotation. The K functions introduced in Eq. (22)
can then be interpreted as Cn-symmetric generalizations of
trigonometric functions. Indeed, they satisfy the following
symmetry property:

K (n, m, ei(2π/n)z) = e−im(2π/n)K (n, m, z). (A1)

In particular, K (n, 0, z) is invariant under rotations by 2π
n

and generalizes the hyperbolic cosine function. Other prop-
erties of hyperbolic functions admit a generalization. For
instance, we have

n−1∑
m=0

K (n, m, z) = ez. (A2)

As a consequence, the equivalent of cosh2 − sinh2 = 1
becomes [

n−1∑
m=0

K (n, m, z)

][
n−1∑
m=0

K (n, m,−z)

]
= 1. (A3)

As for derivation rules for sinh and cosh, they
generalize as

∂zK (n, m, z) = K (n, m + 1, z), (A4)

which also constitutes a closed chain of derivatives, keep-
ing in mind that

K (n, m + n, z) = K (n, m, z). (A5)

Finally, we mention an interesting connection to the dis-
crete Fourier transform: indeed, if we write α := ei(2π/n) and
collect the definitions of the K functions of order n in a single
matrix equation, we obtain

n

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

K (n, 0, z)

K (n, 1, z)

K (n, 2, z)
...

K (n, n − 1, z)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

1 1 1 . . . 1

1 α α2 . . . αn−1

1 α2 α4 . . . α2(n−1)

...
...

...
. . .

...

1 αn−1 α2(n−1) . . . α(n−1)2

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

ez

eαz

eα2z

...

eαn−1z

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

(A6)

which constitutes the matrix form of the discrete Fourier trans-
form [47]. The signal on which this discrete Fourier transform
acts contains the function to be symmetrized with arguments
shifted by roots of unity.

As shown in the main text, these K functions determine
the time evolution at symmetrically splitting EPs of order
n. In particular, the asymptotic behavior of the generalized
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tangents T (n, m, z) determines the fate of polarizations in
these systems.

APPENDIX B: AN EXPLICIT EXAMPLE OF SOLUTION

Here, we give the explicit expression for the evolution
operator after one period under the quadratic modulation
of Fig. 3(g),

Uf =
(

D
(−a − 1

2 , z2
)

D
(
a − 1

2 ,−iz2
)

iD′(−a − 1
2 , z2

)
iD′(a − 1

2 ,−iz2
)
)

×
(

D
(−a − 1

2 , z1
)

D
(
a − 1

2 ,−iz1
)

iD′(−a − 1
2 , z1

)
iD′(a − 1

2 ,−iz1
)
)−1

×
(

D
(
b − 1

2 ,−iy1
)

D
(−b − 1

2 ,−y1
)

iD′(b − 1
2 ,−iy1

)
iD′(−b − 1

2 ,−y1
)
)

×
(

D
(
b − 1

2 ,−iy0
)

D
(−b − 1

2 ,−y0
)

iD′(b − 1
2 ,−iy0

)
iD′(−b − 1

2 ,−y0
)
)−1

(B1)

where zt := 2e(iπ/8)(t + i−4
8 ), a := −( 7

64 + �
4 )e(iπ/4), yt :=√

2
√

3e(iπ/8)(t − i+9
6 ), b := − 1+6�

12
√

3
e(iπ/4) and D(ν, x) is the

parabolic cylinder function described in Ref. [51].
As described in the main text, the same process can

be applied to other modulation curves by solving for each
segment independently using the solution to Eq. (34) to con-
struct the operator of Eq. (36) and then concatenating the
solutions using Eq. (37). The resulting analytical expression
can then be evaluated after one period and diagonalized to ob-
tain the Möbius class. For instance, in the case of a rectangular
modulation curve, Eq. (B1) is replaced by a product of eight
matrices containing Airy functions, entirely analogous to the
case presented here.
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