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Equivalent Laplacian and adjacency quantum walks on irregular graphs
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The continuous-time quantum walk is a particle evolving by Schrödinger’s equation in discrete space.
Encoding the space as a graph of vertices and edges, the Hamiltonian is proportional to the discrete Laplacian.
In some physical systems, however, the Hamiltonian is proportional to the adjacency matrix instead. It is well
known that these quantum walks are equivalent when the graph is regular, i.e., when each vertex has the same
number of neighbors. If the graph is irregular, however, the quantum walks evolve differently. In this paper,
we show that for some irregular graphs, if the particle is initially localized at a certain vertex, the probability
distributions of the two quantum walks are identical, even though the amplitudes differ. We analytically prove
this for a graph with five vertices and a graph with six vertices. By simulating the walks on all 1 018 689 568
simple, connected, irregular graphs with 11 vertices or less, we found 64 graphs with this notion of equivalence.
We also give eight infinite families of graphs supporting these equivalent walks.
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I. INTRODUCTION

A continuous-time quantum walk is simply the quantum-
mechanical evolution of a particle in discrete space, where the
space is encoded by a graph of vertices and edges. In general,
the state of the particle |ψ〉 is a superposition over the vertices,
and it evolves by Schrödinger’s equation

i
d

dt
|ψ〉 = H |ψ〉,

where we have set h̄ = 1. For a free particle, the Hamiltonian
is the kinetic energy of the particle, so it is proportional to the
negative of the discrete Laplacian:

H = −γ L,

where γ is the proportionality factor corresponding to the
jumping rate (amplitude per time) of the walk and L = A − D
is the discrete Laplacian. Here, A is the adjacency matrix of
the graph (Ai j = 1 if vertices i and j are adjacent and Ai j = 0
otherwise), and D is the degree matrix of the graph, which
is diagonal with Dii = deg(i) and zero on the off-diagonal.
Note L is the discrete-space version of Laplace’s operator
∇2 = ∂2/∂x2 + ∂2/∂y2 + ∂2/∂z2. Setting γ = 1, the solution
to Schrödinger’s equation is

|ψL(t )〉 = eiLt |ψ (0)〉. (1)

We will refer to this as a Laplacian quantum walk, and it was
introduced by [1] to traverse decision trees. It has also been
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used for state transfer [2] and, with a suitable potential-energy
term acting as a Hamiltonian oracle, for spatial searching [3].

In some physical systems, such as networks of interacting
spins with XY interactions between nearest neighbors and
single excitations, the Hamiltonian is instead proportional to
the negative of the adjacency matrix A alone (without the
degree matrix D) [4]. That is,

H = −γ A.

Then again with γ = 1, the solution to Schrödinger’s equation
is

|ψA(t )〉 = eiAt |ψ (0)〉. (2)

We will refer to this as an adjacency quantum walk, and it
yields an exponential speedup when traversing glued trees [5].
It is also the basis for quantum algorithms for solving boolean
formulas [6], state transfer [7], and, with a suitable potential-
energy term acting as a Hamiltonian oracle, spatial searching
[8].

It is well known that if the graph is regular, meaning each
vertex has the same degree d , then the two quantum walks are
equivalent because the states only differ by a global phase. As
a proof, if the graph is regular, then D = dI , where I is the
identity matrix, and, using (1),

|ψL(t )〉 = ei(A−dI )t |ψ (0)〉 = e−idt eiAt |ψ (0)〉
= e−idt |ψA(t )〉 = |ψA(t )〉.

In the third step, we used (2), and in the final step e−idt

is an overall, global phase, which can be dropped because
it does not affect the probability distribution of where the
particle will be found when measured. In other words, there
is no experiment that can distinguish a global phase. Thus, for
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FIG. 1. The simple, connected, irregular graph with N = 5 ver-
tices where the Laplacian and adjacency quantum walks evolve with
the same probability distribution when starting at a red vertex.

regular graphs, the Laplacian and adjacency quantum walks
are exactly equivalent.

In contrast, for an irregular graph, where vertices do not all
have the same number of neighbors, the quantum walks gen-
erally evolve differently. For example, the Laplacian quantum
walk only achieves perfect state transfer from one end of a
path graph or chain to the other when the number of vertices is
2 [2,9], whereas the adjacency quantum walk achieves perfect
state transfer when the number of vertices is 2 or 3 [10]. Or, for
spatial search on complete bipartite graphs, different marked
vertices are found depending on whether the Laplacian or
adjacency matrix effect the quantum walk [11].

Despite the general difference between Laplacian and ad-
jacency quantum walks on irregular graphs, in this paper, we
present irregular graphs on which they are equivalent when the
particle starts at a certain vertex. In the next section, we give a
graph with five vertices that is the smallest simple, connected,
irregular graph on which the Laplacian and adjacency quan-
tum walks are equivalent, provided the walks start at a certain
vertex. We analytically prove this equivalence by finding the
amplitudes of the walks at time t , showing that some ampli-
tudes differ by just a phase while others differ by both a phase
and complex conjugation. We also prove this by comparing
the mixing matrix [12] of each walk. In Sec. III, we present all
64 simple, connected, irregular graphs up to 11 vertices where
the equivalence between the quantum walks holds out of a to-
tal of 1 018 689 568 simple, connected, irregular graphs. This
indicates that the equivalence is rare. By observing patterns in
these 64 graphs, we present in Sec. V eight infinite families
of simple, connected, irregular graphs where the walks are
equivalent when starting at a certain vertex, indicating that
the equivalence is simultaneously abundant. This raises the
question of whether all graphs with equivalent Laplacian and
adjacency quantum walks can be found, so we conclude in
Sec. VI with some open questions in this regard.

