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Fano resonances in quantum transport with vibrations
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Quantum-mechanical scattering involving continuum states coupled to a scatterer with a discrete spectrum
gives rise to Fano resonances. Here we consider scatterers that possess internal vibrational degrees of freedom
in addition to discrete states. Entanglement between the scattered excitation and vibrational modes complicates
analytical and numerical calculations considerably. For the example of one-dimensional scattering we develop a
multichannel quantum scattering approach which can determine reflection and transmission probabilities in the
presence of vibrations. Application to a linear chain coupled to a control unit containing vibrating sites shows
that vibrational degrees of freedom can have a profound effect on quantum transport. For suitable parameters,
spectral regions which are opaque in the static case can be rendered transparent when vibrations are included. The
formalism is general enough to be applicable to a variety of platforms for quantum transport including molecular
aggregates, cold atom chains, quantum-dot arrays and molecular wires based on conjugated polymers.
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I. INTRODUCTION

Quantum transport of excitation, energy, and entanglement
are fundamental features of a wide range of systems rang-
ing from quantum aggregates of organic molecules [1–3],
photosynthetic complexes [4–6], and cold atoms [7–11] to
quantum-dot assemblies [12]. Such transport systems usually
involve a regular part enabling wavelike transport with contin-
uous wave numbers and may contain a second part consisting
of small subunits with a discrete spectrum which couple to the
regular part and affect the transport. Generically, this scenario
gives rise to Fano resonances, “bound states in the continuum”
originally described as “strange discrete eigenvalues” by von
Neumann and Wigner in 1929 [13]. They cause characteristic
asymmetric features in the transport spectrum [14–16], also
known as Fano profiles. The resonances even lead to com-
plete reflection or complete transmission at certain resonant
energies, a useful resource for control and switching applica-
tions [17–20].

Apart from Fano resonances, transport is often affected by
internal vibrations or phonons, e.g., electron-phonon coupling
in long conjugated molecules [21,22] or molecular aggre-
gates [23]. Although mostly seen as impeding transport but
inevitable, in Rydberg aggregates atomic motion can also
induce quantum transport [10,24–26]. Here, we demonstrate
how atomic motion can serve to create a switch in transport
systems. More specifically, we investigate quantum trans-
port along the regular part of the system beyond a localized
“obstacle,” a subunit with one dominant vibrational degree
of freedom. We will see that the transported excitations be-
come entangled with vibrations and that the reflection and
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transmission profiles based on Fano resonances are quali-
tatively altered if the subunit can be vibrationally excited
compared to a transport system with a static subunit. Thereby,
Fano resonances can be put to work for sensing and switch-
ing in transport transport systems even in the presence of
directed or thermal motion. However, incorporating electron-
vibrational coupling into quantum transport studies is a
challenging problem. It has been tackled using perturbative
approaches for wires on the molecular or atomic scale [27,28],
scattering theory [29,30], Green’s function methods [31–34],
master and quantum kinetic equations [35], reduced electron-
density matrix approaches [36], or a semiclassical treatment of
the motion and approaches based on nonequilibrium statistical
physics [37].

In the following, we formulate an alternative approach,
which can exactly treat quantum transport and a few vi-
brations in a multichannel quantum scattering framework.
We apply our theory to quantum transport on a long one-
dimensional chain or wire coupled to a control unit (CU) that
gives rise to Fano resonances in the transmission spectrum
which is strongly modified by active vibrational modes of
the CU. To be specific we will cast our results in terms of a
chain consisting of atoms or molecules. However, the results
more generally apply to discrete chains, such as conjugated
polymers [38,39] in the tight-binding approximation, molec-
ular wires [40,41], and coupled quantum dots [42–44] with
involvement of phonons or optomechanical arrays [45,46].
To stress the applicability of the method in different con-
texts, we refrain from making reference to a specific platform.
However, exemplary realizations are provided in Appendix F.
Reference to a “monomer” in the subsequent text, thus, refers
to any single site of the aforementioned transport systems.

Our article is organized as follows. To render our approach
better comprehensible we first formalize our exemplary
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FIG. 1. Sketch of the Fano-Anderson chain with vibrating ele-
ments. N static monomers are arranged in an equidistant linear chain
and three monomers α, β, η are arranged within a control unit CU
confined to a ring of radius R. The center of the ring is at a distance d
from the chain. The angular coordinates of the monomers on the ring
are ϑ j with ϑ j = 0 corresponding to the north pole. Two monomers
are fixed at angles ϑη and ϑβ , whereas the third one (angle ϑα) is
mobile within a harmonic trap. A wave packet carrying a single
electronic excitation approaching the Fano defect from the far left
(yellow) may be reflected (red) or transmitted (green) by the latter.

transport system in Sec. II including a comprehensive descrip-
tion of the Fano-Anderson chain in Sec. II A and entanglement
in Sec. II B. The multichannel quantum scattering method is
introduced in Sec. III. In Sec. IV we apply the method to
investigate excitation transport in the absence (Sec. IV A) and
presence (Sec. IV B) of vibrational motion. The results are
summarized in Sec. V.

II. MODEL AND METHODS

A. Fano-Anderson chain with vibrating elements

We consider a linear chain of N monomers, which is in
contact with a control unit containing three monomers con-
fined on a circle of radius R as sketched in Fig. 1. Although
many CUs are conceivable, our CU is small, convenient to de-
sign as we will discuss later, and most importantly, vibrations
of our control unit can affect transport significantly. We refer
to the electronic state of the system with a single excitation on
monomer or site n as |πn〉. For atomic or molecular systems
this implies that only the nth entity is excited with all others
in the ground state. For other transport systems mentioned
in the Introduction, the state would imply a nearly empty
lattice of sites with a single particle filling the nth site. From
here on we consider the total number of monomers on the
chain N to be even with the monomer n = 0 situated in the
middle of the chain. The index n fulfills n ∈ ZN ∪ {α, β, η}
with ZN = {−N/2, . . . , 0, . . . , N/2 − 1} with integer n ∈ ZN

indicating an excitation on the main chain and n ∈ {α, β, η}
on the CU, see Fig. 1.

Interaction between sites enables the excitation (e.g., ex-
cited state or electron) to move along the chain, whereas
conserving their total number where we consider a sin-
gle excitation only. For simplicity, we restrict ourselves
to nearest-neighbor interactions of strength J in the

chain Hamiltonian,

ĤC = J
∑
n∈ZN

(|πn〉 〈πn+1| + |πn+1〉 〈πn|). (1)

In addition to the electronic degrees of freedom discussed so
far, we have to formalize the vibrational degree of freedom
in the CU which can couple to the electron dynamics. To this
end we consider the angular coordinate ϑn of the control unit
monomers n ∈ {α, β, η} to change according to the harmonic-
oscillator Hamiltonian,

Ĥvib = −
∑

n∈{α,β,η}

h̄2

2In
∇2

ϑn
+ V̂ (ϑ), (2a)

V̂ (ϑ) =
∑

n∈(α,β,η)

1

2
Mnω

2
nR2

{
2
[
1 − cos

(
ϑ (0)

n − ϑn
)]}

≈
∑

n∈(α,β,η)

1

2
Mnω

2
nR2

(
ϑ (0)

n − ϑn
)2

, (2b)

with the equilibrium positions ϑ (0)
n and the moment of inertia

In = MnR2, whereas Mn is the effective mass of monomer n
and ϑ = [ϑα, ϑβ, ϑγ ]T is the vector of all angles.

