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Entropic uncertainty relations for mutually unbiased periodic coarse-grained observables
resembling their discrete counterparts
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One of the most important and useful entropic uncertainty relations concerns a d-dimensional system and two
mutually unbiased measurements. In such a setting, the sum of two information entropies is lower bounded by
ln d . It has recently been shown that projective measurements subject to operational mutual unbiasedness can
also be constructed in a continuous domain, with the help of periodic coarse graining. Here we consider the
whole family of Rényi entropies applied to these discretized observables and prove that such a scheme does also
admit the entropic uncertainty relations mentioned above.
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I. INTRODUCTION

Uncertainty relations are often cited as a key deviation
between classical and quantum physics, describing the si-
multaneous unpredictability of two or more properties of a
quantum system. Since the development of the concept of en-
tropy to characterize information or the lack thereof, entropic
uncertainty relations (EURs) have taken on a fundamental
and useful role in quantum physics and quantum information
[1–5]. They can be associated with secret quantum key rates
[6–8] and used as identifiers of quantum correlations [9–16],
for example. Additional applications can be found in recent
review articles [3,5].

EURs exist for systems described by either discrete
variables [17–20], continuous variables [21,22], or some com-
bination of the two [23–25]. A key feature of discrete systems
is that EURs for two mutually unbiased observables give
lower bounds that are a function of the dimension d alone. To
be more precise, two d-dimensional operators X and Y with all
eigenstates (i, j = 0, . . . , d − 1) satisfying |〈Xi|Yj〉| = 1/

√
d

render two mutually unbiased measurements. For this case,
an EUR involving Rényi entropies (with natural logarithm) of
orders α and β, such that 1/α + 1/β = 2, is given by [18]

Hα[X ] + Hβ[Y ] � ln d, (1)

where

Hα[X ] = 1

1 − α
ln

d−1∑
i=0

pα
i [X ], (2)

and pi[X ] = 〈Xi|ρ|Xi〉. As usual, ρ represents the density ma-
trix describing the system.

*lukasz.rudnicki@ug.edu.pl

In the continuous-variable scenario, similar types of EURs
have been developed. However, the crucial difference between
the discrete and the continuous case is that the finite dimen-
sion d is “lost” within a standard treatment, being replaced
by a scaling parameter, related to the observables in question.
To understand that effect we shall first observe that a system
of mutually unbiased measurements can be characterized by
two a priori independent parameters: the number of possible
measurement outcomes and the uniform “overlap” between
different measurements. The first parameter is formally the
same as the number of projectors forming the resolution of
the identity and is assumed here to be the same for both
measurements. The latter one has a clear operational meaning
[26,27] for all projective measurements (for general positive
operator-valued measures it is more complicated [28]), being
equal to the true overlap between the eigenstates, in a special
case of rank 1 projectors. Clearly, if the first parameter is finite
(therefore discrete), conservation of probability fixes the value
of the latter one, as explained above in Eq. (1). However,
for continuous variables, the number of outcomes is usually
considered to be infinite, either countably or uncountably. As
a consequence, the overlap becomes a free, setup-dependent,
scaling parameter. This point is discussed further in Sec. II
below.

The partitioning of a continuous variable into discretized
bins, due to the finite precision of a measurement device or
otherwise, introduces the bin width as an additional scaling
parameter (see also Sec. II for more details). In principle, this
discretization leads to a countable—but infinite—number of
measurement outcomes, which can be further hashed into a
finite set. One approach is to arrange the infinite number of
bins periodically, giving a finite set of projective measure-
ment operators with rank >1. Periodic coarse graining of
this type is interesting in that it allows one to define truly
mutually unbiased measurements for an appropriate choice
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of bin widths [26,29]. Though they have a finite number of
outcomes, these observables are not discrete in any rigorous
sense. For example, they do not reproduce the well-known
results for a maximum number of mutually unbiased bases
in finite dimensions [30]. Thus, it is an open question as to
whether PCG observables obey discretelike or continuouslike
EURs. That is, can the sum of entropies be lower bounded by
only the logarithm of the number of measurement outcomes,
or do measurement-dependent scaling parameters appear?

