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Geometrical interpretation of the photon position operator with commuting components
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It is shown that the photon position operator �̂X with commuting components can be written in the momentum

representation as �̂X = i �̂D, where �̂D is a flat connection in the tangent bundle T (R3 \ {(0, 0, k3) ∈ R3 : k3 � 0})

over R3 \ {(0, 0, k3) ∈ R3 : k3 � 0} equipped with the Cartesian structure. Moreover, �̂D is such that the tangent

2-planes orthogonal to the momentum are propagated parallel with respect to �̂D and also �̂D is an anti-Hermitian

(i.e., �̂X is Hermitian) operator with respect to the scalar product 〈�|Ĥ−2s|�〉. The eigenfunctions � �X (�x) of the

position operator �̂X are found.
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I. INTRODUCTION

Newton and Wigner, in their distinguished paper on lo-
calized states of relativistic quantum particles [1], arrived at
the result (among others) that for massless particles with the
spin greater than or equal to 1 no localized states in the
sense explained in the paper exist. The authors concluded
the following: “This is an unsatisfactory, if not unexpected,
feature of our work.” Wightman [2] also found that the
photon is not localizable. In contrast, using some slightly
weaker requirements for localizability, one can show [3,4]
that the photon is localizable. Pryce, in his pioneering work
devoted to the mass center in relativistic field theory [5],
found an operator which he considered as the photon position
operator. It is the Hermitian operator, but unfortunately its
components do not commute. Hawton introduced the pho-
ton position operator with commuting components [6]. She
demonstrated that this operator differs from the Pryce operator
only by one term, which turned out to be closely related to
the Berry potential leading to the Berry phase whose appear-
ance has been proved experimentally [7,8] and discussed in
detail from group-theoretic and geometrical points of view
by Białynicki-Birula and Białynicka-Birula in [9]. Hawton’s
position operator for the photon was then widely investigated
in subsequent works [10–15]. Our work follows this path. In
Sec. II we present a simple derivation of the Hawton position
operator for the photon. We show that this operator in the
momentum representation, in terms of differential geometry,
can be interpreted as some covariant derivative (connection)
multiplied by an imaginary unit i. This covariant derivative
is defined in the Cartesian tangent bundle T (M ), where M is
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a dense open submanifold of the Cartesian momentum space
R3; the respective curvature tensor is zero (the connection is
flat), 2-planes orthogonal to the momentum are propagated
parallel, and the covariant derivative is an anti-Hermitian op-
erator with respect to a given scalar product. We are able
to find the general forms of operators arising in this way
and show that they are all unitarily equivalent. Then we find
a phase-space image of the photon position operator in the
sense of the Weyl-Wigner-Moyal formalism. In Sec. III we
find the eigenfunctions �̃ �X (�k) of the photon position operators
in the momentum representation and we calculate the inverse
Fourier transforms of those eigenfunctions, which give us the
wave eigenfunctions � �X (�x). It is demonstrated that � �X (�x) is
localized in a small neighborhood of �x = �X . This result is
compatible with the interpretation of the photon wave function
�(�x) given in [16–18]. Section IV is devoted to analysis of
the Berry potential and the Berry phase related to Hawton’s
position operator. Although several results of our paper have
been found previously by other authors, the geometrical in-
terpretation given here provides a different perspective on the
photon position operator.

II. RELATION BETWEEN HAWTON’S POSITION
OPERATOR OF THE PHOTON AND A COVARIANT

DERIVATIVE (CONNECTION)

In this section we show that the photon position operator
introduced by Hawton [6] is closely related to some covariant
derivative (connection) in the tangent bundle over the differen-
tial manifold R3 \ {(0, 0, c) ∈ R3 : c � 0} with the Cartesian
structure. The construction presented here refers to a particu-
lar selection of 3-axis [half-line starting at (0,0,0)] excluded
from R3, which allows us to obtain explicit expressions for
the photon position operator and its eigenstates. However, as
will be seen later, the different options for selecting the 3-axis
are equivalent and therefore physically irrelevant. In our work
we adopt quantum mechanics of the photon as developed
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by Białynicki-Birula [16,17] and Sipe [18] and reconstructed
in [19]. Using the notation of [19], we conclude that the
photon wave function in the Cartesian momentum coordinates
is represented by the complex vector function (an arrow is
put over three-component quantities, while boldface denotes
matrix objects)

�̃(�k) =

⎛⎜⎝�̃1(�k)

�̃2(�k)

�̃3(�k)

⎞⎟⎠, �k = (k1, k2, k3) ∈ R3 (2.1)

perpendicular to the vector �k,

k j�̃ j (�k) = 0 (2.2)

(summation over j from 1 to 3).
Since the components of the metric tensor in momentum

space are given by the Kronecker delta δ jl , there is no dif-
ference between covariant and contravariant components in
the Cartesian coordinates (k1, k2, k3). We are looking for the
photon position operator in the momentum representation. In
standard quantum mechanics we have

�̂x = i �∇, �∇ ≡
(

∂

∂k1
,

∂

∂k2
,

∂

∂k3

)
= (∂1, ∂2, ∂3). (2.3)

However, we quickly note that with (2.2) satisfied,

k j (x̂l�̃(�k)) j = −i�̃ j (�k)∂l k j = −�̃l (�k), l = 1, 2, 3. (2.4)

Therefore, �̂x�̃(�k) does not fulfill the condition (2.2) for �̃ �= 0
although �̃(�k) does. This means that the standard position op-
erator (2.3) is definitely not the photon position operator and
consequently a generalization of (2.3) is needed. We propose

to assume that the position operator of the photon �̂X has the
form

�̂X = i �̂D 	⇒ X̂l = iD̂l , l = 1, 2, 3, (2.5)

where �̂D = (D̂1, D̂2, D̂3) is an operator in the Hilbert space
L2(R3) ⊗ C3 determined by a suitable covariant derivative
(the connection) in the tangent bundle T (M ) over M ⊂ R3,
with M some dense open submanifold of R3 endowed with

the Cartesian structure. This connection we also denote by �̂D.

Since we require the components X̂1, X̂2, X̂3 of �̂X to commute,
we must assume that the operators (D̂1, D̂2, D̂3) mutually
commute

[D̂l , D̂m] = 0, l, m = 1, 2, 3. (2.6)

This last condition implies the vanishing of the curvature of

the connection �̂D,

R j
lmn = 0, j, l, m, n = 1, 2, 3. (2.7)

It means that the connection �̂D is flat [20,21]. Then we expect
that the operators X̂l , l = 1, 2, 3, acting on a photon wave
function �̃(�k) give also a photon wave function. This assump-

tion implies that the connection �̂D has to fulfill the conditions

k j (D̂l�̃(�k)) j = 0, l = 1, 2, 3, (2.8)

for any section �̃(�k) of the complexified tangent bundle
TC (M ) satisfying the relation (2.2).

