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Master equation incorporating the system-environment correlations present
in the joint equilibrium state
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We present a general master equation, correct to second order in the system-environment coupling strength,
that takes into account the initial system-environment correlations. We assume that the system and its envi-
ronment are in a joint thermal equilibrium state, and thereafter, a unitary operation is performed to prepare
the desired initial system state, with the system Hamiltonian possibly changing thereafter as well. We show
that the effect of the initial correlations shows up in the second-order master equation as an additional term,
similar in form to the usual second-order term describing relaxation and decoherence in quantum systems. We
apply this master equation to a generalization of the paradigmatic spin-boson model, namely, a collection of
two-level systems interacting with a common environment of harmonic oscillators, as well as a collection of
two-level systems interacting with a common spin environment. We demonstrate that, in general, the initial
system-environment correlations need to be accounted for in order to accurately obtain the system dynamics.
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I. INTRODUCTION

The study of quantum systems interacting with their envi-
ronment, namely, open quantum systems, has gained immense
importance lately. This is due to both practical reasons and
the relevance of open quantum systems to the foundations
of quantum mechanics [1]. In particular, precise quantum
coherent control and state preparation necessary for quan-
tum computation and information are possible only by taking
into account the interaction of a quantum system with its
environment, while the process of decoherence sheds light
on the so-called measurement problem. Among the variety
of tools and techniques developed to tackle the dynamics
of open quantum systems, the most popular approach is the
quantum-master-equation approach, in which a differential
equation for the time evolution of the system state is ob-
tained and solved. The total system-environment Hamiltonian
is written down, and then with this total Hamiltonian and
the initial system-environment state, the time evolution of the
total system-environment state is examined. Since we are typ-
ically interested in only the system dynamics, the environment
is traced out to obtain the master equation. Unfortunately,
performing this process to obtain the master equation for most
realistic system-environment models involves making a se-
ries of approximations. For example, the system-environment
coupling strength is assumed to be weak so that the joint
time-evolution operator can be found perturbatively [1,2]. The
environment is assumed to have a short “memory time” (the
Markovian approximation), means that the environment loses
information about the system very quickly [3,4]. Finally, the
initial system-environment state is assumed to be a simple
product state, with the system and the environment indepen-
dent of one another [3].

*adam.zaman@lums.edu.pk

With increasingly sophisticated quantum technologies,
each of the assumptions typically made in the derivation of
master equations has come under renewed reexamination.
Master equations that allow one to deal with stronger system-
environment coupling strengths have been formulated (see,
for example, Ref. [5]). Measures of non-Markovianity have
also been put forward [4]. Most pertinent for us, the role of
the initial system-environment correlations—the ones present
in the total system-environment state at the initial time—has
been investigated widely [3,6–37]. Such studies have gener-
ally been performed using exactly solvable models such as
the pure dephasing model of a two-level system interacting
with a collection of harmonic oscillators [24,26]. Some efforts
have, nevertheless, been made to consider master equations
beyond exactly solvable regimes that include the effect of the
initial correlations. For example, in Ref. [27], the system and
its environment were allowed to come to thermal equilibrium,
and thereafter a projective measurement was performed on
the system to prepare the desired initial system state. It was
shown that the effect of the initial correlations appears as an
additional term in the second-order master equation, similar
in form to the first term in the master equation that describes
the free system evolution. This approach was later generalized
to higher-order system-environment coupling strengths [33].
Along similar lines, in this paper, we consider the quan-
tum system and its environment to reach a joint equilibrium
state. A unitary operator is then performed on the system to
prepare (approximately) a desired initial system state, and
a time-local master equation, correct to second-order in the
system-environment coupling strength, that describes the en-
suing dynamics of the system is derived. In fact, the system
Hamiltonian before the application of the unitary operator can
be different from the system Hamiltonian after the unitary
operator—the former plays a role in the initial-state prepara-
tion, while the latter plays a role in the dynamics thereafter.
We show that the effect of the initial correlations is again
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contained in an additional term in the master equation, but
now the form of this additional term is similar to that of the
second term in the usual master equation that describes the re-
laxation and decoherence of open quantum systems. We then
apply our master equation to a collection of two-level systems
interacting with a common environment of harmonic oscilla-
tors. We work out the additional term in the master equation
and perform numerical simulations to show that the effect of
the initial correlations increases as the number of two-level
systems increases. Along similar lines, we also apply our
master equation to analyze the effect of initial correlations
for a collection of two-level systems interacting with a spin
environment.

This paper is organized as follows. In Sec. II, we derive our
general time-local second-order master equation. Section III
discusses the application of this master equation to the large
spin-boson model, while Sec. IV applies the master equation
to a collection of two-level systems interacting with a spin
environment. We then conclude in Sec. V. The Appendixes
consist of some technical details regarding the initial-system-
state preparation, the usual relaxation term in the master
equation, the exactly solvable pure dephasing limit of the large
spin-boson model, the generalization of the master equation
to a time-dependent system Hamiltonian, and the derivation
of environment correlation functions.