II. EXAMPLE WITH FIVE VERTICES

In Fig. 1, we present a graph with N = 5 vertices. Its
adjacency matrix A and degree matrix D are

A =

⎛
⎜⎜⎜⎝

0 1 1 0 0
1 0 1 1 1
1 1 0 1 1
0 1 1 0 0
0 1 1 0 0

⎞
⎟⎟⎟⎠, D =

⎛
⎜⎜⎜⎝

2 0 0 0 0
0 4 0 0 0
0 0 4 0 0
0 0 0 2 0
0 0 0 0 2

⎞
⎟⎟⎟⎠,

FIG. 2. The simple, connected, irregular graph with N = 6 ver-
tices where the Laplacian and adjacency quantum walks evolve with
the same probability distribution when starting at a red vertex.

and so the graph Laplacian L = A − D is

L =

⎛
⎜⎜⎜⎝

−2 1 1 0 0
1 −4 1 1 1
1 1 −4 1 1
0 1 1 −2 0
0 1 1 0 −2

⎞
⎟⎟⎟⎠.

We claim that the Laplacian and adjacency quantum walks
on this graph are equivalent when starting at one of the
shaded red vertices in Fig. 1, i.e., at vertex 1, 4, or 5. We
will first demonstrate this numerically, and then prove it
analytically.

First, note that in Fig. 1 vertices 2 and 3 are adjacent to each
other, and vertices 1, 4, and 5 are each adjacent to both vertices
2 and 3. Thus, vertices 1, 4, and 5 have the same structure, so
if the quantum walks are equivalent when starting at vertex 1
they are also equivalent when starting at vertex 4 or 5. Given
this, let us take vertex 1 to be the initial state of the system,
i.e.,

|ψ (0)〉 = (1 0 0 0 0)ᵀ. (3)

Using MATHEMATICA 12.0’s MatrixExp function, we can
numerically find the state of the system for each walk at time
t using (1) and (2). For example, at t = 7, we get

|ψL(7)〉 =

⎛
⎜⎜⎜⎜⎜⎝

0.1706660 − 0.6033140i
0.3807380 − 0.0856365i
0.3807380 − 0.0856365i
0.0339286 + 0.3872930i
0.0339286 + 0.3872930i

⎞
⎟⎟⎟⎟⎟⎠,

|ψA(7)〉 =

⎛
⎜⎜⎜⎜⎜⎝

0.6209840 − 0.0865674i
−0.136893 + 0.3654530i
−0.136893 + 0.3654530i
−0.379016 − 0.0865674i
−0.379016 − 0.0865674i

⎞
⎟⎟⎟⎟⎟⎠.

While the amplitudes of the two walks differ, if we take the
norm square of each amplitude, the probability distribution of

FIG. 3. The simple, connected, irregular graph with N = 7 ver-
tices where the Laplacian and adjacency quantum walks evolve with
the same probability distribution when starting at a red vertex.
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TABLE I. The number of simple, connected graphs up to 11 vertices, how many of them are regular and irregular, and how many of the
irregular graphs have equivalent Laplacian and adjacency quantum walks when starting at a certain vertex.

Vertices Simple connected graphs Regular Irregular Irregular graphs with equivalent walks

1 1 1 0 0
2 1 1 0 0
3 2 1 1 0
4 6 2 4 0
5 21 2 19 1
6 112 5 107 1
7 853 4 849 1
8 11 117 17 11 100 4
9 261 080 22 261 058 6
10 11 716 571 167 11 716 404 23
11 1 006 700 565 539 1 006 700 026 28
Total 1 018 690 329 761 1 018 689 568 64

the two states at t = 7 is

pL(7) = pA(7) =

⎛
⎜⎜⎜⎜⎜⎝

0.393114
0.152295
0.152295
0.151147
0.151147

⎞
⎟⎟⎟⎟⎟⎠. (4)

Thus, at t = 7, the probability distribution for the position
of the particle is the same for both quantum walks, so the
quantum walks are equivalent at this time. Using other small
values of t , the probability distributions of the quantum walks
are still equal. If we use a large value for time, however, a

FIG. 4. Connected, irregular graphs with N = 8 vertices where
the Laplacian and adjacency quantum walks evolve with the same
probability distribution when starting at a red vertex.

difference appears between the two probability distributions.
For example, with t = 1012, MATHEMATICA 12.0 now yields

pL(1012) =

⎛
⎜⎜⎜⎝

0.447155
0.159125
0.159094
0.117237
0.117213

⎞
⎟⎟⎟⎠, (5)

pA(1012) =

⎛
⎜⎜⎜⎝

0.447352
0.159178
0.159178
0.117205
0.117180

⎞
⎟⎟⎟⎠. (6)

FIG. 5. Connected, irregular graphs with N = 9 vertices where
the Laplacian and adjacency quantum walks evolve with the same
probability distribution when starting at a red vertex.
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FIG. 6. Connected, irregular graphs with N = 10 vertices where
the Laplacian and adjacency quantum walks evolve with the same
probability distribution when starting at a red vertex. Continued on
the next page.

Now, the probability distributions are slightly different. This
raises the question of whether this discrepancy is due to
numerical error, and the two quantum walks are actually
equivalent, or if the disparity is genuine and the quantum
walks are inequivalent. To resolve this, we next turn to an
analytical proof showing that the quantum walks are, in fact,
equivalent.

Beginning with the Laplacian quantum walk, the (un-
normalized) eigenvectors and eigenvalues of L are

ψL1 = (1 −3 0 1 1)ᵀ, λL1 = −5,

ψL2 = (0 −1 1 0 0)ᵀ, λL2 = −5,

FIG. 6. (Continued).

