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Entanglement dynamics of spins using a few complex trajectories
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In this paper, we consider two spins initially prepared in a product of coherent states and study their entan-
glement dynamics due to a general interacting Hamiltonian. We adopt an approach that allowed the derivation
of a semiclassical formula for the linear entropy of the reduced density operator, assumed as an entanglement
quantifier. The resulting expression depends on sets of four trajectories, originated from the underlying classical
description, and having mutually connected final phase-space points. Such classical elements, which are capable
to reproduce the quantum entanglement even for long values of propagation time, arise when we assume a proper
analytical continuation of the classical phase space onto a complex domain. We apply this theory to a particular
physical system, showing that taking into account only a few sets of complex trajectories is enough to get an
excellent agreement between the semiclassical linear entropy of the reduced density operator and its quantum
counterpart.
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I. INTRODUCTION

In 1935, Einstein, Podolsky, and Rosen [1] shook the struc-
tures of quantum mechanics, which was just a newborn theory
at that time, asserting that the physical description provided by
its formalism was not complete. The crisis generated by the
authors had rapid answers given by the scientific community,
among which we highlight an article written by Schrödinger
[2], where he coins the term entanglement and announces it
as the phenomenon causing that surprising conclusion. In that
contribution, Schrödinger was incisive about the nonclassical
nature of entanglement, an idea that counterposes any attempt
to readjust the quantum formalism with classical elements.

Thirty years later, this discussion was reexpressed in solid
mathematical grounds by Bell [3], who formulated the no-
tion of local hidden variables, a construction that naturally
emerges from the paper of Einstein and his collaborators
[1], and demonstrated that the quantum formalism cannot be
supplemented by such a classical expedient. This result clearly
favors Schrödinger’s argument expressing entanglement as [2]
“the characteristic trait of quantum mechanics, the one that
enforces its entire departure from classical lines of thought.”
Another important point that should be mentioned is the
fact that Bell’s work has inaugurated studies concerning the
quantum statistical correlations, in which entanglement has a
crucial role, culminating with the emergence of the quantum
information theory [4–6].

While a significant number of researchers have made ef-
forts to unravel entanglement inside the quantum formalism,
many others have been interested in understanding aspects
of the quantum-classical connection involving this concept
[7–33]. Despite the previous arguments, which disconnect en-
tanglement from classical mechanics, notice that this question
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is still legitimate: For systems prepared in the semiclassi-
cal regime, where both quantum and classical theories can
give accurate predictions of their behavior, it is expected that
two different entanglement manifestations appearing in the
quantum description have distinct symptoms in the respec-
tive classical treatment. In this scenario, it is remarkable that
almost the totality of the aforementioned papers deals, to
some extent, with quantum-chaos approaches. Very shortly,
this kind of investigation aims to associate the regime of
the underlying classical dynamics—regularity or chaos—with
properties of quantum entanglement.

Were we extracting from all these papers [7–33] the most
typical result, it would be the statement that the rate of en-
tanglement growth for a given initial quantum state, due to
the action of an interacting Hamiltonian, is greater when its
classical counterpart experiences a chaotic dynamics, com-
pared with a regular regime. It is implied in this sentence that
the quantum state should be initially well localized in order
to be eligible for a proper classical treatment. Meanwhile,
we also need to point out that some works have questioned
this characterization [28–33], showing that some states, the
classical counterparts of which do present regular dynamics,
have entanglement growth which would be compatible with
chaotic behavior.

In the present paper, we semiclassically investigate the
entanglement dynamics between two spins, adding elements
in this research field. Our paper can be seen as an extension
of another contribution [24], where only canonical degrees of
freedom were considered. Here, we contemplate spin vari-
ables. The approach consists of taking the linear entropy of
the time-dependent reduced density operator to characterize
entanglement and deriving its approximated expression. The
starting point for this calculation is the semiclassical forward
and backward propagators in the spin-coherent-state represen-
tation. The resulting formula only depends on the trajectories
originated from the underlying classical description of the
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problem. If we restrict the classical phase space to (ordinary)
real coordinates, then the semiclassical entropy will be an
exclusive function of the trajectory departing from the cen-
troid of the initial state, assumed as a spin-coherent state. In
this case, our result agrees with the most common conclusion
seen in the literature, as it implies that entanglement behaves
according to the inverse of the stability of that classical tra-
jectory. This partial result was already published by one of us
around ten years ago [17], and satisfactorily reproduces the
exact calculation just for short evolution times.

The significance of this paper, besides the treatment of spin
variables, is analytically extending the real phase space to the
complex domain, so that we were able to identify complex
trajectories contributing to the semiclassical linear entropy.
More precisely, we found that sets of four classical trajectories
with final coordinates mutually connected are involved in
the semiclassical computation. We also show, for a particular
Hamiltonian, that the consideration of just a few sets of tra-
jectories produces excellent results when compared with the
quantum calculation.

It is also important to point out that the strategy of extend-
ing the classical variables to the complex space has had many
other applications in the literature. The procedure is crucial
when the intention is to use classical trajectories to describe
genuinely quantum phenomena. Examples include the treat-
ment of tunneling through a potential barrier [34] and also
dynamical tunneling [35–39], which concerns transitions be-
tween two classically unconnected regions of the phase space,
despite the absence of any energy restriction. In addition,
many manifestations of the intricate behavior observed in time
evolution of wave packets, which semiclassical approaches
in real phase space fail to describe, have encountered accu-
rate approximations using the complex analytical extension
[40–45]. With the company of Ref. [24], the present paper
includes entanglement in the list of exclusively quantum phe-
nomena studied through these complex-trajectory approaches.

It is crucial, however, to understand that our paper differs
from those previous articles [34–45] in some critical aspects.
Here, for example, a single contribution for the approxima-
tion consists of a set of four mutually connected trajectories
instead of just a single one. Moreover, we found constraints
that impose an elaborate connection among the trajectories’
end points, but they do not imply a fixed phase-space point for
them. As a consequence, contrary to the usual, we always have
a real trajectory contributing, whatever the value of the propa-
gation time. In fact, the complex trajectories complement the
computation, improving the results for longer values of time.
Finally, while the need for the complex trajectories is usually
well understood through the constrained phase-space struc-
ture, which forbids real trajectories to satisfy proper boundary
conditions, in the present approach, we still do not have a
complete comprehension of the problem from this point of
view.

We organize the paper as follows. In Sec. II, while impor-
tant preliminary results are introduced—as the coherent-state
representation (Sec. II A), the semiclassical forward and back-
ward propagators (Sec. II B), and the saddle-point method
(Sec. II C)—, we derive the formula for the semiclassical
linear entropy. After that, in Sec. III, we make a first attempt
to understand what is behind the contributing trajectories,

looking for them in the vicinity of real trajectories. At last,
a numerical application of the theory is performed in Sec. IV
and our final remarks are presented in Sec. V.

