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Reverse quantum speed limit: How slowly a quantum battery can discharge

Brij Mohan and Arun K. Pati
Quantum Information and Computation Group, Harish-Chandra Research Institute, HBNI, Chhatnag Road, Jhunsi, Prayagraj 211 019, India

(Received 25 June 2021; accepted 20 September 2021; published 11 October 2021)

We introduce the notion of a reverse quantum speed limit for arbitrary quantum evolution which answers
a fundamental question: How slowly can a quantum system evolve in time? Using the geometrical approach
to quantum mechanics, the reverse speed limit follows from the fact that the gauge-invariant length of the
reference section is always greater than the Fubini-Study distance on the projective Hilbert space of the quantum
system. We illustrate the reverse speed limit for two-level quantum systems with an external driving Hamiltonian
and show that our results hold well. We find several examples where our bound is tight. We also find one
practical application of the reverse speed limit in the discharging process of quantum batteries, which answers
the following question: How slowly can quantum batteries discharge? Our result provides a lower bound on the
average discharging power of quantum batteries.
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I. INTRODUCTION

Quantum physics has several inherent limitations. These
limitations could be either operational or dynamical limita-
tions. From a dynamical point of view, the quantum speed
limit (QSL) has played a pivotal role in quantum computa-
tion, quantum control, and even in quantum thermodynamics.
These limitations are not only crucial for theoretical questions
but also have practical relevance, as recent years have wit-
nessed rapidly developing quantum technologies.

The question of how fast a quantum system can evolve in
time was first addressed in Ref. [1]. The notion of speed of
transportation of a quantum system, what is now known as
the “quantum speed limit,” was first introduced by Aharonov
and Anandan [2] using the Fubini-Study metric. The speed of
transportation of a quantum system for unitary and nonuni-
tary evolutions was introduced in Refs. [3–5] using the
Riemannian metric. The QSL is defined as the maximal dy-
namical evolution speed of the quantum system. It determines
the minimal dynamical evolution time required for a quantum
state of a quantum system to evolve from an initial state to
target state [1,2,6–45]. Since QSL determines how fast quan-
tum systems evolve it is natural to ask if there is a reverse
speed limit for quantum evolution. To answer this question,
we formally introduce the notation of reverse quantum speed
limit (RQSL) for arbitrary quantum evolution. This is defined
as the minimal evolution speed of closed quantum systems
and it sets a bound on the maximal evolution time required for
a quantum state of a closed quantum system to evolve from
an initial state to a target state. This is an upper bound on
the quantum evolution time. The quantum evolution will be
slower if the reverse quantum speed limit time increases. It
may have several meaningful applications in the field of quan-
tum physics, ranging from quantum information, quantum
computation, to quantum optimal control and the quantum
battery.

The quantum battery (QB) was originally introduced by
Alicki and Fannes [46]. It consists of small quantum sys-

tems with many degrees of freedoms in which we can store
energy or extract energy from them. Quantum batteries are
much better than classical batteries in many ways because
they offer several quantum mechanical advantages [47,48]. In
recent years, lots of theoretical models of quantum batteries
have been studied by several groups to enhance the feature of
quantum batteries by exploiting the nonclassical resources of
quantum mechanics. Also, several charging and discharging
protocols have been proposed to enhance the power [49–54],
work storage [46,55], stability [56–58], and so on. With the
help of QSL, how fast we can charge the quantum batteries
has been found [50,59–61]. Here with the help of RQSL, we
will answer the question “how slowly can quantum batteries
discharge?” QSL and RQSL also set the bound on the average
charging or discharging power of quantum batteries. We be-
lieve that it will help us in the practical realization of quantum
batteries, which can maintain its power for longer duration.
Ideally, one should design quantum batteries which discharge
slowly while operating and hence our RQSL play a pivotal
role in deciding the figure of merit of such quantum batteries.

Our paper is organized as follows. In Sec. II, we provide
a basic framework to appreciate various geometric structures
that will be used for proving the reverse quantum speed limit.
In Sec. III, we apply RQSL for two-level systems. In Sec. IV,
we study the slow discharging of quantum batteries by em-
ploying RQSL. Finally, we summarize our results in Sec. V.

II. GEOMETRICAL REVERSE QUANTUM SPEED LIMIT
FOR UNITARY EVOLUTIONS

Before we prove the reverse quantum speed limit, we need
some background on the geometry of quantum evolution.

A. For pure initial state

Let us consider a set of vectors {ψ} of (D + 1)-dimensional
quantum system that belongs to a Hilbert space HD+1. If these
vectors are not normalized, we can consider {ψ/||ψ ||} to be a
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FIG. 1. In this schematic diagram the violet line represents the
curve � in H. The curve � is the actual trajectory of the noncyclic
evolution of quantum system whose state vector |ψ (t )〉 ∈ H evolves
according to the Schrödinger equation. For cyclic evolution the curve
� begins and ends on the same ray but at different points. The blue
line represents the curve �̂ in P . The curve �̂ is basically a projection
of curves � in P . Note here that there may be infinite number of such
curves � in H, which can give rise to the same curve �̂ in P .