For simplicity, we consider the two monomers β and η so
tightly confined in their respective harmonic potential with
h̄ωβ = h̄ωη � J that there is a negligible extension of their
ground-state wave function. They then remain in the ground
state for all energies considered, and we can neglect their
vibrational degrees of freedom. Only monomer α has a har-
monic confinement h̄ωα � J such that several vibrational
states | j〉 contribute. From here on, we, thus, define ω ≡ ωα

to simplify the notation. In that case, the Hamiltonian Ĥ ′
vib

possesses a discrete energy spectrum given by Ĥ ′
vib |	 j〉 =

E j |	 j〉 = h̄ω( j + 1
2 ) |	 j〉. The complete orthonormal basis

set of the total Hilbert space is formed by the direct prod-
ucts |n j〉 = |πn〉el ⊗ |	 j〉vib , n ∈ Z ∪ {α, β, η}. In the joint
Hilbert space, the total Hamiltonian of the system is given by

Ĥ = ĤC ⊗ 1vib + ĤU + ĤUC + Ĥvib, (3a)

where 1vib is the identity in the vibrational space and the
vibrational motion affects the dynamics in the CU, described
by HU and Hvib, and couples to the chain according to HUC ,

ĤU =
∑

n,n′∈(α,β,η)

∑
j j′

F j j′
nn′ |n j〉 〈n′ j′| , (3b)

ĤUC =
∑

j j′
Gj j′ (|0 j〉 〈α j′| + |α j′〉 〈0 j|), (3c)

Ĥvib =
∑

n j

E j |n j〉 〈n j| = 1el ⊗
∑

j

E j | j〉 〈 j| . (3d)

where 1el is the electronic identity. The coupling matrix ele-
ments are

F j j′
nn′ =

∫
dϑ 	∗

j (ϑ)Fnn′ (ϑ)	 j′ (ϑ), (3e)

Gj j′ =
∫

dϑ 	∗
j (ϑ)G(ϑ)	 j′ (ϑ), (3f)

where Fnn′ (ϑ) and G(ϑ) are ϑ-dependent hopping parameters.
To keep our approach general enough to apply to diverse
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transport systems as discussed in the Introduction, the basic
formalism does not make reference to a specific model of
interactions, except that ĤU and ĤUC should depend on the
spatial coordinates ϑ of the control unit monomers. They,
therefore, also depend on the two parameters d and R of the
design, the distance from the center of the control unit to
the main chain, and the radius of the CU, respectively (see
Fig. 1 for the geometry). Note that through the dependence
of the dynamics on ϑ, the vibrational motion of the monomer
in the ring will be coupled to the excitation transport on the
chain. For the presented numerical results, we use dipole-
dipole interactions for which the hopping parameters scale
with the inverse cubed distance between the sites, for details
see Appendix B.

In molecular physics, corrections beyond the harmonic ap-
proximation are frequently required to describe the vibrational
degrees of freedom. Since our approach is based on a matrix
formulation, it can adopt this generalization easily. Only the
vibrational spectrum of H ′

vib and the value of the overlap
integrals in Eqs. (3e) and (3f) would change.

We are interested in the quantum transport of an excitation
passing the control unit on the chain from the left to the
right. In the absence of the control unit the transport can
be described in terms of the eigenstates of (1). They form
an exciton band of energies Ek = 2J cos k with |Ek| � 2J ,
where k is the wave vector of the incoming excitation [47]. We
refer to this band as continuous in the following, implying the
limit of infinitely many monomers in the chain, whereas for
numerical calculations we employ, of course, a finite number
of elements on the chain N = 1000. Subject to dispersion, the
excitation can migrate across the chain. To enable the CU to
act as a scatterer and, therefore, to efficiently influence the
transport, J will be chosen on the order of all other energy
scales in the system.

This influence is mediated through the interactions be-
tween the continuous band of the linear chain and the three
discrete eigenstates of the scatterer belonging to the CU
and leads to modifications of the transmission characteristics
by virtue of the Fano resonance [19,48,49]. In the case of
static interactions, i.e., without vibrations in ϑ, it is well
understood how the control unit affects transport on the
chain [14,16,19]. Specifically, for incoming wave energies
that match an eigenenergy of the isolated static CU, transmis-
sion will be fully suppressed as discussed later. The width of
such a resonance dip in the transmission profile depends on
the strength of the interaction G between the main chain and
the control unit in (3c).

B. Quantum dynamics and entanglement

We now explore the fate of an initial single excitation
prepared on the far left side of the linear chain of monomers
on its path across the chain. It must eventually impact the
scattering region of the CU. In a time-dependent picture, we
start from an initial state of the form

|
(t = 0)〉 = |ψini〉 ⊗ | jin〉 , (4)

where | jin〉 is the initial vibrational state, chosen as eigenstate
of the vibrational Hamiltonian, and |ψini〉 is the electronic
excited state. We take it to be localized near a site n0<0 with

FIG. 2. (a) Evolution of the excitation probability pn =∑
j |ψn j (t )|2 on the main chain, allowing vibrations of site α.

Populations on the CU are not shown. The vibration frequency
is h̄ω = 0.01J , and other parameters are given in Ref. [50] for a
chain with 1000 monomers. An excitation initially localized near
n = −30 moves towards the right with energy E = 1J and reflects
back from the scattering region. The x axis indicates the position
on the chain in terms of monomer indices n. (b) The von Neumann
entropy SE (6) as a function of time. The total excitation probability
PU = ∑

n∈{α,β,η} j |ψn j (t )|2 on the scattering control unit CU is also
shown.

negligible amplitude on sites n�0. Specifically we choose
〈n|ψini〉 = N exp [−(n − n0)2/σ 2 + ikinn], where N is a nor-
malization factor and kin the central incoming wave number.
The subsequent quantum dynamics of this wave packet is gov-
erned by the time-dependent Schrödinger equation (TDSE)
ih̄ d
/dt = Ĥ
 with Ĥ from (3a). The state can be expanded
as

|
(t )〉 =
∑

n j

ψn j (t ) |n j〉 . (5)

An example of such a scattering process is shown in
Fig. 2(a) where the time dependence of the population on the
sites n of the chain is displayed. Populations of CU monomers
are not shown. One sees that the incoming wave packet moves
with constant velocity. Close to the time tc when the center
of the wave packet reaches the site n = 0, the scattering site
which is closest to the CU, an interference pattern appears. Af-
ter the collision for t > tc, one can clearly see the transmitted
and reflected wave packet.