II. SEMICLASSICAL LINEAR ENTROPY

Taking ρ̂ as a pure density operator representing a state
consisting of two parts, A and B, we can evaluate their entan-
glement by calculating the linear entropy of the reduced state
ρ̂A = TrB(ρ̂), expressed by

S(ρ̂A) = 1 − P(ρ̂A). (1)

This quantity is symmetric, in the sense that S(ρ̂A) = S(ρ̂B),
and P(ρ̂A) = TrA[ρ̂2

A] is the purity of ρ̂A. Essentially, if the
total state ρ̂ is separable, then the purity of its reduced states is
always equal to 1. On the other hand, for the case of entangled
states, the purity lies in the range 0 � P(ρ̂A) < 1. Clearly,
these properties promote S(ρ̂A) to a kind of entanglement
sensor for pure bipartite states: it returns zero, for separable
states, and a value such that 0 < S(ρ̂A) � 1, for the entangled
ones.

In the present paper, we are interested in describing en-
tanglement as a function of time T , so that it is convenient
to write the state under investigation as ρ̂T = ÛT ρ̂0Û

†
T , where

ÛT is a general time-evolution operator. Concerning the initial
state ρ̂0, we remind the reader that it must be considered as a
pure state, that is, ρ0 = |ψ0〉〈ψ0|. For the sake of clearness,
we will initially consider a discrete basis {|nA〉 ⊗ |nB〉}, where
{|nA〉} spans HA, the Hilbert space assigned to part A, and the
same for part B. Given all these points, in order to derive a
semiclassical formula for Eq. (1), notice that we simply need
to deal with

PT =
∑

nA,...,mB

〈nA, nB|ÛT |ψ0〉〈ψ0|Û †
T |mA, nB〉

× 〈mA, mB|ÛT |ψ0〉〈ψ0|Û †
T |nA, mB〉, (2)

which is an explicit formula for the purity of a reduced state
obtained from |ψ0〉, evolved in time according to a general ÛT .

As our goal is studying spin systems in a semiclassical
approach, the next step is rewriting Eq. (2) in terms of a
more appropriate basis. We will adopt the spin-coherent-state
representation, introduced in the following.

A. Spin-coherent states

For simplicity, we will begin the present discussion re-
stricted to only one part of the bipartite system. Later on,
results will be straightforwardly extended to the whole state.
We also need to comment that there are several references
dealing with this subject [46–50], from which this subsection
was written.

Essentially, a spin-coherent state |s〉 is interpreted as the
most classical spin state, in the sense that it saturates the
uncertainty relation for the angular momentum operator Ĵ =
(Ĵx, Ĵy, Ĵz ),

〈
�Ĵ2

a

〉〈
�Ĵ2

b

〉
� 1

4 |〈[Ĵa, Ĵb]〉|2 + 1
4 |〈{�Ĵa,�Ĵb}〉|2,
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where a and b can assume x, y, or z. For the (2 j + 1)-
dimensional case, |s〉 is explicitly given by

|s〉 = exp {sĴ+}
(1 + |s|2) j | − j〉, (3)

where Ĵ+ = Ĵx + iĴy is the raising spin operator and the ket | −
j〉 is the extremal eigenstate of Ĵz with eigenvalue − j. Notice
that Ĵ and the complex number s, used to label the state, are
dimensionless quantities.

An interesting and useful way to represent a coherent state
can be reached from its mean value

〈Ĵ〉 = jn,

where n is a unitary vector conveniently written in spher-
ical coordinates as n = (sin θ cos φ, sin θ sin φ, cos θ ). The
connection between the label s and n becomes particularly
simple when a stereographical projection involving the com-
plex plane s and the unitary sphere is considered. Making the
south pole correspond to s = 0, while the north pole corre-
sponds to s → ∞, we find that

s = |s|e−iφ, with |s| = cot(θ/2). (4)

Since |s〉 are minimum-uncertainty states, it becomes natural
to connect 〈Ĵ〉 with a classical angular momentum jn, which
justifies the appeal to use them in semiclassical approaches.

In practice, we can say that the wide use of coherent states
in many research fields is somehow due to their capacity of
generating a basis for the states in Hilbert’s space. In partic-
ular, it allows for defining an overcomplete unity resolution

∫
|s〉〈s| dμ(s) = 1̂, dμ(s) ≡ 2 j + 1

π

ds(R)ds(I )

(1 + |s|2)2 , (5)

where s(R) and s(I ) are, respectively, the real and the imag-
inary part of s, and the integral runs from −∞ to +∞. In
addition, it is important to mention that spin-coherent states
are nonorthogonal,

〈s|s̃〉 = (1 + s∗s̃)2 j

(1 + |s̃|2) j (1 + |s|2) j ,

where s∗ (s̃∗) is the complex conjugate of s (s̃).
We can now return to the original problem of entanglement

in bipartite states, constraining the initial state as a product of
two coherent states, that is,

|ψ0〉 = |s0〉 = |s0A〉 ⊗ |s0B〉 ≡ |s0A, s0B〉, (6)

where both |s0A〉 and |s0B〉 are given by Eq. (3). Moreover,
according to Eq. (5), we can rewrite Eq. (2) in the spin-
coherent-state representation, finding

PT =
∫

〈sA, sB|ÛT |s0〉 × 〈s0|Û †
T |s̃A, sB〉

× 〈s̃A, s̃B|ÛT |s0〉 × 〈s0|Û †
T |sA, s̃B〉 dμ, (7)

where dμ ≡ dμ(sA) dμ(s̃A) dμ(sB) dμ(s̃B). In the integrand,
we identify four quantum propagators, defined by

Kξ (sη, sμ, T ) = 〈sηA, sηB|e−iξ ĤT/h̄|sμA, sμB〉, (8)

where Ĥ is the Hamiltonian, ÛT = e−iĤT/h̄, sη = (sηA, sηB),
and sμ = (sμA, sμB). The label ξ refers to forward (ξ = +) or
backward (ξ = −) propagators.

Equation (7) is proper to apply our semiclassical approx-
imation, replacing each quantum propagator Kξ with their
respective semiclassical formulas Kξ . For this reason, in the
next subsection, we briefly discuss such approximated expres-
sions.

B. Semiclassical propagator

There is a vast literature concerning the application of
semiclassical approximations to the forward quantum prop-
agator K+, for both canonical and spin degrees of freedom
[51–64]. On the other hand, concerning the backward prop-
agator K−, we point out that we have worked with its
semiclassical version in the last decade [17,19,24,65]. Very
shortly, to deduce a semiclassical expression for K±, one
starts from its path-integral formulation, identifying, under
proper assumptions ( j → ∞ and/or h̄ → 0), certain classical
trajectories as the critical paths of integration. Thus, to con-
clude the approximation, the integrand is expanded up to the
second order around them, and the resulting Gaussian integral
is computed.