Here, we show that PCG observables do follow a discrete
EUR analogous to relation (1). The paper is organized as
follows. In Sec. II we discuss in more detail the role of
scaling parameters in continuous variables. Discretization of
continous variables and PCG observables are introduced in
Secs. III and IV. In Sec. V we prove our main EUR for the
special case of the position and momentum PCG pair. We also
state the same result for arbitrary phase-space variables. In
addition, in Sec. VI we study the continuous limit of the EURs
considered.

II. MUTUAL UNBIASEDNESS AND
CONTINUOUS VARIABLES

To better illustrate the issue of scaling parameter in the
continuous regime, let us consider phase-space quadrature
variables, given by qθ = cos θx + sin θp, where x and p, re-
covered for θ = 0 and θ = π/2, respectively, are the usual
position and momentum operators obeying [x, p] = ih̄. The
commutator [qθ , qθ ′ ] = ih̄ sin �θ clearly depends upon the
relative angle between the operators �θ = θ − θ ′. Therefore,
uncountably many eigenstates of these operators are mutually
unbiased, with overlaps given by [31]

|〈qθ |qθ ′ 〉| = (2π h̄| sin �θ |)−1/2. (3)

Mutual unbiasedness of both measurements is encoded in the
fact that the above overlap depends neither on qθ nor on q′

θ .
In other words, the indicator of systems’ dimension d is

replaced by 2π h̄| sin �θ |—the continuous parameter which
depends on both the underlying structure of the phase space
(presence of h̄) and the interrelation between the involved
operators, quantified by sin �θ . As a natural consequence,
the EURs expressed in terms of continuous Rényi [22,33] and
Shannon [21,32] entropies do depend on both parameters. We
go back to these types of EURs in Sec. VI. From now on we
also set h̄ ≡ 1.

An additional scaling factor arises when one takes into
account that the above eigenstates describe a nonphysical sce-
nario of infinite energy, and consequently, physical scenarios
involve some sort of coarse graining. That is, the eigen-
states |qθ 〉 are approximated by “smeared” quantum states

∫
dq′

θQ(qθ − q′
θ )|q′

θ 〉, where Q(qθ − q′
θ ) is a square integrable

function that is localized around qθ with some finite width
parameter δθ . Likewise, though this is just an analogy rather
than a formal continuation of the previous argument, physi-
cal measurement devices (detectors) cannot be described by
uncountably many rank-one projectors |qθ 〉〈qθ |, but rather by
countably many (though, still infinite number of) integrated
projective measurements of the form∫ qθ +δθ /2

qθ −δθ /2
dq′

θ |q′
θ 〉〈q′

θ |. (4)

Adequate consideration of coarse graining in this con-
text leads to uncertainty relations (URs) with lower bounds
that, in addition, depend explicitly on the width parame-
ters δθ [22,23,34,36,37]. Improper attention to this inherent
coarse graining can have detrimental consequences [38–40].
An overview of URs for coarse-grained continuous variables
(CVs) can be found in Ref. [4].

III. DISCRETE SETTINGS IN
CONTINUOUS-VARIABLE SYSTEMS

Table I summarizes the cases discussed in the previous
section. As can be seen, only settings with an infinite number
of outcomes have so far been successfully considered in the
continuous scenario, even though only a discrete one can
lead to a counterpart of the EUR in Eq. (1). Therefore, as
emphasized in the bottom right cell of Table I, the aim of
this paper is to provide a setting which obeys Eq. (1) for
continuous variables.

To this end we need an alternative approach to the standard
coarse graining described by Eq. (4), i.e., other methods of
binning together the rank-1 projectors. A number of strategies
have been adopted in this direction [41–46]. With the goal of
defining truly mutual unbiased measurements in CV systems,
periodic coarse graining (PCG) has been a successful ap-
proach. That is, two sets of CV phase-space projectors 	k[θ ]
and 	l [θ ′] (like before k, l = 0, . . . , d − 1) can be defined
such that their eigenstates give equal probability outcomes
when the other measurement operator is applied [26,29]. This
may seem to suggest that one can define a discrete variable
system within a CV one, which may be loosely true, but not in
any rigorous sense. For example, it was shown that these PCG
observables, though mutually unbiased, do not follow the
known conditions concerning the number of allowed mutually
unbiased bases for discrete systems. Rather, depending on the
number of outcomes d , they can mimic either the discrete or
continuous cases, or neither [30].