set of vectors of norm 1 that belongs to a unit-normed Hilbert
space L. The state of a quantum system is represented by a ray
in the ray space R = L/U (1). Two normalized state vectors
|ψ〉 and |ψ ′〉 are equivalent if they belong to the same ray, i.e.,
they merely differ by a phase factor (|ψ ′〉 ≡ eiφ|ψ〉, where
eiφ ∈ U (1)). The set of rays of H via a projection map is
known as the projective Hilbert space P . The projection map
� : L −→ P is a principal fiber bundle L[P,U (1),�], with
structure group U (1). This can be observed by considering
the action of the multiplicative group C∗ of nonzero complex
numbers on the space CD+1 − {0} given by the equivalence
relation (z1, z2, . . . , zD+1)λ := (z1λ, z2λ, . . . , zD+1λ) ∀ λ ∈
C∗. This is a free action and the orbit space is the space CPD

of the complex lines in the Hilbert space H = CD+1. Thus, we
get the principal bundle C∗ −→ CD+1 − {0} −→ CPD = P in
which the projection map associates with each (D + 1) tuple
(z1, z2, . . . , zD+1) the point in CPD with the homogeneous
coordinates. Thus, any pure quantum state at given instant
of time is represented by a point in P and the evolution of
the quantum system is represented by a curve � in H, which
projects to a curve �̂ = �(�) in P [3–5]. See Fig. 1 for a
geometric depiction.

During a noncyclic evolution of a quantum system, the
initial state and the final state belong to two different rays of
the Hilbert space. Thus, the evolution curve �̂ is an open path
in P where the initial and final points lie on two different rays.
Using the Pancharatnam connection [62], we can compare the
relative phases of state vectors belonging to two different rays.
If a quantum system evolves from an initial state to the final
state, then the relative phase difference between these states is
given by

ei� = 〈ψ (0)|ψ (t )〉
|〈ψ (0)|ψ (t )〉| . (1)

Here, the initial and final states should not be orthogonal.
If 〈ψ (t )|ψ (0)〉 is complex, then the quantum system does
acquire a relative phase during the evolution of the system.
In this case if we map the open path �̂ in P to L, there are
many open curves in L corresponding to this open curve in P .
Among all of them, there exists one special open curve, which
is traced out by the reference state. This reference state is a
vector that depends on the initial state vector of the system.
To define this special open curve �0, let us construct the “ref-
erence section” |χ (t )〉 of the bundle covering ρ(t ) = �[ψ (t )].
It is a map s : P −→ L such that the image of each point
ρ(t ) ∈ P lies in the fiber �(ρ) over ρ, i.e., �os = idp, for
details see Ref. [63]. The “reference section” defined with
respect to the initial point is a mapping of the state curve �0

through the section s and is given by [4,5]

|χ (t )〉 = 〈ψ (t )|ψ (0)〉
|〈ψ (t )|ψ (0)〉| |ψ (t )〉. (2)

It has the following properties: (i) s�(|ψ (0)〉) = |χ (0)〉 =
|ψ (0)〉; (ii) �(|ψ (0)〉) = �(|χ (0)〉); and (iii) 〈χ (0)|χ (t )〉 is
always real and positive, i.e., |χ (0)〉 and |χ (t )〉 remain in
phase throughout the quantum evolution. Also, it insures that
the length of the curve traced by |χ (t )〉 is invariant under U (1)
gauge transformation. The “reference section” defined above
plays an important role in the theory of geometric phases.
Using this we can prove that the geometric phase acquired
by a quantum system for an arbitrary noncyclic evolution is
given by the integral over the connection-form, i.e., �G =
i
∫ 〈χ |dχ〉 [4,5].

Now, we will need two geometric structures to prove the re-
verse quantum speed limit. Consider two curves �0 : [0, t] →
L and �̄ : [0, t] → L as traced out by the “reference section”
|χ (t )〉 and the horizontal curve |ψ̄ (t )〉, respectively. To define
the later, let us consider the evolution of a quantum system as
described by the Schrödinger equation

ih̄
d

dt
|ψ (t )〉 = H (t )|ψ (t )〉,

where H (t ) is the driving Hamiltonian of the system. In
general, when the system evolves in time from t = 0 to t =
T , it will acquire a dynamical phase �D = − 1

h̄

∫ T
0 i〈ψ (t )|

H (t )|ψ (t )〉 dt and a geometric phase �G = � − �D =
i
∫ 〈χ |dχ〉, where � = Arg〈ψ (0)|ψ (T )〉 is the total phase.

However, if the system undergoes a parallel transport then
it will acquire only the geometric phase. The significance
of the parallel-transported vector is that locally it does not
undergo any rotation, but globally it picks up a phase which is
geometric in nature. The parallel-transported vector is given
by |ψ̄ (t )〉 = exp[i/h̄

∫ t
0 〈ψ (t ′)|H (t ′)|ψ (t ′)〉dt ′]|ψ (t )〉 and this

is also called the horizontal vector. We can check that it
satisfies the parallel transport condition 〈ψ̄ (t )| ˙̄ψ (t )〉 = 0, i.e.,
the tangent vector is orthogonal to the vector itself at any point
in time.

Now, we need to define length of the curves for these two
vectors. The inner product in H induces a metric in P and
the presence of metric allows the definition of the length of a
differentiable curve in L.
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FIG. 2. In this schematic diagram the blue line represents the
curve �̂ in P which is a projection of |ψ (t )〉 (as described in Fig. 1).
The reference section curve �0 and horizontal curve �̄ are repre-
sented by green and red lines, respectively. �0 and �̄ traced by unit
vectors |χ (t )〉 and |ψ̄ (t )〉. These two curves do not depend on the
actual curve � traced by |ψ (t )〉 and they are gauge-invariant.