Finally, restriction imposed on the connection �̂D follows

from the fact that the photon position operator �̂X should be
a Hermitian operator with respect to the Białynicki-Birula
scalar product [6,10,17,19]

〈�̃|�̃〉BB := 〈�̃|Ĥ−1|�̃〉 =
∫

d3k

(2π )3|�k| �̃
†(�k)�̃(�k), (2.9)

where Ĥ is the photon Hamiltonian operator, which in mo-
mentum representation reads

Ĥ = ch̄|�k|. (2.10)

Consequently, X̂l for l = 1, 2, 3 has to satisfy the relations(∫
d3k

(2π )3|�k| �̃
†(�k)X̂l�̃(�k)

)∗
=

∫
d3k

(2π )3|�k| �̃
†(�k)X̂l�̃(�k),

l = 1, 2, 3, (2.11)

for any photon wave functions �̃(�k) and �̃(�k). Hence,

by (2.5), we assume that the covariant derivative �̂D is an anti-
Hermitian operator with respect to the scalar product (2.9). So(∫

d3k

(2π )3|�k| �̃
†(�k)D̂l�̃(�k)

)∗

= −
∫

d3k

(2π )3|�k| �̃
†(�k)D̂l�̃(�k), l = 1, 2, 3, (2.12)

for sections �̃(�k) and �̃(�k) of the complexified tangent bundle
TC (M ).

Now we are going to construct the covariant derivative
(the connection) which satisfies the above conditions (2.6) [or
equivalently (2.7)], (2.8), and (2.12). First we need to deter-
mine what the submanifold M ⊂ R3 is. We show that M �=
R3. To this end, we assume the opposite, that M = R3. The set
of real tangent vectors at the point (k1, k2, k3) �= (0, 0, 0) ful-
filling the orthogonality condition (2.2) constitutes the 2-plane
�⊥(k1, k2, k3) perpendicular to the vector �k = (k1, k2, k3).
Thus we obtain a two-dimensional differential distribution

D2 : R3 � (k1, k2, k3) �→ �⊥(k1, k2, k3). (2.13)

Then the condition (2.8) means that the planes �⊥(k1, k2, k3)

are propagated parallel with respect to the connection �̂D and
the condition (2.6) [or equivalently (2.7)] says, as has been

pointed out above, that �̂D is flat. The integral manifolds of the
distribution D2 are the 2-spheres |�k| = const. We can easily

conclude that our assumptions about the connection �̂D imply,
among other things, that for any 2-sphere |�k| = const > 0
and for any point (k1, k2, k3) of this sphere and any nonzero
vector tangent at (k1, k2, k3) to the sphere we can propagate

this vector parallel with respect to �̂D on the whole sphere,
thus obtaining a nowhere vanishing tangent vector field on
the 2-sphere. As is well known, this is impossible for a
topological reason (the Euler characteristic of the 2-sphere
is nonzero [21,22]). Consequently, M cannot be considered
as equal to R3. To get M we must remove at least one point
from each 2-sphere |�k| = const > 0. We decide to follow this
minimal restriction and we remove the north pole for each
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2-sphere |�k| = const > 0 and also point (0,0,0) of R3. Thus
the submanifold M ⊂ R3 is assumed as

M = R̃3 := R3 \ {(0, 0, k3) ∈ R3 : k3 � 0} (2.14)

and we also define the Cartesian structure on M. Therefore,
in geometrical language, our task is to find a general flat

connection �̂D in the tangent bundle T (R̃3), anti-Hermitian
with respect to the scalar product (2.9) and such that 2-planes
of the two-dimensional differential distribution D2 defined
by (2.13) are propagated parallel with respect to �̂D. To solve
this problem, we first choose a basis (�e1, �e2, �e3)�k(0) of the tan-
gent space T�k(0) (R̃3) at some point �k(0) = (k(0)

1 , k(0)
2 , k(0)

3 ) ∈ R̃3

so that �e1, �e2 ∈ �⊥. Since R̃3 is simply connected and we

assume that the connection �̂D is flat, the basis (�e1, �e2, �e3)�k(0)

can be propagated parallel with respect to �̂D on the entire
R̃3 giving a triad of the pointwise independent vector fields

(�e1(�k), �e2(�k), �e3(�k)) on R̃3. Moreover, if �̂D satisfies the condi-
tion (2.8), i.e., the planes �⊥(k1, k2, k3) of the distribution D2

are propagated parallel with respect to �̂D, then

�e1(�k), �e2(�k) ∈ �⊥(�k) ∀ �k ∈ R̃3. (2.15)

Define

�eμ(�k) ≡ �eμ = eμ j
∂

∂k j
, μ = 1, 2, 3. (2.16)

Let (�e 1(�k), �e 2(�k), �e 3(�k)) be the triad of 1-forms dual to
(�e1(�k), �e2(�k), �e3(�k)),

�eμ(�k) ≡ �eμ = eμ
j dk j, μ = 1, 2, 3. (2.17)

Thus we have

�eμ(�eν ) = δμ
ν ⇐⇒ eμ

j eν j = δμ
ν , μ, ν = 1, 2, 3. (2.18)

From (2.18) we quickly infer that

eμ
j eμl = δ jl . (2.19)

The metric tensor gμν in the space tangent to the momentum
space reads, in the basis �eμ,

gμν = �eμ · �eν = eμ jeν j . (2.20)

From (2.18) and (2.20) we easily find the relations

eμ j = gμνeν
j , eμ

j = gμνeν j, (2.21)

where, as usual, gμν is the inverse tensor to gμν ,

gμρgρν = δμ
ν . (2.22)

From the assumption that the vector fields �eμ, μ = 1, 2, 3, are

propagated parallel with respect to the connection �̂D we have

D̂l �eμ = 0 	⇒ ∂l eμ j + 	 jmleμm = 0, (2.23)

where 	 jml are the connection coefficients. Multiplying both
sides of Eq. (2.23) by eμn, summing over μ from 1 to 3, and
using (2.19), we get the connection coefficients as

	 jnl = −eμ
n ∂l eμ j = eμ j∂l e

μ
n . (2.24)

Altogether, Eq. (2.24) gives the general form of the connection

coefficients of the flat connection �̂D in T (R̃3) for which the

2-planes �⊥(�k) are propagated parallel. Therefore, it remains
only to study the condition (2.12). The left-hand side of
Eq. (2.12) with the use of the well-known formula for the
covariant derivative

(D̂l�̃) j = ∂l�̃ j + 	 jml�̃m (2.25)

[and analogous formula for (D̂l�̃) j], after integrating by parts
and after employing (2.24), (2.21), and (2.19), gives(∫

d3k

(2π )3|�k| �̃
†(�k)D̂l�̃(�k)

)∗

= −
∫

d3k

(2π )3|�k| �̃
†(�k)D̂l�̃(�k)

−
∫

d3k

(2π )3|�k| �̃
∗
n eμ

n eν
j (∂l gμν + gμν |�k|∂l |�k|−1)
̃ j .