The classical trajectory involved in this kind of calculation
has initial and final boundary conditions mandatorily related
to the labels of the ket and the bra appearing in Eq. (8). Such
constraints are simplified when a new set of classical variables
u = (uA, uB) and v = (vA, vB) is introduced, according to

H̃ (u, v) = H̃ (s, s∗) ≡ 〈s|Ĥ |s〉. (9)

Using it, the mentioned boundary conditions become

u′ = sμ and v′′ = s∗
η, for ξ = +,

u′′ = sμ and v′ = s∗
η, for ξ = −, (10)

where (here and in the rest of the paper) we use the notation
that a single (double) prime stands for initial (final) time.
Classical equations of motion in the new variables are

∂H̃

∂uA
= −2ih̄ jv̇A

(1 + uAvA)2 and
∂H̃

∂vA
= 2ih̄ ju̇A

(1 + uAvA)2 , (11)

and the equivalent for the variables assigned to part B.
The peculiarity of the semiclassical propagators in coher-

ent states resides in the fact that the boundary conditions
(10) are generally overdetermined, provided that one keeps
the natural assumption that u is the complex conjugate of v,
and vice versa. In other words, Eq. (10) implies the complete
knowledge of both initial and final phase-space points. As a
trajectory is determined by only one of them, the possibility
of finding one that satisfies (10) is reduced to the very sin-
gular case where sη and sμ are fortuitously connected by the
classical dynamics.

This problem is surpassed by realizing that the theory
allows for the analytical continuation of the (real) classical
phase space onto the complex domain. In this case, u and
v are seen as independent variables and the searching for
trajectories, which are now complex, becomes possible, in
general. From this scenario, we emphasize the importance of
distinguishing real and complex trajectories. While the former
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lives in the ordinary classical phase space, having the prop-
erty u∗ = v, for all instants of time, the last one inhabits an
extended (complex) phase space and u∗ 
= v. We should also
comment that more than one trajectory satisfying Eqs. (10)
and (11) may exist, and all of them in principle should be used
in the calculation of Kξ .

The stability of the complex trajectories presented above
is explicitly involved in the semiclassical calculations here
studied. For this reason, it is important to define the stability
matrix M through the expression(

δu′′
δv′′

)
=

(
Muu Muv
Mvu Mvv

)(
δu′
δv′

)
. (12)

Essentially, M is responsible for the evolution of sufficiently
small initial displacements δu′ and δv′ until the final time T .
As we will show [see Eq. (15) below], the elements of M can
be written in terms of the second derivatives of the complex
action Sξ = Sξ (s∗

η, sμ, T ), which is given by

Sξ = ξ

∫ T

0
[ih̄ jχ − H̃ ]dt − ih̄ j̃, (13)

where χ ≡ χA + χB and ̃ ≡ ̃A + ̃B, with

χA ≡ u̇AvA − uAv̇A

1 + uAvA
, ̃A ≡ ln [(1 + u′

Av′
A)(1 + u′′

Av′′
A)],

and the same for part B. By differentiating Sξ , we get the
relations

∂S+
∂u′

A

= −2ih̄ jv′
A

1 + u′
Av′

A

,
∂S−
∂u′′

A

= −2ih̄ jv′′
A

1 + u′′
Av′′

A

,

∂S+
∂v′′

A

= −2ih̄ ju′′
A

1 + u′′
Av′′

A

,
∂S−
∂v′

A

= −2ih̄ jv′
A

1 + u′
kv

′
A

, (14)

and the analog for part B, which will be also very useful later.
Now, if we differentiate Eq. (14) and properly rearrange the
terms (for details, see Appendix A of Ref. [19]), we have

i

h̄
S(+)

u′v′′ = (A′ + B′)M−1
vv ,

i

h̄
S(−)

v′u′′ = (A′ + B′)M−1
uu ,

i

h̄
S(+)

v′′v′′ = (A′′ + B′′)MuvM−1
vv − C′′,

i

h̄
S(−)

u′′u′′ = (A′′ + B′′)MvuM−1
uu − D′′, (15)

where

S(ξ )
αβ

≡
⎛
⎝ ∂2Sξ

∂αA∂βA

∂2Sξ

∂αA∂βB

∂2Sξ

∂αB∂βA

∂2Sξ

∂αB∂βB

⎞
⎠.

In Eq. (15), we also define the auxiliary matrices C′′ ≡
u′′

A
2A′′ + u′′

B
2B′′ and D′′ ≡ v′′

A
2A′′ + v′′

B
2B′′, with

A ≡ 2 j

(1 + uAvA)2
IA and B ≡ 2 j

(1 + uBvB)2
IB,

where

IA ≡
(

1 0
0 0

)
and IB ≡

(
0 0
0 1

)
.

To write the semiclassical formula of Kξ , we still need to
define Gξ = Gξ (s∗

η, sμ, T ) and Dξ = Dξ (s∗
η, sμ, T ), such that

Gξ = ih̄ξ

4

∫ T

0

[
∂ u̇A

∂uA
− ∂ v̇A

∂vA
+ ∂ u̇B

∂uB
− ∂ v̇B

∂vB

]
dt,

Dξ = ẽ

4 j2
det

(
i

h̄
S(ξ )

sμs∗
η

)
. (16)

Given all these functions, we finally write

Kξ (s∗
η, sμ, T ) =

∑
c.t.

√
Dξ e

i
h̄ (Sξ +Gξ )−, (17)

where the term  ≡ A + B is originated from the nor-
malization of the states |sη〉 and |sμ〉, with A ≡ j ln[(1 +
|sηA|2)(1 + |sμA|2)] and the equivalent for B. The sum runs
over all complex trajectories as defined earlier.