For times t < tc, before the excitation reaches the CU,
the vibrational degrees of freedom of the CU remain in their
initial state | jin〉 and the dynamics of the system is exclusively
governed by ĤC . As the excitation hits the scattering region,
the other terms in the Hamiltonian become important and
vibronic quantum dynamics ensues for a finite time interval,
until the excitation completely leaves the scattering region.
The postcollision dynamics is again governed by ĤC . The final
outcome of the scattering event is the splitting of the excitation
probability into transmitted (right moving) and reflected (left
moving) parts and a possible change of the internal vibrational
state of the scatterer into some general superposition of vi-
brational eigenstates. Each vibrational state contributes to the
outcome of the scattering process leaving multiple outgoing
channels for the scattering.
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An immediate consequence of the dependence of the scat-
tering outcome on vibrational states of the CU is the creation
of entanglement between the electronic and vibrational states
during the scattering process. Entanglement can be quantified
by the von Neumann entropy,

SE = −tr(ρel ln ρel ), (6)

where tr denotes the trace and ρel the reduced electronic
density matrix obtained by tracing out the vibrational de-
grees of freedom of the system [51], i.e., ρel = ∑

j 〈 j| ρ̂ | j〉
with ρ̂ = |
(t )〉 〈
(t )| and |
(t )〉 in Eq. (5). This entropy
is zero if the electronic and vibrational degrees of freedom
are separable and equal to ln D for a maximally entangled
state, if the reduced Hilbert space is D dimensional. We see in
Fig. 2(b) that before the wave packet hits the scattering region,
the electronic and vibrational states are not entangled and the
entropy is zero. As expected the entropy increases close to the
impact time tc, indicating the development of entanglement
between electronic and vibrational states. This entanglement
persists for long times, even after the excitation on the CU
[dashed line in Fig. 2(b)] has dropped to zero again.

Conceptually, this means that even at a time t = 100/J
when the exciton wave packet has mostly returned to the main
chain it remains intricately linked with the scatterer through
entanglement with vibrational states. The entanglement leads
to practical difficulties using conventional approaches, such
as the transfer matrix method (TMM). The electronic and
vibrational parts cannot be treated separately. Transmission,
however, depends on the vibrational state giving rise to
multiple channels. The incorporation of those channels for
scattering leads to a cumbersome set of nonlinear equations
in the TMM.

Therefore, we develop in the following a multichannel
quantum scattering method (QSM) that can handle the en-
tanglement discussed above as well as the effect of internal
vibrations of the CU on quantum transport through the chain.

III. MULTICHANNEL QUANTUM SCATTERING METHOD

Although we will use solutions of the TDSE for verifi-
cation, we switch now to a time-independent framework in
which scattering processes are usually more easily understood
based on stationary scattering states. Consequently, we seek a
solution of the eigenvalue problem,

Ĥ |
〉 = E |
〉 , (7)

with

|
〉 =
∑

n j

ψn j |n j〉 , (8)

in analogy to the expansion of the time-dependent state (5).
We intend to solve (7) for the case of an exciton wave coming
in from the left with momentum kin>0 and the CU in the
specific state | jin〉 with vibrational quantum number jin. (More
complex initial vibrational states could be generated from
these solutions by superposition.) The desired eigenstate |
〉
is subject to the boundary conditions,

ψn j = δ j jin e+ikinn + R j (kin )e−ik j n, n < 0 (9)

for n on the left side of the chain and analogously for n on the
right side of the chain,

ψn j = T j (kin )e+ik j n, n > 0. (10)

Here, R j (kin ) and T j (kin ) are complex reflection and
transmission amplitudes containing all information about the
scattering outcome, and the momentum k j > 0 of the jth
channel is fixed by energy conservation E = E jin + Ekin =
E j + Ekj for the exciton band energies Ek and the vibrational
energies E j as defined earlier. The probability of transmission
Tj (kin ) is given by the ratio between the transmitted and in-
coming flux in channel j,

Tj (kin ) = |T j (kin )| sin k j

sin kin
. (11)

Similarly, the reflection coefficient Rj (kin ) is given by the ratio
between reflected and incoming flux in channel j,

Rj (kin ) = |R j (kin )| sin k j

sin kin
. (12)

Conservation of probability implies∑
j

[Tj (kin ) + Rj (kin )] = 1, (13)

and can serve as a consistency check of the final results.
In order to construct the desired stationary scattering state

|
〉, one needs to substitute the boundary conditions (9)
and (10) back into the time-independent Schrödinger equa-
tion (7) and solve for R j and T j . Exciton-phonon coupling
links all vibrational components of the wave function, render-
ing the equation hard to solve for many vibrational levels of
the scatterer.

Instead of tackling this problem directly, we employ a
well-established trick [52,53] based on backward propagation.
We convert the original Eq. (7) into a collection of auxiliary
eigenproblems,

Ĥ |
 ( j0 )〉 = E |
 ( j0 )〉 , (14)

subject to new boundary conditions,

ψ
( j0 )
n j = Aj0

j e+ik j n + (δ j j0 − Aj0
j )e−ik j n (n � 0) (15)

ψ
( j0 )
n j = δ j j0 e+ik j0 n (n � 0). (16)

Here, the vibrational index j0 is fixed but arbitrary, not re-
lated to jin. We, thus, specify the vibrational quantum number
for the outgoing part of the wave instead of the incoming one.
Using these auxiliary solutions, one can then form a linear
combination that solves the original problem (7) as

ψn j =
∑

j0

Cj0ψ
( j0 )
n j . (17)

The coefficients Aj0
j in Eqs. (15) and (16) are determined

such that (14) can be solved as discussed in Appendix A.
Demanding that the linear combination (17) satisfies the orig-
inal boundary conditions Eqs. (9) and (10), we obtain the
following system of equations for the coefficients Cj0 :∑

j0

Aj0
j Cj0 = δ j jin . (18)
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Since the matrix [Aj0
j ] is always regular, we can find its inverse

Q j
j0

and then the coefficients Cj0 = Q jin
j0

of the expansion (17).
After Cj0 ’s are determined, the reflection and transmission
amplitudes R j (kin ) and T j (kin ) simply follow from:

T j (kin ) = Cj, (19a)

R j (kin ) =
∑

j0

(
δ j j0 − Aj0

j

)
Cj0 . (19b)

The main advantage of this method over directly solving
the eigenvalue problem Eq. (7) with the boundary conditions
Eqs. (9) and (10) is that the choice of the boundary conditions
Eq. (16) eases the burden of obtaining the probability ampli-
tude on the scatterers, which are essential to solve the problem
(Appendix A).

The method can be implemented for any configuration
of the scatterer without any restrictions on the number of
monomers in the scatterer. It can even be modified for cases
in which the scatterer interacts with several monomers of the
main chain. The contribution to the transmission profile from
each channel can be explicitly obtained, and an estimate of the
final quantum state of the scatterer can also be deduced.

Next, we apply our QSM approach to the transport system
with a CU containing an active vibrational degree of freedom.