II. THE FORMALISM

We start by briefly discussing the problem we wish to
solve. We are given a quantum system which is interacting
with its environment and has reached a joint equilibrium state.
At the initial time, a unitary operation is performed on the
system alone. The system Hamiltonian itself may also be
changed—after all, the system Hamiltonian parameters ini-
tially may be chosen in order to prepare an approximately
pure system state, and the unitary operation thereafter applied
prepares a desired approximately pure initial system state.
The system Hamiltonian parameters can then be changed
to generate the desired nontrivial system quantum dynam-
ics. Our problem is to derive the master equation, correct to
second order in the system-environment coupling strength,
that describes these system dynamics. We write the system-
environment Hamiltonian as

Htot =
{

HS0 + HB + αV t � 0,

HS + HB + αV t > 0.
(1)

Here HS is the system Hamiltonian corresponding to coher-
ent evolution of the system only after the initial time t = 0
at which the system state is prepared. HS0 is similar to HS

in the sense that both operators live in the same Hilbert
space, but they may have different parameters. HB is the
Hamiltonian of the environment, and V corresponds to the
system-environment coupling. α is simply a dimensionless
parameter introduced to keep track of the perturbation order;
at the end of the calculation, we will set α = 1. Let us now
briefly discuss the initial-state preparation.

A. Initial-state preparation

We let our system come to a joint equilibrium state with
the environment. What we mean by this is that the equilibrium

state of the system is not simply proportional to e−βHS0 ; there
are corrections due to the finite system-environment coupling
strength [38]. We instead consider the system and the envi-
ronment together in the thermal equilibrium state proportional
to e−βHtot with Htot = HS0 + HB + αV ; the system state can
be obtained by simply tracing out the environment. A unitary
operator � is then applied to the system. The initial system-
environment state is consequently

ρtot(0) = �e−βHtot�†

Ztot
, (2)

where Ztot = TrS,B[e−βHtot ] is the partition function and TrS,B

denotes the trace over the system and the environment. Now,
assuming the system-environment coupling strength is weak,
we can perform a perturbative expansion of this initial system-
environment state to second order in the system-environment
coupling strength. Writing the system-environment interac-
tion as V = F ⊗ B, where F and B are operators living in
the system and the environment Hilbert space, respectively
(the extension to the more general case V = ∑

a Fa ⊗ Ba is
straightforward), we find that the initial system state is (see
Appendix A for details)

ρ(0) = e−βHR
S0

ZS0Z ′

[
1 +

∫ β

0

∫ λ

0
F R(λ)F R(λ′)

× 〈B(λ)B(λ′)〉Bdλ′dλ

]
, (3)

where HR
S0 = �HS0�

†, F R(λ) = �F (λ)�†, F (λ) =
eλHS0 Fe−λHS0 , ZS0 = TrS[e−βHS0 ], B(λ) = eλHB Be−λHB ,
〈· · · 〉B = TrB[e−βHB (· · · )/ZB], ZB = TrB[e−βHB ], and

Z ′ = 1 +
∫ β

0

∫ λ

0
〈F (λ)F (λ′)〉S〈B(λ)B(λ′)〉Bdλ′dλ, (4)

with 〈· · · 〉S = TrS[e−βHS0 (· · · )/ZS0]. With the initial system
state correct to second order in the system-environment cou-
pling strength available, we now turn our attention to deriving
the second-order master equation.

B. Derivation of the master equation

We derive a master equation that describes the time evo-
lution of the system for t > 0. The system-environment
Hamiltonian is

Htot = HS + HB + αV ≡ H0 + αV.

Note that the system Hamiltonian HS can be different from
the previous system Hamiltonian HS0. In fact, HS can even
be a time-dependent Hamiltonian without changing the subse-
quent derivation. Using perturbation theory, the unitary time
evolution with such a Hamiltonian can be written as

U (t ) ≈ U0(t )

[
1 − α

∫ t

0
U †

0 (s)VU0(s) ds

]
, (5)

where U0(t ) ≡ US (t ) ⊗ UB(t ) is the “free” unitary time-
evolution operator corresponding to H0, that is, the un-
coupled system and its environment. The matrix elements
of the system density matrix can be written as ρmn(t ) =
TrS[|n〉〈m|ρ(t )], where |m〉 and |n〉 are some basis states of the
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system. Since ρ(t ) = TrBρtot(t ), we can alternatively write

ρmn(t ) = TrS,B
[
X H

nm(t )ρtot(0)
]
,

where X H
nm(t ) = U †(t )(|n〉〈m| ⊗ 1B)U (t ). The master equa-

tion can then be written in the general form

d

dt
ρmn(t ) = TrS,B

[
ρtot(0)

d

dt
X H

nm(t )

]
. (6)

To make further progress, we note that X H
nm(t ) is a Heisenberg

picture operator. Using the Heisenberg equation of motion and
Eq. (5), it can be shown that, correct to second order in the
system-environment coupling strength,

d

dt
X H

nm(t ) = i
[
HH

0 (t ), X H
nm(t )

] + iα[Ṽ (t ), X̃nm(t )]

+ α2
∫ t

0
ds[[Ṽ (t ), X̃nm(t )], Ṽ (s)], (7)

where the tildes denote time evolution under the free unitary
operator U0(t ) and the superscript H denotes time evolution
with the full time-evolution operator. Using Eq. (7) and given
the initial system-environment state ρtot(0) in Eq. (2), we can
derive the master equation that describes the time evolution
of the quantum system by simplifying Eq. (6). The result due
to the first term in Eq. (7) is very straightforward. We simply
have that

