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Quantum mechanical work
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Regarded as one of the most fundamental concepts of classical mechanics and thermodynamics, work has
received well-grounded definitions within the quantum framework since the 1970s, having being successfully
applied to many contexts. Recent developments in the concept have taken place in the emergent field of
quantum thermodynamics, where work is frequently characterized as a stochastic variable. Notwithstanding this
remarkable progress, it is still debatable whether some sensible notion of work can be posed for a strictly quantum
instance involving a few-particle system prepared in a pure state and abandoned to its closed autonomous
dynamics. By treating work as a quantum mechanical observable with a well-defined classical limit, here we
show that this scenario can be satisfactorily materialized. We prove, by explicit examples, that one can indeed
assign eigensystems to work operators. This paves the way for frameworks involving quantum superposition and
nonlocal steering of work. We also show that two-point measurement protocols can be inappropriate to describe
work (and other two-time physical quantities), especially in the semiclassical regime. However subtle it may
be, our quantum mechanical notion of work is experimentally testable and requires an updating of our intuition
regarding the concept of two-time elements of reality. In this context, we derive a work-energy uncertainty
relation, and we illustrate how energy conservation emerges as an element of physical reality.

DOI: 10.1103/PhysRevA.104.042215

I. INTRODUCTION

In classical mechanics, the fundamental law of motion,
mir̈i = ∑

j f j→i, for a point particle of mass mi at the position
ri submitted to conservative forces f j→i = −∇iVi j , where
Vi j = Vi j (|ri − r j |) = V ji, can be expressed in a form that
is, so to speak, “nonlocal in time,” namely,

Ki(t2) −Ki(t1) =
∑

j

W j→i(t2, t1), (1)

where Ki(t ) = miṙ2
i /2 and

W j→i(t2, t1) =
∫ t2

t1

dt ṙi · f j→i = −
∫ t2

t1

dt ṙi · ∇iVi j . (2)

The latter expression defines the mechanical work that particle
j does on particle i in the time interval [t1, t2] by means of
the force f j→i. In addition to providing a useful rephrasing of
Newton’s second law along a given segment of a configura-
tion space trajectory, the notion of work paves the way for a
sensible statement of the law of conservation of energy. In its
general form, the principle reads

�ES =WE→S, (3)

where E stands for “the environment” and ES for the total
energy of “the system S” (the boundary between them being
arbitrary and abstract). Clearly, the system energy is con-
served only in the absence of external work. In the model
discussed above, we have S = {i} and E = U − S, where U
denotes the universe set encompassing all particles, so that
ES = Ki andWE→S = ∑

j∈EW j→i = ∫ t2
t1

dt mi ṙi · r̈i. When
S is a many-particle system, the scenario becomes subtler,

and many definitions of work and related energy changes
are admissible even in purely mechanical contexts involving
matter systems [1,2].

As the focus moves onto huge, messy, dirty, and hot sys-
tems, detailed microscopic aspects of the dynamics often
become superfluous. In this domain, a proper account for the
balance of energy is provided by thermodynamics [3–5], a
phenomenological theory of smooth thermal processes. Sup-
ported by the microscopically oriented formalism of statistical
physics [6–8], thermodynamics brings into play the notion of
heat and defines work in terms of changes of macroscopic
degrees of freedom, as, for instance, the position of a pis-
ton. Further adaptations of the notion of work are introduced
as one comes to the scope of the so-called stochastic ther-
modynamics [9,10], devoted to smaller systems subjected to
non-negligible fluctuations.

Now, how about a genuine quantum mechanical formu-
lation of work? Given the lack of the concept of trajectory
in the quantum orthodoxy, which then precludes one from
trying a definition such as (2), one might think at first that any
attempt along these lines would be doomed to failure. Despite
these difficulties, some interesting developments have been
achieved with use of the Heisenberg picture of mechanical
systems [11], and, with more intensive efforts, in the emerging
field of quantum thermodynamics [12,13]. In fact, the first
attempts to define work in the quantum domain date back to
the 1970s (see, e.g., [14,15]), and they were devoted to imple-
menting the thermodynamic view according to which work
must be related to the transfer of energy through a determinis-
tically controllable process. These models express the system
energy as a Hamiltonian operator H (λ) that explicitly depends
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on a deterministic (dispersion-free) time-dependent parameter
λ(t ) whose dynamics is imposed by an external macroscopic
mechanism. Precisely at this point, one recognizes the nonau-
tonomous classical aspect of this model. Adhering to this
framework, several approaches on quantum thermodynamics
[9,14,16–26] compute work as

W(t2, t1) =
∫ t2

t1

〈∂t H〉 dt =
∫ t2

t1

〈∂λH〉 λ̇ dt . (4)

In full consonance with the definition of work encountered in
statistical physics [6,7], this formulation is supplemented with
a clear recipe for the derivation of a time-dependent Hamil-
tonian from a closed autonomous dynamics; all one needs
to do is to trace out the surroundings and get the operator
responsible for the unitary part of the emerging master equa-
tion [27–30]. An important drawback is that this scheme is
technically complicated for general strong-coupling regimes.
Also, the physical significance of definition (4) has recently
been questioned, since a Hamiltonian like H (t ) + g1, with
an arbitrary real function g = g(t ), generates a g-independent
dynamics but a g-dependent amount of work [19,31–37]. For
sure, this cannot be the case in general. Another point under
dispute around definition (4) is whether interaction terms are
to be regarded as part of the internal energy of the system.
Discussions along these lines have triggered the notions of
inclusive and exclusive works [31].

There are many other routes to the definition of thermo-
dynamic work in quantum regime, among which we refer
the reader to [38–47]. In contrast, the literature still lacks a
proper account for the definition of work in genuine quan-
tum mechanical scenarios. Incidentally, it is clear that the
knowledge accumulated so far, however useful it may be in
the thermodynamics context, does not apply to these cases.
Consider, for instance, a particle of mass m (the system, S)
prepared in a pure state and submitted to some external influ-
ence (the environment, E) described by a harmonic potential
V (X ) = kX 2/2. Since the quantum dynamics is determined
by the parameter-free Hamiltonian H = P2/2m + kX 2/2, a
direct application of Eq. (4) would give ∂λ(P2/2m) = 0 and
hence no work at all. This is, however, unexpected because the
average kinetic energy of the particle surely varies over time.
As a second example, let us take an isolated quantum sys-
tem composed of two spinless particles. Let H = P2

1 /2m1 +
P2

2 /2m2 + V12(|X1 − X2|) be the Hamiltonian governing the
autonomous dynamics, and let ρ0 be a correlated joint state
without any connection a priori with thermal states. Even if
one is able to derive a master equation for an arbitrary-strength
potential V12 and eventually find an effective driving parame-
ter λ(t ), the resulting effective Hamiltonian for the reduced
dynamics will not be free from the issue of encompassing
part of the coupling, and, as consequence, the work (4) will
be submitted to the inclusive-versus-exclusive polemic. In
addition, this approach does not shed light on the fundamental
question of whether work can be treated as an observable and
how one can measure it.

This article aims to introduce a genuine quantum mechani-
cal notion of work, by which we mean a concept applicable
even to the problem of a single quantum particle prepared
in a pure state and submitted to a scalar time-independent

potential. The text is structured as follows. Drawing some
inspiration from the classical formalism, which is briefly
reviewed in the beginning of Sec. II, we define a Hermi-
tian quantum work operator that avoids, by construction, the
inclusive-versus-exclusive dilemma. In Sec. III, we explicitly
obtain the quantum work eigensystem for the problems of a
particle submitted to a uniform gravitational field (Sec. III A)
and two particles under a quadratic coupling (Sec. III B). The
work statistics corresponding to the gravitational problem is
derived in Sec. III C, where a comparison is made with the
results offered by the stochastic-variable approach. We show
that the mean work correctly reproduces the semiclassical
results expected in light of the Ehrenfest theorem. In addition,
we discuss how work and other two-time quantities can be
interpreted as elements of the physical reality (Sec. III D),
we show that a Schrödinger-like picture is admissible for
work (Sec. III E), and we derive a work-energy uncertainty
relation (Sec. III F). In particular, we illustrate how energy
conservation emerges as an element of reality. Section IV then
closes the paper with our concluding remarks.