IV. EXCITATION TRANSPORT

A. Static monomers

Excitation transport in a linear chain of monomers inter-
acting with a static CU, i.e., in the absence of any vibrations,
was explored in the past using a TMM to obtain the trans-
mission and reflection coefficients [19], see also Appendix D.
Transport was found to be highly sensitive to the resonance
properties of the CU, which acts as a defect [16]. Due to
the interference between the continuum energies of the main
chain and the discrete energies of the control unit, the system
exhibits Fano resonances.

We consider the configuration where the CU monomers
form a static equilateral triangle, corresponding to angles ϑ =
[0, 2π/3, 4π/3]T with a twofold goal: First, to illustrate the
features above, and second to benchmark the QSM formulated
in Sec. III by comparison with the TMM and with solutions
of the TDSE. It was shown in Refs. [19,54,55] that for an
incoming energy E the transmission amplitude is

T (E ) = 4J2 − E2

4J2 − E2 + Veff (E )2
, (25a)

Veff (E ) = D2

D3
G2, (20b)

with the energy-dependent effective scattering potential
Veff (E ) from the CU. The latter is determined in the chosen
configuration through Di = det(E1 − Hi ), where H3 and H2

are the dipole-dipole Hamiltonian of the CU and of the CU
without the entrance site α, respectively, as derived in Ap-
pendix D. One sees from (20), that transmission is completely
suppressed if Veff tends to infinity, which happens if D3 = 0,
i.e., whenever the energy E coincides with an eigenenergy of
H3. On the other hand, if the energy E matches an eigenenergy

-2 -1 0 1 2
E/J

0

0.2

0.4

0.6

0.8

1

T
(E

)

TMM
QSM
TDSE
data1

FIG. 3. Total transmission through the chain as a function of en-
ergy for fixed monomers, and the control unit forming an equilateral
triangle with further parameters given in Ref. [50]. Results obtained
with the quantum scattering method (QSM) (thin solid line) with a
time-dependent wave-packet propagation (◦) and the transfer matrix
method (TMM) (thick dashed line) are shown.

of H2 we have D2 = 0 implying that Veff = 0, and, there-
fore, the transmission is maximal T = 1. Furthermore, for
any finite value of Veff , transmission is fully suppressed at
E = ±2J .

These properties can be directly found in the transmission
profile shown in Fig. 3. First, one can appreciate that results
from the TMM and calculated with the more complex QSM
formalism in Sec. III as well as TDSE solutions agree well.
The CU ĤU = H3 has two degenerate eigenenergies at E =
J and a third one at E = −2J since we choose F = Fαβ =
Fαη = Fβη = J . In contrast the reduced control unit without
the entrance site Ĥ ′

U = H2 has two eigenenergies E± = ±J .
Hence, we expect transmission extrema at E = ±2J and E =
±J , more precisely zero transmission at energies ±2J and J
and full transmission at E = −J , which is in accordance with
Fig. 3. The complete suppression of transport at J = 1 has
an asymmetric profile, characteristic for a Fano resonance. Its
width depends on the interaction strength between the main
chain and the CU determined by the relative position of the
CU with respect to the chain. It is clearly sensitive to details
of the CU since E = J is an eigenenergy for both, H2 and H3.
However, the influence of the latter dominates as its eigenstate
is doubly degenerate.

The QSM has been developed to study the transport prop-
erties for the vibrating CU with a motional degree of freedom.
To compare it with the static CU case discussed in this section,
we only allow the ground-state j = 0 in all sums of Sec. III,
effectively freezing the motional degree of freedom. We also
call this scenario “immobile.” As can be seen in Fig. 3, the
immobile QSM is equivalent to a static calculation using the
TMM. The QSM for an immobile CU, and the TMMs require
comparable computational effort. Although the TMM takes
into account an effective scattering potential, QSM exactly
determines the state of the scatterer and provides the trans-
mission and reflection coefficients through proper boundary
conditions in the Schrödinger equation.

For final verification, we also solve the TDSE with
the complete Hamiltonian (3a). To obtain the transmission
profile, we take the Gaussian wave packet of electronic states
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FIG. 4. Comparison of transmission profile for vibrating and
immobile monomer α in the control unit. The dashed curve shows
the transmission profile obtained from our multichannel quantum
scattering method (QSM) when the vibrational state is constrained
to the ground state. The solid curve shows the transmission profile
obtained from the QSM for the vibrating monomer with harmonic
frequency h̄ω/J = 0.01 and other parameters as in Ref. [50]. Circles
show the transmission profile obtained from a time-dependent wave-
packet calculation for verification. For the QSM, here and elsewhere,
we use 50 vibrational states unless otherwise indicated with results
unchanged for higher numbers. Here and in the subsequent plots,
monomer α is assumed to be initially in the vibrational ground-state
jin = 0.

|ψini〉 introduced in Sec. II B on the far left of the linear
chain as the initial condition for the incoming excitation. The
integrated transmitted probability after the excitation has left
the scattering region provides the transmission coefficient.
These numerical solutions are obtained using XMDS [56,57].
We see in Fig. 3 that the transmission coefficient obtained
from the TDSE matches well with the QSM and TMM results
with minor deviations caused by the finite energy width of
the Gaussian wave packet. This enables us to use the TDSE
solutions to verify the results obtained from the QSM also in
the case of vibrations in the CU, which is our final goal and
discussed in the next section.

B. Fano resonances with vibrations

To see how electronic-vibrational coupling affects the
quantum transport, we now mobilize monomer α of the CU
such that it can execute small harmonic vibrations with fre-
quency ω on the circle around its equilibrium position. Since
h̄ω ∼ J , several vibrational levels with energy h̄ω( j + 1/2)
can be excited from the vibrational ground-state jin = 0 by
the incoming electronic wave packet with energies of the
exciton band in the range of [−2J, 2J]. Constraining all but
one monomer is for simplicity only, our methods can be gen-
eralized to include vibrations of all control unit monomers.

In Fig. 4, we compare the transmission profile obtained
from the QSM for the immobile and mobile scatterer. Al-
lowing vibrations (here with a small frequency h̄ω = 0.01J)
clearly modifies the Fano profile most significantly close to
the Fano resonance dip at E = J where we see finite trans-

mission instead of full reflection in the immobile case. In
contrast, vibrations leave the other regions of the transmission
spectrum largely unaffected. In particular, the perfect trans-
mission at E = −J and reflection at E = ±2J persist. This
may be understood realizing that these characteristics are due
to the reduced CU Ĥ ′

U and the chain just in the presence of
a CU, respectively. The conditions for both of these elements
remain the same if α is mobilized. For the dramatic change
in transmission, the dynamic character of vibrations must be
included. For example, one cannot average the static TMM
results of Sec. IV A over some extended spatial distribution of
monomer α (see Appendix E).

Empirically, a CU with three sites is the minimal con-
figuration to easily achieve the desired large influence of
vibrations, i.e., significant broadband transmission in the pres-
ence of vibrations for incoming energies that are opaque in
the static case. This can be understood through the fragility
of the quotient D2/D3 in the static case Eq. (20), for the
case where numerator and denominator both tend to zero.
This control unit, thus, gives rise to a qualitative impact of
vibrations on transport. Strictly speaking, a single vibrating
monomer in the control unit is sufficient to influence transport
on the chain, although to a much smaller extent and only for
a very narrow regime of parameters which required excessive
parameter tuning to find. Moreover, for a single monomer in
the CU, both the coupling between CU and main chain as
well as the coupling strength to higher vibrational excitations
depend on a single physical parameter the interaction strength
between the CU and the main chain. For more monomers in
the CU, the coupling strength to higher vibrational excitations
additionally depends on intra-CU interactions, allowing the
two crucial quantities to be independently tuned.