C. Saddle-point method

As already announced, we will now replace each quantum
propagator seen in Eq. (7) with its semiclassical version (17).
For clearness, we list below the replacements that we want to
do:

〈sA, sB|ÛT |s0〉 → K1(s∗
A, s∗

B; s0; T ),

〈s0|Û †
T |s̃A, sB〉 → K2(s∗

0; s̃A, sB; T ),

〈s̃A, s̃B|ÛT |s0〉 → K3(s̃∗
A, s̃∗

B; s0; T ),

〈s0|Û †
T |sA, s̃B〉 → K4(s∗

0; sA, s̃B; T ). (18)

Notice that K1 and K3 refer to semiclassical forward propaga-
tors, while K2 and K4 are the backward ones. From this point
on, we will refer to the trajectory involved in the calculation
of Kk simply as [uk (t ), vk (t )], for k = 1, . . . , 4. In accordance
with the (extended) complex phase space discussed in the last
subsection, we will consider the pair (sA, s∗

A) as independent
variables, and the same for (s̃A, s̃∗

A), (sB, s∗
B), and (s̃B, s̃∗

B).
Thus, taking into account the boundary conditions (10), we
rewrite the integration variables of Eq. (7) as

s∗
A → v′′

1A, s∗
B → v′′

1B, s̃A → u′′
2A, sB → u′′

2B,

s̃∗
A → v′′

3A, s̃∗
B → v′′

3B, sA → u′′
4A, s̃B → u′′

4B. (19)

Following this approach, it is also important to revisit Eq. (5),
defined as an integration over the whole complex plane s. By
considering s and s∗ as independent variables, this integral is
reinterpreted as two path integrals, one along the s plane and
the other along the s∗ plane. In this case, we have

dμ(s) = 2 j + 1

2π i

ds ds∗

(1 + s s∗)2
,

a result that should be joined to our calculation. When we
accomplish all these tasks, Eq. (7) becomes

PT ≈
∫ √

D1

√
D2

√
D3

√
D3 exp[�] dμ, (20)

where

� ≡
4∑

k=1

[
i

h̄
(Sk + Gk )

]
− ln

[
(1 + |s0A|2)(1 + |s0B|2)

]4 j
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− ln (1 + u′′
4Av′′

1A)2 j − ln (1 + u′′
2Av′′

3A)2 j

− ln (1 + u′′
2Bv′′

1B)2 j − ln (1 + u′′
4Bv′′

3B)2 j

and

dμ ≡
(

2 j + 1

2π i

)4 du′′
4Adv′′

1A

(1 + u′′
4Av′′

1A)2

du′′
2Adv′′

3A

(1 + u′′
2Av′′

3A)2

× du′′
2Bdv′′

1B

(1 + u′′
2Bv′′

1B)2

du′′
4Bdv′′

3B

(1 + u′′
4Bv′′

3B)2
. (21)

Functions Dk , Sk , and Gk clearly refer to their respective semi-
classical propagator Kk . Notice that the sum over complex
trajectories was omitted in Eq. (20), for simplicity. This point
will be resumed later.

We are now ready to deduce a semiclassical expression for
the linear entropy, attacking Eq. (20) through the saddle-point
method (or steepest descent method) [66]. To start the compu-
tation, we first recognize that the line integral (20) is defined
in a space of eight complex variables, which we will rewrite
as

rT ≡ (v′′
1A, v′′

1B, u′′
2A, u′′

2B, v′′
3A, v′′

3B, u′′
4A, u′′

4B), (22)

where rT indicates the transpose of the column vector r. For
each point of the integration path, the input parameters of
all Kk are automatically determined, which define the four
trajectories needed to evaluate the integrand. In particular,
notice that u′

k (for k = 1 and 3) and v′
k (for k = 2 and 4) are

determined independently of r, as they are given by s0 and
s∗

0, respectively. Then, the direct prescription for computing
integral (20) is following the path of integration and summing
the contribution of each point.

However, it happens that the integrand of Eq. (20) quickly
oscillates around zero along any generic path. It occurs be-
cause of the semiclassical regime assumed here: as j → ∞
(with h̄ ∼ 1/ j), a simple inspection in the function Sk , present
in �, assures this behavior. Therefore, one can say that the
integral vanishes along generic paths, which is actually the
reason why we have so far neglected any information about
paths of integration. The purpose of the steepest descent
method consists of finding the saddle points of the integrand
and, supported by Cauchy’s integral theorem, performing the
integral along its steepest descents. By doing so, the rapid
oscillations are dropped out because the imaginary part of
� is constant along this particular path [66]. Moreover, in
the regime considered, in general, it is enough to replace �

with its second-order expansion around the saddle point, so
that solving Eq. (20) simply becomes computing a Gaussian
integral.

The saddle point r̄ is given by the solution of ∇� = 0,
where the derivatives are taken with respect to the components
of r. In the semiclassical limit, the derivatives of Gk can be
disregarded in comparison to other terms of �. Therefore,
with the help of Eq. (14), we find that the saddle point should
satisfy

v̄′′
1A = v̄′′

4A, v̄′′
1B = v̄′′

2B, ū′′
2A = ū′′

3A, ū′′
2B = ū′′

1B,

v̄′′
3A = v̄′′

2A, v̄′′
3B = v̄′′

4B, ū′′
4A = ū′′

1A, ū′′
4B = ū′′

3B. (23)

Notice that these relations imply that the final points of the
four critical trajectories are mutually connected. For instance,

the final point (ū′′
1A, ū′′

1B, v̄′′
1A, v̄′′

1B) of the trajectory entering
in K1 must be equal to (ū′′

4A, ū′′
2B, v̄′′

4A, v̄′′
2B), which represents

a joint constraint with the final points of the trajectories 2
and 4 (analogous relations can be found for other trajec-
tories). Because of this property, we also call these four
trajectories, used to evaluate the semiclassical linear entropy,
as entangled-boundary-condition trajectories, in accordance
with the nomenclature adopted in Ref. [24].

The eight equalities of Eq. (23), in addition to the initial
conditions

ū′
1 = ū′

3 = s0 and v̄′
2 = v̄′

4 = s∗
0, (24)

give all prescriptions needed to find contributing sets of
four complex trajectories. In particular, when v̄′

1 = v̄′
3 = s∗

0
and ū′

2 = ū′
4 = s0, all trajectories are the same and real, as

discussed in Sec. II B. As studied in Refs. [17,19], these
trajectories also satisfy Eq. (23), leading to a semiclassical
approximation for the linear entropy which agrees with the
quantum result only for short evolution time. As previously
mentioned, here we will get a better accuracy by including the
complex trajectories.

The picture drawn at this point of the calculation is similar
to others in the literature. We have to connect the initial and
final points of classical trajectories, but the rules governing
the dynamics strongly limit this task. We refer to those sce-
narios appearing in the derivation of semiclassical propagators
both in coherent-state [51–64] and momentum representations
[35–37], the latter for dynamical tunneling studies. In these
cases, we remind the reader that the solution to circumvent the
restrictions was considering complex trajectories. However,
despite the similarities between these two problems, some
differences should be clarified. For the semiclassical propa-
gators, information about initial and final points is given, and
no real classical (single) trajectory satisfies them. Here, for
the semiclassical linear entropy, we require that a set of four
trajectories satisfies constraints combining simple initial (24)
with mutually connected final conditions (23). As their final
points are not individually fixed, the real trajectory starting
from the centroid of the coherent state fulfills all these require-
ments and, therefore, should be considered in the calculation.
This single classical contribution seems to indicate that or-
dinary classical mechanisms initially promote entanglement.
As time runs, however, only complex trajectories are able to
reproduce its behavior.