1. Definition (Length of reference section)

Let t → |χ (t )〉 be a curve �0(t ) during an arbitrary evolu-
tion of a quantum system. The total length of the differentiable
curve �0 from a point |χ (0)〉 to a point |χ (t )〉 is a real number
defined as

l (χ (t ))|T0 =
∫ T

0
〈χ̇ (t )|χ̇ (t )〉 1

2 dt,

=
∫

�0

||dχ ||, (3)

where |χ̇ (t )〉 is the velocity vector in L of the curve �0 at
time t along the path of evolution (relative to the initial point
|χ (0)〉). See Fig. 2 for various length of the curves discussed
in the paper.

2. Definition (Length of horizontal curve)

Let t → |ψ̄ (t )〉 be a curve �̄(t ) during an arbitrary evolu-
tion of a quantum system. The total length of the differentiable
curve �̄(t ) from a point |ψ̄ (0)〉 to a point |ψ̄ (t )〉 is a real
number defined as

l (ψ̄ (t ))|T0 =
∫ T

0
〈 ˙̄ψ (t )| ˙̄ψ (t )〉

1
2 dt,

=
∫

�̄

||dψ̄ ||, (4)

where | ˙̄ψ (t )〉 is the velocity vector in L of the curve � at time
t along the path of the evolution of the horizontal curve.

The length of the reference curve and the length of the
horizontal curves are two fundamental geometric structures
associated with any quantum evolution. Some properties of
these lengths of the curves are in the follwoing order. First,
we note that the integrals in Eqs. (3) and (4) exist in the inter-
val [0, T ] since the integrand is continuous and the resulting
integrals yield real numbers. These two lengths respect an
important property of reparametrization invariance, i.e., all the

curves deduced from �0 and �̄ by a change of parameter t to t ′
with dt

dt ′ > 0, the length of these curves remain unaltered. Fur-
thermore, they are also gauge-invariant, i.e., when |ψ (t )〉 →
eiα(t )|ψ (t )〉, then l (χ (t )) and l ( ψ̄ (t )) remain the same. This
was proved in Ref. [5]. Thus, they qualify to be called as
geometric structures as these lengths are also independent of
the particular Hamiltonian used to evolve the quantum system.
There may be an infinite number of Hamiltonians which can
give rise to the same l (χ (t )) and l ( ψ̄ (t )). The length of the
horizontal curve is actually (up to a factor of 2) the total
distance traveled by the quantum state as measured by the
Fubini-Study metric.

To see this, consider the Bargmann angle, which measures
the distance between two arbitrary pure states |ψ1〉 and |ψ2〉
is given by

1
2 So(|ψ1〉, |ψ2〉) = cos−1(|〈ψ1|ψ2〉|). (5)

If two pure states |ψ (t )〉 and |ψ (t + dt )〉 are separated by an
infinitesimal distance, then we have the infinitesimal Fubini-
Study metric on P , which is defined as [2]

dS2 = 4(1 − |〈ψ (t )|ψ (t + dt )〉|2). (6)

Let |ψ (t )〉 be a state of the system that evolves according to
the Schrödinger equation. The distance between |ψ (0)〉 and
|ψ (T )〉 along the evolution curve is determined by integrating
the Fubini-Study metric [2], which is given by

S = 2

h̄

∫ T

0
�H (t ) dt, (7)

where �H (t )2 = 〈ψ (t )|H (t )2|ψ (t )〉 − 〈ψ (t )|H (t )|ψ (t )〉2 is
the energy fluctuation during the quantum evolution. Note
that the length of the horizontal curve for the Schrödinger
evolution is given by l ( ψ̄ (t ))|T0 = ∫ T

0
�H (t )

h̄ dt , i.e., S =
2l ( ψ̄ (t ))|T0 . The standard quantum speed limit (QSL) follows
from the fact that the total distance traveled by the quantum
system as measured by the Fubini-Study metric is always
greater than or equal to the shortest distance connecting the
initial and the final points, i.e., S � S0. Similarly, here we will
show how the geometry of the quantum state space dictates
that there is indeed a reverse quantum speed limit.

One fundamental result in the geometry of the quantum
evolution is that the length of the reference section is greater
than the length of the horizontal curve. In fact, we can prove
that dl (χ (t )) 2 � dl ( ψ̄ (t )) 2 and hence the gauge-invariant
length l (χ (t ))|T0 is always greater than the length of the
horizontal curve l ( ψ̄ (t ))|T0 .

We can write Eq. (2) as |χ (t )〉 = ξ (t )|ψ (t )〉, where ξ (t ) =
〈ψ (0)|ψ (t )〉
|〈ψ (0)|ψ (t )〉| . Then Eq. (3) can be expressed as

||dχ ||2 = ||dξ ||2 + 2dξ ∗ξ 〈ψ |dψ〉 + ||dψ ||2.
On using Eq. (4) and the following expressions:

||dξ ||2 = [i〈χ |dχ〉 − i〈ψ |dψ〉]2,

dξ ∗ξ = [〈ψ |dψ〉 − 〈χ |dχ〉],
we obtain

||dχ ||2 − ||dψ̄ ||2 = [i〈χ |dχ〉]2.

042209-3



BRIJ MOHAN AND ARUN K. PATI PHYSICAL REVIEW A 104, 042209 (2021)

Since i〈χ |dχ〉 is real, we have

||dχ ||2 � ||dψ̄ ||2,
i.e., l (χ (t ))|T0 � l (ψ̄ (t ))|T0 .