II. MECHANICAL WORK

Before presenting our definition of quantum mechanical
work, it is instructive to briefly review an important prop-
erty of the mechanical work (2) in systems of structureless
particles. From now on, we confine our analysis to one-
dimensional motion for the sake of simplicity. Consider the
Hamiltonian function

H =
N∑

i=1

p2
i

2mi
+

N∑
j>i=1

Vi j, (5)

with Vi j ≡ Vi j (|xi − x j |). The notation is such that the sec-
ond parcel above encompasses summations over i and j > i.
Assume, for awhile, that N = 3 and select particle 2 as the
system of interest S, so that the environment E is composed of
particles 1 and 3. In this case, fromW j→i = − ∫ t2

t1
dt ẋi ∂xiVi j

and the chain rule, we find

WE→S ≡W1→2 +W3→2 =
∫ t2

t1

dt ẋ2 mẍ2

= K2(t2) −K2(t1) ≡ �ES. (6)

Thus, departing from the (unambiguous) notion of external
work WE→S, we arrive at the notion of internal energy ES,
which here is the kinetic energy of S. Notice that the inter-
action terms V12 and V23 do not contribute to the internal
energy. This is reasonable because they do not even exist when
the particle 2 is left alone, so they cannot be “internal.” Let
us now redefine the abstract boundary between system and
environment: S = {1, 2} and E = {3}. With use of the identity
d
dt (K1 +K2 +V12) = −ẋ1∂x1V13 − ẋ2∂x2V23 and the previ-
ous relation forW j→i, one shows that

WE→S ≡W3→1 +W3→2 = �(K1 +K2 +V12) ≡ �ES.

(7)
Again, the result is intuitive: the internal energy ES = K1 +
K2 +V12 now includes the interaction V12 taking place
inside the boundary that defines the system. Naturally, the in-
teraction termsV13 andV23 are not part of the internal energy,
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since they cannot exist in the system S = {1, 2} alone. Here is
the point we want to emphasize: once the mechanical work is
properly defined, the correct notion of internal energy emerges
automatically and the inclusive-versus-exclusive debate dissi-
pates. The extension to arbitrary N is straightforward. Indeed,
for S = {1, 2, . . . , M} and E = {M + 1, M + 2, . . . , N}, we
find

WE→S =
∑
j∈E

∑
i∈S

W j→i = �

(
M∑

i=1

Ki +
M∑

k>i=1

Vik

)
≡ �ES.

(8)
Therefore, in this fundamental, microscopic, mechanical, con-
servative framework, the principle of conservation of energy
is trivially proved, no ambiguity arises concerning the notion
of internal energy, and there is no need for one to conceive
either uncontrollable or inaccessible forms of energy transfer,
such as heat.

A. Quantum mechanical work

We are now ready to introduce our definition of quantum
mechanical work. The proposal consists of closely following
the classical structure (2). An important obstacle in this regard
might be the absence of direct notions of velocity and force in
the quantum domain, but as we show next, this can be reme-
died with use of the Heisenberg picture, wherein the operators
are written as O ≡ O(t ) ≡ φt (Os), where Os is the corre-
sponding Schrödinger operator1 and φt is the time-evolution
map satisfying φ∗

t = φ−t and φt1φt2 = φt1+t2 . In particular, for
unitary evolutions respecting ih̄ U̇t = HUt , one has φ∗

t (ρ0) =
Ut ρ0 U †

t . Let us consider a universe U = {1, 2, . . . , N} com-
posed of N spinless interacting particles whose dynamics is
described by the Hamiltonian operator

H =
N∑

i=1

P2
i

2mi
+

N∑
j>i=1

Vi j, (9)

where Vi j = Vi j (|Xi − Xj |). In Heisenberg’s picture, the ve-
locity operator and the resultant force operator for the ith
particle are written, respectively, as Ẋi = [Xi, H]/ih̄ and
miẌi = mi[Ẋi, H]/ih̄. The quantum state ρ0 and the Hamilto-
nian H act on a joint Hilbert space HU = ⊗N

k=1 Hk , whereas
Xi and Pi act on Hi. We then introduce our candidate for the
resultant quantum mechanical work done on particle i:

WE→S(t2, t1) = 1

2

∫ t2

t1

dt mi{Ẋi, Ẍi}, (10)

where S = {i} and E = U − S. The symmetrization 1
2 {A, B} =

1
2 (AB + BA) aims at ensuring hermiticity. It should be recog-
nized from the very beginning that WE→S is an operator acting
on the joint Hilbert space HU = HS ⊗ HE, the consequences
of which will be discussed posteriorly. Now, one can show
by direct integration of the Heisenberg equation dẊ 2

i /dt =

1The superscript s will be used hereafter to denote operators in the
Schrödinger picture. This notation was not employed in Sec. I, where
all operators were implicitly assumed to be written in this picture.

[Ẋ 2
i , H]/ih̄ = {Ẋi, Ẍi} that

miẊ 2
i (t2)

2
− miẊ 2

i (t1)

2
= 1

2

∫ t2

t1

dt mi{Ẋi, Ẍi}, (11)

which is the algebraic statement of the energy-work theorem
�ES = WE→S with respect to the internal energy operator
ES ≡ Ki(t ) = miẊ 2

i (t )/2 = P2
i /2mi. Also, just as in the clas-

sical context, this approach allows us to speak of the notion
of “work done by a force.” Plugging the Heisenberg equation
miẌi = Ṗi = −∑

j∈E ∂XiVi j into (10) induces us to introduce

Wj→i(t2, t1) = −1

2

∫ t2

t1

dt
{
Ẋi, ∂XiVi j

}
, (12)

which makes direct reference to its classical counterpart (2).
This means that whenever one is able to identify a specific
physical potential in the system under consideration, then the
recipe (12) can be used to describe the work mediated by
the interaction Vi j in the time interval [t1, t2]. The sum of
all individual contributions yields the resultant quantum me-
chanical work, WE→S = ∑

j∈E Wj→i, which causes the change
in the internal energy, as prescribed by (11). The quantum
counterpart of (8) can be obtained via calculations similar
to those employed around (7). Setting S = {1, 2, . . . , M} and
E = {M + 1, M + 2, . . . , N}, one shows via some algebra
that

WE→S =
∑
j∈E

∑
i∈S

Wj→i = �

(
M∑

i=1

Ki +
M∑

k>i=1

Vik

)
≡ �ES.

(13)
Hence, in perfect analogy with the classical framework, the
definition of the total work imparted on the system S reveals
the internal-energy operator ES = HS without any ambigu-
ity. In particular, it is notorious that the Schrödinger version
Es

S = Hs
S ⊗ 1E of this operator effectively acts on HS only,

and so does ES when one “turns off” the interaction with the
environment. That is, the coupling between S and E does not
count as internal energy. The theoretical strategy of “turning
off” the environment allows us to identify what the inter-
nal energy should be in our formalism, thus avoiding the
inclusive-versus-exclusive ambiguity.

It is opportune to remark that our approach can be straight-
forwardly extended to more than one dimension, thus being
able to implement the principle of conservation of energy,
�ES = WE→S, in general mechanical contexts. In scenarios
involving electromagnetic phenomena, if one can unambigu-
ously identify the internal energy operator ES (for instance by
“turning off” all interactions with the environment), then one
can take (13) as a fundamental postulate, from which the work
done on S by E can be computed as �ES. For instance, if the
internal energy is represented by some Hamiltonian operator
Hs

S ∈ HS, then the relation

WE→S(t2, t1) = φt2

(
Hs

S ⊗ 1E
) − φt1

(
Hs

S ⊗ 1E
)

(14)

gives the work operator done on S by E in the time inter-
val [t1, t2]. In our approach, generic expectation values are
computed as 〈 f (WE→S)〉 (t2, t1) = Tr[ f (WE→S)ρ0] for well-

042215-3



T. A. B. PINTO SILVA AND R. M. ANGELO PHYSICAL REVIEW A 104, 042215 (2021)

behaved functions f . In particular, the mean work and its
uncertainty follow from

〈WE→S〉 = Tr(WE→S ρ0), (15a)

σWE→S = (〈
W 2

E→S

〉 − 〈WE→S〉2)1/2
, (15b)

with analogous relations for the work imparted by a specific
force [Eq. (12)]. Perhaps the first sanity check one may require
from any candidate of quantum mean work is the capability
of correctly retrieving its classical counterpart for sufficiently
narrow wave packets or less-than-cubic potentials. As we shall
explicitly show later, this is indeed the case.