TrS,B
{
ρtot(0)i

[
HH

0 (t ), X H
nm(t )

]}
= iTrS,B{ρtot(t )[HS + HB, (|n〉〈m| ⊗ 1B)]}
= iTrS{ρ(t )[HS, |n〉〈m|]}
= i〈m|[ρ(t ), HS]|n〉. (8)

This term simply tells us about the free system evolution
corresponding to the system Hamiltonian HS. To calculate the
next term in our master equation, that is,

iαTrS,B{ρtot(0)[V (t ), Xnm(t )]},
we perform a perturbative expansion of the initial system-
environment state. It is useful to write ρtot(0) = ρ

(0)
tot + ρ

(1)
tot ,

where [see Eq. (A2) in Appendix A]

ρ
(0)
tot (0) = �e−β(HS0+HB )�†

Ztot
= ρR

S0 ⊗ ρB, (9)

ρ
(1)
tot (0) = −α�e−β(HS0+HB )QSB(β )�†

Ztot
. (10)

Here ρR
S0 = e−βHR

S0/ZS0, ρB = e−βHB/ZB, the partition function
Ztot = ZS0ZB, and QSB(β ) = ∫ β

0 dλF (λ) ⊗ B(λ), with F (λ) =
eλHS0 Fe−λHS0 and B(λ) = eλHB Be−λHB . We do not need the
higher-order terms since there is already a factor of α in
iα[V (t ), Xnm(t )]. Now, the contribution of ρ

(0)
tot is

iαTrS,B
{
ρ

(0)
tot (0)[U †

0 (t )VU0(t ),U †
0 (t )XnmU0(t )]

}
= iαTrS,B

[
ρR

S0 ⊗ ρBU †
0 (t )[F ⊗ B, |n〉〈m| ⊗ 1B]U0(t )

]
= iαTrS

{
ρR

S0U
†
S (t )[F,Ynm]US (t )

} × 〈B(it )〉B.

Since 〈B(it )〉B is usually zero for most system-environment
models, this contribution turns out to be zero. The most inter-
esting contribution is due to ρ

(1)
tot (0). Using this along with the

second term in Eq. (7), we get

iαTrS,B
{
ρ

(1)
tot (0)[U †

0 (t )VU0(t ),U †
0 (t )XnmU0(t )]

}
= −iα2

ZS0

∫ β

0
TrS,B{ρB�e−βHS0 F (λ)�† ⊗ B(λ)U †

S (t )[F, |n〉〈m|]US (t )U †
B (t )BUB(t )}dλ

= −iα2

ZS0

∫ β

0
TrS{�e−βHS0 F (λ)�†U †

S (t )[F, |n〉〈m|]US (t )}TrB[ρBB(λ)B(it )]dλ

= −iα2

ZS0

∫ β

0
〈m|[US (t )�e−βHS0 F (λ)�†U †

S (t ), F ]|n〉Bcorr(λ, t ) dλ, (11)

where Bcorr(λ, t ) = TrB[ρBB(λ)B(it )]. This is the additional
term in the master equation that takes into account the effect of
the initial correlations, correct to second order in the system-
environment coupling strength. In basis-independent form, we
can write this term as

−i
[̃
ρ(t )JR

corr(β, t ), F
]
, (12)

where we have defined ρ̃(t ) = US (t )ρR
S0U

†
S (t ) and

JR
corr(β, t ) =

∫ β

0

←−
F R(λ, t )Bcorr(λ, t )dλ, (13)

←−
F R(λ, t ) = US (t )�eλHS0 Fe−λHS0�†U †

S (t ). (14)

We would like to replace ρ̃(t ) by ρ(t ) so that the only density
matrix in the master equation is ρ(t ), and this seems to be

feasible since the corrections would be of order higher than
second order in the system-environment coupling strength.
However, it can be checked that −i[ρ(t )JR

corr(β, t ), F ] is not
guaranteed to be Hermitian. To proceed, we first write

−i
[̃
ρ(t )JR

corr(β, t ), F
] = − i

2

{[̃
ρ(t )JR

corr(β, t ), F
] − H.c.

}
,

(15)

where H.c. denotes the Hermitian conjugate. This is
permitted because −i[̃ρ(t )JR

corr(β, t ), F ] is Hermitian, so
[̃ρ(t )JR

corr(β, t ), F ] is anti-Hermitian. We now replace ρ̃(t )
by ρ(t ). This step is also allowed since the corrections
are of order higher than the second-order master equation
that we are considering. Consequently, the term in the mas-
ter equation that takes into account the initial correlations
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is − i
2 {[ρ(t )JR

corr(β, t ), F ] − H.c.}, and this is manifestly
Hermitian.

We next simplify the contribution of the third term in
Eq. (7). It is clear that now only ρ

(0)
tot (0) contributes. Ma-

nipulations similar to those performed above lead to (see
Appendix B for details)

α2
∫ t

0
〈m|{[F̄ (t, s)̃ρ(t ), F ]Cts + H.c.}|n〉 ds,

where the environment correlation function is Cts =
〈B(it )B(is)〉B, F̄ (t, s) = US (t, s)FU †

S (t, s). We can further re-
place ρ̃(t ) by ρ(t ) to get

α2
∫ t

0
〈m|{[F̄ (t, s)ρ(t ), F ]Cts + H.c.}|n〉 ds.