Once the saddle point of the integrand is understood, we
proceed with the calculation, performing the expansion of the
integrand around it. As usual, functions Gk and prefactors Dk

are just calculated at the saddle point, so that

PT ≈
(

2 j + 1

2π i

)4
(

4∏
k=1

√
D̄k

J̄k

)
e�̄IG, (25)

where J̄k = (1 + ū′′
kAv̄′′

kA)(1 + ū′′
kBv̄′′

kB) and IG is the Gaussian
integral

IG ≡
∫

d8r exp

[
−1

2
rT Q̄ r

]
=

√
(2π )8

det Q̄
.
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The bar over the functions indicates that they should be eval-
uated with the saddle point r̄, and Q̄ is the 8 × 8 matrix

Q̄ ≡ −

⎡
⎢⎢⎢⎢⎣

R̄(1)
vv −B̄(2) 0 −Ā(4)

−B̄(1) R̄(2)
uu −Ā(3) 0

0 −Ā(2) R̄(3)
vv −B̄(4)

−Ā(1) 0 −B̄(3) R̄(4)
uu

⎤
⎥⎥⎥⎥⎦, (26)

where

R̄(k)
vv ≡ C̄(k) + i

h̄
S̄(k)

v′′v′′ and R̄(k)
uu ≡ D̄(k) + i

h̄
S̄(k)

u′′u′′ .

The definitions of Ā(k), B̄(k), C̄(k), D̄(k), and S̄(k)
αβ

are presented
right below Eq. (15), provided with information about the
trajectory number k.

Equation (25) can be substantially simplified if we replace
the second derivatives of the complex action with the elements
of the stability matrix M, according to Eq. (15). Using this
strategy, we finally get the semiclassical linear entropy of
the reduced state derived from the pure state |ψ0〉, given by
Eq. (6), as a function of the time evolution T :

SSC(T ) = 1 −
∑
sets

√
A

det F
e

i
h̄ [F1−F2+F3−F4]. (27)

Here, for simplicity, we remove the bar over the symbols and
define the matrix

F ≡

⎛
⎜⎜⎜⎜⎝

−M(1)
uv IBM(2)

uu 0 IAM(4)
uu

IBM(1)
vv −M(2)

vu IAM(3)
vv 0

0 IAM(2)
uu −M(3)

uv IB M(4)
uu

IAM(1)
vv 0 IBM(3)

vv −M(4)
vu

⎞
⎟⎟⎟⎟⎠,

and the functions

Fk ≡
∫ T

0
(ih̄ jχk − H̃ )dt + Gk

and A ≡ AAAB, with

AA ≡
4∏

k=1

1 + u′′
kAv′′

kA

1 + u′
kAv′

kA

(
1 + u′

kAv′
kA

1 + |s0A|2
)2 j

,

and the equivalent for AB.
Equation (27) is the main result of the present paper and an

example of its application will be presented in Sec. IV. The
sum in SSC(T ) indicates that all sets of classical trajectories
respecting the boundary conditions (23) and (24) are, in prin-
ciple, important to approach the quantum linear entropy (1).
Notice that this consideration recovers the arbitrary exclusion
of the summation in Eq. (20). However, we need to comment
that numerical evidence shows that some sets of trajectories
furnish unphysical results which give origin to unexpected
divergent behaviors, for example. These contributions will be
arbitrarily excluded from the calculation. Although we do not
mathematically prove this argument, we associate this issue
with those saddle points of Eq. (20) the steepest descents of
which cannot be deformed from the original path of integra-
tion. We remind the reader that this kind of problem is very
common in applications of coherent-state propagators [41,55].

The derivation of SSC(T ) assumes the semiclassical
regime, as we have considered large values of j. Working

with the extremal case j → ∞ and based on the correspon-
dence principle, we can say that real trajectories are enough
to reproduce the quantum behavior. By relaxing this condi-
tion, we expect that complex trajectories become important
to the approximation. Then, we can think that the complex
contributions closer to the real one should be among the most
important to evaluate SSC(T ). For this reason, in the next
section, we investigate general conditions needed for finding
sets of quasireal trajectories, as an attempt to understanding
their origin.

III. SETS OF QUASIREAL TRAJECTORIES

A natural question that arises from the present theory
concerns the investigation of the physical mechanism behind
the emergence of complex classical trajectories contributing
to Eq. (27). The comprehension of this process will clarify
aspects of the quantum-classical connection related to the
entanglement phenomenon. As an effort to unravel this issue,
in the present section, we will explore the vicinity of the
real contributing trajectory, searching for complex trajectories
satisfying the boundary conditions (23) and (24).

To follow this idea, we remind the reader that, for any
input parameters s0 and T , we know that the set of four real
and identical trajectories starting from ū′ = s0 and v̄′ = s∗

0
contributes to Eq. (27). In this section, a bar over the symbol
refers to the real trajectory. We will look for four complex
trajectories wk (t ) ≡ [uk (t ), vk (t )], for k = 1, . . . , 4, close to
the real one and constrained to Eqs. (23) and (24), with the
former rewritten here as

w′′
1 =

(
IA 0
0 IA

)
w′′

4 +
(

IB 0
0 IB

)
w′′

2,

w′′
3 =

(
IA 0
0 IA

)
w′′

2 +
(

IB 0
0 IB

)
w′′

4 . (28)

As all these trajectories are in the vicinity of the real one, we
have

wk (t ) = w̄(t ) + δwk (t ), for k = 1, . . . , 4. (29)

where δwk (t ), by construction, are small complex numbers.
Notice that, if we are able to calculate all δw′

k through the
imposition of the initial and final boundary conditions, we get
a new set of four contributing trajectories. Imposing the initial
constraints implies

δu′
1A = δu′

3A = δv′
2A = δv′

4A = 0, (30)

and the same for part B. Notice that δv′
1A, δv′

1B, δv′
3A, δv′

3B,
δu′

2A, δu′
2B, δu′

4A, and δu′
4B are still undetermined. To solve

these variables we need to work with conditions (28). Sum-
ming and subtracting them, we get, respectively,

δw′′
1+3 = δw′′

2+4, δw′′
1−3 =

(
IB − IA 0

0 IB − IA

)
δw′′

2−4,

(31)
where δw1±3 ≡ δw1 ± δw3 and δw2±4 ≡ δw2 ± δw4.