The difference between the length and the distance plays a
significant role, which is essentially the connection form that
gives rise to the geometric phase for the arbitrary quantum
evolution [4,5]. Viewed differently, the existence of the in-
trinsic curvature in the quantum state space gives rise to the
inequality, i.e., l (χ (t ))|T0 � l ( ψ̄ (t ))|T0 .

If the Hamiltonian is time-independent, then the above
conditions provides a nontrivial bound for the reverse speed
limit, which can be expressed as an inequality

T � h̄l (χ (t ))|T0
�H

. (8)

This is the fundamental reverse quantum speed limit (RQSL).
If the speed of transportation of the state vector is slow and if
the total length of the “reference-section” curve is more, then
the system will evolve more slowly.

For the time-dependent Hamiltonian, we can obtain the
reverse speed limit for the quantum system as given by

T � h̄l (χ (t ))|T0
�H

, (9)

where �H is the time average of the fluctuation over the time
for which evolution occurs, i.e., �H = 1

T

∫ T
0 �H (t )dt . Thus,

Eq. (9) provides the reverse speed limit bound, i.e., the upper
bound of the speed limit for time as given by

TRQSL = h̄l (χ (t ))|T0
�H

. (10)

Since l (χ (t ))|T0 � l ( ψ̄ (t ))|T0 � 1
2 So[|ψ (0)〉, |ψ (T )〉], we

can write the following inequality:

TRQSL � T � TQSL. (11)

Thus, the geometric structures of the quantum evolution im-
poses fundamental bound on the evolution time as it is upper
bounded by reverse speed limit time. Equation (12) suggests
that, in quantum mechanics, evolution time is both upper
and lower bounded. It is worth stressing that the standard
quantum speed limit as well as the reverse quantum speed
limit obtained here, both owe their existence to the geometry
of quantum state space. Equations (9) and (10) constitute the
central result of our paper.

B. For mixed initial state

The reverse speed limit can be generalized for mixed initial
states undergoing unitary time evolution. Any mixed state of
a quantum system can be viewed as a reduced state of an
enlarged pure entangled state. We can purify the mixed state
ρS in HS of a system (S) by attaching an ancillary system
(A). Hence the state of the enlarged system (S + A) described
by the pure state |〉SA ∈ HS ⊗ HA and by tracing out A, we
retrieve the mixed state ρS ∈ B(HS ) of S. The purified state is
given by

|〉SA =
∑

k

√
pk|k〉S|k〉A, (12)

where {|k〉S} and {|k〉A} are the basis of a system Hilbert space
HS and ancillary system Hilbert space HA, respectively.

If |(0)〉SA is the initial state of joint system at time t = 0
and it is transformed to |(t )〉SA by a local unitary operator
USA(t ) = US (t ) ⊗ IA [45,45,64] then we have

|(t )〉SA =
∑

k

√
pkUS (t )|k〉S|k〉A, (13)

where US (t ) = e
−it
h̄ HS and HS is the Hamiltonian of the sys-

tem. This unitary evolution is equivalent to ρS (0) → ρS (t ) =
US (t )ρS (0)US (t )† as during the evolution at each time t ∈
[0, T ], |(t )〉SA satisfies the condition

TrA[|(t )〉SA〈(t )|] = ρS (t ) = US (t )ρ(0)US (t )†, (14)

where ρS (0) is the initial state of the system and
TrA[|(0)〉SA〈(0)|] = ρS (0).

Since, the purification is not unique, any state |(t )〉SA =∑
k
√

pkUS (t )|k〉SV |k〉A, where V ∈ HA denotes a unitary op-
erator in HA, is also a valid purification. Geometrically, this
can be thought of as a right action of V (HA) on HS ⊗ HA

along the fibers of the projection from HS ⊗ HA to the space
of the density operators. This projection is uniquely charac-
terized by the equality Tr(ρSOS ) = 〈(t )|(OS ⊗ IA)|(t )〉SA

satisfied by every operator O. This can be regarded as a
principal fiber bundle HS ⊗ HA over mixed states with a struc-
ture group V (HA) and a well-defined principal connection for
mixed states [65,66].

In the purified Hilbert space HS ⊗ HA, the entangled
“reference section” with respect to the initial state is defined
as [64,67]

|χ (t )〉SA = Tr[USA(t )ρSA(0)]

|Tr[USA(t )ρSA(0)]| |(t )〉SA, (15)

where ρSA(0) = |(0)〉SA〈(0)| and USA(t ) = e
−it
h̄ HS ⊗ IA.

Now, if we carry over the notion of the reference section
and horizontal curve to the joint system. The length of the
reference section can be defined as

l (χ (t )SA)|T0 =
∫ T

0
〈χ̇ (t )|χ̇ (t )〉SA

1
2 dt, (16)

where |χ̇ (t )〉SA is the velocity vector of the curve �0 at time
t along the path of evolution the path of evolution (relative to
the initial point |χ (0)〉SA) in HS ⊗ HA.

The length of the horizontal curve can be defined as

l ( ̄(t )SA)|T0 =
∫ T

0
〈 ˙̄(t )| ˙̄(t )〉SA

1
2 dt, (17)

where | ˙̄(t )〉SA is the velocity vector of the curve �̄ at time
t along the path of evolution of the horizontal curve in
HS ⊗ HA.