Once again, this is permitted since the corrections lead to
terms of higher order in the master equation (compared to
the second-order master equation that we are considering).
We now put all the terms together to arrive at the general
basis-independent form of the master equation, given by

d

dt
ρ(t ) = i[ρ(t ), HS] − i

2

{[
ρ(t )JR

corr(β, t ), F
] − H.c.

}
+

∫ t

0
{[F̄ (t, s)ρ(t ), F ]Cts + H.c.} ds. (16)

Let us note that we have assumed implicitly that the
timescale on which the unitary operator � is implemented
and the time taken to change the system Hamiltonian from
HS0 to HS are much smaller than the other timescales such
as the environment correlation time, the relaxation time, and
the free system evolution timescale. We also emphasize that
the same master equation applies if the system Hamiltonian
is time dependent with the caveat that finding the free system
time-evolution operator US (t ) will then be, in general, highly
nontrivial. In fact, we use such a time-dependent Hamiltonian
in Appendix D to examine more carefully what happens when
the system Hamiltonian parameters are not changed instanta-
neously.

III. APPLICATION TO THE LARGE SPIN-BOSON MODEL

We now apply our derived master equation to a variant
of the paradigmatic spin-boson model [1] with N two-
level systems interacting with a common environment of
harmonic oscillators [26,27,39]. Recall that the total system-
environment Hamiltonian is given by Htot = HS0 + HB + V
for t < 0, while Htot = HS + HB + V for t � 0. For the large

spin-boson model, we consider

HS0 = ε0Jz + �0Jx, (17)

HS = εJz + �Jx, (18)

HB =
∑

k

ωkb†
kbk, (19)

V = Jz

∑
k

(g∗
kbk + gkb†

k ), (20)

where Jx, Jy, Jz are the collective spin operators with J2 =
J2

x + J2
y + J2

z , ε is the energy bias, � is the tunneling ampli-
tude, HB is the bath of harmonic oscillators (we are ignoring
the zero-point energy), and V describes the interaction be-
tween the common harmonic oscillator bath and the spin
system. We have set h̄ = 1 throughout, and the values of
other parameters are in dimensionless units. Note that the sys-
tem operator F = Jz, and the bath operator B = ∑

k (g∗
kbk +

gkb†
k ). One imagines that the large-spin system has been inter-

acting with the environment for a long time with a relatively
large value of ε0 and a small value of �0. In such a situation
with βε0 
 1, realized, for example, by applying a suitably
large static magnetic field, the state of the system will approx-
imately correspond to the state with all spins down in the z
direction. At time t = 0, we then apply a unitary operator to
prepare the desired initial state. For example, if the desired
initial state is one with all spins in the x direction, then the
unitary operator that should be applied is � = eiπJy/2. In other
words, a π

2 pulse is used to prepare the initial system state,
with the assumption that this pulse takes a very short time to
apply. In particular, we assume that the duration of the pulse
is smaller than the inverse of the effective Rabi frequency
�̃ = √

ε2 + �2 as well as the inverse of the environment cut-
off frequency. With the initial state approximately prepared,
we can then change the parameters of the system Hamiltonian
to whatever values we desire to generate any required system
evolution; in our example, this entails changing the energy
bias from ε0 to ε so that the effect of the tunneling term �Jx

becomes more evident. Again, we assume that this change
takes place over a very short time interval; this approximation
is further critically examined in Appendix D. Let us, then,
look at how the initial system-environment correlations appear
in the system evolution using our general master equation.

Our first objective is to calculate the operator JR
corr. To do

so, we first find [see Eq. (14)]
←−
F R(λ, t ) = US (t )[�(eλHS0 Fe−λHS0 )�†]U †

S (t )

= Jx[axdx + aycx − azbx] + Jy[axdy + aycy − azby]

+ Jz[axdz + aycz − azbz],

with

ax = ε0�0

�′2 {1 − cosh(λ�′)}, ay = −i�0

�′ sinh(λ�′), az = ε2
0 + �2

0 cosh(λ�′)
�′2 , bx = �2 + ε2 cos(�̃t )

�̃2
,

by = ε

�̃
sin(�̃t ), bz = ε�

�̃2
{1 − cos(�̃t )}, cx = − ε

�̃
sin (�̃t ), cy = cos (�̃t ), cz = �

�̃
sin (�̃t ),

dx = ε�

�̃2
{1 − cos (�̃t )}, dy = −�

�̃
sin (�̃t ), dz = 1 + �2

�̃2
{cos (�̃t ) − 1}.
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t

j x

FIG. 1. Behavior of jx = 2〈Jx〉/N versus t for N = 1 using the
exact solution with (blue circled dots) and without (purple squares)
initial correlations and using the master equation with (solid black
line) and without (dashed red line) initial correlations. We have used
dimensionless units with h̄ = 1 for all the figures. Here we have set
ε = ε0 = 4, G = 0.05, β = 1, and ωc = 5.