Here we explore another way to benchmark PCG observ-
ables, that is, through the corresponding EURs, and show that

TABLE I. Different types of settings relevant for continuous-variable systems and associated, known EURs. Here we fill the gap of a
discrete setting.

Number of measurements’ outcomes Overlap between the measurements Entropic URs

Uncountably infinite (2π h̄| sin �θ |)−1/2 [21,22,32,33]
Countably infinite Additionally depends on coarse-graining widths [22,23,34,35]
Discrete, equal to d Always 1/

√
d Present paper
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they indeed mimic the discrete case in that they obey the en-
tropic URs from Eq. (1). This applies to PCG of usual position
and momentum operators, as well as arbitrary phase-space
operators. In this way, we realize our main goal and derive a
family of entropic uncertainty relations for PCG observables.
Moreover, the state-independent lower bound that depends
only on the number of measurement outcomes d implies that
PCG observables could be an interesting route for quantum
information protocols, since system-dependent parameters,
such as relative phase-space direction or measurement bin
width, are absent.

IV. PERIODIC COARSE-GRAINED OBSERVABLES

In order to construct coarse-grained mutually unbiased pro-
jective measurements, we group rank-1 projectors according
to periodic bin functions (k = 0, . . . , d − 1) [47]:

Mk (z; T ) =
{

1, k s � z(mod T ) < (k + 1)s,
0, otherwise. (5)

The bin functions can be thought of as continuous square
waves with spatial period T and bin width s = T/d .

While for simplicity, in Sec. V, we first consider the special
case of position and momentum, we now introduce notation
which covers a general pair of phase-space directions. Let

	k[θ ] =
∫
R

dqθ Mk (qθ ; Tθ )|qθ 〉〈qθ |, (6)

for k = 0, . . . , d − 1, be a set of d projectors rendering PCG
in the θ direction of the phase space. In Refs. [26,29], addi-
tional displacement parameters setting the origin of the phase
space have been introduced. However, as these degrees of
freedom do not at all influence the present discussion, they are
omitted here. One just needs to remember that all arguments
remain valid independent of the choice of the origin of the
phase space.

Given a mixed state ρ, we further define the probabilities

pk[θ ] = Tr(ρ	k[θ ]). (7)

Operational mutual unbiasedness of two measurements has
been defined for pure states in Ref. [26] (see also Ref. [27]);
however, one can easily realize that this definition extends to
the case of mixed states by convexity. To be more precise, we
call both θ and θ ′ measurements as mutually unbiased if, for
all states ρ such that pk[θ ] is a permutation of (1, 0, . . . , 0)
with d − 1 zeros, we find that pl [θ ′] = 1/d for all l , and vice
versa.

It is quite straightforward to realize that for ρ =∑
n λn|�n〉〈�n|, with all λn � 0 and

∑
n λn = 1, the require-

ment pk[θ ] = 1 for some k enforces 〈�n|	k[θ ]|�n〉 = 1 for
all n. Consequently 〈�n|	l [θ ′]|�n〉 = 1/d .

Note that the above operational definition of mutual unbi-
asedness, as well as its natural extension to the case of mixed
states, applies to any pair of projective measurements, not
necessarily being the PCG, which we use here for the sake
of illustration and further discussion.

In Ref. [29], it has been proven that, if

Tθ Tθ ′

2π
= d| sin �θ |

M
, M ∈ N, ∀n=1,...,d−1

M n

d
/∈ N,

(8)

with M being a natural number (M 	= 0) such that M n/d /∈ N
for all n = 1, . . . , d − 1 (i.e., M is not co-prime with d), then
both sets of the PCG projectors are mutually unbiased.

V. ENTROPIC URS FOR PCG

We are interested in an entropic UR of the general form

Hα[θ ] + Hβ[θ ′] � −2 ln C, (9)

where as usual 1/α + 1/β = 2 and the Rényi entropy is de-
fined in Eq. (2). Our aim is to show that C � 1/

√
d . To this

end we partially follow Refs. [34,48]. We adapt, to the case of
PCG observables, the methodology presented therein, which
was tailored to “standard” coarse graining as in Eq. (4). Ini-
tially, this requires a replacement of finite intervals by periodic
sets. The replacement propagates to complete sets of functions
and probability distributions. Later on, Eq. (8), which encodes
the property of mutual unbisedness of the PCG, is utilized in
order to further work out the bound relevant for the current
scenario. In comparison, in Refs. [34,48], eigenvalues of an
integral equation known from signal processing theory have
instead been discussed.