(2.26)

Comparing this with the right-hand side of (2.12), we con-

clude that �̂D is an anti-Hermitian operator with respect to the
scalar product (2.9) if and only if

∂l gμν + (|�k|∂l |�k|−1)gμν = 0 ⇐⇒ ∂l (|�k|−1gμν )

= 0 ⇐⇒ |�k|−1gμν = constμν.

(2.27)

Without any loss of generality we can choose the triad �eμ(�k)
and its dual �eμ(�k) as [see (2.20), (2.24), and (2.27)]

�eμ(�k) = |�k|1/2 �Eμ(�k), �eμ(�k) = |�k|−1/2 �Eμ(�k), μ = 1, 2, 3,

(2.28)

where ( �E1, �E2, �E3) is the orthonormal right-oriented triad of
vector fields on R̃3,

�Eμ(�k) · �Eν (�k) = δμν, �E1(�k), �E2(�k) ∈ �⊥(�k),

�E3(�k) = �k
|�k| ,

�E1(�k) × �E2(�k) = �E3(�k), (2.29)

and �E μ(�k) is the triad of 1-forms dual to �Eμ(�k). Insert-
ing (2.28) into (2.24) we find the connection coefficients

	 jnl = − kl

2|�k|2 δ jn + Eμ j∂lEμn = − kl

2|�k|2 δ jn − Eμn∂lEμ j .

(2.30)
(Note that Eμn = Eμ

n .) Therefore,

(D̂l�̃) j = ∂l�̃ j − kl

2|�k|2 �̃ j + Eμ j (∂lEμn)�̃n

=
(

δ jn∂l − δ jn
kl

2|�k|2 + Eμ j (∂lEμn)

)
�̃n. (2.31)

Finally, using (2.5), we find the photon position operator as

�̂X = (X̂1, X̂2, X̂3),

(X̂l�̃) j = i

(
δ jn∂l − δ jn

kl

2|�k|2 + Eμ j (∂lEμn)

)
�̃n, (2.32)
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which can be rewritten in the matrix form

X̂l�̃ = i(1∂l + �l )�̃, �l := − kl

2|�k|2 1 + Al ,

Al := E∂lE−1, (E) jμ := Eμ j . (2.33)

The formulas (2.32) or (2.33) define the Hawton position
operator for the photon when the Białynicki-Birula scalar
product (2.9) is assumed to apply [6,10,11]. Performing
analogous calculations, we can easily show that, under the
assumption that the scalar product has the form

〈�̃|�̃〉′ ∼
∫

d3k

(2π )3|�k|2s
�̃†(�k)�̃(�k), (2.34)

the formula (2.27) now has to read

|�k|−sgμν = constμν (2.35)

and (2.28) become

�eμ(�k) = |�k|s �Eμ(�k), �eμ(�k) = |�k|−s �Eμ(�k). (2.36)

Consequently, the photon position operator in this case reads

X̂l�̃ = i

(
1∂l − s

kl

|�k|2 1 + Al

)
�̃. (2.37)

Thus we recover the general form of the photon position
operator given by Hawton [6]. We can quickly show that the
action of X̂l on �̃ can be written in a compact form

(X̂l�̃) j = ieμ j∂l
(
eμ

n �̃n
)
. (2.38)

This corresponds to the last formula of Sec. V in Hawton’s
work [6].

We are going now to study the form of connection �̂D
in more detail and find an explicit expression for �̂D. First,
we introduce a coordinate system on R̃3 = R3 \ {(0, 0, k3) ∈
R3 : k3 � 0}. Let (k1, k2, k3) ∈ R̃3. We project this point on
the unit 2-sphere S2 with center (0,0,0) along the ray defined
by �k = (k1, k2, k3). This projection determines the point �k′ on
S2 of the Cartesian coordinates ( k1

|�k| ,
k2

|�k| ,
k3

|�k| ). Let (ξ, η) be the

stereographic coordinates of the point �k′ for the stereographic
projection of S2 from the north pole (0,0,1) on the projection
2-plane k3 = 0. Finally, to the original point of the Cartesian
coordinates (k1, k2, k3) we assign the coordinates (ξ, η, ζ ),
where ζ := |�k| > 0. Thus we construct a new coordinate sys-
tem on R̃3. From the well-known theory of stereographic
projection we easily infer the relations between the Cartesian
coordinates (k1, k2, k3) and the coordinates (ξ, η, ζ ),

ξ = k1

|�k| − k3

, η = k2

|�k| − k3

, ζ = |�k|, (2.39a)

k1 = ζ
2ξ

ξ 2 + η2 + 1
, k2 = ζ

2η

ξ 2 + η2 + 1
, k3 = ζ

ξ 2 + η2 − 1

ξ 2 + η2 + 1
(2.39b)

for (ξ, η) ∈ R2 and ζ > 0. The natural basis of the vector fields on R̃3 defined by the coordinates (ξ, η, ζ ) is given by

∂

∂ξ
= |�k|−1

([|�k|(|�k| − k3) − k2
1

] ∂

∂k1
− k1k2

∂

∂k2
+ k1(|�k| − k3)

∂

∂k3

)
= 2ζ

(ξ 2 + η2 + 1)2

(
(η2 − ξ 2 + 1)

∂

∂k1
− 2ξη

∂

∂k2
+ 2ξ

∂

∂k3

)
= 2|�k| sin2 θ

2

[(
1 − 2 cos2 θ

2
cos2 ϕ

)
∂

∂k1
− cos2 θ

2
sin 2ϕ

∂

∂k2
+ sin θ cos ϕ

∂

∂k3

]
, (2.40a)

∂

∂η
= |�k|−1

(
−k1k2

∂

∂k1
+ [|�k|(|�k| − k3) − k2

2

] ∂

∂k2
+ k2(|�k| − k3)

∂

∂k3

)
= 2ζ

(ξ 2 + η2 + 1)2

(
−2ξη

∂

∂k1
+ (ξ 2 − η2 + 1)

∂

∂k2
+ 2η

∂

∂k3

)
= 2|�k| sin2 θ

2

[
− cos2 θ

2
sin 2ϕ

∂

∂k1
+

(
1 − 2 cos2 θ

2
sin2 ϕ

)
∂

∂k2
+ sin θ sin ϕ

∂

∂k3

]
, (2.40b)

∂

∂ζ
= |�k|−1

(
k1

∂

∂k1
+ k2

∂

∂k2
+ k3

∂

∂k3

)
= 1

(ξ 2 + η2 + 1)

(
2ξ

∂

∂k1
+ 2η

∂

∂k2
+ (ξ 2 + η2 − 1)

∂

∂k3

)
= sin θ cos ϕ

∂

∂k1
+ sin θ sin ϕ

∂

∂k2
+ cos θ

∂

∂k3
, (2.40c)

where (θ, ϕ) (0 < θ � π and 0 � ϕ < 2π ) are the spherical
coordinates of the point (k1, k2, k3) or, equivalently, of the

point ( k1

|�k| ,
k2

|�k| ,
k3

|�k| ). [Note that for θ = π the coordinate ϕ is un-

defined, but since sin π = 0, the formulas (2.40) hold true also
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for θ = π .] We quickly find that the vectors ∂
∂ξ