III. WORK AS AN OBSERVABLE

Technically, an observable is a Hermitian operator whose
set of eigenvectors spans the vector space. It then follows
from the quantum axioms that as soon as a measurement is
concluded, the system state collapses to one of the eigenstates
of the measured observable and an associated eigenvalue
is obtained as outcome. Keeping this concept in mind, we
come to an important point underlying our approach. Al-
though there are proposals defending the idea that work can
indeed be viewed as an observable [17,48–50], such an idea
has been an object of intense discussion and it remains un-
settled [18,25,38,51,52]. Some authors argue that because
work is related to a process rather than a system state, a
single measurement at a given instant of time cannot com-
pletely characterize it [25]. In another vein [18,24,53], it has
been shown that taking fluctuation theorems2 as fundamen-
tal premises favors the view that work is a random variable
accessible via two-point measurements (TPMs) [18], to the
detriment of operator-based formulations like WE→S(t2, t1) =
HS(t2) − HS(t1). However, despite the demonstrated relevance
of fluctuation theorems in classical stochastic thermodynam-
ics, they are not expected to be valid in general quantum
contexts, so that a work operator should not be automatically
discarded for not leading to the usual fluctuation theorems,
as pointed out in Ref. [51]. On the other hand, in the same
reference a scenario is presented in which a system is pre-
pared in an eigenstate of work while the energies at different
instants of time are uncertain. This led the author to the
odd conclusion that energy exchanges and work cannot be
related in such a case. It is noteworthy that, to the best of
our knowledge, all this debate has been conducted exclusively
within the framework of the (quantum and classical) stochas-
tic thermodynamics. We remind the reader that our goal here
is to assess the notion of quantum work within a mechan-
ical perspective, which, of course, may not necessarily be
immune to the aforementioned objections. Moreover, we aim
at fundamentally preserving the axiom according to which
every physical quantity is to be described within the quantum
formalism as an observable. In what follows, we discuss two
emblematic physical problems through which we demonstrate
the adequacy of this perspective.

2Fluctuation theorems have been shown to be ubiquitous tools
leading to several developments in the scope of quantum thermo-
dynamics [25,53].

A. Work due to a uniform gravitational field

We start with the simple instance in which a particle S of
mass m is immersed in a homogeneous gravitational field g
created by a massive body E (the Earth), which remains fixed
at the origin of the inertial coordinate system. This turns out
to effectively be a one-body model described by

H = P2

2m
+ mgX, (16)

where X (P) stands for the position (momentum) operator. We
believe that nobody would object to the idea that E does some
work on S, and yet, since there is no external driving λ(t ),
prescription (4) yields ∂λ(P2/2m) = 0 andW(t2, t1) = 0. To
apply our formalism, we first compute the Heisenberg equa-
tions Ẋ = P/m and Ṗ = −mg = mẌ , and then we find the
solutions P(t ) = Ps − mgt = mẊ and X (t ) = X s + Pst/m −
gt2/2. Using (10) and (11), we obtain the work operator

WE→S(t2, t1) = �ES = −g(t2 − t1) Ps + mg2

2

(
t2
2 − t2

1

)
,

(17)
where ES = K = mẊ 2/2. Clearly, the potential V = mgX is
not part of the internal energy of S. Since the operators of
the (classical) heavy particle E do not enter the model, then
1
2 dt{Ẋ , ∂XV } = V̇ dt . It follows from (12) that

WE→S(t2, t1) = −�V = mg[X (t1) − X (t2)]. (18)

Not surprisingly, Eqs. (17) and (18) give �(K + V ) = �H =
0. It is clear from the above results that the work operator has
the same right as Ps to be understood as an observable. In
particular, it is Hermitian and satisfies the relation

WE→S(t2, t1) |p〉 = wp(t2, t1) |p〉 , (19)

with eigenvalues wp(t2, t1) = −g(t2 − t1)p + mg2(t2
2 − t2

1 )/2
and eigenvectors |p〉 such that Ps |p〉 = p |p〉.

As an interesting consequence of Eq. (19), by measur-
ing the momentum of the particle and thus preparing, say,
ρ0 = |p0〉 〈p0| as an initial state, one automatically prepares
the amount wp0 (t2, t1) of work that E will impart on S in the
time interval [t1, t2]. Since the initial state is a work eigen-
state, one has a scenario in which there is no uncertainty
whatsoever for the observable work. Also, it follows that
〈WE→S〉 = wp(t2, t1), which coincides with the value expected
from classical mechanics. For instance, we have wp0 (t, 0) =
fg �x(t ), where fg = −mg and �x(t ) = p0t/m − gt2/2. This
is in full agreement with the Ehrenfest theorem. Remarkably,
through a single measurement, one is able to set the amount
of work that will be executed in an arbitrary time interval.
This is not to say, though, that work is a (time local) state
variable. In fact, by construction, the work observable is a
two-time operator satisfying WE→S(t, t ) = 0. In addition, it
is clear that the resulting eigenvalue makes reference to a
classical trajectory whose segment x(t2) − x(t1) characterizes
the process through which E changes S’s internal energy.
Notice that the aforementioned preparation scheme applies
to other two-time Heisenberg operators as well. Consider, for
instance, the displacement operator δ(t2, t1) := X (t2) − X (t1)
for a free particle. Solving the Heisenberg equations, one
straightforwardly finds δ(t2, t1) = Ps(t2 − t1)/m. We see that
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by preparing a momentum eigenstate, we can set the displace-
ment of the particle for any future time interval (see Appendix
A 1 for further discussions regarding this observable).

To avoid issues concerning the normalization of the quan-
tum state, one can always associate ρ0 = |p0〉 〈p0| with a
very sharp Gaussian state or think of it as the projection
ρ0 = ∫ p0+dp/2

p0−dp/2 d p |p〉 〈p| ∼= |p0〉 〈p0| dp, with dp being the res-
olution for momentum measurements. Alternatively, we can
use methods that treat momentum as a discrete variable [54].
In any of these cases, however, from a physical point of view,
we do expect some superposition of momentum eigenvectors,
which naturally implies a superposition of work, with an as-
sociated mean value and quantum uncertainty.

B. Work due to an elastic potential

Now we conceive a universe U = {1, 2} with two particles
of masses m1,2 interacting via an elastic potential of char-
acteristic constant k. The unitary autonomous dynamics is
governed by the Hamiltonian

H = P2
1

2m1
+ P2

2

2m2
+ k

2
(X2 − X1)2, (20)

where Xi (Pi) is the position (momentum) operator of the ith
particle. Here we set S = 1 and E = 2. By means of the usual
transformation

Xcm = m1X1 + m2X2

M
, Xr = X2 − X1,

Pcm = P1 + P2, Pr = μ
( P2

m2
− P1

m1

)
,

(21)

with μ = m1m2/M and M = m1 + m2, we can rewrite the
Hamiltonian in the form H = P2

cm/2M + P2
r /2μ + kX 2

r /2,
which shows that the center-of-mass part decouples from
the relative one. As a consequence, one can write the time-
evolution operator as Ut = Ucm ⊗ Ur, which then yields the
solutions

Xcm = X s
cm + Ps

cmt

M
, Xr = X s

r cos (ωt ) + Ps
r

μω
sin (ωt ),

Pcm = Ps
cm, Pr = Ps

r cos (ωt ) − μωX s
r sin (ωt ),

(22)

with ω = √
k/μ. Returning to the original variables, we can

write the work observable as WE→S(t2, t1) = K1(t2) − K1(t1),
where K1 = P2

1 /2m1 and

P1(t ) = a(t ) Ps
1 + b(t ) Ps

2 + c(t )
(
X s

2 − X s
1

)
, (23)

a(t ) = [m1 + m2 cos (ωt )]/M,

b(t ) = [1 − cos (ωt )]m1/M,

c(t ) = μω sin (ωt ). (24)

Although an explicit form of the work operator can be easily
derived from the above formulas, it is not insightful and its
diagonalization is not trivially feasible. We then restrict our
analysis to convenient instants of time. An instructive example
is

WE→S(vτ, uτ )=2
[m1 − m2

M2
Ps

1 Ps
2 + m1

M2

(
Ps

2

)2− m2

M2

(
Ps

1

)2
]
,

(25)

with τ = π/ω, v (u) an odd (even) integer, and v > u � 0.
Here, Ps

1 Ps
2 is used as a shorthand for Ps

1 ⊗ Ps
2 . The work

operator is diagonal in the composite basis {|p1〉 |p2〉}, where
Ps

i |pi〉 = pi |pi〉, and its eigenvalues read

wp1,p2 (vτ, uτ ) = 2
(m1 − m2

M2
p1 p2 + m1

M2
p2

2 − m2

M2
p2

1

)
.

