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Questioning the adequacy of certain quantum arrival-time distributions
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It is shown that a class of exponentially decaying time-of-arrival probability distributions, suggested by
Włodarz [Phys. Rev. A 65, 044103 (2002)], Marchewka and Schuss [Phys. Lett. A 240, 177 (1998), Phys.
Rev. A 63, 032108 (2001); 65, 042112 (2002)], and Jurman and Nikolić [Phys. Lett. A 396, 127247 (2021)],
and a semiclassical distribution implicit in time-of-flight momentum measurements do not show the expected
behavior for a Gaussian wave train. This casts doubts on the physical adequacy of these arrival-time proposals.
In contrast, the quantum flux distribution (a special case of the Bohmian arrival-time distribution) displays the
expected behavior.
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I. INTRODUCTION

In view of the experimentally driven genesis of quantum
mechanics and its notable empirical successes, it is a great
surprise that a straightforward question such as how long it
takes for a quantum particle to strike the detector surface
in a double-slit experiment could be even more problematic
than the question of where, in such an experiment, the par-
ticle strikes the detector surface. While the second question
pertaining to the ubiquitous interference pattern is discussed
in every quantum mechanics textbook and is experimentally
well-established, the former concerning the arrival (or detec-
tion) time of the particle amenable to laboratory time-of-flight
(TOF) experiments [1] is a matter of an ongoing debate.

This seems almost paradoxical given that TOF measure-
ments are the quintessence of methods determining, e.g.,
energies and momenta of particles [2–5], chemical reaction
dynamics (as in the Rydberg tagging TOF technique [6,7]), or
the temperature of single trapped atoms or ions [8,9]. How-
ever, it is not quantum mechanics that is invoked to interpret
the TOF measurements in these cases. Instead, one employs
various Ansätze and heuristics based on either Newtonian me-
chanics or geometric optics, whose capabilities for describing
the data are highly questionable (especially in single-particle
experiments featuring wave-packet coherence).

Nevertheless, over the past decades, an increasing number
of physicists have endeavored to formulate a first-principles
description of arrival times within quantum mechanics, re-
sulting in a multitude of disparate theoretical proposals for
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computing the arrival-time distribution1 �(τ ) of a quan-
tum particle [10–12]. However, experiments designed to help
choose between competing viewpoints have been slow in
coming.

The TOF distributions suggested in the literature can be
divided into two broad categories. First, ideal (or intrinsic)
arrival-time distributions that are apparatus-independent the-
oretical predictions, given by some functional of the initial
wave function ψ (x, 0) and the geometrical surface of the
detector (typically a single point on a line in one-dimensional
discussions). A notable example is the quantum flux
distribution

�QF(τ ) = h̄

m
Im[ψ∗(L, τ )∂xψ (L, τ )], (1)

applicable for a particle of mass m arriving at the point x = L
on a line. Here ψ (x, t ) denotes its wave function at time t , a
solution of Schrödinger’s equation

ih̄
∂ψ (x, t )

∂t
= − h̄2

2m

∂2ψ (x, t )

∂x2
+ V (x, t )ψ (x, t ), (2)

with initial condition ψ (x, 0). The quantum flux distribution
has been arrived at from various theoretical viewpoints, in
particular, as the arrival-time distribution in Bohmian mechan-
ics (de Broglie–Bohm or pilot-wave theory) [13–15] in the
absence of backflow (see [16], p. 6).2 Another well-known

1�(τ )dτ is the probability that a particle prepared in a state ψ (x, 0)
at time zero is registered on a specified detector between time τ and
τ + dτ .

2Indeed, there are examples where quantum backflow occurs
[17–21] for which (1) fails to be a meaningful arrival-time dis-
tribution. This defect is remedied by the Bohmian arrival-time
distribution, which is well-defined for all wave functions.
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TABLE I. Exponentially decaying arrival-time proposals and
their intensity functions (the wave functions ψ̄ and ψc are defined
in Sec. III).

Proponents λ(t ) Ref.