, ∂
∂η

, and ∂
∂ζ

are
mutually orthogonal. Hence the coordinate system (ξ, η, ζ )
is orthogonal. However, the most important advantage of this
new system is the fact that

∂

∂ξ
,

∂

∂η
∈ �⊥(�k) (2.41)

for every �k = (k1, k2, k3) ∈ R̃3. Consequently, we
easily construct an orthonormal triad of vector fields
( �E1(�k), �E2(�k), �E3(�k)) on R̃3 satisfying the conditions (2.29).
It reads

�E1(�k) := −(|�k| − k3)−1 ∂

∂ξ
= −ξ 2 + η2 + 1

2ζ

∂

∂ξ
,

�E2(�k) := (|�k| − k3)−1 ∂

∂η
= ξ 2+ η2+ 1

2ζ

∂

∂η
, �E3(�k) := ∂

∂ζ
.

(2.42)

[The system of coordinates (ξ, η, ζ ) has the opposite orienta-
tion to the Cartesian system (k1, k2, k3), hence the minus sign
in the formula defining �E1(�k).] Inserting (2.42) into the defi-
nition of Al given by (2.33), after performing straightforward
calculations we get

iAl = (�k × �S)l

|�k|2 + εlm3
km

|�k|(|�k| − k3)
�, (2.43)

where �S = (S1, S2, S3), with

S1 =
⎛⎝0 0 0

0 0 −i
0 i 0

⎞⎠, S2 =
⎛⎝ 0 0 i

0 0 0
−i 0 0

⎞⎠,

S3 =
⎛⎝0 −i 0

i 0 0
0 0 0

⎞⎠ (2.44)

the spin-1 matrices, and

� = �k · �S
|�k| = i|�k|−1

⎛⎝ 0 −k3 k2

k3 0 −k1

−k2 k1 0

⎞⎠ (2.45)

is the helicity operator. Thus the photon position opera-
tor (2.33) now takes the form

X̂l = i1∂l − i
kl

2|�k|2 1 + (�k × �S)l

|�k|2 + εlm3
km

|�k|(|�k| − k3)
�

(2.46)
and for general s [see (2.37)] we have

X̂l = i1∂l − is
kl

|�k|2 1 + (�k × �S)l

|�k|2 + εlm3
km

|�k|(|�k| − k3)
�.

(2.47)
A result analogous to (2.47) was found in [11] for the
case when instead of R3 \ {(0, 0, k3) ∈ R3 : k3 � 0} one takes
R3 \ {(0, 0, k3) ∈ R3 : k3 � 0}. In [11] this result was ob-
tained from the photon position operator for the orthonormal
triad defined by the spherical coordinates, with the use of
the suitable rotation of this triad around the vector �k (see the
example in the present section).

Now we are able to get the more general formula for the
position operator of the photon. First, note that the general
real orthonormal triad of vector fields on � ⊂ R̃3 fulfilling
the conditions (2.29) has the form

�E ′
1 = a �E1 − b �E2, �E ′

2 = b �E1 + a �E2, �E ′
3 = �E3 (2.48)

for a = a(�k), b = b(�k), a2 + b2 = 1, and �k ∈ �. From (2.48),
employing (2.43) and (2.42) with (2.40) making simple ma-
nipulations, we find

iA′
l = iE′∂lE′−1 = (�k × �S)l

|�k|2

+
(

εlm3
km

|�k|(|�k| − k3)
+ (a∂l b − b∂l a)

)
�. (2.49)

Hence, the more general form of the photon position operator
reads

X̂ ′
l = i1∂l − is

kl

|�k|2 1 + (�k × �S)l

|�k|2

+
(

εlm3
km

|�k|(|�k| − k3)
+ (a∂l b − b∂l a)

)
�,

a = a(�k), b = b(�k), a2 + b2 = 1, �k ∈ � ⊂ R̃3

(2.50)

In the case of the Białynicki-Birula scalar product (2.9) we
set s = 1

2 . Note that the first three terms on the right-hand side
of (2.50) with s = 1

2 define the position operator of the photon
proposed by Pryce in his pioneering work [5]. However, the
components of Pryce’s position operator do not commute.

Remark 1. To emphasize the geometric meaning of our
construction we have decided to follow the path of real

Riemannian geometry. For this reason the connection �̂D is
originally defined as the connection in the tangent bundle
T (R̃3) and then extended to its complexification, yielding in

turn the photon position operator �̂X . It should be noted, how-
ever, that in the general approach the connection coefficients
	i jk may be complex valued. This can be taken into account
by allowing unitary (instead of orthogonal) transformations of
the triad ( �E1, �E2, �E3) in (2.48). To this end consider

E′ = EU, (2.51)

U =
⎛⎝ U⊥

0
0

0 0 1

⎞⎠, (2.52)

with some unitary 2 × 2 matrix U⊥(�k). After straightforward
calculations we obtain

A′
l = E′∂lE′−1

= Al + EU(∂lU†)ET = Al + E⊥U⊥(∂lU
†
⊥)ET

⊥, (2.53)

where E⊥ is a 3 × 2 matrix determined by vectors �E1 and �E2,

(E⊥) jμ = Eμ j, j = 1, 2, 3; μ = 1, 2. (2.54)
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Writing the general �k-dependent unitary 2 × 2 matrix as

U⊥ = eiβ

(
eiψ 0
0 e−iψ

)(
cos α sin α

− sin α cos α

)(
ei� 0
0 e−i�

)
, (2.55)

with real functions β = β(�k), α = α(�k), ψ = ψ (�k), and � = �(�k), the general form of the anti-Hermitian matrix U⊥∂lU
†
⊥ can

be calculated as

U⊥∂lU
†
⊥ = i

(− cos(2α)∂l� − ∂lβ − ∂lψ e2iψ [sin(2α)∂l� + i∂lα]

e−2iψ [sin(2α)∂l� − i∂lα] cos(2α)∂l� − ∂lβ + ∂lψ

)
. (2.56)

The relation (2.56) expanded in terms of Pauli matrices σ j and substituted into (2.53) produces the formula for the photon
position operator

X̂ ′
l = i1∂l − is

kl

|�k|2 1 + (�k × �S)l

|�k|2 + (∂lβ )R0 − [cos(2ψ ) sin(2α)∂l� − sin(2ψ )∂lα]R1

+
(

εlm3
km

|�k|(|�k| − k3)
+ sin(2ψ ) sin(2α)∂l� + cos(2ψ )∂lα

)
R2 + [cos(2α)∂l� + ∂lψ]R3, (2.57)

where

R j := E⊥σ jET
⊥, j = 0, 1, 2, 3. (2.58)

(We use the fact that R2 = �.) Clearly, the formula (2.50) can be obtained from (2.57) by choosing β = ψ = � ≡ 0 and setting
a = cos α and b = sin α.