(26)
Hence, by measuring Ps

1,2 one prepares the amount wp1,p2 of
work in the time interval [uτ, vτ ]. Notice, however, that this is
a joint measurement, that is, both particles have to be touched.
This example offers a better picture of the typical work oper-
ator: it is an observable acting on a composite vector space,
and quantum theory allows, in these cases, the existence of
entangled work eigenstates. To see this, consider the initial
state |ψ0〉 = | p̄1〉 | p̄2〉, where | p̄1,2〉 are sharp Gaussian states
centered at p̄1,2, thus ensuring a well-defined mean work.
Now, in terms of the relative and center-of-mass momentum,
the work operator (25) reads WE→S(vτ, uτ ) = 2

M Ps
cmPs

r . This
change of variables implies that

e
− (p1− p̄1 )2

4δ2
p(

2πδ2
p

)1/4

e
− (p2− p̄2 )2

4δ2
p(

2πδ2
p

)1/4 = e
− (pr− p̄r )2

4δ2
r(

2πδ2
p

)1/4

e
− (pcm− p̄cm )2

4δ2
cm(

2πδ2
p

)1/4 e
− αpr pcm+β

δ2
p ,

(27)

where p̄r, p̄cm, δr, δcm, α, and β are functions of the width
δp and p̄1,2. From α = 1

2
m2−m1
m1+m2

we see that the initial state is
entangled in the new degrees of freedom whenever m2 �= m1.
Conversely, preparing a product state | p̄r〉 | p̄cm〉 for these
“nonlocal degrees of freedom” renders an entangled state
in p1,2.

Recognizing that work is an observable allows one to
envisage interesting scenarios whereby Alice can steer the
work done in Bob’s laboratory. Consider an instance in which
an ancillary system A is prepared, along with particles 1
and 2, in the state |�〉 = α |a〉 |wp1,p2〉 + β |ā〉 |w p̄1,p̄2〉, where
|wp1,p2〉 ≡ |p1〉 |p2〉 and 〈a|ā〉 = 0. Let us assume that this
state can be preserved while the ancilla is transported to
Alice’s laboratory, which is far away from Bob’s site, where
particles 1 and 2 are allowed to interact with each other ac-
cording to the Hamiltonian (20). For generic amplitudes α

and β, the state |�〉 is entangled and possesses other sub-
tle quantum correlations, such as Einstein-Podolsky-Rosen
(EPR) steering [55] and Bell nonlocality [56]. This does not
imply that Alice can effectively control the average amount
of work that will take place in Bob’s laboratory, for her mea-
surement outcomes are random. The presence of EPR steering
means that one cannot ascertain, before any measurement, an
element of reality for work. That is, referring back to Eq. (26),
the amount of work that particle 2 will do on particle 1 in the
time interval [uτ, vτ ] cannot be ensured by any local hidden
variable theory to be either wp1,p2 or w p̄1,p̄2 . Only after Alice
measures the ancilla in her far distant laboratory, thus collaps-
ing the system state to either |a〉 |wp1,p2〉 or |ā〉 |w p̄1,p̄2〉, will
the amount of work in Bob’s laboratory materialize to either
wp1,p2 or w p̄1,p̄2 , respectively. What is more, such nonlocal
work steering can be implemented by Alice’s measurement
at any instant after the state preparation at t = 0 and prior to
the time interval [uτ, vτ ].
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It is worth noting that one does not really measure a two-
time observable, like work or displacement, at a given instant
of time t after the preparation. In fact, this cannot be done even
within the classical paradigm simply because a two-time ob-
servable is not definable at a single time. Instead, we prepare
it for the time interval [t1, t2] through the establishment of ρ0

at t = 0. As we shall discuss later, work should accordingly
be viewed as a two-time element of reality.

C. Work statistics

Once work is treated as an observable, one can determine
its eigenstates, the corresponding projectors, and the emergent
probability distributions. In other words, one can raise the
entire statistics associated with its preparation. An alternative
view that has commonly been adopted, especially in contexts
involving an external driving parameter λ(t ), conceives work
as a stochastic variable that can only be inferred through
a TPM protocol [18,25,53]. The TPM scheme has enabled
the experimental validation of important quantum fluctuation
theorems (see, for instance, Refs. [25,53,57] and references
therein) and it gives a relatively simple and fairly general way
of accounting for work statistics in the quantum thermody-
namics domain. In this section, we confront these two views,
emphasizing their conflicting results.

We start with a brief review of the TPM protocol, which
is often applied to a system S described by a time-dependent
Hamiltonian Hs

S (t ). After being prepared at t = 0 in a generic
state ρS, the system is submitted to a projective measurement
of energy at t1, thus jumping to an Hs

S (t1) eigenstate |en〉 with
probability pn = 〈en|ρS|en〉. The system then evolves unitarily
(via U�t , with �t = t2 − t1) until the instant t2, when a second
measurement is performed and a random eigenvalue εm of
Hs

S (t2) is obtained with probability pm|n = | 〈εm|U�t |en〉 |2.
In this run of the experiment, work is computed as wmn =
εm − en. After many runs, the probability density associated
with work is built as ℘w = ∑

mn pm|n pn δD(w − wmn), where
δD is the Dirac delta function and

∫
dw℘w = 1. It follows

that the kth moment of work can be evaluated as wk =∫
dw℘wwk = ∑

mn pm|npnw
k
mn. Notice that what is directly

measured is energy, not work. In fact, a way to measure work
without knowledge of the energy operator had not yet been
presented until very recently [48]. Typically, the application
of the TPM protocol to thermodynamic contexts presumes
a nonautonomous dynamics wherein Hs

S (t ) = Hs
S (λ(t )), that

is, the system S is externally controlled by a classical device
whose dynamics is encoded in λ(t ) [25,26]. Moreover, the
coupling with this device is regarded as part of the inter-
nal energy [57], which characterizes the inclusive approach
[31]. Finally, it is usual to consider initial states such that
[ρS(0), Hs

S (0)] = 0 [25,53,57]. Since these conditions are not
met in the mechanical context under scrutiny here, some adap-
tations in the protocol will be in order.

Now, to appreciate the differences among the approaches,
we focus on the problem of free fall, as treated in Sec. III A.
The corresponding classical model encompasses the Hamil-
tonian function H = p2/2m + mgx, which yields the work
WE→S = �K = −�V, where K = p2/2m and V = mgx.
This double identity, which also emerges in our approach to
quantum work, induces one to conceive two variations of the

typical TPM protocol, one for measurements of momentum
(and thus kinetic energy) and another involving measurements
of position (potential energy). Accordingly, we refer to these
protocols as TPMp and TPMx. In both cases, the preparation
will be a Gaussian pure state ρ0 = |ψ0〉 〈ψ0| with correspond-
ing wave function

ψ0(x) = 〈x|ψ0〉 = (
2πσ 2

x

)− 1
4 exp

[
− (x − x0)2

4σ 2
x

+ ip0x

h̄

]
,

(28)

where 〈X s〉 = x0, 〈Ps〉 = p0, and
√〈(X s∗ )2〉 = σx with X s

∗ ≡
X s − 〈X s〉. For notation compactness, we use Gu(ū, σ ) =
(2πσ 2)−

1
2 exp[− (u−ū)2

2σ 2 ] for Gaussian functions with width σ

and center at ū. The next step consists of unitarily evolving
the initial state from t = 0 until t = t1 via the time-evolution
operator3

Ut1 = e−i�t1 exp
(
− imgt1X

h̄

)
exp

(
− iP2t1

2mh̄

)
exp

(
igt2

1 P

2h̄

)
,

(29)

where �t1 = mg2t3
1

6h̄ . The probability densities associated with
the outcomes ri in measurements of r ∈ {x, p} at t1 read

℘xi = |〈xi|ψ (t1)〉|2 = Gxi

(
x0 + p0t1

m
− gt2

1

2
, σx(t1)

)
,

(30)

℘pi = |〈pi|ψ (t1)〉|2 = Gpi

(
p0 − mgt1,

h̄

2σx

)
,

where σx(t1) = σx

√
1 + (h̄t1/2mσ 2

x )2. We assume that a po-
sition (momentum) measurement results in a Gaussian state
with width dx (dp) referring to the measurement resolution
(which is eventually taken to be ideal, that is, dr → 0). After
the measurement is effectively performed, the state reduces
to the eigenstate |ri〉, here expressed as 〈r|ri〉 = √