For verification of the QSM results, we compare them
to those obtained with the TDSE. In contrast to the previ-
ous section, we explicitly include the vibrational dynamics
of monomer α in the simulation, which is initialized in the
vibrational ground state. After the scattering event, the trans-
mission coefficient shown in Fig. 4 is obtained as discussed
before, summing over all vibrational channels. The TDSE
quantitatively confirms the transmission profile, in particular,
the spectacular switch of the suppression around E = J to a
local maximum of transmission due to an excitable CU.

1. Distinguishing vibrational channels

The QSM allows us to separately quantify the contribution
of each vibrational channel j as performed in Fig. 5 where
the individual transmission probabilities Tj are shown together
with the total transmission T = ∑

j Tj . Partial transmission
Tj means that the vibrating monomer remains in vibrational
state | j〉 after the excitation has passed the control unit region
and, hence, can no longer affect the vibrational state. One sees
from Fig. 5(a) that the elastic channel without lasting energy
exchange between main chain and CU dominates transmission
apart from energies close to the resonance at E = J . This re-
mains true even if the initial vibrational state for the monomer
is not the ground state as in Fig. 5 but rather an excited state.
We see that only even j contribute here due to the mirror
symmetry of the setup in Fig. 1. Without this symmetry also
odd j would contribute.

042219-6



FANO RESONANCES IN QUANTUM TRANSPORT WITH … PHYSICAL REVIEW A 104, 042219 (2021)

-2 -1 0 1 2
E/J

0

0.2

0.4

0.6

0.8

1

T
(E

)

j = 0
Total

-2 -1 0 1 2
E/J

0

0.02

0.04

0.06

0.08

0.1

0.12

T
(E

)

j = 2
j = 4
j = 6
j = 8

(a) (b)

FIG. 5. Contributions of different vibrational channels: (a) Total
transmission profile (dotted line), compared to the elastic channel,
i.e., for jin = jfinal = 0 (solid line). (b) Contribution from inelastic
channels with jfinal > 0. The harmonic frequency for monomer α is
h̄ω/J = 0.01 and other parameters as in Ref. [50].

The transmission profile associated with the | jin〉 channel
is similar to the static case except in the vicinity of E = J
where a nonzero transmission is observed. Other channels
contribute quite significantly to transmission in the dip region
where a small finite transmission contribution is found, which
decreases with the inelasticity, i.e., with increasing vibrational
energy of the channel, see Fig. 5(b). The sum of total trans-
mission and reflection over all channels is unity for the entire
energy region, confirming the consistency of the method.

2. Vibrational resonances

So far we have focused on small vibrational frequencies
h̄ω � J . High vibrational frequencies h̄ω > 2J lead to quan-
tized vibrational states outside the exciton band which are
weakly coupled for our parameters. The transmission profile
for the excitation transport is shown in Fig. 6 for several vibra-
tional frequencies ω. As expected, if E = J + h̄ω falls outside
the exciton bandwidth, here for h̄ω � J , the transmission
profile is not affected by the vibration, see thick gray curve
in Fig. 6(a). For lower frequencies a clear feature appears at
E = J + h̄ω, in the form of a narrow peak and dip, super-
imposing the already existing broad dip centered at E = J .
The characteristic profile seen again heralds a Fano resonance
that now involves the vibration of the monomer in addition
to electronic degrees of freedom. As ω is further reduced,
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FIG. 6. Transmission as a function of energy for different vi-
bration frequencies of the ring monomer with parameters given in
Ref. [50]. The legends indicate the vibrational energy h̄ω/J . (a) Fre-
quencies h̄ω/J � 0.2. (b) Frequencies h̄ω/J < 0.2.

FIG. 7. Transmission as a function of energy for two harmonic
frequencies ωη of the ring monomer η with parameters given in
Ref. [50] and the two other monomers of the CU kept immobile.
Transmission spectrum (dotted) for an asymmetric CU configuration
where only monomer α is mobile, and the CU has been rotated by
θ0 = π/6 (see the inset) relative to the main chain.

the resonance peaks move towards E = J and broaden giving
rise to transmission instead of reflection at J = 1 as discussed
before, see Fig. 4(b).

3. More vibrations and transmission switching

Although we have only considered vibrations on monomer
α so far, let us briefly inspect what happens if monomer η

is mobile instead (η and β are equivalent by symmetry). For
h̄ωη/J � 0.1 (dashed line in Fig. 7) the transmission profile
is qualitatively similar to the case of a static CU, whereas
multiple resonance kinks appear for the smaller frequency
h̄ω/J = 0.01 (solid line in Fig. 7) turning the transmission
dip into a region of finite transmission.

Note that monomers α and η play a very different role for
our transport system which is most easily seen in the static
case from our discussion of Eq. (20) where the eigenenergies
of the CU with α, D3, and the eigenergies of the reduced CU
H2 (including η but excluding α) enter the effective potential
Veff as a factor of D2/D3. The difference of the roles can
be blurred with an asymmetric CU configuration which is
achieved by simply rotating the entire CU with an angle θ0

as shown in the inset of Fig. 7. Indeed, now the transmission
for a mobile monomer α keeping the other two monomers in
the CU immobile, shows additional resonance features similar
to a mobile η before, whereas retaining the overall charac-
teristics of mobile α from the symmetric case with a sizable
transmission at E = J , see dotted line in Fig. 7.

Importantly, in either case, with vibrations on η or α, we
find that a spectral region of perfect reflection can be turned
into one with significant finite transmission. This signals a
complete qualitative change of resonant scattering through
motion of the CU monomers. A general understanding of
this behavior is provided by nonadiabatic transitions between
chain states discussed in Ref. [58] within an appropriate time-
dependent framework.
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The QSM presented here provides a clear picture of elec-
tronic transmission in the presence of few vibrations but can
also provide a computational tool for the inclusion of a large
number Nmodes of vibrational modes. For that purpose, the
computational effort scales cubic with the total number of
vibrational states and, thus, exponential with the number of
modes Nmodes as is commonly the case.

V. CONCLUSIONS AND OUTLOOK

To describe the effect of vibrating sites in discrete transport
systems we have developed a multichannel quantum scatter-
ing method (QSM) which allows us to determine transmission
and reflection coefficients in a time-independent framework,
despite the strong coupling of excitation transport to vibration
and creation of electronic-vibrational entanglement. We have
verified the results and the QSM developed, by extensive com-
parison with time-dependent wave-packet calculations using
the TDSE. Since a larger number of vibrating sites can be
included, the method is applicable in a general context of
transport on a discrete chain of sites with coupling to vibration
or intersite motion, ranging from conjugated polymers and
molecular wires and coupled quantum dots with involvement
of phonons to optomechanical arrays.