Włodarz λ0|ψ (L, t )|2 [39]
Marchewka and Schuss (λ′ε/π )|∂xψ̄ (L, t )|2 [36]

Jurman and Nikolić 1
δt

∫ L+
L
L dx|ψc(x, t )|2 [33]

example applicable for freely moving particles, V (x, t ) = 0,
is the Aharonov-Bohm (see [22], Sec. 3) and Kijowski [23]
arrival-time distribution (see [16], Sec. 2), which is typically
indistinguishable from �QF(τ ) in the far-field or scattering
regime accessible to present-day experiments.

Yet another ideal arrival-time distribution often im-
plicit in TOF momentum measurements is the semiclassical
distribution

�SC(τ ) = mL

h̄τ 2

∣∣∣∣ψ̃
(

mL

h̄τ

)∣∣∣∣
2

, (3)

where

ψ̃ (k) = 1√
2π

∫ ∞

−∞
dx ψ (x, 0)e−ikx (4)

is the Fourier transform of the wave function prepared at
time zero [4,5,24,25]. This distribution is typically moti-
vated along the following lines: For a classical trajectory
x(t ) = x(0) + pt/m, with x(0) � L, the arrival time of the
particle is approximately given by τ = mL/p. The above dis-
tribution �SC(τ ) is then obtained by considering this classical
arrival-time formula, assuming that the width of ψ (x, 0) is
much smaller than L and that the momentum p is distributed
according to the quantum mechanical momentum distribu-
tion h̄−1|ψ̃ (p/h̄)|2 (see [26], p. 21). For a suitably localized
ψ (x, 0), the semiclassical distribution (3) is also recovered
from �QF(τ ) for large L and large τ [13].

The second category is that of nonideal or measurement-
inspired TOF distributions that involve a model of the
detector. Various suggestions have been put forward, e.g.,
simple absorbing boundary conditions [27,28], complex
potentials [29–31], wave-function collapse (both detector in-
duced [32,33] and spontaneous [34,35]), path integrals with
absorbing boundaries [36], a variety of quantum clocks (see
[12], Chap. 8), and even a timeless formulation of quantum
measurement [37]. An overview of these proposals, including
an experimental setup for distinguishing one from another
[and in particular from �QF(τ )], will appear in [38].

In what follows, we focus on a class of nonideal TOF
distributions [33,36,39] that have the form

�(τ ) = λ(τ ) exp

(
−

∫ τ

0
dt λ(t )

)
, (5)

where λ(t ) is the so-called intensity function for which various
proposals exist (see Table I). This distribution is normalized as

∫ ∞

0
dτ �(τ ) + P(∞) = 1, (6)

where

P(∞) = lim
τ→∞

�(τ )

λ(τ )
(7)

is a nondetection probability, accounting for the fraction of
experimental runs in which the particle never arrives at L. To
derive (5) a time interval [0, τ ] is considered (see [39], p. 2),
discretized into small time steps 
t = τ/N , where λ(tn)
t is
the probability for the particle to be detected between time
tn = n
t and tn+1 = (n + 1)
t , n = 0, 1, 2, . . . , N − 1. Fur-
ther, assuming independent probabilities at each time step,3

the probability for the particle to be detected between time
tN−1 and tN (=τ ) is simply

λ(tN−1)
t
N−2∏
n=0

[1 − λ(tn)
t]. (8)

By taking the limit 
t → 0, or equivalently N → ∞, of (8),
the time-of-arrival density (5) is obtained. The intensity func-
tion λ is supposed to follow from the physics of the detector.

We will challenge these proposals by considering a train of
Gaussian wave packets that initially have the same width and
are moving with the same velocity towards the detector. By
choosing the parameters so that each Gaussian wave packet
reaches the detector one by one without significant spreading,
it is expected on the basis of quasiclassical reasoning that
each packet will contribute in the same way to the arrival-time
distribution. In particular, it is anticipated that the arrival-time
distribution will display peaks of identical shape and height at
times roughly corresponding to the hitting times of individual
packets. However, we will show that this is not the case for the
proposals listed in Table I. While these distributions display
peaks at the expected wave-packet arrival times, the peaks are
exponentially damped.

The outline of the paper is as follows. In Sec. II the
Gaussian train is introduced. The analysis of the exponential
proposals for this wave function follows in Sec. III. The semi-
classical distribution is treated in Sec. IV. We summarize and
discuss our results in Sec. V.