ψL3 = (−1 0 0 0 1)ᵀ, λL3 = −2,

ψL4 = (−1 0 0 1 0)ᵀ, λL4 = −2,

ψL5 = (1 1 1 1 1)ᵀ, λL5 = 0.

With the particle initially localized at vertex 1, we can express
the initial state (3) as a linear combination of the eigenvectors
of L:

|ψ (0)〉 = 2

15
ψL1 − 1

5
ψL2 − 1

3
ψL3 − 1

3
ψL4 + 1

5
ψL5.

Then, the state of the system at time t is obtained by multiply-
ing each eigenvector ψLi with eiλLit :

|ψL(t )〉 = 2

15
eiλL1tψL1 − 1

5
eiλL2tψL2 − 1

3
eiλL3tψL3

− 1

3
eiλL4tψL4 + 1

5
eiλL5tψL5.
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Plugging in for the eigenvectors and eigenvalues,

|ψL(t )〉 = 1

15

⎛
⎜⎜⎜⎜⎝

2e−5it + 10e−2it + 3
−3e−5it + 3
−3e−5it + 3

2e−5it − 5e−2it + 3
2e−5it − 5e−2it + 3

⎞
⎟⎟⎟⎟⎠.

Next, for the adjacency quantum walk, the (un-normalized)
eigenvectors and eigenvalues of A are

ψA1 = (2 3 3 2 2)ᵀ, λA1 = 3,

ψA2 = (1 −1 −1 1 1)ᵀ, λA2 = −2,

ψA3 = (0 −1 1 0 0)ᵀ, λA3 = −1,

ψA4 = (−1 0 0 0 1)ᵀ, λA4 = 0,

ψA5 = (−1 0 0 1 0)ᵀ, λA5 = 0.

Again with the particle initially localized at vertex 1, the initial
state (3) is

|ψ (0)〉 = 1

15
ψA1 + 1

5
ψA2 + 0ψA3 − 1

3
ψA4 − 1

3
ψA5

= 1

15
ψA1 + 1

5
ψA2 − 1

3
ψA4 − 1

3
ψA5.

Evolving to time t ,

|ψA(t )〉 = 1

15
eiλA1tψA1 + 1

5
eiλA2tψA2

− 1

3
eiλA4tψA4 − 1

3
eiλA5tψA5

= 1

15

⎛
⎜⎜⎜⎜⎝

2e3it + 3e−2it + 10
3e3it − 3e−2it

3e3it − 3e−2it

2e3it + 3e−2it − 5
2e3it + 3e−2it − 5

⎞
⎟⎟⎟⎟⎠

= 1

15

⎛
⎜⎜⎜⎜⎝

e−2it (2e5it + 3 + 10e2it )
e3it (3 − 3e−5it )
e3it (3 − 3e−5it )

e−2it (2e5it + 3 − 5e2it )
e−2it (2e5it + 3 − 5e2it )

⎞
⎟⎟⎟⎟⎠

= 1

15

⎛
⎜⎜⎜⎜⎝

e−2it (2e−5it + 10e−2it + 3)
∗

e3it (−3e−5it + 3)
e3it (−3e−5it + 3)

e−2it (2e−5it − 5e−2it + 3)
∗

e−2it (2e−5it − 5e−2it + 3)
∗

⎞
⎟⎟⎟⎟⎠.

We see that the second and third entries of |ψL(t )〉 and |ψA(t )〉
differ by an overall phase, and the first and last two entries
differ by complex conjugation and an overall phase. Thus,
if we take the norm square of each entry, we get the same
probability distribution p(t ) for both quantum walks:

p(t ) = 1

225

⎛
⎜⎜⎜⎜⎜⎝

|2e−5it + 10e−2it + 3|2
|−3e−5it + 3|2
|−3e−5it + 3|2

|2e−5it − 5e−2it + 3|2
|2e−5it − 5e−2it + 3|2

⎞
⎟⎟⎟⎟⎟⎠

= 1

225

⎛
⎜⎜⎜⎝

113 + 60 cos(2t ) + 40 cos(3t ) + 12 cos(5t )
18 − 18 cos(5t )
18 − 18 cos(5t )

38 − 30 cos(2t ) − 20 cos(3t ) + 12 cos(5t )
38 − 30 cos(2t ) − 20 cos(3t ) + 12 cos(5t )

⎞
⎟⎟⎟⎠.

This proves that the quantum walks are equivalent when they
both start at vertex 1. For example, at t = 7, p(7) agrees with
our previous numerical calculations of pL(7) and pA(7) in (4),
and when t = 1012

p(1012) =

⎛
⎜⎜⎜⎝

0.447297
0.159143
0.159143
0.117209
0.117209

⎞
⎟⎟⎟⎠,

which differs from both of our earlier numerical calculations
of pL(1012) in (5) and pA(1012) in (6), indicating that both
of those calculations suffered from numerical error. Finally,
since vertices 1, 4, and 5 have the same structure, this also
proves that the quantum walks are equivalent when starting
from vertex 4 or 5. Hence, vertices 1, 4, and 5 are all shaded
red in Fig. 1.

Another approach to proving the equivalence of the quan-
tum walks is using the mixing matrix [12]. For the Laplacian
walk, we can define the time-evolution operator

UL(t ) = eiLt .