Remark 2. Using the matrix notation of (2.33), (2.51), and (2.52), it can be easily observed that all versions of the
photon position operator (2.57), including those given by the formula (2.50), are unitarily equivalent. Indeed, since the E
related to the triad (2.42) is an orthogonal matrix, we can rewrite E′ = EU = VE for the unitary matrix V = EUE−1, and
consequently

A′
l = E′∂lE′−1 = VAlV−1 + V∂lV−1. (2.59)

Thus, the action of the photon position operator (2.57) can be rephrased as

X̂ ′
l�̃ = i

(
1∂l − s

kl

|�k|2 1 + A′
l

)
�̃ = i

(
VV−1∂l − s

kl

|�k|2 VV−1 + VAlV−1 + V∂lV−1

)
�̃

= iV
(

1∂l − s
kl

|�k|2 1 + Al

)
V−1�̃ = VX̂l V−1�̃,

(2.60)

showing that the unitary transformation given by V converts X̂l to X̂ ′
l .

As an example of the real transformation (2.48) we investigate the case when the orthonormal triad ( �E ′
1, �E ′

2, �E ′
3) is determined

in a natural way by the spherical system of coordinates (θ, ϕ, |�k|) (0 < θ < π and 0 � ϕ < 2π ),

�E ′
1 = cos θ cos ϕ

∂

∂k1
+ cos θ sin ϕ

∂

∂k2
− sin θ

∂

∂k3
,

�E ′
2 = − sin ϕ

∂

∂k1
+ cos ϕ

∂

∂k2
, �E ′

3 = sin θ cos ϕ
∂

∂k1
+ sin θ sin ϕ

∂

∂k2
+ cos θ

∂

∂k3
. (2.61)

From (2.40) and (2.42) we get

�E1 =
(

2 cos2 θ

2
cos2 ϕ − 1

)
∂

∂k1
+ cos2 θ

2
sin 2ϕ

∂

∂k2
− sin θ cos ϕ

∂

∂k3
,

�E2 = − cos2 θ

2
sin 2ϕ

∂

∂k1
+

(
1 − 2 cos2 θ

2
sin2 ϕ

)
∂

∂k2
+ sin θ sin ϕ

∂

∂k3
,

�E3 = sin θ cos ϕ
∂

∂k1
+ sin θ sin ϕ

∂

∂k2
+ cos θ

∂

∂k3
. (2.62)

Substituting (2.61) and (2.62) into (2.48), we quickly conclude that

a = cos ϕ = k1√
k2

1 + k2
2

, b = sin ϕ = k2√
k2

1 + k2
2

. (2.63)
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Then Eq. (2.50) gives (compare with [11])

X̂ ′
l = i1∂l − is

kl

|�k|2 1+ (�k × �S)l

|�k|2

+
(

εlm3
km

|�k|(|�k| − k3)
+ ∂lϕ

)
� (2.64)

or after simple direct calculations we get

X̂ ′
l = i1∂l − is

kl

|�k|2 1 + (�k × �S)l

|�k|2 + εlm3
kmk3

|�k|(k2
1 + k2

2

)�.

(2.65)
This is just the photon position operator found by Haw-
ton in [6]. The domain � ⊂ R̃3 where the right-hand side
of (2.65) is nonsingular is defined as � = R3 \ {(0, 0, k3) ∈
R3 : k3 ∈ R1}. As the next example consider the transforma-
tion

a = cos 2ϕ = k2
1 − k2

2

k2
1 + k2

2

, b = sin 2ϕ = 2k1k2

k2
1 + k2

2

(2.66)

defined on the same � = R3 \ {(0, 0, k3) ∈ R3 : k3 ∈ R1}. In-
serting this into (2.50), we quickly get (see also [11])

X̂ ′
l = i1∂l − is

kl

|�k|2 1 + (�k × �S)l

|�k|2 − εlm3
km

|�k|(|�k| + k3)
�.

(2.67)
Observe that X̂l given by (2.67) is nonsingular on the open
submanifold of R3 defined as R3 \ {(0, 0, k3) ∈ R3 : k3 � 0}.
Straightforward calculations show that we can arrive at (2.67)
by using the stereographic projection of the unit 2-sphere from
the south pole (0, 0,−1) and not from the north pole (0,0,1) as
it has been done in the case of the formula (2.47). On the other
hand, this example demonstrates the physical irrelevance of
the particular choice of half-line excluded from R3 and it
can be generalized in the following way. Starting from E(�k)
given by (2.42), we can construct E′(�k) = ME(M−1�k) for an
arbitrary rotation matrix M. (Here �k′ = M−1�k defines obvious
action of a matrix on �k, i.e., k′

i = M−1
i j k j .) Simple but rather

long calculations confirm that the triad �E ′
μ is of the form (2.48)

and that the singularity half-line of photon position operator
is rotated from the direction defined by vector �kz+ = (0, 0, 1)
to the direction given by M�kz+ . Thus, since the reasoning of
Remark 2 can be applied, all possible choices of singular-
ity half-line are unitarily equivalent and its actual variant is
physically irrelevant as long as quantum-mechanical predic-
tions are formulated in terms of the Białynicki-Birula scalar
product (2.9).

We can furthermore analyze the question of torsion of

connection �̂D. The connection coefficients corresponding to

the formula (2.50) read

	 jml = − 1

|�k|2
(

sδ jmkl − δml k j + δ jl km + εr jmεl p3
kpkr

|�k| − k3

+ |�k|εr jmkr∂lα

)
(2.68)

for a(�k) = cos α(�k) and b(�k) = sin α(�k). From this expression
it can be easily observed that no choice of α(�k) can make
torsion Qjml = 	 jml − 	 jlm vanishing. Indeed, the condition
Q112 = 0 gives

∂1α = (s − 1)k2

|�k|k3

− k2

k(|�k| − k3)
, (2.69)

while Q113 = 0 yields

∂1α = (1 − s)k3

|�k|k2

− k2

k(|�k| − k3)
. (2.70)

These equations are immediately inconsistent for s �= 1. For
s = 1 it is enough to consider Q221 = 0 producing

∂2α = (1 − s)k1

|�k|k3

+ k1

k(|�k| − k3)
. (2.71)

As it can be verified by direct calculation, Eqs. (2.69)
and (2.71) do not satisfy the basic integrability condi-
tion ∂1∂2α = ∂2∂1α. Thus, we conclude that the connection
defining the photon position operator (2.50) must have a non-
vanishing torsion tensor.