II. GAUSSIAN WAVE TRAIN

We direct our attention to the dynamics on a line, the
detector occupying the interval (L, L + 
L). Consider first
a single Gaussian wave packet, initially (t = 0) centered at
x = 0, to the left of the detector, given by

φ(x, 0) = 1√
σ
√

π
exp

(
− x2

2σ 2
+ i

ε
vx

)
. (9)

Here ε = h̄/m,

σ � L (10)

is the width of the wave packet, and v > 0 is the phase
velocity. Under the free Schrödinger evolution, with the

3This generates an inhomogeneous Poisson point process with rate
λ(t ).
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FIG. 1. Train of Gaussian wave packets moving towards the
detector.

Hamiltonian

H = − h̄2

2m

d2

dx2
, (11)

the time-dependent packet is

φ(x, t ) = e−itH/h̄φ(x, 0)

= 1√
σ (t )

√
π

exp

{
− σ

σ (t )

[
x2

2σ 2
− iv

ε

(
x − vt

2

)]}
,

(12)

where

σ (t ) = σ
(

1 + i
εt

σ 2

)
. (13)

The amplitude of this packet is

|φ(x, t )| = 1√
|σ (t )|√π

exp

(
−1

2

(x − vt )2

|σ (t )|2
)

. (14)

It follows that the center of the packet arrives at the detector
at time

τ0 = L

v
; (15)

hence the corresponding time-of-arrival distribution, denoted
by �0(τ − τ0), is expected to be peaked around τ0.

We will assume that the packet suffers negligible distortion
during 0 < t < τ0. This is guaranteed if

ετ0

σ 2
= εL

σ 2v
� 1, (16)

which will be referred to as the no-spreading condition. In this
case,

|φ(x, t )| ≈ |φ(x − vt, 0)| (17)

for 0 < t < τ0.
Consider now an initial superposition of N Gaussian wave

packets with the same width and velocity, but centered at
x = −kL, k = 0, 1, . . . , N − 1,

ψ (x, 0) = 1√
N

N−1∑
k=0

φ(x + kL, 0), (18)

depicted in Fig. 1. It evolves into

ψ (x, t ) = e−itH/h̄ψ (x, 0) = 1√
N

N−1∑
k=0

φ(x + kL, t ), (19)

where φ(·, t ) is given by (12). Assuming

Nτ0 � σ 2/ε, (20)

the wave packets will remain nonoverlapping until time Nτ0,
the time at which the N th wave packet of the Gaussian train
strikes x = L. As a consequence,

|ψ (x, t )|2 ≈ 1

N

N−1∑
k=0

|φ(x + kL, t )|2

(17)≈ 1

N

N−1∑
k=0

|φ(x + kL − vt, 0)|2 (21)

for all 0 < t < Nτ0.
In this event, one expects the arrival-time distribution to

have N peaks of nearly identical shape and height centered at
times kτ0, k = 1, 2, . . . , N , i.e.,

�(τ ) ≈ 1

N

N∑
k=1

�0(τ − kτ0). (22)

That is, the Gaussian wave packets in the train arrive at the
detector one by one with time delays of τ0, so there should be
a peak in the arrival-time density, which has the same shape
for any Gaussian wave packet.

The quantum flux TOF distribution (1), i.e.,

�QF(τ ) ≈ v

N
√

πσ

N∑
k=1

exp

(
− v2

σ 2
(τ − kτ0)2

)
, (23)

which happens to agree with the Bohmian distribution in this
case (due to the absence of backflow) is of the expected form
(22). Note that the integral of (23) over all τ > 0 is approxi-
mately unity; hence it predicts a zero nondetection probability
as per Eq. (6).