During the evolution of the mixed state, we will
have l (χ (t )SA)|T0 � l ( ̄(t )SA)|T0 . Now, realizing the fact
that l ( ̄(t )SA)|T0 = Tr[ρS (t )H2

S ] − Tr(ρS (t )HS )2 = �H2
S , we

have the fundamental upper bound of quantum speed limit
time for mixed states which can be expressed as

T � h̄l (χ (t )SA)|T0
�HS

. (18)
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Indeed, we can check that the reverse quantum speed limit for
mixed states given in Eq. (19) reduces to the pure-state case
given in Eq. (9), if the system is initially prepared in a pure
state and undergoes a unitary time evolution.

III. RQSL FOR THE TWO-LEVEL QUANTUM SYSTEMS

In the dynamics of a two-level quantum system, we can
easily examine the reverse speed limit bounds. The simplest
models of two-level systems are spin-half particles in a time-
dependent external field and the Jaynes-Cummings model. In
the sequel, we will illustrate the reverse speed limit bounds
for these two quantum systems.

A. Spin in time-dependent external field

Consider the atom (which has two energy levels) in the
time-dependent external field whose Hamiltonian is given as

H = Hatom + Hfield(t ) = J1σz + J2(t )σx,

where J2(t ) is defined as J2(t ) = 0 for t = 0 and J2 for t > 0.
Here, |0〉 and |1〉 are the excited and ground states of the atom
with eigenvalues ±J1. If the initial state of a system is |0〉, then
the time evolution of the state of the system at an arbitrary
time is given by

|ψ (t )〉=
[

cos

(
�

h̄
t

)
− iJ1

�
sin

(
�

h̄
t

)]
|0〉− iJ2

�
sin

(
�

h̄
t

)
|1〉,

where � =
√

J1
2 + J2

2. The fluctuation in the energy of the
system during quantum evolution is given by �H = J2. In
the time interval [0, T = π h̄

2�
], the system reaches to the tar-

get state J1|0〉+J2|1〉√
J2

1 +J2
2

(for simplicity, lets assume J1 = J2 = h̄,

it implies T = π

2
√

2
). To obtain the speed limit bounds, we

need to calculate S0
2 , l (ψ̄ (t ))|T0 and l (χ (t ))|T0 . We find that

So[|ψ (0)〉, |ψ (T )〉] = π , and l (ψ̄ (t ))|T0 = J2
h̄

π

2
√

2
= 1.1107.

For the calculation of the length of the curve “l (χ (t ))|T0 ,” first
we need |χ (t )〉. This is given by

|χ (t )〉 = cos( �
h̄ t ) + iJ1

�
sin( �

h̄ t )√
cos2( �

h̄ t ) + ( J1
�

)2 sin2( �
h̄ t )

{[
cos

(
�

h̄
t

)

− iJ1

�
sin

(
�

h̄
t

)]
|0〉 − iJ2

�
sin

(
�

h̄
t

)
|1〉

}
.

Using Eq. (3), we find the length of the reference curve as
given by

l (χ (t ))|T0 = 1

h̄

∫ T

0

√
�2+J2

1

1 − 2b2 − 2(1 − b2) cos2(at )

[cos2(at ) + b2 sin2(at )]2
dt,

where a = �
h̄ and b = J1

�
. We can simplify the above ex-

pression further by substituting the values of J1 and J2. This
leads to

l (χ (t ))|T0 =
∫ π

2
√

2

0

√
2 − 4

cos2[
√

2t]

[cos2(
√

2t ) + 1]2
dt .

The value of above integral is l (χ (t ))|T0 = 1.2526 and
l (χ (t ))|T0 > l (ψ̄ (t ))|T0 > S0

2 indeed holds. Using these values
of l (χ (t ))|T0 and S0

2 , the reverse speed limit and the standard

speed limit are given by

TRQSL = h̄l (χ (t ))|T0
�H

= 1.2526,

TQSL = h̄S0(T )

2�H
= 0.7853.

Thus, we obtained the desired upper and lower speed limit
bounds on the evolution time of a given system, which com-
pletely agree with Eq. (12).

As of now we obtained the speed limit bounds for pure
initial state. Let us consider the case, when the initial state of
the system is a mixed state, i.e., ρS = p|0〉〈0| + (1 − p)|1〉〈1|
with 0 � p � 1. After the purification, the state of the system
and the ancillary is given by

|ψ (0)〉SA = √
p|0〉S|a0〉A +

√
1 − p|1〉S|a1〉A,

where |a0〉 and |a1〉 are the orthonormal bases of the ancillary
system. The time evolution of the joint system at a later time
t is given by

|(t )〉SA = USA(t )|(0)〉SA,

where USA = e
−it
h̄ [J1σz+J2(t )σx] ⊗ IA. The joint state at time t is

given by

|(t )〉SA = √
p

{[
cos

(
�t

h̄

)
− iJ1

�
sin

(
�t

h̄

)]
|0〉

− iJ2

�
sin

(
�t

h̄

)
|1〉

}
|a0〉

+
√

1 − p

[
− iJ2

�
sin

(
�t

h̄

)
|0〉

+
[

cos

(
�t

h̄

)
+ iJ1

�
sin

(
�t

h̄

)]
|1〉

}
|a1〉,

where � =
√

J1
2 + J2

2. The fluctuation of the Hamiltonian

for the system is given by �HS =
√

J2
1 + 4p(1 − p)J2

2 .
Now, the reference section |χ (t )〉SA can be expressed as

|χ (t )〉SA = cos( �
h̄ t ) + iJ1(2p−1)

�
sin( �

h̄ t )√
cos2( �

h̄ t ) + ( J1(2p−1)
�

)2 sin2( �
h̄ t )

|(t )〉SA.