It can be interesting and informative to find the phase-

space image of the position operator �̂X . To this end we use
extensively the formalism developed in [19]. In line with that
formalism, the photon phase space is given as

{( �p, �x, φm, n)} = R3 × R3 × 	3, (2.72)

where 	3 is the 3 × 3 grid, 	3 = {(φm, n)}, with m, n =
0, 1, 2 and φm = 2π

3 m. We assume that the kernels P ( h̄�λ· �μ
2 ),

for �λ, �μ ∈ R3, and K( πkl
3 ), for k, l = 0, 1, 2, determining the

Stratonovich-Weyl quantizer (the Fano operators) are taken as

P
(

h̄�λ · �μ
2

)
= 1, K

(
πkl

3

)
= (−1)kl (2.73)

[see Eqs. (5.8) and (6.7) of Ref. [19]]. Then the phase-space

image of the position operator �̂X is given by the function [see
Eq. (5.16) of Ref. [19]]

�X ( �p, �x, φm, n) = Tr{ �̂XĤ1/2�̂( �p, �x, φm, n)Ĥ−1/2}, (2.74)

where

Ĥ = c| �̂p | = ch̄|�̂k| (2.75)

is the Hamiltonian operator and �̂( �p, �x, φm, n) is the
Stratonovich-Weyl quantizer for the kernels given by (2.73).
This quantizer is defined as

�̂( �p, �x, φm, n) =
(

h̄

2π

)3 1

3

2∑
k,l=0

∫
d3λ d3μ(−1)kl exp[−i(�λ · �p + �μ · �x)] exp[−i(kφm + φl n)]Û (�λ, �μ) ⊗ D̂(k, l ), (2.76)
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with

Û (�λ, �μ) = exp[i(�λ · �̂p + �μ · �̂x)] =
∫

d3x exp(i �μ · �x)

∣∣∣∣�x − h̄�λ
2

〉〈
�x + h̄�λ

2

∣∣∣∣
=

∫
d3 p exp(i�λ · �p)

∣∣∣∣ �p + h̄�μ
2

〉〈
�p − h̄�μ

2

∣∣∣∣, (2.77a)

D̂(k, l ) = exp

(
−i

πkl

3

)
exp(ikφ̂) exp

(
i
2π

3
l n̂

)
= exp

(
i
πkl

3

)
exp

(
i
2π

3
l n̂

)
exp(ikφ̂)

= exp

(
i
πkl

3

) 2∑
m=0

exp

(
i
2πkm

3

)
|φ(m+l )mod3〉 〈φm|

= exp

(
i
πkl

3

) 2∑
n=0

exp

(
i
2πnl

3

)
|n〉 〈(n + k)mod3| ,

n̂ =
2∑

n=0

n |n〉 〈n| , φ̂ =
2∑

m=0

φm|φm〉〈φm|, |φm〉 = 1√
3

2∑
n=0

exp(inφm) |n〉 (2.77b)

[see Eqs. (5.3), (5.4), and (5.8) of [19]; see also [23]]. We
choose the basis {|n〉}n=0,1,2 so that the representation of

the spin-1 operator �̂S with respect to this basis is given
by (2.44), i.e., (S j )rl = −iε jrl , with j, r, l = 1, 2, 3. Insert-

ing �̂( �p, �x, φm, n) given by (2.76) with (2.77) and �̂X defined
by (2.50) with s = 1

2 into (2.74) and performing straightfor-
ward but tedious manipulations, we find the components of
vector function �X ( �p, �x, φm, n) as

Xl ( �p, �x, φm, n) = xl + 2h̄

[
p(n+2)mod3+1

| �p |2 δl,(n+1)mod3+1 − p(n+1)mod3+1

| �p |2 δl,(n+2)mod3+1

+
(

p j

| �p |(| �p | − p3)
εl j3 + a

∂b

∂ pl
− b

∂a

∂ pl

)
pr

| �p |εr,(n+1)mod3+1,(n+2)mod3+1

]
sin φm (2.78)

for l = 1, 2, 3; m, n = 0, 1, 2; φm = 2π
3 m; and summation

over j, r = 1, 2, 3. Observe that the phase-space image
�X ( �p, �x, φm, n) of the position operator �̂X depends not only
on �x but also on �p and on the grid 	3 coordinates (φm, n).
Namely, it is equal to �x plus a term linear in h̄ dependent on
( �p, φm, n).

III. EIGENFUNCTIONS OF �̂X

Now we are going to show how the geometrical interpre-
tation of the Hawton position operator for the photon enables
us to find in an easy way the respective eigenfunctions. These
eigenfunctions were introduced in [10,11,14,15].

Employing our results, we infer from (2.23) and (2.28) that

D̂l (|�k|1/2 �Eμ) = 0, μ = 1, 2, 3. (3.1)

Hence

D̂l [exp(−i�k · �X )|�k|1/2 �Eμ] = −iXl exp(−i�k · �X )|�k|1/2 �Eμ.

(3.2)
Finally, as X̂l = iD̂l we get

X̂l [exp(−i�k · �X )|�k|1/2 �Eμ] = Xl exp(−i�k · �X )|�k|1/2 �Eμ (3.3)

for μ = 1, 2, 3. Since for any photon state the condition (2.2)
must be fulfilled, the position eigenfunction of the photon

�̃ �X (�k) has the form

�̃ �X (�k) = [c1E1(�k) + c2E2(�k)] exp(−i�k · �X )|�k|1/2, (3.4)

where c1, c2 ∈ C1, while E1(�k) and E2(�k) are the one-column
matrices representing the vectors �E1(�k) and �E2(�k), respec-
tively. Then the Białynicki-Birula scalar product (2.9) of the
position eigenfunctions is normalized to the Dirac δ if and
only if |c1|2 + |c2|2 = 1,

|c1|2+|c2|2 = 1 ⇐⇒
∫

d3k

(2π )3|�k| �̃
†
�X (�k)�̃ �X ′ (�k) = δ( �X− �X ′).

(3.5)

In particular, taking c1 = 1√
2

and c2 = ± i√
2
, we have

�̃ �X ,±1(�k) = 1√
2

[E1(�k) ± iE2(�k)] exp(−i�k · �X )|�k|1/2,

�̂X �̃ �X ,±1 = �X �̃ �X ,±1, ��̃ �X ,±1 = ±�̃ �X ,±1. (3.6)

Analogously, when the scalar product (2.34) applies we em-
ploy (2.36) and consequently

�̃ �X (�k) = [c1E1(�k) + c2E2(�k)] exp(−i�k · �X )|�k|s (3.7)

for c1, c2 ∈ C1 (see [10,11,14,15]).
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Given �̃ �X (�k) by (3.4), using the results of [16,17,19], we
find the eigenfunction in the �x representation � �X (�x) as the
Fourier transform of �̃ �X (�k),

� �X (�x) =
√

h̄c
∫

d3k

(2π )3
�̃ �X (�k) exp(i�k · �x)

=
√

h̄c
∫

d3k

(2π )3
[c1E1(�k) + c2E2(�k)]|�k|1/2

× exp[i�k · (�x − �X )]. (3.8)

In the general case when �̃ �X (�k) is given by (3.7) we get

� �X (�x) ∼
√

h̄c
∫

d3k

(2π )3
[c1E1(�k) + c2E2(�k)]|�k|s

× exp[i�k · (�x − �X )]. (3.9)