III. EXPONENTIAL DISTRIBUTIONS

The arrival-time distributions proposed in [33,36,39] do
not have the form (22) for the Gaussian wave train. Instead,
the probability density is exponentially falling off. In par-
ticular, assuming only (10) and (20), we will show that the
intensity functions (Table I) take, for the Gaussian wave train
(18), the form

λ(t ) ≈ 1

N

N∑
k=1

λ0(t − kτ0), (24)

where λ0(t ) is the intensity function corresponding to φ(x, t )
supported on |t − τ0| � 
τ , with 2
τ the duration over
which φ sweeps over the detector, approximately equal to
3σ/v. This implies that the TOF distribution �(τ ) decays
exponentially over time owing to the exponential factor in (5).
In fact, for kτ0 < τ < (k + 1)τ0, we have

exp

(
−

∫ τ

0
dt λ(t )

)
≈ exp

(
−k

∫ τ0+
τ

τ0−
τ

dt λ0(t )

)
. (25)

It follows that the expected behavior (22) cannot hold.
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A. Włodarz proposal

Using (21), we readily obtain the intensity function λW

given in Table I,

λW(t ) ≈ λ0

N

N∑
k=1

|φ(kL − vt, 0)|2, (26)

which implies the property (24).

B. Marchewka-Schuss proposal

To calculate λMS(t ) (cf. Table I) we need ψ̄ (x, t ), which
is the solution of Schrödinger’s equation on the half-line
(−∞, L] with the initial condition ψ (x, 0) and Dirichlet
boundary condition at x = L. It is given by

ψ̄ (x, t ) = θ (x − L)[ψ (x, t ) − ψ (2L − x, t )], (27)

where θ is Heaviside’s step function.4 (This state is only
approximately normalized to unity as (18) has support on
[L,∞)). The (left) derivative at L is ∂xψ̄ (L, t ) = 2∂xψ (L, t )
and

|∂xψ̄ (L, t )|2 ≈ 4

N

N∑
k=1

|∂xφ(kL, t )|2, (28)

noting that φ(kL, t ) and hence ∂xφ(kL, t ) for different k are
approximately nonoverlapping due to (20).

To evaluate the summands we use (12), obtaining

|∂xφ(x, t )|2 =
∣∣∣∣φ(x, t )

σ (t )

∣∣∣∣
2[( x

σ

)2
+

(vσ

ε

)2
]
, (29)

which is exact, but in view of (20),

|∂xφ(kL, t )|2 ≈
(v

ε

)2
|φ(kL, t )|2 (30)

for k = 1, 2, . . . , N and 0 < t < Nτ0. Then, using (17) and
(28), we arrive at

λMS(t ) ≈ 4v2λ′

Nπε

N∑
k=1

|φ(kL − vt, 0)|2. (31)

In this case, the intensity function approximately agrees with
λW [Eq. (26)] (up to a proportionality factor). Again the
property (24) is obtained.

C. Jurman-Nikolić proposal

To calculate λJN(t ), given in Table I, we need ψc(x, t ),
defined by

ψc(x, t ) = e−iδtH/h̄e−i(t−δt )H̄/h̄ψ (x, 0), (32)

where H is the free Hamiltonian (11) and

H̄ =
{

0 for L < x < L + 
L
H otherwise.

It is convenient to rewrite (32) as

ψc(x, t ) = e−iδtH/h̄η(x, t − δt ), (33)

4The wave function ψ̄ is defined to be zero for x > L for later
convenience.

where η(x, t ) solves Schrödinger’s equation with the Hamil-
tonian H̄ and initial condition ψ (x, 0).

Since H̄ is defined piecewise, we have ∂tη = 0 in the
detector region, and consequently

η(x, t ) = ψ (x, 0) for L < x < L + 
L, (34)

at any given time. For x < L and x > L + 
L, i∂tη = −ε∂2
x η

holds with boundary conditions η(x, t ) → 0 as x → ±∞
[dictated by the specified initial condition ψ (x, 0)]. In addi-
tion to this, we need suitable boundary or interface conditions
at x = L and L + 
L to obtain a unique solution for η, which
were not specified in [33]. A natural choice is to make η con-
tinuous at these points, i.e., η(L−, t ) = η(L+, t ), and likewise
at L + 
L.5 Given that ψ (x, 0) is supported on (−∞, L] [see
[33], Eq. (15)], it follows that η(x, 0) = 0 for x > L at all
times. In particular, η(x, t ) = ψ̄ (x, t ) [Eq. (27)], the solution
of Schrödinger’s equation with Dirichlet boundary conditions
at x = L.