The next step is to write the final displacements as func-
tions of the initial ones using the stability matrix (12), finding

M̄uvδv′
1+3 = M̄uuδu′

2+4,

M̄vvδv′
1+3 = M̄vuδu′

2+4,
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M̄uvδv′
1−3 =

(−1 0
0 1

)
M̄uuδu′

2−4,

M̄vvδv′
1−3 =

(−1 0
0 1

)
M̄vuδu′

2−4. (32)

By manipulating the first two equations, we get[
M̄vv − M̄vuM̄−1

uu M̄uv
]
δv′

1+3 ≡ M̄+
13δv′

1+3 = 0,

[
M̄uu − M̄uvM̄−1

vv M̄vu
]
δu′

2+4 ≡ M̄+
24δv′

2+4 = 0, (33)

where the former (latter) assumes that M̄uu (M̄vv) is invertible.
The other two equations of (32) furnish[

M̄vv − M̄�
vuM̄−1

uu M̄�
uv

]
δv′

1−3 ≡ M̄−
13δv′

1−3 = 0,

[
M̄uu − M̄�

uvM̄−1
vv M̄�

vu

]
δu′

2−4 ≡ M̄−
24δv′

2−4 = 0, (34)

where we define

M̄�
uv ≡

(−1 0
0 1

)
M̄uv,

and the equivalent for M̄�
vu. Using the identities

det M̄ =
{

det[M̄uuM̄+
13], for det M̄uu 
= 0,

det[M̄vvM̄+
24], for det M̄vv 
= 0,

(35)

according to Eq. (33), we conclude that nontrivial solutions of
δv′

1+3 and δv′
2+4 will exist only if det M̄ = 0. However, it can

be shown (see Ref. [19], Appendix C) that

det M̄ = (1 + ū′′
Av̄′′

A)2(1 + ū′′
Bv̄′′

B)2

(1 + ū′
Av̄′

A)2(1 + ū′
Bv̄′

B)2 
= 0, (36)

as M̄ is the stability matrix of a real trajectory, that is, ū = v̄∗.
Therefore, the solution of Eq. (32) is

δv′
1+3 = δv′

2+4 = 0 �⇒
{
δv′

1 = −δv′
3,

δv′
2 = −δv′

4.
(37)

Concerning the other two variables δv′
1−3 and δv′

2−4, in anal-
ogy to Eq. (35), we notice that

det M̄� =
{

det[M̄uuM̄−
13], for det M̄uu 
= 0,

det[M̄vvM̄−
24], for det M̄vv 
= 0,

(38)

where we define

M̄� ≡
(

M̄uu M̄�
uv

M̄�
vu M̄vv

)
. (39)

Therefore, according to Eq. (34), the condition for finding
nontrivial solutions of δv′

1−3 and δv′
2−4 is det M̄� = 0. Con-

trarily to M̄, for matrix (39) we have not found a general result
for its determinant, so that we should analyze this point for
each application. For the particular case of a nonsingular M̄�,
we have

δv′
1−3 = δv′

2−4 = 0 �⇒
{
δv′

1 = δv′
3,

δv′
2 = δv′

4.
(40)

Then, according to Eq. (37), we find δw′
k = 0 for all k, imply-

ing the absence of complex contributing trajectories arbitrarily
close to the real one. This will be the case of the system
studied in the next section.

At last, we highlight that our efforts to probe the vicinity
of a real contributing trajectory are justified because it is ex-
pected to be the most important phase-space region, provided
that the semiclassical regime is assumed. Although we still
have no clear understanding of how complex contributing
trajectories could be continuously originated from the real
phase space, we found the condition for it occurs, which is
det M̄� = 0.

IV. PHASE COUPLING HAMILTONIAN

Our first application of the present semiclassical theory
concerns a system of two particles, A and B, the spins of which
interact with each other according to the Hamiltonian

Ĥpc = λh̄
[
Ĵ (z)

A ⊗ Ĵ (z)
B

]
, (41)

where ĴA = (Ĵ (x)
A , Ĵ (y)

A , Ĵ (z)
A ) is the spin operator acting on A

(the same for part B) and λ is the coupling constant. This
example was already used in Ref. [19], but limited to the
case where only real trajectories were used to compute the
semiclassical linear entropy (27).

By considering the initial state (6), the quantum entropy (1)
for this system becomes

Spc = 1 −
∑

c(2 j)
nA

c(2 j)
mA

c(2 j)
nB

c(2 j)
mB

e−iλT δAδB , (42)

where δA ≡ nA − mA and

c(2 j)
nA

≡
(

2 j

nA

) |s0A|σA

(1 + |s0A|2)2 j
,

with σA ≡ nA − mA, and the analog for part B. The sum is over
nA, mA, nB, and mB, running from zero to 2 j. As Eq. (42) is
clearly periodic in T , with a period Tr ≡ 2π/λ, it is convenient
to define the dimensionless time

τ ≡ T/Tr,

and restrict our study to the interval 0 < τ < 1. In terms of
τ , notice that Eq. (42) becomes independent of the coupling
constant λ. The period Tr , on the other hand, increases with the
inverse of λ. Therefore, we can say that, inside the range of in-
terest 0 < τ < 1, the entropy Spc is insensitive to λ. Although
it is not explicitly shown in our plots, we point out that the
size Tr of this time window amounts to observe an evolution
time T which extends until ∞ (when λ → 0), or zero (when
λ → ∞). Moreover, inspecting all functions involved in the
semiclassical approximation of Spc, derived in the following,
we verify the same with respect to λ: using τ instead of T , the
coupling factor does not appear in the calculation. In Fig. 1,
for numerical values chosen as

j = 4.5 and s0A = s0B = λ = 1, (43)

we illustrate, with the blue (gray) solid line, the behavior
of the quantum entanglement dynamics (42) during a period
Tr . As expected, for the initial separable state, Spc is null,
growing up as time increases. Then, after some oscillations
for intermediate values of time, it returns to zero for τ = 1.

In order to obtain the semiclassical linear entropy to com-
pare with the quantum calculation, we need to consider the
equivalent classical description, the Hamiltonian function (9)
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FIG. 1. The blue (gray, in the print grayscale version) solid line
illustrates the quantum linear entropy (42) as a function of the dimen-
sionless time τ . We also show results for the semiclassical entropy
(27): the red (dark gray) dashed line illustrates SSC when we take into
account only real trajectories, while the black solid line contemplates
the inclusion of a few dozen complex sets. The numerical parameters
used to build this figure are given by Eq. (43).

of which is given by

H̃pc(u, v) = λh̄ j2

(
1 − uAvA

1 + uAvA

)(
1 − uBvB

1 + uBvB

)
.

Therefore, the equations of motion (11) can be easily solved,
so that the trajectories, written in terms of generic initial
conditions u′ and v′, are given by

uA(t ) = u′
A e+λBt , uB(t ) = u′

B e+λAt ,

vA(t ) = v′
A e−λBt , vB(t ) = v′

B e−λAt , (44)

where

λA ≡ iλ j

(
1 − u′

Av′
A

1 + u′
Av′

A

)
,

and the same for λB. We point out that, if one differentiates
Eq. (44), the stability matrix (12), which is an important
ingredient of Eq. (27), can be easily achieved [19].