Example 1. Assume that E1(�k) and E2(�k) are given
by (2.62). Then (3.8) in the matrix form reads

� �X (�x) =
√

h̄c

(2π )3

∫ ∞

0
dk k5/2

∫ π

0
dθ sin θ

∫ 2π

0
dϕ

×
⎛⎝c1

(
2 cos2 θ

2 cos2 ϕ − 1
) + c2

( − cos2 θ
2 sin 2ϕ

)
c1

(
cos2 θ

2 sin 2ϕ
) + c2

(
1 − 2 cos2 θ

2 sin2 ϕ
)

c1(− sin θ cos ϕ) + c2(sin θ sin ϕ)

⎞⎠
× exp[ik sin θ cos ϕ(x1 − X1) + ik

× sin θ sin ϕ(x2 − X2) + ik cos θ (x3 − X3)].
(3.10)

We quickly recognize that the integrand in (3.10) goes to
infinity for k → ∞. To avoid this problem we proceed
in a standard way. Namely, we multiply the integrand by
exp(−εk), ε > 0, and after performing integration we take
the limit ε → 0+. Note that the limit should be calculated
in the sense of distribution theory. To do it all one can apply
the Wolfram Mathematica. Then, without going into details,
we arrive at the following results. The wave function � �X (�x)
can be written as

� �X (�x) =
⎛⎝ c1FI + c2FII

−c1FII + c2(FI + FIII )
c1FIV + c2FV

⎞⎠, (3.11)

where FI = FI (�x), . . . ,FV = FV (�x) are distributions which
(in the sense of distribution theory) are equal to the following
functions on respective domains:

FI =
√

h̄c

8
√

2π3/2X 7/2

(
2i cos 2ϕ1 cos θ1

sin2 θ1
− 2 cos 2ϕ1

sin2 θ1
+ 2 cos 2ϕ1[1 − i sgn(cos θ1)]

|cos θ1|3/2 sin2 θ1

+ 3 sin2 ϕ1 − 5i cos θ1 sin2 ϕ1

)
for X �= 0, θ1 �= π

2
,

FII =
√

h̄c sin 2ϕ1

4
√

2π3/2X 7/2 sin2 θ1

(
11

8
− 21 cos θ1

16
− 3 cos 2θ1

8
+ 5i cos 3θ1

16
− 1 − i sgn(cos θ1)

|cos θ1|3/2

)
for X �= 0, θ1 �= π

2
,

FIII =
√

h̄c(−3 − 5i cos θ1)

8
√

2π3/2X 7/2
for X �= 0, FIV = −5i

√
h̄c sin θ1 cos ϕ1

8
√

2π3/2X 7/2
for X �= 0,

FV = 5i
√

h̄c sin θ1 sin ϕ1

8
√

2π3/2X 7/2
for X �= 0. (3.12)

Here we use the abbreviation X := |�x − �X | and θ1 and ϕ1 are
the angles defining the direction of the vector �x − �X ,

�x − �X
|�x − �X | = (sin θ1 cos ϕ1, sin θ1 sin ϕ1, cos θ1). (3.13)

It is evident that the wave function � �X (�x), �x ∈ R3, is a
one-column matrix with elements being distributions given
by regularization of the functions (3.12) [24,25]. We have
not been able yet to find these distributions in a clear com-
pact form. The systematic and careful use of the theory of
distributions should be helpful here. This is not completely
surprising: In the case of the standard position operator of a
nonrelativistic particle the eigenfunctions (the Dirac δ func-
tions) are also nonregular distributions. However, from the
partial result given by Eq. (3.12) we can draw an interesting
conclusion. From the Białynicki-Birula [16,17] and Sipe [18]
interpretation of the photon wave function � �X (�x), the quantity

�†
�X (�x)� �X (�x)d3x (if it exists) is proportional to the probability

that the energy of the photon is localized in the domain d3x.
Using this interpretation, we can state that the formula (3.11)
under (3.12) shows that the energy of a photon in the quantum
state � �X (�x) is localized in a small region where |�x − �X | → 0
and θ1 → π

2 . This behavior of � �X (�x) is illustrated in Fig. 1.
Finally, it could be noted that this interpretation of � �X (�x)

is rather nonstandard. The Fourier transform (3.8) corresponds
to the Białynicki-Birula scalar product (2.9) of �̃ �X (�k) with the
functions

�̃1,�x(�k) ∼
⎛⎝|�k|e−i�k·�x

0
0

⎞⎠, �̃2,�x(�k) ∼
⎛⎝ 0

|�k|e−i�k·�x
0

⎞⎠,

�̃3,�x(�k) ∼
⎛⎝ 0

0
|�k|e−i�k·�x

⎞⎠. (3.14)
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FIG. 1. Distribution of probability for photon energy divided by h̄c, 1
h̄c �

†
�X (�x)� �X (�x) (in units of 1/m4), as a function of θ1 (rad) and ϕ1 (rad)

for specific values of X (m) and ci (m3/2): (a) c1 = 1, c2 = 0, and X = 1; (b) c1 = 1, c2 = 0, and X = 0.01; (c) c1 = 0, c2 = 1, and X = 1;
and (d) c1 = 0, c2 = 1, and X = 0.01.

However, these functions do not satisfy the condition (2.2)
and they are not orthogonal in the sense of Białynicki-Birula
scalar product. In turn, the orthodox quantum-mechanical re-
quirement of relating observables to self-adjoint operators has
been abandoned here.

IV. FROM THE PHOTON POSITION OPERATOR
TO BERRY’S POTENTIAL

It has been noted by Hawton [6] and then investigated
further in [11] that the last term on the right-hand side of
Eq. (2.65) defines some Berry potential leading to a Berry
phase predicted by Chiao and Wu [7] and confirmed exper-
imentally by Tomita and Chiao [8]. A deep group-theoretic
and geometrical interpretation of this Berry potential was
given by Białynicki-Birula and Białynicka-Birula [9]. Here
we will briefly repeat the problem by employing the general
formula (2.50).

Let us define a new covariant derivative (a con-

nection) �̂D′ = (D̂′
1, D̂′

2, D̂′
3) on some domain � ⊂ R̃3

[6,9,11,17,26–28];

D̂′
l := ∂l + i

(
εlm3

km

|�k|(|�k| − k3)
+ (a∂l b − b∂l a)

)
�,

a = a(�k), b = b(�k), a2 + b2 = 1, �k ∈ � ⊂ R̃3.