Our initial wave function (18) is actually nonzero in the
region [L,∞) but, as before, we will ignore its tail beyond
x = L, given (10). In any case, Eq. (33) reduces to

ψc(x, t ) = e−iδtH/h̄ψ̄ (x, t − δt ). (35)

To evaluate this for the Gaussian train, consider, for 0 � k <

N , the function φc defined by

φc(x + kL, t ) := e−iδtH/h̄e−i(t−δt )H̄/h̄φ(x + kL, 0) (36)

= e−iδtH/h̄e−i(t−kτ0−δt )H̄/h̄

×e−ikτ0H̄/h̄φ(x + kL, 0)

= e−iδtH/h̄e−i(t−kτ0−δt )H̄/h̄φ̄(x + kL, kτ0). (37)

Since φ(x + kL, kτ0) is centered at x = 0 and has a width
|σ (kτ0)| ≈ σ in view of the no-spreading condition (20) [cf.
Eq. (13)], we have

φ̄(x + kL, kτ0) ≈ φ(x + kL, kτ0).

Using (17) and (20), the amplitude of this wave function
satisfies

|φ(x + kL, kτ0)| ≈ |φ(x, 0)|. (38)

Its phase is

arg[φ(x + kL, kτ0)] = arg[φ(x, 0)] − εkτ0

2σ 2

+ kτ0

2

(
v2

ε
+ ε

(x/σ )2

|σ (kτ0)|2
)

. (39)

Equation (20), together with the condition |x| � 3σ valid
within the bulk of the support of the wave function, allows us
to neglect both the second term and the second term in large
parentheses; thus

arg[φ(x + kL, kτ0)] ≈ arg[φ(x, 0)] + k
vL

2ε
.

5Other choices, e.g., η(L−, t ) = αη(L+, t ) + β∂xη(L+, t ), where α

and β are constants, are conceivable. However, our main conclu-
sion does not depend on the boundary condition, because it follows
mainly from the linearity of the evolution (32).
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FIG. 2. Illustration of �SC(τ ) and �QF(τ ) (dot-dashed line) for
N = 5, σ = 5, L = 10σ , v = 1, and ε = 0.05 (in arbitrary units).
The inset shows a magnified view of �SC(τ ).

It follows that

φ(x + kL, kτ0) ≈ φ(x, 0)eikvL/2ε

and

φc(x + kL, t ) ≈ e−iδtH/h̄e−i(t−kτ0−δt )H̄/h̄φ(x, 0)eikvL/2ε

(36)= eikvL/2εφc(x, t − kτ0). (40)

Hence, by linearity,

ψc(x, t ) ≈ 1√
N

N−1∑
k=0

eikvL/2εφc(x, t − kτ0). (41)

Ignoring the tails of the Gaussians, we have that for δt � τ0,
at most only one of the wave packets φc(x, t − kτ0) will have
its support in (L, L + 
) at a given time. (Recall that φc is
obtained by free evolution with Dirichlet boundary conditions
up until time t − δt and then free evolution for a time δt .)
Therefore, we can ignore cross terms of |ψc(x, t )|2 within the
interval (L, L + 
) and write

λJN(t ) ≈ 1

δt

N−1∑
k=0

∫ L+
L

L
dx|φc(x, t − kτ0)|2 (42)

so that the property (24) is obtained.

IV. SEMICLASSICAL DISTRIBUTION

The semiclassical distribution [cf. Eqs. (3) and (4)] is

�SC(τ ) = L

ετ 2

∣∣∣∣ 1√
2π

∫ ∞

−∞
dx ψ (x, 0)e−iLx/ετ

∣∣∣∣
2

. (43)

Using the Fourier transform

1√
2π

∫ ∞

−∞
dx φ(x + x0, 0)e−iv0x/ε

=
√

σ

π1/2
exp

(
i

ε
v0x0 − σ 2

2ε2
(v − v0)2

)
, (44)