Then using (1), the time evolution is

|ψL(t )〉 = UL(t )|ψ (0)〉.
Note the first column of UL(t ) is the state of the system at
time t if the particle started localized at the first vertex, the
second column of UL(t ) is the state of the system at time t if
the particle started at the second vertex, and so forth. Then, if
we multiply each entry of UL(t ) by its complex conjugate, we
get a matrix of probabilities called the mixing matrix:

ML(t ) = UL(t ) ◦ U ∗
L (t ),

where ◦ denotes the elementwise product. Now, the first col-
umn of ML(t ) is the probability distribution of the particle at
time t if it started localized at the first vertex, the second col-
umn of ML(t ) is the probability distribution of the particle at
time t if it started localized at the second vertex, and so forth.
In other words, (ML )ab is the probability of a particle initially
at vertex b being measured at vertex a at time t . Finally, since,
UL(t )∗ = UL(−t ), we can write the mixing matrix as

ML(t ) = UL(t ) ◦ UL(−t ).

For our example in Fig. 1, the mixing matrix of the Laplacian
quantum walk is

ML(t ) = 1

225

⎛
⎜⎜⎜⎝

a b b c c
b d b b b
b b d b b
c b b a c
c b b c a

⎞
⎟⎟⎟⎠,

where

a = 113 + 60 cos(2t ) + 40 cos(3t ) + 12 cos(5t ),
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FIG. 7. Continued from the previous page. Connected, irregular
graphs with N = 11 vertices where the Laplacian and adjacency
quantum walks evolve with the same probability distribution when
starting at a red vertex. Continued on the next page.

b = 18 − 18 cos(5t ),

c = 38 − 30 cos(2t ) − 20 cos(3t ) + 12 cos(5t ),

d = 153 + 72 cos(5t ).

FIG. 7. (Continued).

Similarly, for the adjacency quantum walk, the time-evolution
operator is

UA = eiAt ,

and its mixing matrix is

MA(t ) = UA(t ) ◦ UA(−t ).
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It retains the same interpretation, where (MA)ab is the prob-
ability of a particle initially at vertex b being measured at
vertex a, but with the adjacency quantum walk. Then, the
Laplacian and adjacency quantum walks are equivalent when
their mixing matrices have identical columns. For our example
in Fig. 1,

MA(t ) = 1

225

⎛
⎜⎜⎜⎝

a b b c c
b e f b b
b f e b b
c b b a c
c b b c a

⎞
⎟⎟⎟⎠,

where a, b, and c are defined previously, and

e = 9

2
[19 + 10 cos(t ) + 15 cos(4t ) + 6 cos(5t )],

f = 9

2
[19 − 10 cos(t ) − 15 cos(4t ) + 6 cos(5t )].

Since the first, fourth, and fifth columns of ML(t ) and MA(t )
are exactly the same, if the particle begins at vertex 1, 4, or 5,
the two quantum walks have the same probability distributions
at time t , and so they are equivalent. On the other hand, the
second and third columns of ML(t ) and MA(t ) differ, so the
quantum walks are not equivalent when the particle begins at
vertex 2 or 3.

III. IRREGULAR GRAPHS UP TO 11 VERTICES

Given our analytical proof from the last section, we know it
is possible for the Laplacian and adjacency quantum walks to
evolve equivalently on an irregular graph. In this section, we
numerically search for all such graphs up to 11 vertices. Note,
throughout this paper, we only consider simple graphs, which
are undirected, have unweighted edges, have at most one edge
between each pair of vertices, and contain no self-loops. The
graphs should also be connected, since if disconnected graphs
are permitted one can trivially come up with additional graphs
with equivalent quantum walks, such as taking the example
in Fig. 1 and adding an isolated vertex, or taking two copies
of the example in Fig. 1 and leaving them disconnected from
each other.

The adjacency matrices of all simple, connected graphs
up to 11 vertices are available from [13]. Note the degree
matrices and Laplacians can be determined from these data,
since the diagonal elements of the degree matrix are given
by summing the rows or columns of the adjacency matrix,
i.e., Dii = ∑

j Ai j = ∑
j A ji, and the graph Laplacian is then

L = A − D.
In Table I, we list how many simple, connected graphs of

each size there are, along with how many of them are regular
and irregular. In total, there are 1 018 690 329 simple, con-
nected graphs up to 11 vertices, and 761 of them are regular,
while 1 018 689 568 of them are irregular. This distinction is
easy to detect, as a graph is regular if and only if the diagonal
entries of the degree matrix are all the same value. Excluding
these regular graphs on which the Laplacian and adjacency
quantum walks are trivially equivalent (see our proof in the
introduction), we can numerically simulate the Laplacian and
adjacency quantum walks on each irregular graph, starting

from each vertex, using (1) and (2), at different values of t .
Then, we can compute the norm square of each amplitude
to see when the quantum walks have equivalent probability
distributions.

The last column of Table I shows how many irregular
graphs of each size support equivalent quantum walks, and
we found 64 graphs, which is just 6.28 × 10−6 percent of
the 1 018 689 568 irregular graphs, suggesting that this equiv-
alence is quite rare. Now, let us present all of them. The
smallest irregular graph with equivalent quantum walks is
Fig. 1 from the last section with N = 5 vertices. The next
graph has N = 6 vertices, and it is shown in Fig. 2. In
Appendix A, we analytically prove that the quantum walks are
equivalent on this graph when starting at vertex 1 or 6, thus
analytically proving that multiple graphs support equivalent
quantum walks. The proof is very similar to our proof of
Fig. 1 in the previous section, where we express the initial
state in terms of the eigenvectors of the Laplacian and ad-
jacency matrix and evolve by multiplying each eigenvector
by the appropriate phase. The remaining graphs with N � 7
are based on numerical simulations only. The quantum walks
are equivalent on one irregular graph with N = 7 vertices,
shown in Fig. 3. With N = 8 vertices, there are four irregular
graphs, shown in Fig. 4, and with N = 9 vertices there are six
irregular graphs, shown in Fig. 5. Next, there is a big jump
in the number of irregular graphs with equivalent quantum
walks. With N = 10 vertices, there are 23 of them, and they
are shown in Fig. 6. Finally, with N = 11 vertices, there are
28 irregular graphs, shown in Fig. 7.