We first introduce a few pieces of notation. Let Ok[θ ] be
sets defined as

Ok[θ ] = {z ∈ R : Mk (z; Tθ ) = 1}, (10)

and note that

	k[θ ] =
∫

Ok [θ]
dqθ |qθ 〉〈qθ |. (11)

From now on we focus our attention on the position-
momentum couple, further denoting Ok[x] ≡ Ok[0], Ok[p] ≡
Ok[π/2], Tx ≡ T0, and Tp ≡ Tπ/2. We define ϕkm(x) and ξln(p)
to be orthonormal and complete sets of functions on Ok[x] and
Ol [p], respectively, i.e.,∫

Ok [x]
dx ϕk1m(x)ϕ∗

k2m′ (x) = δk1kδk2kδm′m, (12a)

∫
Ol [p]

d p ξl1n(p)ξ ∗
l2n′ (p) = δl1lδl2lδn′n. (12b)

Such complete sets are guaranteed to exist, since functions
supported on, e.g., Ok[x] form a subspace of the Hilbert space
of square integrable functions, which is separable (so is every
subspace).

Moreover, without loss of generality we restrict our atten-
tion to pure states ρ = |�〉〈�|, since they are known to cover
extreme points of information entropies. We therefore define
amplitudes as follows:

akm =
∫

Ok [x]
dx ψ (x)ϕ∗

km(x), (13a)

bln =
∫

Ol [p]
d p ψ̃ (p)ξ ∗

ln(p), (13b)

where as usual ψ (x) = 〈x|�〉 and ψ̃ (p) = 〈p|�〉.
Generalizing Eqs. (A7)– (A9) from Ref. [34], by replacing

the intervals appearing there by the sets Ok[x] and Ol [p], and
with a slight adjustment of the notation concerning arguments
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of the Rényi entropies, we immediately get the result

Hα[|a|2] + Hβ[|b|2] � −2 ln C, (14)

where

C = sup
(k,l,m,n)

∣∣∣∣
∫

Ok [x]
dx

∫
Ol [p]

d p
eipx

√
2π

ϕ∗
km(x)ξln(p)

∣∣∣∣. (15)

Arguments of the Rényi entropies in Eq. (14) are not denoted
as the directions on the phase space, but as the probability
distributions entering Eq. (2). These distributions are more
fine-grained than Eq. (7), since

pk[0] =
∑

m

|akm|2, pl [π/2] =
∑

n

|bln|2. (16)

If we further apply the Cauchy-Schwarz inequality to the∫
Ok [x] dx integral and use normalization of ϕkm(x), we arrive

at the bound C � sup(k,l,n) W n
kl , where

W n
kl =

√∫
Ok [x]

dx
∫

Ol [p]
d p

∫
Ol [p]

d p′ e
i(p−p′ )x

2π
ξln(p)ξ ∗

ln(p′).

(17)

Our task is therefore to compute the kernel∫
Ok [x]

dx
ei(p−p′ )x

2π
. (18)

The periodic bin function can be decomposed in the
Fourier series

Mk (z; T ) = 1

d
+

∑
N∈Z/{0}

fk,N e
2π iN

T z, (19)

where

fk,N = 1 − e− 2π iN
d

2π iN
e− 2π iN

d k . (20)

Using Eq. (19) to calculate the kernel, we find∫
Ok [x]

dx
ei(p−p′ )x

2π

= 1

d
δ(p − p′) +

∑
N∈Z/{0}

fk,Nδ

(
p − p′ + 2π

Tx
N

)
. (21)

Consequently, we obtain the result∫
Ok [x]

dx
∫

Ol [p]
d p

∫
Ol [p]

d p′ e
i(p−p′ )x

2π
ξln(p)ξ ∗

ln(p′)

= 1

d
+

∑
N∈Z/{0}

fk,N

∫
Ol [p]

d p
∫

Ol [p]
d p′δ

×
(

p − p′ + TpMN

d

)
ξln(p)ξ ∗

ln(p′), (22)

where we have utilized normalization of ξln(p) to integrate
the first Dirac δ contribution, and we have applied condition
(8) while changing arguments of the remaining Dirac δ’s. Due
to the last step, every Dirac δ in the second expression leads
to an autocorrelation term, which is nonvanishing only when
MN/d is an integer. However, due to the further requirement
established in Eq. (8), we find MN/d ∈ Z if and only if

N/d ∈ Z. But in this special case the factor 1 − e− 2π iN
d present

in fk,N becomes equal to 0, so that all terms in the sum over
N ∈ Z/{0} disappear, leaving the bare contribution 1/d . As a
result, C � 1/

√
d , as expected.