In time interval [0, T = π h̄
2�

], the system reaches to the target
state |(T )〉SA (for simplicity, let us assume that J1 = J2 = h̄
and this implies T = π

2
√

2
) with

|(T )〉SA = √
p|+〉|a0〉 +

√
1 − p|−〉|a1〉,

where |±〉 = 1√
2
(|0〉 ± |1〉). The state of the system at time T

is given by

ρS (T ) = 1
2 (|0〉〈0| + |1〉〈1|) + (

p − 1
2

)
(|0〉〈1| + |1〉〈0|).

To obtain the reverse speed limit bound, first we need to cal-
culate the length of the curve. For the purpose of illustration,
we assume p = 1

3 and the length is given by

l (χ (t )SA)|T0 =
∫ π

2
√

2

0

√
2 − 8[1 + 17 cos(2

√
2t )]

[19 + 17 cos(2
√

2t )]2
dt .
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The value of the above integral is l (χ (t )SA)|T0 = 2.2458.
Therefore, the reverse quantum speed limit bound is given by

TRQSL = h̄l (χ (t )SA )|T0
�HS

= 1.6341. We also find that the quantum
speed limit and reverse speed limit respect the bound. Thus,
the desired upper and lower speed limit bounds on the evolu-
tion time for the mixed initial state completely agree with our
new bound.

B. Jaynes-Cummings model

One may ask how tight is the reverse quantum speed limit?
Is there any physical system for which RQSL saturates the
bound? We will show that the Jaynes-Cummings (JC) model
[68] which describes the interaction of a two-level atom with a
single quantized mode of an optical cavity’s electromagnetic
field indeed saturates the reverse quantum speed limit. The
Hamiltonian of the JC model with rotating wave approxima-
tion can be expressed as

H = Hatom + Hfield + Hint(t )

= h̄ω

2
σz + h̄ωa†a + λ(t )(σ+a + σ−a†),

where λ(t ) is defined as λ(t ) = 0 at t = 0 and λ for t > 0.
Here, |e〉 and |g〉 are the excited and ground states of the
atom with eigenvalues h̄ω

2 and − h̄ω
2 , respectively. The cavity

has “n + 1” number of photons. If the initial state of the total
system |g〉|n + 1〉, then the time evolution of the total system
at arbitrary time t is given as

|ψ (t )〉 = cos(λt
√

n + 1)|g〉|n + 1〉 − i sin(λt
√

n + 1)|e〉|n〉,
where |n〉 and |n + 1〉 are states of the field. The energy
fluctuation of the system during evolution is given by �H =
λh̄

√
n + 1. Since initially the atom in the ground state |g〉,

then in time interval [0, T = π

2λ
√

n+1
], it evolves to target

state |e〉. To obtain speed limit bounds for evolution, let us
evaluate S0

2 , l (ψ̄ (t ))|T0 and l (χ (t ))|T0 . One can check that the
geodesic distance S0 = π . The total distance as measured by
the horizontal curve during the time evolution is given by
l (ψ̄ (t ))|T0 = π

2 .
In fact, the system undergoes parallel transport dur-

ing the quantum evolution, i.e., it satisfies the condition
〈ψ (t )|ψ̇ (t )〉 = 0. In this case, we find that |χ (t )〉 = |ψ (t )〉 =
|ψ̄〉 and hence the length, distance, and the geodesic distance
all are equal during the evolution of the quantum system. In
this scenario, the quantum speed limit bounds on evolution
time saturates, i.e., it completely satisfies Eq. (12) as well, i.e.,
TRQSL = T = TQSL.

IV. DISCHARGING OF QUANTUM BATTERIES

Future technology aims to develop strategies to store en-
ergy which can be later consumed by quantum devices. This
motivates to design quantum batteries by using quantum
mechanical features. The simplest model of quantum bat-
teries consist of an array of N two-level quantum systems
[49,50,59–61,69]. However, their charging and discharging
procedures differ because they use a different external field
to charge and discharge quantum batteries. Once a quantum
battery is successfully charged we need to decouple it from

the external field. In this connection, it has been shown that
how fast a quantum battery can be charged is governed by
the quantum speed limit for the evolution of the system. In
this section, we will show that the reverse quantum speed
limit provides a fundamental lower bound on the average
discharging power like the quantum speed limit provides the
upper bound on the average charging or discharging power.

A. Charging and discharging protocol

To deposit work (charging) into an array of N atoms or
extract work (discharging) from the array of the N atom, we
apply a time-dependent external field H (t ) for period [0, T ]
such that it must be a reversible cyclic operation [50]. The
Hamiltonian during this process is given by

H0 −→ H0 + H (t ) −→ H0,

where H0 is the Hamiltonian of the quantum battery. The norm
of the total Hamiltonian must be less than Emax [61], i.e.,

||H0 + H (t )|| � Emax,

where Emax is the maximum energy eigenvalue difference or
gap of H0. There are two ways to charge and discharge, the
first one is charging and discharging each atom individually
known as the parallel protocol and the second one is to charge
and discharge all the atoms together known as the collective
protocol [50,60,61]. Although, the charging and discharging
process are similar, we are only interested in the discharging
process. Because, while charging, we always want to charge
it fast but that is not the case during the discharging process.
We always want to extract energy according to our neces-
sity. Then, the natural question is how slowly can a quantum
battery discharge? Of course we have to remember that we
cannot extract more than the stored energy. Here, we will
show that the fundamental reverse speed limit can answer the
question of how long it takes to discharge a quantum battery.