IV. FAMILIES OF GRAPHS

In this section, we identify patterns in the graphs from the
previous section to determine eight families of graphs where
the quantum walks are equivalent.

For the first family, we point to five graphs from the previ-
ous section that follow a pattern. The first is Fig. 2, which
consists of a complete graph of four vertices (K4) in the
middle, and odd cycles of length 3 (C3’s) at the two ends.
Next, growing a cycle, Fig. 4(a) has a C5 on one end and C3

on the other. Growing the cycle bigger still, Fig. 6(a) has C7

on one end and C3 on the other. Both cycles can grow as well.
In Fig. 6(b), there are C5’s on each end. Finally, instead of
growing the ends, we can grow the middle. In Fig. 6(c), there
are two K4’s in the middle, and C3’s on each end. Generalizing
this, we can have any number of K4’s in the middle, with any
odd path at the two ends. A larger example is shown in Fig. 8,
where there is a C9 on the left, three K4’s in the middle, and
a C13 on the right. Since vertices 5, 6, 18, and 19 are double
counted in both a cycle and a K4, there is a total of 30 vertices.
Simulations show that graphs like this have equivalent Lapla-
cian and adjacency quantum walks when starting at at either
of the far ends of the graph.

For the second family, we point to another five graphs from
the previous section that follow a pattern. In Fig. 1, vertices
1, 2, and 3 can be identified as a cycle of three vertices
C3. Then, vertices 4 and 5 stick out from vertices 2 and 3.
Similarly, in Fig. 3, we now have a cycle of five vertices C5,
with vertices 6 and 7 sticking out as before. Extending this
further, in Fig. 5(a), the cycle has grown to C7, with vertices
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FIG. 8. An example of the first family of irregular graphs with
equivalent quantum walks when starting at a red vertex. It consists of
a C9 on the left, three K4’s in the middle, and a C15 on the right, for a
total of 30 vertices.

8 and 9 sticking out. This is clearly a pattern, but we can go
further. In Fig. 5(c), a complete graph of four vertices, K4, was
inserted between the cycle C3 and the two “tail” vertices. In
Fig. 7(c), the complete graph was inserted between C5 and the
two tail vertices. We can insert any number of K4’s, as shown
in Fig. 9. In this example of the family, the cycle has nine
vertices, and there are two K4’s, and then the tail. Simulations
show that graphs of this form have equivalent quantum walks
when starting at the tip of the cyclic “head” or at either of the
two tail vertices.

Next, two graphs from the previous section follow a pattern
that leads to the third family of graphs. In Fig. 4(b), two
“tails” are joined together by two edges. In Fig. 6(e), the edges
joining the tails now have an additional vertex in each of them.
We can generalize this by adding any number of vertices to
bridges between the tails, as long as they are the same length.
An example is shown in Fig. 10. When the quantum walks
start at any of the four tail vertices, they evolve with the same
probability distributions, according to our simulations.

For the fourth family, two graphs from the previous sec-
tion follow a pattern. Figure 4(d) has eight vertices, five of
which we arranged on the exterior (vertices 1, 2, 3, 4, and
5) and three of which we arranged in the interior (vertices
6, 7, and 8). Drawn this way, every exterior vertex is ad-
jacent to every interior vertex, but the exterior vertices are
not adjacent to each other. Furthermore, the interior vertices
are adjacent to each other in a cycle C3. Enlarging this,
Fig. 6(h) contains six exterior vertices and four interior ver-
tices, and the four interior vertices form a cycle C4. This can
be generalized to M exterior vertices and (M − 2) interior
vertices, where M >= 5, with the interior vertices forming

FIG. 9. An example of the second family of irregular graphs with
equivalent quantum walks when starting at a red vertex. It consists of
a C9 on the left, two K4’s in the middle, and a tail on the right, for a
total of 19 vertices.

FIG. 10. An example of the third family of irregular graphs with
equivalent quantum walks when starting at a red vertex. It consists of
two “tails,” connected through two paths of five vertices, for a total
of 18 vertices.

CM−2. An example with 14 vertices is shown in Fig. 11, and
our numerical simulations indicate that this family supports
equivalent quantum walks when starting any of the exterior
vertices.

Six graphs from the previous section give rise to the fifth
family of graphs with equivalent quantum walks. First, we can
regard Fig. 1 as three C3’s that are joined together through two
shared vertices. The first cycle consists of vertices 1, 2, and 3;
the second consists of vertices 2, 3, and 4; and the last consists
of vertices 2, 3, and 5, so they all share vertices 2 and 3. Next,
Fig. 5(a) is one C7 and two C3’s, and they share vertices 4 and
5. Similarly, Fig. 5(b) is two C5’s and one C3, and they share
vertices 3 and 4. In Fig. 7(a), there is one C9 and two C3’s,
and they share vertices 5 and 6. In Fig. 7(b), there is one C3,
one C5, and one C7, and they share vertices 4 and 5. Finally,
in Fig. 7(z), there are three C5’s, and they share vertices 3
and 4. These reveal a family consisting of three odd cycles,
each at least length 3, that all share two vertices. An example
with C7, C9, and C11 is shown in Fig. 12, and our simulations
show that the quantum walks are equivalent when starting
at the vertex in any cycle that is furthest from the shared
vertices.