Using this method, we have explored how Fano resonances
in quantum transmission on a static chain of discrete sites
(monomers) including a control unit (scatterer) are modified
if the monomers are allowed to vibrate. This setup constitutes
a Fano-Anderson chain with mobile scatterers. It gives rise to
rich features, including the reversal of the scattering effect:
Mobile scatterers can lead to significant transmission at in-
coming wave energies with full reflection in the static case.
The qualitative difference of the transmission characteristics
close to a Fano resonance with significant transmission upon
different kinds of monomer mobilization in the control unit
suggests possible applications in nanoscopic switching and
sensing.
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APPENDIX A: VIBRATIONAL CHANNEL
EXPANSION COEFFICIENTS

Here, we describe the steps to obtain the coefficients Aj0
j in

Eqs. (15) and (16). To solve the eigenvalue problem (14), let
us first look at the action of the Hamiltonian Ĥ on state |
〉

defined in Eq. (8). Noting that 〈n j|
〉 = ψn j , we find

〈n j| Ĥ |
〉
= [1 − (δnα + δnβ + δnη )][Jψn+1, j + Jψn−1, j] + E jψn j

+ (δnα + δnβ + δnη )
n′ �=n∑

n′∈(α,β,η)

∑
j′

F j j′
nn′ ψn′ j′

+ δn0

∑
j′

Gj j′ψα j′ + δnα

∑
j′

Gj j′ψ0 j′ . (A1)

The terms ∼J, E j on the right pertain to the main chain, the
term ∼F to the control unit, and the terms ∼G represent
the coupling between main chain and the control unit. The
coefficients F and G are matrix elements of the electronic-
vibrational coupling, given in Eqs. (3e) and (3f), respectively.
Details on the calculation of these matrix elements for one
exemplary interaction are provided in Appendix B.

In the following we employ the method of backward prop-
agation. Instead of specifying the vibrational state when the
excitation is incoming as in the problem we intend to solve,
we consider the problem where the outgoing wave can be
assigned a well-defined vibrational quantum number j0. This
leads to a simple outgoing boundary condition in (16). This, in
turn, implies a more complicated superposition of vibrational
states in the incoming and reflected part of the wave function
in (15). We can finally assemble a solution that exhibits a spe-
cific incoming vibrational state as the linear combination (17)
of these auxiliary scattering solutions.

One crucial part of solving the eigenvalue problem is ob-
taining the probability amplitude on the scatterer. With the
regular boundary conditions, this is a difficult task in the
presence of many vibrational levels. Below we illustrate the
method to find the probability amplitudes on the scatterer,
which is essential in solving the auxiliary equations. The par-
ticular choice of boundary conditions discussed above along
with the auxiliary equations makes this easier.

We can explicitly solve the auxiliary eigenproblem (14)
for all the possible values of the index j0. From Eq. (15),
we know that ψ

( j0 )
0 j = δ j j0 . This is the key property of the

auxiliary problem that simplifies the determination of all vi-
brational amplitudes in the scatterer compared to the original
problem where, in general, all ψ0 j’s may be nonzero. In order
to obtain the wave function associated with the ring, i.e., to get
the quantities ψ

( j0 )
• j ≡ {ψ ( j0 )

α j , ψ
( j0 )
β j , ψ

( j0 )
η j }, one can now deal

with an inhomogeneous system of linear equations, which is
directly obtained from Eqs. (14) and (A1) as

(E − E j )ψα j −
∑

j j′
F j j′

αβ ψβ j′ −
∑

j′
F j j′

αη ψη j′ =
∑

j′
Gj j′ψ0 j′ ,

(E − E j )ψβ j −
∑

j′
F j j′

βα ψα j′ −
∑

j′
F j j′

βη ψη j′ = 0,

(E − E j )ψη j −
∑

j′
F j j′

ηα ψα j′ −
∑

j′
F j j′

ηβ ψβ j′ = 0. (A2)

Problem [Eq. (A2)] must always possess a unique solution
ψ

( j0 )
• j as long as the entire theoretical formulation is consistent.

After determining the quantities ψ
( j0 )
• j , which depend on all the
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ψ0, j′ ’s, the amplitude ψ
( j0 )
−1, j can be obtained from

Jψ+1, j + Jψ−1, j + (E j − E )ψ0, j +
∑

j′
Gj j′ψα j′ = 0.

It then allows us to find the coefficient Aj0
j after writing down

Eq. (15) for the case n = −1 and inserting ψ
( j0 )
−1, j from Eq.

(A3). One then finds

2iA j0
j sin k j = δ j j0 e+ik j0 − ψ−1, j . (A3)

This completes the explicit solution of the eigenproblem (15).

APPENDIX B: ELECTRONIC-VIBRATIONAL COUPLING

In this Appendix, we derive the expressions for the compo-
nents F j j′

nn′ and Gj j′ defined in Eqs. (3e) and (3f), respectively,
for the specific example of dipole-dipole interactions, where

Fnn′ (ϑ) = − μ2

|rn(ϑn) − rn′ (ϑn′ )|3 , (B1)

and similarly,

G(ϑ) = − μ2

|r0 − rα (ϑα )|3 , (B2)

with transition dipole moment μ and rn(ϑn) as the position
of monomer n. Other exponents for the distance dependence,
such as 1/rm (with m > 2) would lead to a structurally similar
expression for the matrix elements and, hence, qualitatively
similar results. The same would be true for any other interac-
tions for which the interaction between the monomers in the
control unit as well as that between main chain and the control
unit depends on the distance between the monomers.

Let ϑn0 denote the central angle of monomer n on the ring
where the vibrational potential has its minimum. The angular
position of monomer n is given by ϑn, and the displacement,
hence, defined as �n as ϑn − ϑn0. The trap potential in the
position representation is then,

Vtrap(�n) = 1
2 Mω2R2[2(1 − cos �n)] (B3)

≈ 1
2 Mω2(R�n)2. (B4)

1. Calculation of F j j′
nn′

We now focus in the term Fnn′ , i.e., interaction between
monomers on the ring. The inverse cubed distance between
two monomers n and n′ on the ring can be expressed through
their angular coordinates ϑn and ϑn′ as

r−3
nn′ = 2−3/2

R3
[1 − cos (ϑn − ϑn′ )]−3/2. (B5)

The angular separation between monomers n and n′ is de-
noted by ϑnn′ = ϑn − ϑn′ , hence, an equidistant configuration
of them corresponds to |ϑnn′ | = 2π/3 for all pairs n, n′. For
convenience let �nn′ = �n − �n′ . We then can write

r−3
nn′ = 2−3/2

R3
[1 − cos(ϑnn′ + �nn′ )]−3/2. (B6)

Assuming the displacements to be small, a Taylor expansion
of the function f (�nn′ ) = [1 − cos(ϑnn′ + �nn′ )]−3/2 up to
first order around �nn′ = 0 gives

f (0) = (1 − cos ϑnn′ )−3/2 ≡ F nn′
0 , (B7)

f ′(0) = − 3
2 (1 − cos ϑnn′ )−5/2 sin ϑnn′ ≡ F nn′

1 . (B8)