Gr (ri, dr ).
Then, we apply the evolution operator (29) with the change
t1 → �t = t2 − t1 and compute the conditional probability
densities

℘ x f |xi = |〈x f |U�t |xi〉|2 = Gx f

(
xi − g�t2

2
, dx(�t )

)
,

℘ p f |pi = |〈p f |U�t |pi〉|2 = Gp f (pi − mg�t, dp),
(31)

where dx(�t ) = dx

√
1 + (h̄�t/2md2

x )2. Taking e[x]
i, f = mgx f ,i

and e[p]
i, f = p2

i, f /2m for the TPMx and TPMp protocols, re-
spectively, we can compute work distributions as℘ [r]

w (t2, t1) =∫∫
dridr f ℘ri℘r f |riδD[w − (e[r]

f − e[r]
i )]. The results read

℘ [r]
w (t2, t1) = Gw

(
w[r](t2, t1), σ [r]

w

)
, (32)

3To obtain the factorized form (29), we first move the de-
scription to the interaction picture via the transformation |ψ〉 =
eimgXt/h̄ |ψ〉. The time-evolution operator for the new Schrödinger
equation, ih̄ ∂t |ψ〉 = (P−mgt1)2

2m |ψ〉, can be directly factorized as

e−iP2t/2mh̄eigt2P/2h̄.
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where w[r](t2, t1) = fg�
[r]
x (mean work), fg = −mg, and

�[x]
x = −g�t2

2
, σ [x]

w = |fg|dx(�t ),

�[p]
x = p0�t

m
− g(t2

2 − t2
1 )

2
, σ

[p]
w = σpg�t .

(33)

The results for the TPMp protocol were strictly derived for
dp → 0. The corresponding limit, dx → 0, for the TPMx

protocol would lead to σ [x]
w → ∞, which already points

out a dramatic difference between these protocols. With
the distributions (32) we can compute the moment wk

[r] =∫
dw℘[r]

w wk , and then the mean work w[r] = ∫
dw℘[r]

w w =
w[r](t2, t1) and the fluctuation (w2

[r] − w2
[r] )

1/2 = σ [r]
w .

The differences are remarkable and symptomatic. In the
TPMx protocol, the mean momentum p0 is erased by the
first position measurement, thus leading to an average work
w[x] whose associated displacement �[x]

x = − g�t2

2 can be very

different from the one emerging in the TPMp protocol, �[p]
x =

p0�t
m − g�t2

2 . Most importantly, in the limit as dx → 0 one

has σ [x]
w /σ

[p]
w ≈ σx/dx → ∞, proving the huge differences

implied by each protocol to the work fluctuation. Here we
have an odd state of affairs because the two TPM protocols
cannot agree about the mean work done on the particle. In
other words, the TPM-based stochastic view fails to validate
the identityK (t2) −K (t1) = V(t1) −V(t2) in a conservative
system.

As far as the work operator (17) is concerned, one read-
ily identify its eigenstates |p〉 and respective eigenvalues
wp(t2, t1) = fg�x, where �x = p0�t

m − g�t2

2 = �
[p]
x . It then

follows that the work distribution can be constructed via mo-
mentum distribution as∫ w2

w1

dw℘w =
∫ p2

p1

d p |〈p|ψ0〉|2, (34)

with the change of dummy variables w = −g�t p + mg2�t2

2
and dw = −g�t d p. We then find

℘w = Gw

(
w[p], σ [p]

w

)
, (35)

from which we can compute the kth moment of work, 〈wk〉 =∫
dw pwwk , and, in particular, 〈w〉 = fg�x = w[p] and σw =

(〈w2〉 − 〈w〉2)1/2 = σ
[p]
w . We see from the above results that

℘w = ℘
[p]
w �= ℘[x]

w , which shows that treating work either as an
observable or as a stochastic variable whose value is revealed
through TPM does not always give the same statistics. An
important aspect contributing to the invalidation of the TPMx

protocol is that this approach gives a mean work inconsistent
with the classical predictions, which are expected to be re-
trieved in light of the application of the Ehrenfest theorem to
less-than-cubic potentials. Technically, the “incompatibility”
of the TPMx protocol with the other two approaches can be
acknowledged by the fact that [WE→S(t2, t1), X (t )] = ih̄g�t
whereas [WE→S(t2, t1), P(t )] = 0, relations that can also be
rephrased with V and K , respectively. In the latter case,
measurements of the internal energy ES = K (as demanded
in the TPMp protocol) are not able to disturb work states
(which can be the initial states in our approach), so that the
two approaches are expected to be compatible. However, in
the former case, the position measurement introduces a huge

momentum fluctuation, which ultimately leads to the elimina-
tion of the information about p0 and σx from the statistics.
It is noteworthy that the inadequacy of TPM protocols—at
least for the present context and purposes—is not exclusively
related to the invasive nature of measurements. It also emerges
from the assumption that joint probability distributions can be
constructed in the form pm|npn. This rationale is not valid in
general quantum contexts, as we shall discuss later, although
it has proven useful for thermodynamics approaches.

To further illustrate the difficulties underlying the TPMx

approach, we consider the task of computing the mean instan-
taneous power associated with the gravitational field. Within
the operator-based formalism, we can define the instantaneous
power observable as P(t ) = limτ→0[ES(t + τ ) − ES(t )]/τ ,
which, in light of Eq. (17), results in

P(t ) = lim
τ

WE→S(t + τ, t )

τ
= −mg

(
Ps

m
− gt

)
. (36)

We then readily obtain 〈P(t )〉 = fg( p0

m − gt ), which is the tra-
ditional “force × velocity” statement of instantaneous power
and the correct classical limit for the model under scrutiny.
Now, resorting to the TPM-based formulas (33), we find

PTPMx (t ) = lim
τ→0

w[x](t + τ, t )

τ
= 0, (37)

PTPMp (t ) = lim
τ→0

w[p](t + τ, t )

τ
= fg

( p0

m
− gt

)
. (38)

Once again the differences are notorious: the TPMx proto-
col is unable to reproduce the time dependence expected
for the instantaneous power. An important symptom of the
conflict already appears in the fact that the TPMx-based
stochastic work is invariant under time translation. Mathe-
matically, w[x](t2 + δt , t1 + δt ) = w[x](t2, t1). Work, however,
is not supposed to be so, because it is not a state variable,
that is, it should depend on the “time path.” Indeed, we see
that WE→S(t2 + δt , t1 + δt ) �= WE→S(t2, t1). Even though the
TPMp protocol has incidentally produced results compatible
with the operator-based formalism, this does not change the
fact that the former approach conceives a sort of “hybrid”
view of nature. That is, one assumes, on the one hand, that
two-time physical quantities are stochastic variables not de-
scribable as quantum mechanical observables, but one does
admit, on the other hand, that quantum mechanics can be
applied to describe the deterministic time evolution between
the contiguous measurements and the associated probability
distributions. In contrast, our approach indicates how to ac-
commodate two-time observables in the standard quantum
structure.

Schemes for measuring work other than TPM protocols
exist in which only one (generalized) quantum measurement
is needed [20,48]. In general, though, energy measurements
“classicalize” the system state, since they remove quantum
coherence and make the energy become an element of reality
[58]. Most importantly, the very act of measuring is a relevant
source of work and heat, which, as such, must not be excluded
from the energy balance [24,59]. The idea advocated here,
that a Heisenberg model for two-time observables should be
preferred in mechanical contexts in relation to TPM meth-
ods, is not restricted to the concept of mechanical work. In
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Appendix A, we show that the same issues arise when one
considers the free-particle displacement operator and the spin
angular displacement as stochastic variables. Finally, how-
ever, it should ultimately be acknowledged that our results
do not eliminate the operational success and the arguable
adequacy of the TPM scheme in thermodynamics scenarios,
where the proper conditions for the TPM method are fulfilled.