Here �′2 = ε2
0 + �2

0, and �̃2 = ε2 + �2. In short,
←−
F R(λ, t ) = α1(λ, t )Jx + α2(λ, t )Jy + α3(λ, t )Jz, (21)

where

α1(λ, t ) = axdx + aycx − azbx,

α2(λ, t ) = axdy + aycy − azby,

α3(λ, t ) = axdz + aycz − azbz.

It then follows that [see Eq. (13)]

JR
corr(β, t ) = P(β, t )Jx + Q(β, t )Jy + R(β, t )Jz, (22)

with

P(β, t ) =
∫ β

0
α1(λ, t )Bcorr(λ, t ) dλ,

Q(β, t ) =
∫ β

0
α2(λ, t )Bcorr(λ, t ) dλ,

R(β, t ) =
∫ β

0
α3(λ, t )Bcorr(λ, t ) dλ.

t

j x

FIG. 2. Same as Fig. 1, except N = 4.

t

j x

FIG. 3. Same as Fig. 1, except N = 10.

We now calculate the bath correlation term Bcorr(λ, t ). First,

B(λ) =
∑

k

(g∗
ke−λωk bk + gkeλωk b†

k ). (23)

Since Bcorr(λ, t ) = Tr[ρBB(λ)B(it )], we find (see Appendix E
for details)

Bcorr(λ, t ) =
∑

k

|gk|2{e−ωk (λ−it ) + 2nk cosh (λωk − iωkt )},

(24)

with nk given by Bose-Einstein statistics as

nk = 1

2

{
coth

(
βωk

2

)
− 1

}
. (25)

To perform the sum over the environment modes,
we use the spectral density J (ω) via

∑
k |gk|2(· · · ) →∫ ∞

0 dω J (ω)(· · · ). We generally use an Ohmic spectral
density of the form J (ω) = Gωe−ω/ωc . The integrals are per-
formed numerically to find Jcorr(β, t ), and the results are
incorporated in the numerical simulations of the master equa-
tion. We first look at the pure dephasing case (� = �0 = 0)

t

j x

FIG. 4. Behavior of jx versus t for N = 2 with (black solid line)
and without (dashed red line) taking into account initial correlations.
Here we have used ε0 = 4, ε = 2.5, and � = �0 = 0.5, while the
rest of the parameters are the same as in Fig. 1.
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t

j x

FIG. 5. Same as Fig. 4, except N = 4.

since this case can be solved exactly and serves as a use-
ful benchmark (details of the exact solution are given in
Appendix C). We illustrate our results in Fig. 1 for N = 1 by
plotting jx = 2〈Jx〉/N . Two points should be noted. First, the
role played by initial correlations is very small in this case.
Second, our master equation reproduces the exact results very
well. Since we expect that the role of the initial correlations
increases with increasing N , we next look at N = 4 and N =
10. Results are shown in Figs. 2 and 3. It is clear that as N
increases, the initial correlations play a larger and larger role.
This is a manifestation of the fact that the environment har-
monic oscillators can be understood to be displaced as a result
of the system-environment interaction [see the displaced har-
monic oscillator modes after Eq. (C7)], and as N increases, the
environment harmonic oscillator modes are displaced more.
Moreover, the extra term in our master equation is able to take
into account the effect of the initial correlations very well.

Having shown that our master equation is able to repro-
duce results for the pure dephasing model, we are now in a
position to go beyond the pure dephasing model and see the
effects of the initial correlations. In Fig. 4, we have shown
the dynamics of jx with a nonzero value of the tunneling
amplitude for N = 2. It is clear that the initial correlations do
have a small influence on the dynamics. This effect becomes
more pronounced as we increase N (see Figs. 5 and 6), which

t

j x

FIG. 6. Same as Fig. 4, except N = 10.

t

j x

FIG. 7. Behavior of jx versus t for N = 10 with (black solid line)
and without (dashed red line) taking into account initial correlations.
Here we have used the same parameters as in Fig. 6, except that
β = 0.5.

signifies that the environment harmonic oscillators are more
influenced by the system as N increases. We have also looked
at how the role played by the initial correlations changes as
the temperature changes. To this end, we compare Fig. 6,
where the inverse temperature is β = 1, with Fig. 7, where
β = 0.5, and Fig. 8, where β = 1.5. At higher temperatures,
the effect of the initial correlations decreases, while at lower
temperatures, the effect of the initial correlations increases.
Mathematically, this can be seen in Eq. (22), where P(β, t ),
Q(β, t ), and R(β, t ) become negligible as the temperature
increases. This illustrates that our master equation produces
sensible results since we do expect the role of the initial
correlations to decrease as the temperature increases.

Let us now demonstrate that the effect of the initial correla-
tions is not manifested in the dynamics of jx alone. We show
in Fig. 9 the dynamics of j (2)

x ≡ 4〈J2
x 〉/N2, which is not merely

the sum of single-particle operators. Such an observable is
relevant in the study of spin squeezing and entanglement. It is
clear from Fig. 9 that the effect of the initial correlations may
also need to be accounted for when studying the dynamics of
quantities beyond single-particle observables. Finally, in order
to illustrate that we can deal equally well with other kinds

j x

FIG. 8. Same as Figs. 6 and 7, except β = 1.5.
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t

j x

FIG. 9. Behavior of j (2)
x versus t for N = 10 with (black solid

line) and without (dashed red line) taking into account initial corre-
lations. The rest of the parameters are the same as those in Fig. 4.

of environment, we also demonstrate the effect of the initial
correlations with a sub-Ohmic environment, that is, J (ω) =
Gωsω1−s

c e−ω/ωc , with s < 1. Since sub-Ohmic environments
have longer correlation times, we expect that the effect of the
initial correlations will be greater as well. This is, indeed, the
case, as can be seen by comparing Figs. 10 and 11 with Figs. 5
and 6, where an Ohmic environment is used.