B. Average discharging power

The average discharging power is defined as

P̄ = 1

T

∫ T

0

dW (t )

dt
dt,

= W (T )

T
, (19)

where W (T ) is the ergotropy and T is the time required to
discharge the QB, which is lower bounded by the QSL time
and upper bounded by the RQSL time. The ergotropy is the
amount of energy deposited in quantum systems or extractable
from the quantum system [70] and defined as

W (T ) = 〈ψ (T )|H0|ψ (T )〉 − 〈ψ (0)|H0|ψ (0)〉, (20)

where H0 is the Hamiltonian of QB, |ψ (0)〉 and |ψ (T )〉 are
the initial and final states of the QB, respectively. This is the
maximum work that can be extracted unitarily from a given
quantum state with respect to the Hamiltonian H0.

The reverse speed limit provides a nontrivial lower bound
to the average discharging power, i.e., we have

P̄ � W (T )�H

h̄l (χ (t ))|T0
, (21)
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where l (χ (t ))|T0 is the length of the reference section and �H
is the energy fluctuation during the quantum evolution.

We will illustrate the average discharging power of the
quantum battery for two cases.

C. Harmonic and square-wave discharging

Consider N-independent batteries consisting of
N two-level atoms which we can discharge though
the classical harmonic field [69,71]. The total
Hamiltonian of the discharging process is described as

H = ε

2

N∑
i=1

σ z
i + A

2
cos(ωt )

N∑
i=1

σ x
i ,

where the first term in the Hamiltonian denotes an array of
N two-level atoms and the second term denotes the classical
harmonic field. Here, |e〉 and |g〉 are the excited and ground
states of a single-atom battery with eigenvalues ε

2 and − ε
2 ,

respectively.
The effective Hamiltonian in the rotating wave approxima-

tion can be written as [69,71]

H̄ = ε̄

2

N∑
i=1

σ z
i + Ā

N∑
i=1

σ x
i ,

where Ā = A
2 (1 − ζ√

N
) and ε̄ = εJ0( A

ω
√

N
ζ ) − ω (effective de-

tuning). Here ζ ∈ [0, 1] is an undetermined parameter and
J0( A

ω
√

N
ζ ) denotes the Bessel function of order zero [69,71].

The above Hamiltonian is similar to N batteries coupled
with square wave charger or discharger. In the discharging
process of N batteries, individual atoms discharge indepen-
dently (parallel discharging). If the initial state of a single
quantum battery is |e〉, then during the discharging process the
time evolution of the wave function of the single-atom battery
system at arbitrary time t is given by

|ψ (t )〉 = [cos(
�R

2h̄
t ) − iε̄

�R
sin(

�R

2h̄
t )]|e〉 − i2Ā

�R
sin(

�R

2h̄
t )|g〉,

where �R = √
ε̄2 + 4Ā2. The energy fluctuation of the system

during the evolution is given by �H = Ā and hence it evolves
with a speed 2Ā

h̄ .
During the time interval [0, π h̄

�R
] the initial state |e〉 evolves

to target state |ψ (T )〉. To calculate maximum and minimum
discharging time of the quantum battery, first we need to
calculate S0

2 , l (ψ̄ (t ))|T0 and l (χ (t ))|T0 . The geodesic distance
S0
2 is given by

1

2
S0[|ψ (0)〉, |ψ (T )〉]

= cos−1

[
| cos

(
�R

2h̄
T

)
− iε̄

�R
sin

(
�R

2h̄
T

)
|
]
.

The total length of the horizontal curve is given by
l (ψ̄ (t ))|T0 = Ā

h̄ T .

FIG. 3. Here, we depict TRQSL and TQSL versus T for N = 100
atom battery for harmonic and square wave discharging. Here we
take �H in the unit of Joule-second; hence TRQSL, TQSL, and T are in
seconds.

For the calculation of length l (χ (t ))|T0 , first we need the
reference section |χ (t )〉 which can be expressed as

|χ (t )〉 = cos( �R
2h̄ t ) + iε̄

�R
sin( �R

2h̄ t )√
cos2( �R

2h̄ t ) + ( ε̄
�R

)2 sin2( �R
2h̄ t )

{[
cos

(
�R

2h̄
t

)

− iε̄

�R
sin

(
�R

2h̄
t

)]
|e〉 − i2Ā

�R
sin

(
�R

2h̄
t

)
|g〉

}
.

Now, the length of the reference section curve is given by

l (χ (t ))|T0 = 1

h̄

∫ T

0

√
�R

2

4
+ ε̄2[1−2b2−2(1−b2) cos2(at )]

4[cos2(at ) + b2 sin2(at )]2
dt,

where a = �R
2h̄ and b = ε̄

�R
.

In the parallel discharging protocol, QSL and RQSL of the
discharging N atoms battery is N times of QSL and RQSL of
single-atom battery, respectively. Thus, the reverse speed limit
bound on the discharging time of N atoms is defined as

TRQSL = N
h̄l (χ (t ))|T0

�H
.