D. Work as a two-time element of reality

In their 1935 paper [60], Einstein, Podolsky, and Rosen
(EPR) associated the notion of element of reality with the
condition of full predictability of a given physical quantity.
According to their criterion, “if, without in any way disturbing
a system, we can predict with certainty the value of a physical
quantity, then there exists an element of physical reality cor-
responding to this physical quantity.” So, if a spin- 1

2 particle
is prepared in the state |0〉 = (|+〉 + |−〉)/

√
2, thus implying

a null mean-square deviation for the z-component (σSz = 0),
then Sz is an element of reality, while Sx is not (σSx > 0).
Accordingly, |0〉 is said to be an Sz state of reality.4

However tempting it might be, treating a two-time observ-
able as a stochastic variable that becomes an EPR element
of reality only via the realization of a TPM protocol ac-
tually dismisses the quantum subtleties underlying such an
object and is, ultimately, unjustifiable from a fundamen-
tal viewpoint. To make this point thoroughly, we consider
the two-time operator C(t2, t1) = 1

2 {A(t1), B(t2)}, with A(t ) =∑
a a�a(t ) and B(t ) = ∑

b b�b(t ) denoting nondegenerate
discrete-spectrum observables with respective Heisenberg
projectors �a,b(t ) = φt (�s

a,b). Starting with the mean value
〈C〉 (t2, t1) = Tr[C(t2, t1)ρ0], one obtains

〈C〉 (t2, t1) =
∑
a,b

abTr[�b(t2)�a(t1)] p(a, t1), (39)

where

�a(t1) = {ρ0,�a(t1)}
2p(a, t1)

, p(a, t1) = Tr[�a(t1)ρ0]. (40)

Because �a(t1) �= �a(t1), one can immediately conclude
that Tr[�b(t2)�a(t1)] �= p(b, t2|a, t1) = Tr[�b(t2)�a(t1)]
and 〈C〉 (t2, t1) �= ∑

a,b abp(b, t2|a, t1)p(a, t1). Moreover,
even though �†

a = �a and Tr(�a) = 1, one can prove
that �a is not semipositive-definite in general and,
therefore, is not a quantum state. A simple illustra-
tion follows with ρ0 = |0〉 〈0|, �a(t1) = |+〉 〈+|, and
|θ〉 = cos θ |0〉 + sin θ |1〉, for a two-level system. We
then find 〈θ |�a(t1)|θ〉 = cos θ (cos θ + sin θ ), which is

4An alternative approach put forward by Bilobran and Angelo [58]
claims that a state like p |0〉 〈0| + (1 − p) |1〉 〈1| also implies an ele-
ment of reality for Sz, even being such that σSz > 0. Although in this
case there is a remaining unpredictability concerning this observable,
it derives from a classical mixture of well-established elements of
reality. For the sake of simplicity, throughout this work we restrict
our analysis to the EPR elements of reality, leaving the discussion
regarding this alternative view to be done elsewhere.

negative for θ ∈ ( π
2 , 3π

4 ). This shows that conceiving the
statistics of the two-time operator C(t2, t1) as emerging
from the direct product of individual elements of reality a
and b weighted by some tentative joint probabilities, such
as Tr[�b(t2)�a(t1)]p(a, t1) (a pseudo joint probability) or
p(b, t2|a, t1)p(a, t1) (the TPM prescription), may be a hasty
move in general. Indeed, as we have already seen in Sec. III C,
a construction like p(b, t2|a, t1)p(a, t1) may fail to validate
energy conservation. Furthermore, we should recall that the
covariance function 1

2 〈{A(t1), B(t2)}〉 − 〈A(t1)〉 〈B(t2)〉 and a
related witnesses of “time nonlocality” [61] already warn us
about the idea of statistics factorability in time.

Thanks to classical mechanics and statistical physics, we
got used to the idea that the whole universe is described by
a local-in-time state of affairs, with the position and mo-
mentum of each particle being elements of reality at each
instant of time (realism). Accordingly, one might reject the
displacement x(t2) − x(t1) of a particle as an element of reality
because its constituents x(t1,2) do not belong to the same time-
local reality state. This view, however, is too restrictive. There
is no problem in viewing x(t2) − x(t1) as a two-time element
of reality, since it is a relevant physical concept that becomes
fully defined as long as one specifies two instants of time. Ac-
cordingly, the notion of mean velocity emerges as a relevant
element of reality as well, and so does work. This is not to say,
however, that the entire segment x(t2) − x(t1) of trajectory is
an element of reality, although this would be admissible in
classical physics. The statement is weaker, as it focuses only
on those two specific instants of time. Moreover, there is no
need for one to consider displacement as a combination of
two elements of reality; once we fix t1,2, displacement can be
viewed as an “indivisible quantity” (a unit per se), with an
element of reality p0(t2 − t1)/m.

Referring back to the operator C(t2, t1) = 1
2 {A(t1), B(t2)},

one may regard C(t2, t1) as an observable in its own right,
with its own elements of reality, and not as a mere mix
of the observables A(t1) and B(t2). To this end, we have to
fix t1,2, express C(t2, t1) in terms of Schrödinger operators,
and then diagonalize it for these specific instants of time.
Having obtained C(t2, t1)�i

c(t2, t1) = c�i
c(t2, t1) (with even-

tual degeneracy i = 1, 2, . . . , gc), we can think of two-time
elements of reality c, not necessarily equal to ab, with respec-
tive two-time probabilities p(c, t2, t1) = ∑

i Tr[�i
c(t2, t1) ρ0].

The preparation �i
c(t2, t1) guarantees a well-defined value for

C(t2, t1) for the fixed times t1,2, that is, a two-time element
of reality. This preparation, however, does not ensure that
there will be an element of reality for C(t4, t3) with t4,3 �=
t1,2 because �i

c(t2, t1) will not necessarily be an eigenstate
of C(t4, t3). As we have illustrated in previous sections, the
work operator perfectly fits in this picture, since we can al-
ways obtain the eigenvalue relation WE→S(t2, t1)�i

w(t2, t1) =
w(t2, t1)�i

w(t2, t1) for some work projectors �i
w(t2, t1). In

Secs. III A and III B, we have found �w(t2, t1) = |p〉 〈p| and
�i

w(vτ, uτ ) = |p1〉 〈p1| ⊗ |p2〉 〈p2| (with high degeneracy),
respectively. We remind the reader that these constructions
regarded momentum as a discrete variable. In a continuous-
variable description, we can think of infinitesimal projectors
like d�w(t2, t1) = |p〉 〈p| d p. This is the approach we employ
in what follows.
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E. A Schrödinger-like picture for work

Arguably, work stands out among the two-time observables
because of its fundamental role in the law of conservation
of energy. Here we point out another special facet of this
concept within the quantum formalism. To this end, it is con-
venient to rephrase Eq. (12) in terms of the Heisenberg power
P(t ) = φt (Ps), where Ps = φ∗

t (− 1
2 {Ẋi, ∂XiVi j}) is a function

of Schrödinger operators. Then, we can write Wj→i(t2, t1) =
P(t2, t1)�t with the average power

P(t2, t1) :=
∫ t2

t1

dt

�t
φt (P

s) ≡ �t2,t1 (Ps) (41)

for �t = t2 − t1. Here we have introduced the time-averaging
map �t2,t1 satisfying limt2→t1 �t2,t1 = φt1 and �t2,t1 = �∗

−t2,−t1 .
Of course, not all two-time observables admit a description
in terms of this map. Let us consider the continuous-variable
spectral decomposition Ps = ∫

d�π π , with orthogonal pro-
jectors d�π = �πdπ such that �π = |π〉 〈π |, d�πd�π ′ =
δπ,π ′d�π ,

∫
d�π = 1, and Tr(d�π ) = 1. In the jargon intro-

duced previously, φt (d�π ) is a state of reality (an eigenstate)
associated with the power P(t ) = ∫

φt (d�π )π . Note that a
similar construction applies to all Heisenberg operators. Given
the preparation ρ0, the probability of finding the element of
reality π for the power Ps is dp(π ) = Tr(d�π ρ0). The work
operator now reads

Wj→i(t2, t1) =
∫

�t2,t1 (d�π ) π�t (42)

and the probability associated with the element of reality π�t
is given by

dp(π, t2, t1) = Tr
[
ρ0 �t2,t1 (d�π )

]
. (43)

This is a genuine probability since it is non-negative and∫
dp(π, t2, t1) = 1. Now we come to the crux: in light of the

analogy �t2,t1 � φt , the structure of the relations (42) and
(43) becomes closely related to Heisenberg’s formalism for
one-time operators, like power. This view is strengthened by
the fact that we can readily check the validity of the com-
pleteness relation