After this brief presentation of the classical description of
the problem, we can finally look for the sets of four entangled
trajectories [uk (t ), vk (t )], with k = 1, . . . , 4, which contribute
to SSC. Notice that the initial boundary conditions (24) are
easily imposed to the trajectories (44). The application of the
eight final constraints (23), on the other hand, requires exten-
sive but straightforward algebra. The strategy to deal with this
point consists of writing the unknown initial variables as

v′
1A = xA

1 s∗
0A, u′

2A = xA
2 s0A,

v′
3A = xA

3 s∗
0A, u′

4A = xA
4 s0A, (45)

and the equivalent for B. With these expressions, by im-
posing Eq. (23), we get a system of eight variables
(xA

1 , . . . , xA
4 , xB

1 , . . . , xB
4 ), and the same number of equations.

By manipulating them, one can show that the variable xA
1

should be a solution of the transcendental equation

f
(
xA

1

) ≡ fB
[

fA
(
xA

1

)] − xA
1 = 0, (46)

where fA (analogously for fB) is a function defined according
to

fA(x) = exp

[ −2i jλ|s0A|2T (x2 − 1)

(1 + |s0A|2x)(x + |s0A|2)

]
.

Once Eq. (46) is numerically solved for xA
1 , the variable xB

1 can
be obtained from xB

1 = fA(xA
1 ), and the other six variables are

given by

xA
2 = 1/xA

1 , xA
3 = 1/xA

1 , xA
4 = xA

1 ,

xB
2 = xB

1 , xB
3 = 1/xB

1 , xB
4 = 1/xB

1 .

With the values of all these variables in hand, we return to
Eq. (45) to get the rest of the information needed to find the
initial points, u′

k and v′
k , of the four trajectories belonging to a

contributing set.
In practice, to each solution of the transcendental equation,

we assign a set of trajectories which, in principle, should be
included in SSC. That is, for the present application, the task of
finding contributing trajectories is equivalent to get solutions
of (46). Then, given its importance, we now focus on some
properties of this equation. First, we point out that xA

1 = 1 is
a solution, for any value of T . In this case, notice that all four
trajectories have the same initial conditions u′

k = s0 and v′
k =

s∗
0, implying that they are real and identical. If we consider

only this set of trajectories to evaluate Eq. (27), as we already
said, we get the same results as Ref. [19], which are illustrated
in Fig. 1 through the red (dark gray) dashed curve. Clearly,
real trajectories provide a good approximation for the entropy
(42), but only for the first stage of the time evolution.

Extending the accuracy of the semiclassical entropy to
longer values of time necessarily involves other solutions of
Eq. (46). For T = 0, however, it can be easily shown that
the only solution is xA

1 = 1. Fortunately, when T increases,
other solutions arise, part of them from the region around
the origin while others arise from infinity. This behavior is
illustrated in Figs. 2(a)–(c), where we show some contours
of f (xA

1 ) in the complex plane xA
1 . There, black solid and

red (dark gray) dashed curves refer to Re[ f (xA
1 )] = 0 and

Im[ f (xA
1 )] = 0, respectively. Intersection points of these two

curves are, therefore, the roots of f (xA
1 ). In Fig. 2(a), built for

a short value of time τ = 0.01, notice that only the solution
xA

1 = 1 appears. The others cannot be seen because either
they are too close to the origin or too far from it, and their
contribution to SSC was numerically proven to be negligible.
These observations justify the fact that real trajectories are
enough to approach Eq. (42), as τ → 0. In Figs. 2(b) and 2(c),
for τ = 0.1 and 0.5, respectively, other roots of f (xA

1 ) start
to appear in the plots, indicating that new sets of complex
trajectories become important to calculate SSC. The results
reported above are somehow consistent with the semiclassi-
cal regime. Moreover, they indicate that a complex solution
should be close to the classical one to contribute effectively. It
is reasonable, therefore, to elect the region around xA

1 = 1 to
look for complex trajectories.

Before picking up each solution of the transcendental equa-
tion shown in the plots, it is important to systematize this
procedure. We first notice that, for a given root x̄A

1 , a simple
inspection of Eq. (46) shows us that its complex conjugates
(x̄A

1 )∗ and their inverses, 1/x̄A
1 and 1/(x̄A

1 )∗, are also roots of
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FIG. 2. Contour plots of f (xA
1 ) in the xA

1 -complex plane. Black solid lines refer to the curves where Re[ f (xA
1 )] = 0, while the red (dark gray,

in the print grayscale version) dashed ones refer to Im[ f (xA
1 )] = 0. The blue (light gray) solid curve represents the unitary circle. Solutions of

Eq. (46) are given by the intersections of black solid and red (dark gray) dashed lines. In panels (a)–(c), the value of τ was chosen to be 0.01,
0.1, and 0.5, respectively. The other numerical parameters are shown in Eq. (43). A magnification of structures St1,..., St4, seen in panel (c), is
shown in Fig. 3.

f (xA
1 ). Therefore, we only need to look for these solutions

in the region inside the unitary circle, with Im[xA
1 ] � 0. Each

observed root effectively represents four sets of four complex
trajectories, and all of them should be considered, in principle.
Of course, when a root lies exactly over the real axis or the
unitary circle, this conclusion should be reconsidered because
x̄A

1 = (x̄A
1 )∗, in the first case, and 1/x̄A

1 = (x̄A
1 )∗, in the second.

Given these arguments, we first identify in Fig. 2(c) the
structures named as St1, St2, ..., St5, and reproduce their
magnified image (except for St5) in Figs. 3(a)–(d). In each
plot, we mark five roots of f (xA

1 ) with circles, in order to
calculate SSC. Other intersection points seen in the search
region were not considered because their contribution is neg-
ligible or unphysical. Of course, by varying τ , all these points
change. Therefore, to find the roots for all values of time, we
recursively apply a proper routine based on the the Newton-
Raphson method, to get a solution for τ + δτ , given that we
know the root for τ .