The sixth family arises from Figs. 1 and 6(o) by noting that
the latter is two copies of the former, where each vertex from
one copy is also adjacent to its corresponding vertex in the
other copy. More formally, a graph G is doubled in this man-

FIG. 11. An example of the fourth family of irregular graphs with
equivalent quantum walks when starting at a red vertex. It consists
of eight exterior vertices and six interior vertices, for a total of 14
vertices, with each exterior vertex adjacent to every interior vertex,
and the interior vertices forming a cycle.
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FIG. 12. An example of the fifth family of irregular graphs with
equivalent quantum walks when starting at a red vertex. It consists of
three cycles C7, C9, and C11, which share two vertices, for a total of
23 vertices.

ner by taking its Cartesian product with the complete graph of
two vertices K2, and this is denoted G �K2. More precisely, if
we have two graphs with adjacency matrices A1 and A2 with
respective dimensions n1 and n2, then the adjacency matrix of
their Cartesian product is A1 ⊗ In2 + In1 ⊗ A2. Such doubled
graphs, in the case where the original graph is a complete
graph, were explored using quantum walks in the continuous-
time setting in [14]. Here, our numerical simulations indicate
that if a graph G supports equivalent Laplacian and adjacency
quantum walks then so does G � K2. An example is shown
in Fig. 13. Since this new graph supports equivalent quantum
walks, we can again double it, yielding G � K2 � K2, which
also supports equivalent quantum walks. This can be repeated
indefinitely, and it gives a family of graphs with equivalent
quantum walks.

Two graphs from the previous section motivate the seventh
family. In Fig. 5(d), two C4’s are connected by a single edge.
This bridge joining vertices 4 and 5 is then extended by vertex
9 into a C3. Next, in Fig. 7(w), we again have two C4’s
joined by a single edge, and this edge is now extended into

FIG. 13. An example of the sixth family of irregular graphs with
equivalent quantum walks when starting at a red vertex. It is the
Cartesian product of Fig. 3 with K2, and it has 14 vertices.

FIG. 14. An example of the seventh family of irregular graphs
with equivalent quantum walks when starting at a red vertex. It
consists of two squares and a cycle of nine vertices, for a total of
15 vertices.

C5. This forms a family of graphs with equivalent quantum
walks, where there are two C4’s joined by a single edge, which
is extended into an odd cycle. For example, Fig. 14 shows
two C4’s with the edge between them extended into C9. Our
numerical simulations indicate that the quantum walks are
equivalent when starting at the vertex in the odd cycle that
is furthest from the C4’s.

The eighth and final family stems from three graphs from
the previous section. In Fig. 1, vertices 2 and 3 form a com-
plete graph of two vertices K2. They are surrounded by three
vertices (vertices 1, 4, and 5), which are each adjacent to both
vertices 2 and 3. Next, in Fig. 4(d), vertices 6, 7, and 8 form
K3. They are surrounded by five vertices (vertices 1, 2, 3, 4,
and 5), which are adjacent to all three vertices 6, 7, and 8.
Finally, in Fig. 7(aa), vertices 8, 9, 10, and 11 form K4, and
they are surrounded by seven vertices (vertices 1 through 7),
which are adjacent to all four vertices 8 through 11. This forms
a family of graphs with Ki at the center, where i = 2, 3, . . . ,
surrounded by 2i − 1 vertices, each adjacent to the vertices in
the central complete graph. An example is shown in Fig. 15.
Our numerical simulations indicate that the quantum walks on
this family are equivalent when starting at an exterior vertex.

The existence of any one of these eight families means
there is an infinite number of graphs on which the Laplacian
and adjacency quantum walks yield the same probability dis-
tribution. This reveals that the number of irregular graphs that
support equivalent quantum walks is plentiful, even though
they are rare compared to the total number of irregular graphs.

V. CONCLUSION

In this paper, we have shown that the Laplacian and ad-
jacency quantum walks can yield equivalent evolutions on
irregular graphs, in the sense that they have the same prob-
ability distribution over the vertices. This requires that the
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FIG. 15. An example of the eighth family of irregular graphs
with equivalent quantum walks when starting at a red vertex. It
consists of K5 in the interior with nine vertices on the exterior that
are adjacent to every vertex of the complete graph, for a total of 14
vertices.

walker starts at a certain vertex. We analytically proved this
for the two smallest examples, which contain five and six
vertices, and we numerically explored all 1 018 689 568 sim-
ple, connected, irregular graphs and found 64 that support
equivalent quantum walks. Despite this rarity, we numerically

found eight infinite families of graphs supporting equivalent
quantum walks.

This paper raises several questions for further research.
One is to find all families of graphs that support equivalent
quantum walks. Related is to prove whether or not there exist
graphs that support equivalent quantum walks outside of these
families. From Table I, as the number of vertices increases,
the number of irregular graphs supporting equivalent walks
seems to be increasing. Another research question is whether
this always increases and, more specifically, whether there
is a way to find the number of graphs given N . Our results
assumed the walker was initially localized at a single vertex,
and further research could generalize this. Our preliminary
numerical simulations where the initial state is a uniform
superposition over two vertices suggest that the graphs with
equivalent quantum walks may differ. Finally, throughout this
paper, we assumed that the jumping rate γ = 1. The Laplacian
and adjacency matrix can, however, have different spectral
norms, meaning when γ = 1 the Hamiltonian H = −γ L or
−γ A can have different norms. Then, the walks could be
taking place at different rates, with one using more energy
than the other. Scaling the quantum walks to account for this
is further research.
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APPENDIX: PROOF OF EXAMPLE WITH SIX VERTICES

In this Appendix, we prove that the graph with six vertices in Fig. 2 has equivalent quantum walks when the particle begins
at vertex 1 or 6. Its adjacency matrix and degree matrix are

A =

⎛
⎜⎜⎜⎜⎜⎝

0 1 1 0 0 0
1 0 1 1 1 0
1 1 0 1 1 0
0 1 1 0 1 1
0 1 1 1 0 1
0 0 0 1 1 0

⎞
⎟⎟⎟⎟⎟⎠, D =

⎛
⎜⎜⎜⎜⎜⎝

2 0 0 0 0 0
0 4 0 0 0 0
0 0 4 0 0 0
0 0 0 4 0 0
0 0 0 0 4 0
0 0 0 0 0 2

⎞
⎟⎟⎟⎟⎟⎠.