∫
�t2,t1 (d�π ) = 1 and the Schrödinger-like

formulation dp(π, t2, t1) = Tr[�∗
t2,t1 (ρ0) d�π ]. Likewise, the

mean work

〈Wj→i(t2, t1)〉=
∫

dp(π, t2, t1) π�t = Tr[ρ0�t2,t1 (Ps�t )]

(44)
also admits a Schrödinger-like formulation in terms of the
state

�∗
t2,t1 (ρ0) =

∫ t2

t1

dt

�t
φ∗

t (ρ0). (45)

Note that this is a legitimate quantum state, meaning that it
is normalized, Hermitian, and semipositive-definite. Further-
more, it shows us the laborious way5 through which one can

5In Sec. III C, we have shown how to build the work probability dis-
tribution starting with the expansion of the Heisenberg work operator
in terms of a resulting Schrödinger operator, that is, WE→S(t2, t1) ≡
Os. With that, the task is directly accomplished through the construc-
tion of the probability distribution associated with Os. In general,

raise the distribution (43): in principle, one can determine
ρ(t ) = φ∗

t (ρ0) via quantum state tomography at every instant
of time and then compute the average theoretically. An impor-
tant consequence of such “time mixture” is that the purity of
�∗

t2,t1 (ρ0) is in general smaller than ρ0’s. To explicitly verify
this, we use the concavity and the unitary invariance of the
von Neumann entropy S, which are, respectively, written as
S(

∑
i piρi ) �

∑
i piS(ρi ) and S(Uρi U †) = S(ρi ) for generic

states ρi, probability distributions pi, and unitary transforma-
tions U . With that, we arrive at S(�∗

t2,t1 (ρ0)) � S(ρ0), with
equality holding if, and only if, �∗

t2,t1 (ρ0) = ρ0 (this occurs,
for instance, when ρ0 is a stationary state). It follows that
�∗

t2,t1 (ρ0) typically is a mixed state. This is, however, no
different from what we have obtained previously. Referring
back to Eq. (14), for instance, we see that the mean en-
ergy Tr[ρ0φti (H

s
S ⊗ 1E)] equals TrS[�(ti )Hs

S ], where �i =
TrE[φ∗

ti (ρ0)] is, in light of the Stinespring theorem, a mixed
state.

The takeaway message is as follows. Generic two-time ob-
servables cannot be defined in terms of a genuine Schrödinger
picture because there exists no sensible notion of a two-time
state. (Note that the scenario is equivalent in classical sta-
tistical physics.) Yet, quantum mechanical work does admit
a formulation in terms of a Schrödinger-like picture, which,
however, demands the notion of a time-mixture state. Its
definition, Eq. (45), clearly implements the time averaging
originally codified in the definition of work in Heisenberg’s
picture. Besides attesting to the overall consistency of our
approach, it suggests another way of performing tests of prin-
ciple in the laboratory.

There is at least one point where the analogy with Heisen-
berg’s formalism for one-time operators does not always
apply: Eq. (42) is not generally equivalent to the spectral
decomposition of work in their states of reality. This is so be-
cause �t2,t1 (d�π ) is not necessarily a Wj→i(t2, t1) eigenstate.
Nevertheless, this fact does not invalidate the Schrödinger-
like view developed above, because Eqs. (42)–(45) were
derived without this assumption. On the other hand, when this
condition is fulfilled, a preparation like ρ0 = �t2,t1 (d�π̄ ) sat-
isfies Wj→i(t2, t1)ρ0 = π̄�tρ0. Hence, 〈Wj→i(t2, t1)〉 = π̄�t
and 〈W k

j→i(t2, t1)〉 = 〈Wj→i(t2, t1)〉k , meaning that no quantum
indefiniteness whatsoever can be associated with work. In this
case, work becomes a two-time element of reality.

F. Work-energy uncertainty principle

In connection with the previous discussion, here we em-
phasize that once work is acknowledged as an observable,
then one has to abandon the view that it is a mere combination
of elements of reality. More importantly, quantum mechan-
ics allows work to be an element of reality even when its
constituent terms are not. This can be appreciated by use of
uncertainty relations. Let σO = √〈O2∗〉, with O∗ ≡ O − 〈O〉,
be the quantum uncertainty of a given Heisenberg operator O,
and W21 = H2 − H1 is a shorthand for the resultant work oper-
ator WE→S(t2, t1) given in Eq. (14), where Hi ≡ HS(ti ). Via the

however, this procedure can be very laborious as well, for Os is
expected to be a joint observable demanding nonlocal measurements.
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weak version of the uncertainty principle, we have σW12σHi �
1
2 | 〈[W21, Hi]〉 |. Since [W21, H1] = [H2, H1] = [W21, H2], one
finds

σW21 (σH1 + σH2 ) � |〈[H1, H2]〉|. (46)

This (two-time) uncertainty relation shows that, excluding
very particular states like ρ0 = 1/d , with d = dim(HS ⊗
HE), which implies 〈[H1, H2]〉 = 0, the general situation is
such that whenever the energy operators do not commute at
different times, one cannot produce states ensuring arbitrarily
small uncertainties for work and the initial and final energies
simultaneously.6 A direct illustration of this result was pre-
sented in Sec. III A, where via the preparation of a momentum
eigenstate we had σW21 → 0 and σVi → ∞, with Vi being the
gravitational potential energy and [V1,V2] = ih̄�t/m. In this
case, work due to the gravitational potential is an element of
reality, while the energies at times t1,2 are not. Rather than
seeing all this as a drawback for the notion of work operator
[51]—an attitude that is ultimately based on classical lines of
thought—here we defend that this actually is a subtle mani-
festation of a truly quantum notion of work.

Interestingly, for the aforementioned gravitational model,
given t1,2 one can always have a preparation |p12〉, with spe-
cific value p12 = mg(t1 + t2)/2, such that wp12 (t2, t1) = 0. In
this case, energy conservation turns out to be an element of
physical reality, that is,

〈W21〉 = σW21 = 0 (energy conservation). (47)

As far as the quadratic potential is concerned, many regimes
can be found where energy conservation emerges as part of
the physical reality. Let us set, for instance, t1 = π/(2ω)
and t2 = 3π/(2ω) in Eqs. (24) and (23). It then follows that
W21 = − 2μω

M PcmXr, from which we see that a preparation like
|pcm = 0〉 |xr〉 (∀xr)—corresponding to an entangled state in
the laboratory coordinates—guarantees 〈W21〉 = σW21 = 0. In
this case, even though the S energy is an element of reality at
the instants t1,2, the S + E energy is not, since the preparation
is not an eigenstate of the total Hamiltonian. That is, the total
energy is conserved but it is not an element of reality at the
instants of time t1,2. Yet, the conservation of the total energy
is an element of reality.

This result is not specific to the model studied. Consider
a generic autonomous scenario in which S interacts with E
through some potential V . Let H = HS + Hext be the pertinent
time-independent Hamiltonian, with Hext = HE + V being the
external energy. The fact that �H = 0 directly implies, for
any preparation ρ0, that the conservation of the total energy is
an element of the physical reality, that is,

〈�H〉 = σ�H = 0 (total energy conservation). (48)

However, since ρ0 need not be an eigenstate of H , it follows
that, although surely conserved in time, the total energy is

6Of course, relation (46) is not an exclusiveness of the pair work-
energy. It is easy to show that for any operator �21 = A1 + A2,
one can prove that σ�21 (σA2 + σA1 ) � | 〈[A1, A2]〉 |. In Sec. III A, an
example is given for the problem regarding the displacement of a
free particle. By preparing the system in a momentum eigenstate, we
have σδ21 → 0 whereas σXi → ∞ (see also the examples provided in
Appendix).

not readily implied to be an element of reality. Now, suppose
in addition that ρ0 is an eigenstate of �HS (and hence of
the work done by E on S). Because �Hext = −�HS, one
has σ�Hext = σ�HS = 0. Therefore, for conservative systems,
if work is an element of reality, then the energy change of the
rest of the universe will also be. This further illustrates the
formal ground on which the law of conservation of energy is
established within our approach.

IV. CONCLUDING REMARKS

The claim “work is not an observable” [18] has been
derived from the premise that fluctuation theorems are cor-
rect. This is of course a good working hypothesis in several
contexts, but it is debatable whether one should stick to this
perspective in order to have a fundamental theory of micro-
scopic mechanical systems. Should we add to the axiomatic
structure of quantum mechanics the assumption that two-time
variables, such as work, displacement, and velocity, are to
be treated as stochastic variables? Here we answered this
question in the negative for a genuinely quantum mechan-
ical context involving conservative autonomous few-particle
systems. Not only did we show that work can be technically
viewed as a quantum observable, but we gave some examples
in which the TPM-based stochastic view greatly deviates from
the expected semiclassical results. Our results do not eliminate
the operational relevance of the stochastic view for general
contexts, but they show that it is not unavoidable from a
fundamental viewpoint.