IV. APPLICATION TO THE SPIN-SPIN
ENVIRONMENT MODEL

We now consider a collection of N identical two-level sys-
tems interacting with an environment consisting of two-level
systems [40–44]. We have

HS0 = ε0Jz + �0Jx, HS = εJz + �Jx,

HB =
∑

k

ωk

2
σ (k)

x , V = Jz ⊗
∑

k

gkσ
(k)
z ,

t

j x

FIG. 10. Behavior of jx versus t for N = 4 with (black solid line)
and without (dashed red line) taking into account initial correlations.
Here we have used a sub-Ohmic environment with s = 0.5. We
also have ε0 = 4, ε = 2.5, and � = �0 = 0.5, while the rest of the
parameters are the same as in Fig. 1.

t

j x

FIG. 11. Same as Fig. 10, except N = 10.

where σ (k)
z and σ (k)

x are the Pauli z-spin and x-spin operators
of the kth environment spin, respectively, ωk denotes the tun-
neling matrix element for the kth environment spin, and gk

quantifies the coupling strength. The different environment
leads to a different correlation function Cts as well as a dif-
ferent factor JR

corr(β, t ) that takes into account the effect of
the initial system-environment correlations. The calculation
of the environment correlation function is sketched out in
Appendix F. A similar calculation leads to

Bcorr(λ, t ) =
∑

k

g2
k

{
tanh

(
βωk

2

)
e−ωk (λ−it )

+2nk sinh (λωk − iωkt )

}
, (26)

where nk is given by Eq. (25). Since the factors α1(λ, t ),
α2(λ, t ), and α3(λ, t ) are the same as before, this allows us
to easily work out the role of the initial correlations [see
Eq. (22)]. As before, to perform the sum over the environ-
ment modes, we use

∑
k g2

k (· · · ) → ∫ ∞
0 dωJ (ω)(· · · ). Results

are shown in Figs. 12 and 13. Once again, the role of the
initial correlations is relatively small for a smaller value of

t

j x

FIG. 12. Behavior of jx versus t for N = 4 with (black solid line)
and without (dashed red line) taking into account initial correlations.
Here we have ε0 = 4, ε = 2.5, � = �0 = 0.5, G = 0.05, β = 1, and
ωc = 5.
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t

j x

FIG. 13. Same as Fig. 12, except N = 10.

N . However, as N increases, it is clear that we need to take
into account the role of the initial correlations to obtain an
accurate picture of the system dynamics even in the case of a
spin environment.

V. CONCLUSION

To conclude, we have shown that if we start from the
joint thermal equilibrium state of a quantum system and its
environment and then apply a unitary operation to the system
to prepare the system quantum state, the initial correlations
that exist in the joint thermal equilibrium state influence
the subsequent dynamics of the system. We have derived a
time-local master equation, correct to second order in the
system-environment coupling strength, that takes into account
the effect of these correlations, showing therefore that one
need not necessarily be in the strong system-environment cou-
pling regime to observe the effects of the initial correlations.
The structure of this master equation is very interesting, as the
form of the term that takes into account the initial correlations
is the same as the relaxation and dephasing term. In this sense,
one can say that the initial correlations affect the decoherence
and dephasing rates, a fact which was already pointed out in
studies of the role of initial correlations in pure dephasing
models [24]. Finally, we actually applied our master equa-
tion to the large spin-boson model as well as to a collection
of two-level systems interacting with a spin environment to
quantitatively investigate the role of the initial correlations.
We found that when the number of spins is small, then the
initial correlations do not play a significant role. However,
for a larger number of spins, the initial correlations must be
accounted for in order to explain the dynamics accurately.
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APPENDIX A: THE INITIAL STATE

As explained in the main text, we consider the total
system-environment Hamiltonian to be H = HS0 + HB + V .

Assuming the system-environment coupling strength is weak,
we can use the Kubo identity to expand the joint state given by
Eq. (2). The Kubo identity tells us that for any two arbitrary
operators X and Y ,

eβ(X+Y ) = eβX

[
1 +

∫ β

0
e−λXYeλ(X+Y )dλ

]
. (A1)

By setting X = −(HS0 + HB) and Y = −αV and using the
Kubo identity twice, we find that to second order in the
system-environment coupling strength

e−β(HS0+HB+αV )

= e−β(HS0+HB )− αe−β(HS0+HB )
∫ β

0
eλ(HS0+HB )Ve−λ(HS0+HB )dλ

+ α2e−β(HS0+HB )
∫ β

0
dλeλ(HS0+HB )V

× e−λ(HS0+HB )
∫ λ

0
eλ′(HS0+HB )Ve−λ′(HS0+HB )dλ′. (A2)