Subtracting these, the Laplacian is

L =

⎛
⎜⎜⎜⎜⎜⎝

−2 1 1 0 0 0
1 −4 1 1 1 0
1 1 −4 1 1 0
0 1 1 −4 1 1
0 1 1 1 −4 1
0 0 0 1 1 −2

⎞
⎟⎟⎟⎟⎟⎠.

Let us calculate the state of the Laplacian quantum walk. The (un-normalized) eigenvectors and eigenvalues of L are

ψL1 = (
3 + √

17 2 2 −2 −2 −3 − √
17

)ᵀ
, λL1 = (−7 −

√
17)/2,

ψL2 = (0 0 0 −1 1 0)ᵀ, λL2 = −5,

ψL3 = (0 −1 1 0 0 0)ᵀ, λL3 = −5,

ψL4 = (2 −1 −1 −1 −1 2)ᵀ, λL4 = −3,

ψL5 = (
3 − √

17 2 2 −2 −2 −3 + √
17

)ᵀ
, λL5 = (−7 +

√
17)/2,

ψL6 = (1 1 1 1 1 1)ᵀ, λL6 = 0.
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Note that, due to the symmetry of the graph, vertices 1 and 6 have the same structure. So, if we prove the equivalence of the
quantum walks starting at vertex 1, we have also proved it starting at vertex 6. So, we take the initial state to be vertex 1, i.e.,
|ψ (0)〉 = (1 0 0 0 0 0)ᵀ. Expressing this in terms of the eigenvectors of L,

|ψ (0)〉 = −1

4
√

17
ψL1 + 0ψL2 + 0ψL3 + 1

6
ψL4 + 1

4
√

17
ψL5 + 1

6
ψL6

= −1

4
√

17
ψL1 + 1

6
ψL4 + 1

4
√

17
ψL5 + 1

6
ψL6.

Then, the state of the system at time t is obtained by multiplying each eigenvector ψLi with eiλLit :

|ψL(t )〉 = −1

4
√

17
eiλL1tψL1 + 1

6
eiλL4tψL4 + 1

4
√

17
eiλL5tψL5 + 1

6
eiλL6tψL6.

Plugging in for the eigenvectors and eigenvalues, the state of the Laplacian quantum walk at time t is

|ψL(t )〉 = 1

204

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3(17 − 3
√

17)ei(−7−√
17)t/2 + 68e−3it + 3(17 + 3

√
17)ei(−7+√

17)t/2 + 34
−6

√
17ei(−7−√

17)t/2 − 34e−3it + 6
√

17ei(−7+√
17)t/2 + 34

−6
√

17ei(−7−√
17)t/2 − 34e−3it + 6

√
17ei(−7+√

17)t/2 + 34
6
√

17ei(−7−√
17)t/2 − 34e−3it − 6

√
17ei(−7+√

17)t/2 + 34
6
√

17ei(−7−√
17)t/2 − 34e−3it − 6

√
17ei(−7+√

17)t/2 + 34
3(−17 + 3

√
17)ei(−7−√

17)t/2 + 68e−3it − 3(17 + 3
√

17)ei(−7+√
17)t/2 + 34

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

Next, let us consider the adjacency quantum walk. The (un-normalized) eigenvectors and eigenvalues of A are

ψA1 = (
301 + 73

√
17 536 + 130

√
17 536 + 130

√
17 536 + 130

√
17 536 + 130

√
17 301 + 73

√
17

)ᵀ
,

λA1 = (3 +
√

17)/2,

ψA2 = (−1 1 1 −1 −1 1)ᵀ, λA2 = −2,

ψA3 = (0 0 0 −1 1 0)ᵀ, λA3 = −1,

ψA4 = (0 −1 1 0 0 0)ᵀ, λA4 = −1,

ψA5 = (−2 −1 −1 1 1 2)ᵀ, λA5 = 1,

ψA6 = (
301 − 73

√
17 536 − 130

√
17 536 − 130

√
17 536 − 130

√
17 536 − 130

√
17 301 − 73

√
17

)ᵀ
,

λA1 = (3 −
√

17)/2.

Writing the initial state of the quantum walk, which is initially localized at vertex 1, as a linear combination of the eigenvectors
of A, we get

|ψ (0)〉 = 1105 − 268
√

17

68
ψA1 − 1

6
ψA2 + 0ψA3 + 0ψA4 − 1

6
ψA5 + 1105 + 268

√
17

68
ψA6

= 1105 − 268
√

17

68
ψA1 − 1

6
ψA2 − 1

6
ψA5 + 1105 + 268

√
17

68
ψA6.

Multiplying each eigenvector ψAi with eiλAit , the state of the system at time t

|ψA(t )〉 = 1105 − 268
√

17

68
eiλA1tψA1 − 1

6
eiλA2tψA2 + 1105 + 268

√
17

68
eiλA6t 1

2
√

17
ψA6.