Hence the approximate inverse cubed distance is

r−3
nn′ = 2−3/2

R3

(
F nn′

0 + F nn′
1 �nn′

)
. (B9)

This leads to

F j j′
nn′ = vib 〈	 j | Fnn′ (ϑ) |	 j′ 〉vib

= δ jz j′z

∫∫
d (R�n)d (R�n′ )	 jx (R�n)	 jy (R�n′ )

× (F nn′
0 + F nn′

1 �nn′ )	 j′x (R�n)	 j′y (R�n′ ). (B10)

Here z denotes the monomer index on the ring that should be
neither n nor n′, which is uniquely determined since for this
term we also require n �= n′ and there are only three monomers
in total. j ≡ { jα, jβ, jη} represents the vibrational state of
each monomer in ring and x, y, z ∈ {α, β, η}\{n, n′}. For ex-
ample, if n = α and n′ = η, then jα → jx, jβ → jz, and
jη → jy and, hence, j and j′ can be written as j ≡ { jx, jz, jy}
and j′ ≡ { j′x, j′z, j′y}. Furthermore, the complex conjugation
of the eigenfunctions is omitted since those are real. Finally,
since a finite number of modes are included, the integration
can be formally extended from −∞ to +∞. Hence,

F j j′
nn′ = δ jz j′z (I0 + I1), (B11)

where

I0 = F nn′
0 δ jx j′x δ jy j′y , (B12)

I1 = F nn′
1

∫∫
d (R�n)d (R�n′ )	 jx (R�n)	 jy (R�n′ )

× (�n − �n′ )	 j′x (R�n)	 j′y (R�n′ ) (B13)

= F nn′
1

∫
d (R�n)	 jx (R�n)�n	 j′x (R�n)

−
∫

d (R�n′ )	 jy (R�n′ )�n′	 j′y (R�n′ ). (B14)

Using the explicit form of the eigenfunction in terms of
Hermite polynomials Hj (x), the first integral in Eq. (B14)
becomes∫

d (R�n)	 jx (R�n)�n	 j′x (R�n)

=
√

Mω

π h̄

1√
2 jx+ j′x jx! j′x!

∫
d (R�n)Hjx

(√
Mω

h̄
R�n

)

×�nHj′x

(√
Mω

h̄
R�n

)
exp

(
−Mω

h̄
R2�2

n

)
(B15)

= 1

2R

√
h̄

πMω

1√
2 jx+ j′x jx! j′x!

×
∫

dX Hjx (X )Hj′x (X )H1(X ) exp(−X 2), (B16)

where X =
√

Mω
h̄ R�n and X = H1(X )/2.
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This integral vanishes whenever jx + j′x + 1 is odd since
in this case the integrand is odd and the integration inter-
val symmetric. Moreover, one needs | jx − j′x| = 1 since after
Taylor expansion to first order the harmonic-oscillator ladder
operators couple only adjacent vibrational states. For even
jx + j′x + 1 we can obtain [59]∫

dX Hjx (X )Hj′x (X )H1(X ) exp(−X 2)

= 2sx
√

π jx! j′x!

(sx − jx )!(sx − j′x )!(sx − 1)!
, (B17)

with sx = jx+ j′x+1
2 . Since | jx − j′x| = 1, (sx − jx )!(sx −

j′x )!(sx − 1)! = ( jx+ j′x−1
2 )!. Now let

�(v,w) =
√

v!w!(
v+w−1

2

)
!
. (B18)

Then I1 can be written as

I1 = F nn′
1

1

R

√
h̄

2Mω
[�( jx, j′x ) − �( jy, j′y)]. (B19)

Thus,

F j j′
nn′ = − μ2

(
√

2R)3
δ jz j′z

(
F nn′

0 δ jx j′x δ jy j′y

+ F nn′
1

R

√
h̄

2Mω
[�( jx, j′x ) − �( jy, j′y)]

)
, (B20)

with F nn′
k defined in Eqs. (B7) and (B8). Finally, since | jx −

j′x| = 1 and | jy − j′y| = 1, we can write

�( jx, j′x ) − �( jy, j′y) =
√

jx + 1δ j′x, jx+1 + √
j′x + 1δ j′x+1, jx

−√
jy + 1δ j′y, jy+1−

√
j′y + 1δ j′y+1, jy .

(B21)

2. Calculation of G j j′

Now consider the matrix elements of ĤSC . The position of
the trap α is at 0◦, and so the inverse cubed distance can, for
small �α , be approximated by

r−3
α,0 ≈ [(d − R)3 + R2 sin2 �α]−3/2. (B22)

However, in the Taylor expansion of the right-hand side
around �α = 0, the first nonvanishing term beyond the zeroth
order is ∼�2

α so that one may as well directly approximate
r−3 ≈ (d − R)−3. This leads to

Gj j′ = − μ2

(d − R)3
δ j j′δ0,α. (B23)

APPENDIX C: TDSE

The quantum dynamics of the system is governed by the
time-dependent Schrödinger equation,

ih̄
d

dt
|ψ (t )〉 = Ĥ |ψ (t )〉 , (C1)

where Ĥ is the full Hamiltonian of the system. Explicitly
writing the equation for the state (5), we get

ih̄ψ̇n j = [1 − (δnα + δnβ + δnη )](Jψn+1, j

+ Jψn−1, j ) + E jψn j

+ (δnα + δnβ + δnη )
n′ �=n∑

n′∈(α,β,η)

∑
j′

F j j′
nn′ ψn′ j′

+ δn0

∑
j′

Gj j′ψα j′ + δnα

∑
j′

Gj j′ψ0 j′ . (C2)

A Gaussian wave packet far left of the side unit, representing
the incoming excitation, is our initial condition for solving
Eq. (C1). Initially, the monomers on the circle are assumed to
be in the vibrational ground state. The excitation propagates
freely towards the right as long as the n = 0 site remains un-
populated. During this precollision time interval, vibrational
degrees of freedom of the ring monomers are unaffected by
the incoming excitation and, hence, remain in the original sta-
tionary state. The dynamical time evolution remains governed
solely by the first term (ĤS) in the Hamiltonian. The situation
changes significantly as soon as the excitation reaches the n =
0 site. The other terms in the Hamiltonian become important,
and a complicated vibrational quantum dynamics takes place
until the excitation completely leaves the scattering region.
The electronic-vibrational coupling term in the Hamiltonian
could take the monomer to the higher vibrational states and
thereby influence the excitation transport in the main chain.
The postcollision dynamics is again essentially governed by
ĤS .

The excitation probability of the monomers on the left or
the right of the Fano defect obtained during the precollision
and postcollision period can be used to define a transmis-
sion and reflection coefficient. In addition, the contribution
from each channel to the transmission coefficient can also be
calculated from the dynamics by projecting the spatial wave
function onto harmonic-oscillator states after the scattering.