We now write the system environment coupling V as F ⊗ B,
where F and B are operators living in the system and en-
vironment Hilbert space, respectively. The extension to the
more general case where V = ∑

α Fα ⊗ Bα is straightforward.
Equation (A2) can then be simplified as

e−β(HS0+HB+αV )

= e−β(HS0+HB ) − αe−β(HS0+HB )

×
∫ β

0
F (λ) ⊗ B(λ)dλ + α2e−β(HS0+HB )

×
∫ β

0
dλF (λ) ⊗ B(λ)

∫ λ

0
F (λ′) ⊗ B(λ′)dλ′, (A3)

where F (λ) = eλHS0 Fe−λHS0 and B(λ) = eλHB Be−λHB . We now
use this in Eq. (2) in the main text and thereafter take the
trace over the environment to find the initial system state
correct to second order in the system-environment coupling
strength. This is important because our aim is to derive a mas-
ter equation correct to second order in the system-environment
strength. For consistency, the initial system state used to solve
this master equation should also be accurate to second order
in the system-environment coupling strength. For ease of no-
tation, we write the initial system state as

ρ(0) = ρ (0)(0) + ρ (1)(0) + ρ (2)(0), (A4)

where

ρ (0)(0) = TrB[�(e−β(HS0+HB ) )�†]

Ztot
, (A5)

ρ (1)(0) = TrB
{−α�

[
e−β(HS0+HB )

∫ β

0 F (λ) ⊗ B(λ)dλ
]
�†

}
Ztot

,

(A6)

ρ (2)(0) = 1

Ztot
× TrB

{
α2�

[
e−β(HS0+HB )

∫ β

0
dλF (λ) ⊗ B(λ)

×
∫ λ

0
F (λ′) ⊗ B(λ′)dλ′

]
�†

}
. (A7)
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Let us simplify these relations one by one. ρ (0)(0) can be
simplified as

ρ (0)(0) = e−βHR
S0 ZB

Ztot
,

where ZB = TrB[e−βHB ]. As for ρ (1)(0), we can write

ρ (1)(0) = −αZB
∫ β

0 �e−βHS0 F (λ)�†〈B(λ)〉Bdλ

Ztot
,

where 〈· · · 〉B = TrB[e−βHB (· · · )/ZB]. Since 〈B(λ)〉B is zero
for most system-environment models, we simply get that
ρ (1)(0) = 0. Carrying on, ρ (2)(0) can be simplified as

ρ (2)(0)

= α2ZB�e−βHS0
∫ β

0

∫ λ

0 F (λ)F (λ′)�†〈B(λ)B(λ′)〉Bdλ′dλ

Ztot
.

To proceed further, we evaluate the partition function Ztot. We
note that Ztot has to be such that the trace of the system state
ρ(0) in Eq. (A4) is 1. It is then clear that

Ztot = ZBTrS[e−βHS0 ] + α2ZBTrS[�e−βHS0

×
∫ β

0

∫ λ

0
F (λ)F (λ′)�†〈B(λ)B(λ′)〉Bdλ′dλ].

Putting these results together,

ρ(0) = e−βHR
S0

ZS0Z ′

[
1 +

∫ β

0

∫ λ

0
F R(λ)F R(λ′)

× 〈B(λ)B(λ′)〉Bdλ′dλ

]
, (A8)

where F R(λ) = �F (λ)�†, ZS0 = TrS[e−βHS0 ] and

Z ′ = 1 +
∫ β

0

∫ λ

0
〈F (λ)F (λ′)〉S〈B(λ)B(λ′)〉Bdλ′dλ, (A9)

with 〈· · · 〉S = TrS[e−βHS0 (· · · )/ZS0].

APPENDIX B: THE RELAXATION AND DEPHASING
TERM IN THE MASTER EQUATION

We look at the contribution of the third term in Eq. (7). We
need to consider only ρ

(0)
tot (0) since we are restricted to only

second-order terms in the master equation. We obtain

α2TrS,B

{
ρ

(0)
tot (0)

∫ t

0
[[Ṽ (t ), X̃nm(t )], Ṽ (s)]ds

}
= α2TrS,B

{
ρR

S0 ⊗ ρB

∫ t

0
[[Ṽ (t ), X̃nm(t )], Ṽ (s)]ds

}
= α2TrS,B

{
ρR

S0 ⊗ ρB

(∫ t

0
Ṽ (t )X̃nm(t )Ṽ (s)ds

−
∫ t

0
Ṽ (s)Ṽ (t )X̃nm(t )ds −

∫ t

0
X̃nm(t )Ṽ (t )Ṽ (s)ds

+
∫ t

0
Ṽ (s)X̃nm(t )Ṽ (t )ds

)}
. (B1)

The first term is

α2TrS,B

{
ρR

S0 ⊗ ρB

∫ t

0
Ṽ (t )X̃nm(t )Ṽ (s)ds

}
= α2

∫ t

0
TrS,B

{
ρR

S0 ⊗ ρBU †
0 (t )VU0(t )U †

0 (t )XnmU0(t )

× U †
0 (s)VU0(s)

}
ds

= α2
∫ t

0
TrS

{
ρR

S0U
†
S (t )FYnmUS (t, s)FUS (s)

}
× TrB{ρBB(t )B(s)}ds

= α2
∫ t

0
〈m|F̄ (t, s)̃ρ(t )F |n〉Ctsds.