The above Fig. 3 shows that the upper and the lower bounds
of the discharging time of 100 atoms (N = 100) quantum
battery. Here, we assumed Ā = h̄ and ε̄ = 2h̄. In the plot,
range of T is 0 to π

2
√

2
, each value T represents a different final

state |ψ (T )〉. The total amount of the work extracted from the
single-atom battery during interval [0, π h̄

�R
] is [69]

W (T ) = 4εĀ

ε̄2 + 4Ā2
.

Therefore, the upper and lower bounds on the average power
of the quantum battery are given by

4εĀ2

(ε̄2 + 4Ā2)l (χ (t ))|T0
� P̄ � 8εĀ2

(ε̄2 + 4Ā2)S0
.

In time interval [0, π h̄
2Ā ], initial state |e〉 evolves to target state

|ψ (T )〉 = |g〉 (up to a phase), when we modulate ω such
that ε̄ = 0 (tuned case). In this case |χ (t )〉 = |ψ̄ (t )〉, which
implies that the length, distance, and geodesic distance all
are equal. This means that the speed limit bounds saturates
when ε̄ = 0. Thus, the average power bound also saturates.
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Geometrically, for the tuned case, the system evolves along a
shortest geodesic and obeys the parallel transport condition.
However, for the detuned case, i.e., when the ε̄ �= 0 system
may not evolve along the geodesic and then quantum battery
may take a longer time to discharge. This can be harnessed
in the future to design efficient quantum batteries which will
take more time to discharge. This shows that the geometry of
the quantum state space also dictates the discharging power of
the quantum battery.

D. Cavity-assisted discharging

Consider the model of the quantum battery [49,59,61,72],
as an array of N two-level atoms inside the optical cav-
ity. These atoms do not interact with each other. The total
Hamiltonian with rotating wave approximation that describes
the discharging process of the quantum battery is given by

H = h̄ω

2

N∑
j=1

σ j
z + h̄ωa†a + λ(t )

N∑
j=1

(σ j
+a + σ

j
−a†),

where the first term denotes the Hamiltonian of N atoms, the
second term in the Hamiltonian denotes the single quantized
mode of an optical cavity’s electromagnetic field, and the third
term denotes the interaction between the atoms and cavity
[68]. The cavity has n number of photons, λ(t ) is a time-
dependent coupling constant set to be λ during the charging
or discharging period [0, T ] and 0 otherwise.

In the parallel discharging, we extract work form individual
atoms independently using the external field. The time evolu-
tion of the single-atom battery system is given by

|ψ (t )〉 = cos(λt
√

n + 1)|e〉|n〉 − i sin(λt
√

n + 1)|g〉|n + 1〉,
where |e〉 and |g〉 denotes the excited and ground states of the
atom, respectively. |n〉 and |n + 1〉 are states of the field. In
the time interval [0, π

2λ
√

n+1
] the initial state of single atom

|e〉 evolves to final state |g〉. In this model of the quantum
battery, we find that the length of the reference curve, the
length of the horizontal curve, and the geodesic distance all
are equal for discharging or charging of this quantum bat-
tery, i.e., l (χ (t ))|T0 = l (ψ̄ (t ))|T0 = S0

2 . This suggests that the
reverse quantum speed limit bound saturates for this quantum
battery model, thereby suggesting that such a quantum battery
takes a fixed amount of time to discharge. It also suggests
that the lower and upper average power bounds also saturate
during the charging and discharging processes.

V. CONCLUSION

In summary, we proved a reverse quantum speed limit for
arbitrary unitary evolutions of pure as well as mixed states.

The reverse speed limit arises due to the geometry of the
quantum state space, i.e., the total length of the reference
curve is always greater than the length of the horizontal
curve. The difference between these two lengths gives rise
to the notion of the curvature in the state space. Therefore,
the reverse quantum speed limit owes its existence due to
the intrinsic curvature on the projective Hilbert space of the
quantum system. This is similar in spirit to the fact that the
standard quantum speed limit also follows from the geometric
consideration, i.e., the total distance traveled by the quantum
state as measured by the Fubini-Study metric is always greater
or equal to the shortest distance joining the initial and the final
points on the projective Hilbert space of the quantum system.

Even though the QSL and the RQSL bounds are funda-
mentally of geometrical nature, they differ in some important
ways. First, to compute QSL one needs to know much less
about the path followed by the system than to compute RQSL.
Second, evaluating QSL may be much easier than evaluating
the actual time that the system takes to evolve from the initial
to the final state, while evaluating the RQSL bound may be
difficult in physical situations. The QSL depends only on the
energy uncertainty and on the initial and final states, while
the RQSL depends on the energy fluctuation and details of
the path length followed by the reference state of the quantum
system. Nevertheless, the RQSL will play an important role
similar to the QSL.

We also find physical systems for which the upper bound
for the reverse quantum speed limit actually saturates. We
successfully presented examples in support of our results. As
an important application, we showed how our result for the
reverse speed limit answers a pertinent question: how long
does it take for a quantum battery to discharge? Our results
show that the geometry of the quantum state space will play
a key role in the future design of the quantum battery. We
also showed that the reverse speed limit is tight by revealing
the cases when the discharging and charging times saturate in
two different proposed models of quantum batteries. In future,
we can generalize the reverse speed limit for open quantum
systems and apply it to the aging problem in the quantum
battery, i.e., what is the upper bound for the lifetime of an open
quantum battery? This will provide a route towards future ex-
tension and the usability of our results in the context of battery
stabilization. We believe that the fundamental reverse speed
limit will have a host of applications in quantum computing,
quantum measurement, quantum control, quantum metrology,
and a variety of other areas.
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