Plugging in for the eigenvectors and eigenvalues,

|ψA(t )〉 = 1

204

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

3(17 − 3
√

17)ei(3+√
17)t/2 + 34e−2it + 68eit + 3(17 + 3

√
17)ei(3−√

17)t/2

6
√

17ei(3+√
17)t/2 − 34e−2it + 34eit − 6

√
17ei(3−√

17)t/2

6
√

17ei(3+√
17)t/2 − 34e−2it + 34eit − 6

√
17ei(3−√

17)t/2

6
√

17ei(3+√
17)t/2 + 34e−2it − 34eit − 6

√
17ei(3−√

17)t/2

6
√

17ei(3+√
17)t/2 + 34e−2it − 34eit − 6

√
17ei(3−√

17)t/2

3(17 − 3
√

17)ei(3+√
17)t/2 − 34e−2it − 68eit + 3(17 + 3

√
17)ei(3−√

17)t/2

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
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= 1

204

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e−2it [3(17 − 3
√

17)ei(7+√
17)t/2 + 34 + 68e3it + 3(17 + 3

√
17)ei(7−√

17)t/2]

e−2it e−iπ [−6
√

17ei(7+√
17)t/2 + 34 − 34e3it + 6

√
17ei(7−√

17)t/2]

e−2it e−iπ [−6
√

17ei(7+√
17)t/2 + 34 − 34e3it + 6

√
17ei(7−√

17)t/2]

e−2it [6
√

17ei(7+√
17)t/2 + 34 − 34e3it − 6

√
17ei(7−√

17)t/2]

e−2it [6
√

17ei(7+√
17)t/2 + 34 − 34e3it − 6

√
17ei(7−√

17)t/2]

e−2it e−iπ [−3(17 − 3
√

17)ei(7+√
17)t/2 + 34 + 68e3it − 3(17 + 3

√
17)ei(7−√

17)t/2]

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

= 1

204

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

e−2it [3(17 − 3
√

17)ei(−7−√
17)t/2 + 68e−3it + 3(17 + 3

√
17)ei(−7+√

17)t/2 + 34]∗

e−i(2t+π )[−6
√

17ei(−7−√
17)t/2 − 34e−3it + 6

√
17ei(−7+√

17)t/2 + 34]∗

e−i(2t+π )[−6
√

17ei(−7−√
17)t/2 − 34e−3it + 6

√
17ei(−7+√

17)t/2 + 34]∗

e−2it [6
√

17ei(−7−√
17)t/2 − 34e−3it − 6

√
17ei(−7+√

17)t/2 + 34]∗

e−2it [6
√

17ei(−7−√
17)t/2 − 34e−3it − 6

√
17ei(−7+√

17)t/2 + 34]∗

e−i(2t+π )[−3(17 − 3
√

17)ei(−7−√
17)t/2 + 68e−3it − 3(17 + 3

√
17)ei(−7+√

17)t/2 + 34]∗

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Each of the terms of |ψL(t )〉 and |ψA(t )〉 differs by an overall phase and complex conjugation, so if we take the norm square of
each entry we get the same probability distribution for both quantum walks:

p(t ) = 1

41 616

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

|3(17 − 3
√

17)ei(−7−√
17)t/2 + 68e−3it + 3(17 + 3

√
17)ei(−7+√

17)t/2 + 34|2
| − 6

√
17ei(−7−√

17)t/2 − 34e−3it + 6
√

17ei(−7+√
17)t/2 + 34|2

| − 6
√

17ei(−7−√
17)t/2 − 34e−3it + 6

√
17ei(−7+√

17)t/2 + 34|2
|6√

17ei(−7−√
17)t/2 − 34e−3it − 6

√
17ei(−7+√

17)t/2 + 34|2
|6√

17ei(−7−√
17)t/2 − 34e−3it − 6

√
17ei(−7+√

17)t/2 + 34|2
|3(−17 + 3

√
17)ei(−7−√

17)t/2 + 68e−3it − 3(17 + 3
√

17)ei(−7+√
17)t/2 + 34|2

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

p1(t )
p2(t )
p3(t )
p4(t )
p5(t )
p6(t )

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

,

where

p1(t ) = 1

41 616

[
13 736 + 4624 cos(3t ) + 2448 cos(

√
17t )

+ 408(17 − 3
√

17) cos

(
1 + √

17

2
t

)
+ 408(17 + 3

√
17) cos

(
1 − √

17

2
t

)

+ 204(17 − 3
√

17) cos

(
7 + √

17

2
t

)
+ 204(17 + 3

√
17) cos

(
7 − √

17

2
t

)]
,

p2(t ) = p3(t ) = 1

41 616

[
3536 − 2312 cos(3t ) − 1224 cos(

√
17t )

+ 408
√

17 cos

(
1 + √

17

2
t

)
− 408

√
17 cos

(
1 − √

17

2
t

)

− 408
√

17 cos

(
7 + √

17

2
t

)
+ 408

√
17 cos

(
7 − √

17

2
t

)]
,

p4(t ) = p5(t ) = 1

41 616

[
3536 − 2312 cos(3t ) − 1224 cos(

√
17t )

− 408
√

17 cos

(
1 + √

17

2
t

)
+ 408

√
17 cos

(
1 − √

17

2
t

)

+ 408
√

17 cos

(
7 + √

17

2
t

)
− 408

√
17 cos

(
7 − √

17

2
t

)]
,
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p6(t ) = 1

41 616

[
13 736 + 4624 cos(3t ) + 2448 cos(

√
17t )

− 408(17 − 3
√

17) cos

(
1 + √

17

2
t

)
− 408(17 + 3

√
17) cos

(
1 − √

17

2
t

)

− 204(17 − 3
√

17) cos

(
7 + √

17

2
t

)
− 204(17 + 3

√
17) cos

(
7 − √

17

2
t

)]
.

Note p1(t ) and p6(t ) are the same, except the last two lines have opposite signs. Similarly p2,3(t ) and p4,5(t ) are the same, except
the last two lines have opposite signs. This proves that the quantum walks in Fig. 2 are equivalent when starting at vertex 1 or,
by symmetry, vertex 6.
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