Finally, we observe [34] that a particular choice

ϕk0(x) = 〈x|	k[0]|�〉/
√

pk[0], (23a)

ξl0(p) = 〈p|	l [π/2]|�〉/
√

pl [π/2], (23b)

with other functions in both complete sets being orthogonal
to Eqs. (23) leads to the probabilities |akm|2 = pk[0]δm0 and
|bln|2 = pl [π/2]δn0. Therefore, the bound C � 1/

√
d , which

consequently gives −2 ln C � ln d , is also valid for our main
UR under consideration; namely, Eq. (1) for the position and
momentum pair of PCG observables, denoted by angles θ = 0
and θ = π/2, respectively, is proven. It is easy to recognize
that this bound, due to the property of mutual unbiasedness,
is saturated if a state is localized in either of the sets Ok[x] or
Ol [p], for a fixed value of the index k or l .

A. Extension to any two directions in phase space

In order to extend the above result to two arbitrary phase-
space observables, qθ and qθ ′ , i.e., to show that the general
EUR

Hα[θ ] + Hβ[θ ′] � ln d, (24)

holds (as always with 1/α + 1/β = 2), we first observe that
several steps of the previous derivation can immediately
be repeated with minor modifications. To be more precise,
Eqs. (12)–(20) from Sec. V just require a slight adjustment of
the notation, which boils down to a replacement of labels “0”
or “x” by “θ” and “π/2” or “p” by “θ ′,” as well as function
arguments by qθ and q′

θ , respectively. Moreover, the Fourier
transform in Eq. (15) must be replaced by the fractional
Fourier transform [49] which gives the generalized overlap
〈qθ |qθ ′ 〉= F (qθ , qθ ′ ) and reads (as before �θ = θ − θ ′)

F (qθ , qθ ′ ) =
√

−iei�θ

2π sin �θ
ei cot �θ

2 (q2
θ +q2

θ ′ )−i
qθ q

θ ′
sin �θ . (25)

Note that |F (qθ , qθ ′ )| reduces to the overlap in Eq. (3). Con-
sequently, the Fourier kernel (18) is replaced by∫

Ok [θ]
dqθF (qθ , qθ ′ )F (q̃θ ′ , qθ ). (26)

Since

F (qθ , qθ ′ )F (q̃θ ′ , qθ ) = ei cot �θ
2 (q2

θ ′ −q̃2
θ ′ )

2π |sin �θ | ei
qθ

sin �θ
(q̃θ ′−qθ ′ ), (27)

we easily generalize Eq. (21) as∫
Ok [θ]

dqθF (qθ , qθ ′ )F (q̃θ ′ , qθ )

= 1

d
δ(q̃θ ′ − qθ ′ ) +

∑
N∈Z/{0}

fk,N ei cot �θ
2 (q2

θ ′ −q̃2
θ ′ )δ

×
(

q̃θ ′ − qθ ′ + 2π sin �θ

Tθ

N

)
. (28)
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The remaining part of the derivation follows exactly the same
way as for the particular case of position and momentum. The
only difference is that due to the MUB condition Eq. (8), the
term 2π sin �θ/Tθ inside the Dirac δ is replaced by ± Tθ ′M/d ,
where the sign ± depends on the order of θ and θ ′ on the phase
space. In Eq. (22) we find the plus sign as the angle difference
for position and momentum is in [0, π ]. Thus, we have an
uncertainty relation of the form (1) for PCG observables cor-
responding to any two nonparallel phase-space quadratures.