Finally, in Fig. 4(a), we evaluate the contribution of the sets
of complex trajectories indicated by the circles of Fig. 3(a).
The blue (gray) solid line is the quantum result Spc [this curve
also appears in Figs. 3(b)–(d), for the sake of comparison],
while the red (dark gray) dashed one is obtained from the
inclusion of the real trajectories only. When the five new solu-
tions are taken into account, the semiclassical approximation
is clearly improved (black solid curve), but both the oscilla-
tory behavior of Spc and its return to zero when τ → 1 are not
reproduced. In Fig. 4(b), new trajectories associated with the
roots marked in St2 of Fig. 3(b) are considered, as represented
by the black solid curve. Again, the inclusion of these new sets
of complex trajectories substantially improves the semiclas-
sical approximation for values of time until τ ≈ 0.5. Giving
continuity, notice in Fig. 4(c) that the interval where quantum
and semiclassical results (black solid curve) agree with each
other increases to τ ≈ 0.7 when St3 of Fig. 3(c) is considered.
Moreover, by using also the roots of St4 shown in Fig. 3(d),
the accuracy seen in Fig. 4(d) becomes still better. At last, with

the inclusion of the roots of St5, the magnification of which is
not shown in Fig. 3, all oscillatory behavior of Spc and also the
return to zero at the end of the period are very satisfactorily
reproduced, as shown by the black solid curve of Fig. 1.

With this example, we demonstrate that the semiclassical
theory used to deduce SSC can be quite successful. However,
before finishing this section, we still have to develop the ideas
presented in Sec. III. Here, we can calculate the determinant

FIG. 3. In panels (a)–(d), we show, respectively, the enlarged
image of the structures St1,...,St4, identified in Fig. 2(c). Small black
circles are placed over some roots of f (xA

1 ) to indicate that they are
considered in the calculation of Eq. (27).
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FIG. 4. Linear entropy as a function of τ . In panel (a), the red
(dark gray, in the print grayscale version) dashed curve represents the
semiclassical entropy exclusively based on real trajectories, while
the black solid line shows the result of Eq. (27) when the roots
marked in Fig. 3(a) are used. This result, for comparison purposes, is
reproduced as the red (dark gray) dashed line in panel (b), where the
black solid line represents SSC, improved by the inclusion of the roots
marked in Fig. 3(b). The same logic is applied to panels (c) and (d),
where the red (dark gray) dashed curve is copied from the previous
plot, and the black solid curve shows the result of SSC when the roots
of Figs. 3(c) and 3(d), respectively, are included. The blue (gray)
solid line appearing in all panels shows the quantum entropy (42).
The numerical parameters used here are shown in Eq. (43).

of the matrix (39), finding

det M̄� = 1 + 16 j2λ2|s0A|2|s0B|2T 2

(1 + |s0A|2)2(1 + |s0B|2)2 
= 0. (47)

Therefore, we conclude that there is no set of complex tra-
jectories arbitrarily close to the real one for any value of T .
This result seems to be in contradiction to what is shown in
Fig. 3(a), where there is a root of f (xA

1 ) very close to xA
1 = 1,

the point representing the real trajectory. In fact, Eq. (47)
means that these two points cannot coalesce—behavior that,
numerically, we have really not found. Just to illustrate a
mathematical situation where the sets of quasireal trajectories

exist, we will define the complex time

Tc ≡ ±i
(1 + |s0A|2)(1 + |s0B|2)

4λ j|s0A||s0B| , (48)

which amounts to the dimensionless τc ≡ Tc/Tr. For this value
of time, we have det M̄� = 0, indicating the existence of com-
plex contributing trajectories close to the real one. To check
this conclusion, in Fig. 5, we plot the curves Im[ f (xA

1 )] = 0
and Re[ f (xA

1 )] = 0 for three complex values of τ . In Fig. 5(a),
for τ = 0.999 τc, we see two roots of f (xA

1 ) over the uni-
tary circle and very close to xA

1 = 1. When τ = τc, the three
solutions coalesce, as shown by Fig. 5(b). Right after, for
τ = 1.001τc, we verify two other roots over the real axis,
moving away from the real contribution [Fig. 5(c)]. Finally,
it is important to comment that the calculation presented in
Sec. III has no influence in the calculation of SSC, showed
here, but we decided to keep it in this paper because it may
be important in other applications.

V. FINAL REMARKS

Starting from the formula of the quantum linear entropy,
given by Eqs. (1) and (7), which contemplates a system of
two spins initially prepared in a product of coherent states,
we performed a semiclassical approximation resulting in
Eq. (27)—the main product of the present paper. According to
this approach, the entanglement dynamics between the spins
is a function of sets of four mutually connected trajectories,
originated from the equivalent classical description of the
system. These entangled-boundary-condition trajectories live
in an extended classical phase space, obtained from the analyt-
ical continuation of the original one onto the complex domain.
As we see in Fig. 1, taking into account complex trajectories
is incontestable to achieve excellent accuracy between quan-
tum and semiclassical results. It is worth mentioning that, in
similar semiclassical approaches, the inclusion of complex
trajectories was already proven fundamental to mimic the
quantum behavior [34–45].

Concerning our previous works [17,19,24], we point
out that the present contribution effectively differs from
Refs. [17,24], because we now deal with spin degrees of free-
dom, as well as Ref. [19], which only considers the ordinary
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FIG. 5. The same as Fig. 2, but with imaginary dimensionless time: (a) τ = 0.999τc, (b) τ = τc, and (c) τ = 1.001τc.
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real trajectories. In particular, it is important to clarify that
Ref. [24] has a huge conceptual overlap with this paper,
but we emphasize that the mathematical frameworks used to
deal with canonical and spin degrees of freedom are totally
distinct.

We emphasize that the boundary conditions (23) and (24)
characterizing the sets of contributing trajectories consist of
potentially useful information. For example, it may help to
clarify questions about the situation where, in opposition to
common sense, regular classical dynamics is not directly as-
sociated with rapid entanglement growth [28–33]. Moreover,
scars of classical dynamics appearing in some plots of the
quantum entropy [22,32] may also find some explanation
using the present results. We have to comment that these
possible routes of investigation are still quite speculative, also
because our approach possesses an additional difficulty to
elucidate quantum-classical transition, which is understanding
the connection between real and complex classical dynamics.
Actually, this is the scenario that has motivated the study
presented in Sec. III.

At last, we report two straightforward future directions of
our paper. First, we intend to apply the theory to a quantum
system the classical counterpart of which is chaotic. Although
the semiclassical entropy (27) is expected to be valid, in prin-

ciple, for regular and chaotic regimes, the main difficulty, in
the second case, is the search for contributing trajectories. Due
to the absence of analytical expressions for the dynamics, it is
not possible to proceed as we did in Sec. IV, where this task
was reduced to solving a system of equations. To fill this gap,
a possible solution is to develop an algorithm to converge trial
trajectories to those satisfying the boundary conditions (23)
and (24), a strategy already used in a similar problem [55].
We emphasize that a chaotic application would finally put this
semiclassical theory in a position to be compared to many
other works of the literature. The second direct continuation
is testing Bell-type inequalities using our approach, in the
same spirit as Ref. [67]. Given that such inequalities cannot
be violated by any local classical theory, it seems that this is
a fundamental test to theories pretending to imitate quantum
mechanics.
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