Our proposal for the concept of quantum mechanical work
requires an updating of the common view that physical con-
cepts refer to a time-local state of affairs. In fact, this cannot
be the case even within the classical paradigm. As we have
shown, once we conceive that a two-time observable can
be described as a Heisenberg operator, with its fixed-time
expansion in terms of Schrödinger operators and its related
eigenbasis, then we learn how to derive the corresponding
statistics, without in any way resorting to nonquantum meth-
ods. The whole characterization of the concept as a genuine
quantum entity thus follows: the work done on a system (i)
has a well-defined spectrum (eventually quantized), (ii) can
be prepared as an element of reality via specific measure-
ments, (iii) has an intrinsic quantum fluctuation, (iv) satisfies
an uncertainty relation with energy, and (v) allows one to
identify scenarios in which the conservation of energy can be
guaranteed as an element of reality.

We hope that our findings may help to relax the skepti-
cism concerning the adequacy of purely quantum mechanical
descriptions of work (and other two-time physical quantities)
and encourage researchers to explore the subtleties deriving
from this concept. Another interesting route consists of ex-
tending the notion of work observable to other domains, such
as the thermodynamics one. Studies along these lines are now
in progress in our research group.
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APPENDIX: QUANTUM OBSERVABLES VERSUS
STOCHASTIC VARIABLES

Here we provide further illustrations on the differences in
treating time variations of physical quantities either as observ-
ables or as stochastic variables.

1. Free-particle displacement

In this analysis, we follow the formalism used in Sec. III C.
Let us define the displacement operator of a free particle as
δ(t2, t1) = X (t2) − X (t1) = Ps�t/m, where m is the mass of
the particle and �t = t2 − t1. The preparation is assumed to
be a Gaussian pure state ρ0 = |ψ0〉 〈ψ0| with

ψ0(x) = 〈x|ψ0〉 = (
2πσ 2

x

)− 1
4 exp

[
− (x − x0)2

4σ 2
x

+ ip0x

h̄

]
,

(A1)

where 〈X s〉 = x0, 〈Ps〉 = p0,
√〈(X s∗ )2〉 = σx, and X s

∗ ≡ X s −
〈X s〉. Again, we assume that a position measurement results in
a Gaussian state with width dx (referring to the measurement
resolution), and we use Gu(ū, σ ) = (2πσ 2)−

1
2 exp[− (u−ū)2

2σ 2 ]
for Gaussian functions with width σ and center at ū.

Treating displacement as a stochastic variable implies us-
ing a TPM protocol for its determination. The probability
density of finding the value xi in a measurement of x at t1 = 0
reads

℘xi = |〈xi|ψ0〉|2 = Gxi (x0, σx ). (A2)

After the measurement is effectively performed, the state re-
duces to the eigenstate |xi〉, expressed as 〈x|xi〉 = √

Gx(xi, dx ).
The next steps consist of unitarily evolving the resulting state
with the unitary operator Ut = e−iHt/h̄, where H = P2/2m,
and then computing the conditional probability density

℘x f |xi = |〈x f |Ut |xi〉|2 = Gx f (xi, dx(t )), (A3)

where dx(t ) = dx

√
1 + (h̄t/2md2

x )2. The displacement distri-
bution is given by ℘TPM

δ = ∫∫
dxidx f ℘xi℘x f |xiδD[δ − (x f −

xi )], where δD is the Dirac delta function. The result reads

℘TPM
δ = Gδ (0, dx (t )), (A4)

implying null mean displacement and fluctuation dx(t ). Now,
as far as displacement is treated as the observable δ(t, 0) =
Pst/m, it is obvious that its probability distribution is directly
related to the momentum’s, that is,

℘δ = Gδ

( p0t

m
,
σpt

m

)
, (A5)

which yields the mean displacement p0t/m and the uncer-
tainty σδ ≡ σpt/m = h̄t/2mσx. The differences between the

two approaches are remarkable. In particular, for the ideal res-
olution dx → 0 one has dx(t ) ∼= h̄t/2mdx → ∞, showing that
we completely lose the sense of displacement with the TPM
statistics. In addition, it is clear that the first measurement in
the TPM protocol dissipates any dependence of the result on
the initial momentum p0 and the width σx. In contrast, treating
displacement as a quantum observable yields an uncertainty
h̄t/2mσx, which can be significantly small for large values of
σx and/or m. However counterintuitive it may sound—for one
does not expect to find a well-defined value of displacement
when the positions at 0 and t are completely random—this ac-
tually is a fingerprint of two-time quantum observables. In this
regard, trajectory-based interpretations of quantum mechanics
may help us to make this point. Considering, for instance,
the predictions of Bohmian mechanics, the trajectories for the
system under scrutiny read [62]

x(t ) = x0 + p0t

m
+ [x(0) − x0]

√
1 +

(
h̄t

2mσ 2
x

)2

, (A6)

where x(0) defines the initial condition of each particular
Bohmian trajectory. In this approach, these trajectories flow
side-by-side governed by the quantum potential. Introducing
the Ehrenfest timescale tE = 2mσ 2

x /h̄ and considering the
long-time regime, we find the displacement

x(t ) − x(0) ∼=
(

p0

m
+ [x(0) − x0]

tE

)
t, (A7)

which approaches p0t/m when tE is large enough. Therefore,
within the Bohmian perspective, it is perfectly fine for a
system to have a well-defined displacement (σδ → 0) and a
highly uncertain position (σx → ∞). Interestingly, here we
explicitly have the uncertainty relation σδσx = h̄t/2m.

2. Spin precession

We now provide an illustration involving discrete vari-
ables. Consider the task of assessing the variation of the
y-component of a spin- 1

2 angular momentum in the dynamics
imposed by H = ωSz over the time interval [0, π

2ω
], where

ω is the precession frequency. Given the Heisenberg opera-
tor Sy(t ) = Ss

x sin ωt + Ss
y cos ωt , it follows that treating the

mentioned quantity as observable results in

δSy = Sy(π/2ω) − Sy(0) = Ss
x − Ss

y
.= h̄

2

(
0 1 + i

1 − i 0

)
,

(A8)

with eigenvalues ε h̄/
√

2 and respective eigenvectors |uε〉 =
(|0〉 + ε e−iπ/4 |1〉)/

√
2, where ε = ±1. Let us consider the

initial state |ψ0〉 = |+〉 = (|0〉 + |1〉)/
√

2. The probability
distribution for δSy then reads

pδSy (ε) = | 〈uε |ψ0〉 |2 = 1

2

(
1 + ε√

2

)
. (A9)

It is noteworthy that to obtain this distribution experimen-
tally, one needs to measure a single observable, Ss

x − Ss
y ,
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right after the preparation of the pure ensemble |ψ0〉. Let
us now consider the stochastic-variable approach. The prob-
ability of getting ε h̄/2 in a measurement of Sy at t = 0
is given by p(ε) = | 〈yε |ψ0〉 |2 = 1/2, where |yε〉 = (|0〉 +
iε |1〉)/

√
2. The postmeasurement state evolved until an

instant t > 0 reads |ψ (t )〉 = (e−iωt/2 |0〉 + iε eiωt/2 |1〉)/
√

2,
which for the specific time t = π/2ω reduces to |ψ ( π

2ω
)〉 =

(|0〉 − ε |1〉)/
√

2. The probability of getting ε′h̄/2 in a sub-
sequent measurement of spin is p(ε′|ε) = | 〈yε′ |ψ ( π

2ω
)〉 |2 =

1/2. The resulting probability distribution is

pTPM
δSy

= p(ε′|ε)p(ε) = 1/4. (A10)

The divergence between the distributions (A9) and (A10) is
clear. In particular, with them we find the following mean
values:

〈δSy〉 =
∑

ε

(
ε h̄√

2

)
pδSy (ε) = h̄/2, (A11)

〈δSy〉TPM =
∑
ε,ε′

(
ε′h̄
2

ε h̄

2

)
pTPM

δSy
= 0. (A12)

We see that the TPM approach predicts null variation for the
y-component of spin in the considered time interval, which is
unexpected from a semiclassical perspective.
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