VI. CONTINUOUS LIMIT

At the end we would briefly like to elaborate on the contin-
uous limit for PCG observables. To this end we recall that d =
Tθ /sθ , for all variables qθ , where sθ is the bin width. Then,
using Eq. (8), we can write d = 2π | sin �θ |/sθ sθ ′ . Plugging
this into Eq. (24), we have

Hα[θ ] + Hβ[θ ′] + ln(sθ sθ ′ ) � ln 2π | sin �θ |. (29)

Each Rényi entropy can be rewritten as follows:

Hα[θ ] = − ln sθ + 1

1 − α
ln

[
d−1∑
i=0

sθ

(
pi[θ ]

sθ

)α
]
. (30)

In the continuous limit d → ∞, we set Tθ ∼ √
d , so that

Tθ → ∞ while at the same time sθ → 0. In this limit, the
sum multiplied by sθ tends to the integral

∫ ∞
0 dqθ , while

the term in parentheses in Eq. (30) becomes a continuous
probability distribution supported on [0,∞). This specific
probability distribution takes into account two points on the
real line, one on the positive side and one the negative side
(though not symmetrically). To explain it a bit better we can
for the moment restrict ourselves to a box [−L, L] and, given
a function f (x) supported on that box, consider the function
g(x) = f (x) + f (x − L), which is supported on [0, L]. In our
limiting procedure, the continuous probability distributions on
the real line, which normally are the arguments of the Rényi
entropies, will be of the f type, while pi[θ ]/sθ tends to the
distribution of the g type. Obviously, the g-type probability
distributions will always have entropy smaller than that of
f -type distributions. Therefore, the continuous Rényi entropy
hα[θ ] will also be bigger than the continuous limit of the
entropy in Eq. (30):

hα[θ ] � lim
d→∞

(Hα[θ ] + ln sθ ). (31)

As a consequence, using Eq. (29), we obtain the continuous
UR

hα[θ ] + hβ[θ ′] � ln 2π | sin �θ |. (32)

The uncertainty relation obtained is clearly weaker than the
best-known URs for continuous variables [22,33]. This is
because the latter follow from a completely different math-
ematical machinery, namely, “p-q norm” inequalities for the
Fourier transform. Our result is, on the contrary, closest in
spirit with standard finite-dimensional treatment of mutually
unbiased bases which, while powerful, does not know much
about sophisticated properties of the Fourier transform.

VII. DISCUSSION

We have provided an entropic uncertainty relation for a
discrete set of mutually unbiased, periodic coarse-grained ob-
servables. Different from the underlying continuous observ-
ables, or other discretization schemes, here the uncertainty
limit is bounded only by the number of measurement out-
comes, which plays the role of dimension. We extend our
results to apply to observables constructed from eigenstates
of any two nonparallel quadrature operators and show that
a meaningful (though not optimal) continuous limit can be
obtained. The bound in the continuous limit is meaningful
because it reproduces the result by Hirschman [50], which is a
natural relative of the Maassen-Uffink bound (see Eq. (21) in
Ref. [18]). Since the optimal bound relevant for the continu-
ous variables [21] is associated with a different mathematical
toolbox (p-q norm inequalities for the Fourier transform), it is
clear why we do not reach it in the continuous limit.

The main motivation for our work is the overall question
concerning the behavior of discretized observables con-
structed within a continuous Hilbert space, and whether these
observables are “more continuous” or “more discrete” in their
characteristics. Our results show in the case of periodic coarse
graining that the discretization is indeed manifest in the de-
sired way, whereas entropic uncertainty relations are applied.

A number of possible applications and open questions
exist. First, it is tempting to ask whether these results can
be extended to include more than two observables, as in
Refs. [29,30]. This remains an open question, since to date
an entropic uncertainty relation for more than two continuous
operators has been conjectured but not proven [5,51]. What
has been proven for the continuous case concerns Gaussian
states and loses relevance in the PCG scenario. Moreover,
the established results for discrete systems [52–54] do not
seem to be directly applicable. As an application of our re-
sults, the EUR derived here for PCG observables can be
adapted to identify entanglement or, more specifically, as a
criteria for EPR-steering correlations [55] between two par-
ties. For example, it is straightforward to follow the recipe
in Refs. [14,56], which, for α = β = 1 (Shannon entropies),
leads to

H1[qθ |qφ] + H1[qθ ′ |qφ′ ] � ln d, (33)

where H1[r|s] is the conditional Shannon entropy and r and s
refer to measurement directions of Alice and Bob (the two par-
ties). Violation of the above inequality indicates EPR steering
correlations in Alice and Bob’s bipartite system. We expect
that interesting applications of EURs for PCG observables
will be found, in particular, for quantum states with a natural
periodicity.
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