A Gaussian wave packet has an energy width arising from
spatial localization within � given by

�Epacket ≈ 2h̄2k

m�
, (C3)

where the mass m in a tight-binding contest can be expressed
as m = 1

1
h̄2

d2E
dk2

and k is the wave vector.

APPENDIX D: TRANSFER-MATRIX METHOD

In this Appendix we consider the arrangement of Fig. 1
for static sites. With the full state |
〉 = ∑

n ψn |n〉 the time-
independent Schrödinger equation for quantum scattering of
incoming waves on the CU turns into

Eψn = Jψn+1 + Jψn−1 + Gψαδn,0,

Eψα = Fαβψβ + Fαηψη + Gψ0,

Eψβ = Fβαψα + Fβηψη,

Eψη = Fηαψα + Fηβψβ, (D1)
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where we have used the shorthand notation G = G00 with Gi j′

defined in (3f). Rearranging (D2) gives

Eψn = Jψn+1 + Jψn−1 + D2

D3
G2ψ0δn,0 (D2)

with D2 = det(E1 − H2), D3 = det(E1 − H3), where

H3 =
⎡
⎣ 0 Fαβ Fαη

Fβα 0 Fβη

Fηα Fηβ 0

⎤
⎦, H2 =

[
0 Fβη

Fηβ 0

]
(D3)

are the dipole-dipole Hamiltonian of the CU (H3) and of the
reduced CU without the entrance site (H2). We see in (D2)
that the CU acts, such as a localized defect on site n = 0. The
strength of the effective defect potential,

Veff = D2G2/D3 (D4)

depends on the energy of the incoming excitation through Dj .
If it matches one of the eigenenergies of the side-unit D3 = 0
and the diverging effective scattering potential leads to a total
reflection of the incoming wave. In contrast, when for energies
resonant on eigenenergies of the side unit minus the entrance
site D2 = 0, the effective scattering potential vanishes, and we
have perfect transmission [60].

To explicitly evaluate the reflection and transmission coef-
ficient at other energies, we make the usual ansatz,

ψn = iine+ikn + roe−ikn, n < 0, (D5)

ψn = toe+ikn, n > 0. (D6)

Equation (D2) can be written in the form[
ψn+1

ψn

]
= Tn

[
ψn

ψn−1

]
, (D7)

with a transfer matrix,

Tn =
[E

J − Veff
J δn,0 −1

1 0

]
. (D8)

Thus, [
ψn+1

ψn

]
= Pn

[
ψ−n

ψ−n−1

]
, (D9)

with Pn = TnTn−1 · · · T−n. Using the boundary conditions
in Eqs, (D5) and (D6), the transmission coefficient T =
|to|2/|iin|2 can be obtained from [Eq. (D9)] as [60]

T (E ) = 4J2 − E2

4J2 − E2 + V 2
eff

. (D10)

with Veff given in Eq. (D4).

APPENDIX E: STATIC TRANSMISSION AVERAGES

When approaching smaller vibrational frequencies ω, the
zero-point width σ = √

h̄/m/ω of the vibrating monomer in-
creases. Since we can understand transmission for immobile
monomers using the TMM discussed in Appendix D, we
can attempt to make contact with those calculation by taking
the transmission from the TMM for a fixed angle θ of the

FIG. 8. Transmission as a function of frequency of vibration at
the incoming excitation energy E = J . The solid line shows the
transmission obtained from the QSM. The black dots show the
transmission obtained using the static model given by Eq. (E1). The
inset: The spacial width of the initial ground state considered for
the vibrating monomer α for different vibrational frequencies with
energy h̄ω/J .

vibrating monomer α, let that be TTMM(θ ) and then averaging
it according to

T =
∫

TTMM(θ )p(θ )dθ, (E1)

over the position distribution p(θ ) in the harmonic-oscillator
ground state, shown in the inset of Fig. 8. However, when
applied to the scenario of, e.g., Fig. 4 this provides transmis-
sion of at most T ≈ 0.08 near E = J , clearly not capturing
the essential physics which shows a much more prominent
increase of transmission, see Fig. 8. The underlying resonance
peak shifts away from E = J as the frequency increases and,
thus, the excitation transport increases at lower vibrational fre-
quencies. In contrast, at high frequencies the static picture can
give some idea of transmission since motion is suppressed.
The transmission as a function of energy T (E ) as shown in
Fig. 8 differs between the QSM and a static TMM by only
10% at h̄ω = 0.21J and 5% at h̄ω = 0.24J , however, for both
cases transmission is strongly suppressed.

APPENDIX F: PLATFORMS COUPLINGS QUANTUM
TRANSPORT AND A FEW VIBRATIONS

We have discussed a single vibrational mode in the main
article for clarity, but even this simplified model could be
implemented experimentally using a chain of trapped ultra-
cold 7Li Rydberg atoms. Although, e.g., optical trapping of
Rydberg states poses different challenges than for ground-
state atoms, it has been demonstrated, in principle [61]. The
nearest-neighbor coupling J = C3/δ

3 for dipole-dipole inter-
action strength C3 and nearestneighbor separation δ would
be set by dipole-dipole interactions that allow a single Ry-
dberg p (l = 1) excitation to migrate on a chain of s (l =
0) atoms [62], where l is the angular momentum quantum
number. The dipole-dipole interaction strength can be approx-
imated using C3 = μ2 and the scaling formula μ = μ0ν

2 for
the transition dipole moment μ, where μ0 = 0.8 a.u. and ν
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is the Rydberg principal quantum number. Similarly, we can
estimate the Rydberg state lifetime as τ = τ0ν

3 with τ0 =
3 × 107 a.u. [63]. Choosing, e.g., a distance of δ = 25 μm
and ν = 120 we would have J = 8.3 MHz and expect that
Nhops = 150 = τ/(π/J ) transfers of the excitation from one
site to the adjacent one are possible in the lifetime of a
chain of N = 100 atoms, given by τ = τ0/N . This would be
sufficient for a realization of the scenario in Fig. 2. Finally,
vibrational frequencies of the atom in site α in the range of
0.01J/h̄ = 83 kHZ to J used in, e.g., Fig. 6 can be engineered,
whereas all other sites can be more tightly trapped to freeze
those vibrations.

Although the platform above might provide good control
for the experimental verification of our predictions, we envis-
age the main utility of our method in the study of energy or
charge transport in supramolecular structures. One example

is the transport of excitation energy in molecular aggre-
gates [23], another electron transport in molecular wires [64].
Both transport processes are coupled to vibrations of the con-
stituent particles. In the latter setting, exemplary energy scales
would be J = 2.66 eV [64], then h̄ω would be on the order
J/10 for a C = C stretch vibration. In a generic molecular
wire, vibrations would affect all sites equally, however, here a
more mobile CU can also be realized by attaching a functional
side unit onto a more rigid main wire where the latter could
be a double stranded conjugated polymer [65].

Finally, another possible realization of the single vibra-
tional mode model can be in the transport of photons in
optomechanical arrays [45,46], which combine the photonic
crystal structure in the context of which much of the work in
Ref. [19] was developed with localized well-controlled modes
of vibration.
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