(4.1)

The curvature of �̂D′ is given as

[D̂′
l , D̂′

m]

= iεlmr
kr

|�k|3 � + i

(
εmr3

kr

|�k|(|�k| − k3)
+ a∂mb − b∂ma

)

×
δl j − kl k j

|�k|2

|�k| S j − i

(
εlr3

kr

|�k|(|�k| − k3)
+ a∂l b − b∂l a

)

×
δm j − kmk j

|�k|2

|�k| S j . (4.2)

To extract a Berry potential from the connection (4.1) consider
the photon with the helicity λ = ±1 moving so that the photon

wave function �̃(�k) is propagated parallel with respect to �̂D′.
The momentum of photon changes along the curve

C : �k = �k(τ ) = (k1(τ ), k2(τ ), k3(τ )), τ0 � τ � τ1. (4.3)

Hence

dkl

dτ
D̂′

l�̃(�k(τ )) = 0

	⇒ d�̃

dτ
+ i

(
εlm3

km
dkl
dτ

|�k|(|�k| − k3)
+ a

db

dτ
− b

da

dτ

)
��̃

= 0. (4.4)

Then, since

��̃ = λ�̃, λ = ±1, (4.5)

we arrive at the ordinary differential equation

d�̃

dτ
+ iλ

(
k2

dk1
dτ

− k1
dk2
dτ

|�k|(|�k| − k3)
+ a

db

dτ
− b

da

dτ

)
�̃ = 0. (4.6)

The solution of Eq. (4.6) reads

�̃(�k(τ )) = exp

(
i
∫

C
Al dkl

)
�̃0(�k), �̃0(�k) := �̃(�k(τ0)),

(4.7)

042206-10



GEOMETRICAL INTERPRETATION OF THE PHOTON … PHYSICAL REVIEW A 104, 042206 (2021)

where

�A = (A1,A2,A3),

Al := −λ

(
εlm3

km

|�k|(|�k| − k3)
+ a∂l b − b∂l a

)
(4.8)

is the Berry potential.
If C is a closed loop so that �k(τ1) = �k(τ0) = �k, we have,

from (4.7),

�̃(�k) = exp(iγ[C])�̃0(�k), γ[C] :=
∮

C
Al dkl (4.9)

and γ[C] is the Berry phase.
We consider now some examples.
Example 2. Assume that � = R̃3 and a = a(�k) and b =

b(�k) are arbitrary differentiable functions on R̃3 satisfying the
condition a2 + b2 = 1 [see (2.50)]. From (4.8) and (4.9) we
get

γ1[C] = λ

∮
C

(
k1dk2 − k2dk1

|�k|(|�k| − k3)
+ a db − b da

)
. (4.10)

Then, since

a2 + b2 = 1 	⇒ a da + b db = 0 	⇒ da ∧ db = 0,

(4.11)
we quickly obtain

d (a db − b db) = 2da ∧ db = 0. (4.12)

Consequently, as the domain R̃3 is simply connected, the
Stokes theorem gives∮

C
a db − b da =

∫
S

d (a db − b da) = 0, (4.13)

where S is a 2-surface such that the loop C is the boundary
of S, C = ∂S. Finally, γ1[C] is independent of a and b and it
reads

γ1[C] = λ

∮
C

k1dk2 − k2dk1

|�k|(|�k| − k3)
. (4.14)

Using the spherical coordinates

k1 = |�k| sin θ cos ϕ, k2 = |�k| sin θ sin ϕ, k3 = |�k| cos θ

(4.15)

for |�k| > 0, 0 < θ � π , and 0 � ϕ < 2π , we get

γ1[C] = λ

∮
C

2 cos2 θ

2
dϕ. (4.16)

In the special case when θ = const and ϕ changes from 0 to
2π the Berry phase (4.16) reads

γ1[C] = λ4π cos2 θ

2
= λ2π (cos θ + 1). (4.17)

Example 3. Here we assume that � = R̃3 \ {(0, 0, k3) ∈
R3 : k3 < 0} = R3 \ {(0, 0, k3) ∈ R3 : k3 ∈ R1}, and
a = a(�k) and b = b(�k) are given by (2.63). The Berry

phase is now

γ2[C] = λ

∮
C

(
k1dk2 − k2dk1

|�k|(|�k| − k3)
− dϕ

)
= λ

∮
C

(
2 cos2 θ

2
− 1

)
dϕ

= λ

∮
C

cos θ dϕ = γ1[C] − λ

∮
C

dϕ, (4.18)

where γ1[C] is given by (4.16). Therefore,

exp(iγ1[C]) = exp(iγ2[C]). (4.19)

If θ = const and ϕ changes from 0 to 2π , the Berry
phase (4.18) is (see [6,9])

γ2[C] = λ2π cos θ. (4.20)

Example 4. The domain � is as in Example 3; the functions
a and b are given by (2.66). Now we quickly get

γ3[C] = λ

∮
C

2

(
cos2 θ

2
− 1

)
dϕ = γ2[C] − λ

∮
C

dϕ.

(4.21)

An important conclusion is that the phase factor exp(iγ[C]) is
the same in all three examples:

exp(iγ1[C]) = exp(iγ2[C]) = exp(iγ3[C]). (4.22)

Finally, when θ = const and ϕ changes from 0 to 2π (i.e., the
closed loop goes around the k3 axis) we have (see [11])

γ3[C] = λ2π (cos θ − 1) = −λ4π sin2 θ

2
. (4.23)

V. SUMMARY

In the paper we have shown that the Hawton position oper-
ator for the photon with commuting components can be easily
derived from assumptions which are formulated in a natural
manner within differential geometry language. We were able
to find the general photon position operator satisfying those
assumptions. We do not claim that the operator given in this
paper is the only acceptable photon position operator. One can
argue that it is more reasonable to assume that the components
of the photon position operator do not commute. However, the
operator considered in the present work has a simple geomet-
rical interpretation, it satisfies canonical commutation rules,
and it commutes with helicity operator. Our approach enables
one to find the eigenfunctions of the photon position operator
in an easy way. These eigenfunctions in the �x representa-
tion are not spherically symmetric, which is in accordance
with [1]. Of course, the spherical asymmetry is evident from
the fact that the Hawton photon position operator depends
on the spin operator. Moreover, the obtained eigenfunctions
have an interpretation compatible with the interpretation given
by Białynicki-Birula [17] and Sipe [18]. We still cannot un-
derstand in full detail the properties of the eigenfunctions
found in our paper. Another problem also seems interesting
and is worth considering: In previous work [19] devoted to
the Weyl-Wigner-Moyal formalism of the photon we con-
cluded that in the phase-space formulation for any quantum
relativistic particle “...the problems with interpretation of the
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vector �x are to be expected since for relativistic particles
the operator �̂x does not represent the position observable ....”
Therefore, an interesting question is if one can reformulate
the Weyl-Wigner-Moyal formalism for the photon in such a

way that instead of the operators ( �̂p, �̂x) the operators ( �̂p, �̂X )
are applied. Consideration of this question is left for future
work.

Note added in proof. It is proved in our paper that the dif-
ferent options for selecting the 3-axis are unitarily equivalent.
We are convinced that this observation makes the particular
choice of this axis physically irrelevant. However, a criticism
of the Hawton position operator has been made by one of the

referees, who claims that as a result of these transformations,
the expectation value of the position operator for a given
photon state can assume different values for different chosen
distinguished directions, causing an ambiguity.
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