FIG. 3. Illustration of the exponential decay of the arrival-time
distributions for a Gaussian wave train satisfying the no spread-
ing condition (20), with the parameters N = 10, σ = 5, L = 10σ ,
ε = 0.01, and v = 1 (in arbitrary units). The red curve is �JN with
δt = 0.5 and 
L = 0.5σ , the green curve is �W with λ0 = 2, and
the blue curve denotes �MS with λ′ = 0.01. The black curve is �QF,
which does not display an exponential decay. The exponential TOF
curves were calculated numerically without any approximations (see
the text for details).

we find (without approximations) that

�SC(τ ) = σL

N
√

πετ 2

sin2(NL2/2ετ )

sin2(L2/2ετ )

× exp

[
− σ 2v2

ε2

(
1 − τ0

τ

)2]
. (45)

The distribution is peaked around τ0, contrary to what is
anticipated of the Gaussian wave train. This should come as
no surprise since �SC is fully determined by the momentum
distribution of the initial wave function, which in the present
example is centered around p = mv. While the semiclassi-
cal distribution sometimes follows from the quantum flux or
Bohmian TOF distribution, such is not the case here, as can
be seen in Fig. 2. This explains why the latter does show the
expected behavior, unlike the former.

V. DISCUSSION AND OUTLOOK

The exponential distributions for the Gaussian train (18)
are plotted in Fig. 3 along with the quantum flux or Bohmian
distribution. All arrival-time distributions were produced
using the exact analytic expressions without invoking approx-
imations (10) and (20).6 While the quantum flux distribution
displays the expected behavior (i.e., featuring identical and
well-separated peaks centered at times τ0, 2τ0, . . . , 10τ0) [cf.
Eq. (23)], the exponential ones do not, thus substantiating our
analysis. The free parameters λ0, λ′, 
L, and δt were chosen
for best visibility. However, this undesirable behavior cannot

6For the Jurman-Nikolić proposal, we used λJN(t ) ≈
(
L/δt )|ψc(L, t )|2, applicable for a small 
L. However, ψc(x, t )
of Eq. (35) was evaluated exactly in terms of error functions by
integrating (27) against the known free-particle propagator for
time δt .
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be evaded by tuning these parameters: Making them larger
causes a faster decay, while making them smaller moderates
the decay at the cost of increasing the nondetection probability
(to the extent of a vanishing arrival-time density in the case
of an appreciable removal of the decay). In fact, given any
choice of these free parameters, the number N of Gaussians
in the train and their velocity v could be so chosen that
the exponential decay practically washes out the arrival-time
peaks corresponding to the trailing Gaussians.

The exponential proposals were aimed at deriving the TOF
distribution by means of a detector model. While different
intensity functions λ can be considered, our results show that
the failure is not so much attributable to the particular choice
of λ but presumably the assumption of independence that
underlies the Poisson process.

While it is, as a matter of principle, necessary to account
for the effect of the detector in any experiment, the extent to
which the physics of the detector needs to be taken seriously
for predicting arrival times is not self-evident. In practice,
scattering experiments such as the double-slit and the Stern-
Gerlach experiment are routinely analyzed with no reference
whatsoever to the detector. However, since the detectors em-
ployed in these experiments are typically no more specialized
than the ones found in TOF experiments (e.g., a scintillation
screen employed in [1]), it is not a priori obvious why the
physics of the detector is any more relevant for predicting the
statistics of arrival times than it is for predicting the statistics
of impact positions. Hence it should not come as a surprise

that the quantum flux distribution gives the anticipated result
despite ignoring the detector. It has even been shown that
�QF(τ ) can arise from a careful consideration of a physical
detector, e.g., a laser curtain inducing fluorescence from an
incoming atom [40–42]. This suggests that one should turn
to realistic TOF experiments if one wants to take the detector
seriously.

Finally, the semiclassical distribution depicted in Fig. 2
also fails to display the intended behavior since it is largely
supported around τ0. This distribution is often used in the
experimental determination of the momentum distribution.
Using the measured arrival-time distribution �meas(τ ), the
empirical momentum distribution is taken to be

mL

p2
�meas

(
mL

p

)
, (46)

corresponding to the quantum mechanical momentum distri-
bution h̄−1|ψ̃ (p/h̄)|2, thereby tacitly assuming the validity of
(3). However, our results indicate that such reconstructions are
questionable (see also [26], Chap. 4).
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