In similar fashion, we can simplify the other terms. Putting
them all back together and shifting to the basis-independent
representation, we obtain the third term in Eq. (16).

APPENDIX C: PURE DEPHASING MODEL

For completeness, we now sketch the derivation of the
system dynamics for the large spin-boson model. We have
N identical two-level systems interacting with a common en-
vironment of harmonic oscillators. The dynamics of such a
system can be described by the Hamiltonian

Htot = HS + HB + V,

where HS = εJz, HB = ∑
k ωkb†

kbk , and V = Jz
∑

k (g∗
kbk +

gkb†
k ). In the interaction picture, the Hamiltonian becomes

HI (t ) = ei(HB+HS )tVe−i(HB+HS )t

= Jz

∑
k

(g∗
kbke−iωkt + gkb†

keiωkt ).

The corresponding unitary time-evolution operator can be
found exactly via the Magnus expansion, leading to

UI (t ) = exp

{
Jz

∑
k

[αk (t )b†
k − α∗

k (t )bk] − iJ2
z �(t )

}
,

where αk (t ) = gk (1−e−iωk t )
ωk

and �(t ) = ∑
k |gk|2 [sin(ωkt )−ωkt]

ω2
k

.

The unitary operator for the complete Hamiltonian is U (t ) =
e−iεJzt e−iHBtUI (t ). We can use this to work out the reduced
density operator of the system in the Jz eigenbasis. Note that

[ρ(t )]mn = TrS,B[U (t )ρ(0)U †(t )Pnm], (C1)

where Pnm ≡ |n〉〈m|, such that Jz|n〉 = n|n〉. We can write
Eq. (C1) in the Heisenberg picture, where Pnm(t ) =
U †(t )PnmU (t ) is the Heisenberg picture operator. It follows
that

[ρ(t )]mn = TrS,B[ρ(0)Pnm(t )].

It is straightforward to find that

Pnm(t ) = e−iε(m−n)t e−i�(t )(m2−n2 )e−Rnm (t )Pnm,

where

Rnm(t ) = (n − m)
∑

k

[αk (t )b†
k − α∗

k (t )bk].
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Hence, it follows that

[ρ(t )]mn = e−iε(m−n)t e−i�(t )(m2−n2 )TrS,B[ρ(0)e−Rnm (t )Pnm].
(C2)

This is a general result because we have not yet defined the
joint system-environment initial state ρ(0). Hence, it can be
applied to both uncorrelated and correlated initial states. We
will derive an expression for [ρS (t )]mn for both cases. First,
without considering the initial system-environment correla-
tions,

ρtot(0) = ρ(0) ⊗ ρB,

where ρB = e−βHB

ZB
, with ZB = TrB[e−βHB ]. We then get

[ρ(t )]mn = [ρ(0)]mne−iε(m−n)t e−i�(t )(m2−n2 )TrB[ρBe−Rnm (t )].
(C3)

Simplifying the trace over the environment, we obtain

[ρ(t )]mn = [ρ(0)]mne−iε(m−n)t e−i�(t )(m2−n2 )e−γ (t )(m−n)2
, (C4)

with

γ (t ) =
∑

k

|gk|2[1 − cos(ωkt )]

ω2
k

coth

(
βωk

2

)
. (C5)

Next, we look at the case where the initial system-
environment state is of the form

ρ(0) = �e−βHtot�†

Z
, (C6)

where Z = TrS,B[�e−βHtot�†] and � is a unitary operator. We
first simplify Z by introducing a completeness relation,

Z =
∑

l

TrS,B[�e−βHtot |l〉〈l|�†]

=
∑

l

e−βεl〈l|�†�|l〉TrB
[
e−βH (l )

B
]
,

where

H (l )
B = HB + l

∑
k

(g∗
kbk + gkb†

k ). (C7)

Using the displaced harmonic oscillator modes Bk,l = bk +
lgk

ωk
and B†

k,l = b†
k + lg∗

k
ωk

, we obtain

Z =
∑

l

e−βεl〈l|�†�|l〉eβl2CZB,

where C = ∑
k

|gk |2
ωk

. Proceeding further, again using a com-
pleteness relation, we note that

[ρ(t )]mn = 1

Z

∑
l

e−iε(m−n)t e−i�(t )(m2−n2 )

× 〈l|�†Pnm�|l〉TrB
[
e−βH (l )

B e−Rnm (t )],
where Rnm(t ) is written as

Rnm(t ) = (n − m)
∑

k

[αk (t )b†
k − α∗

k (t )bk] + i(l )
nm(t ),

with

(l )
nm(t ) = l (n − m)(t ), (t ) =

∑
k

|gk|2
ω2

k

sin (ωkt ).

It can be shown that

TrB
[
e−βH (l )

B e−Rnm (t )] = e−i(l )
nm (t )eβl2CZBe−γ (t )(m−n)2

.

Hence, we obtain

[ρ(t )]mn

= [ρ(0)]mne−iε(m−n)t e−i�(t )(m2−n2 )

× e−γ (t )(m−n)2

∑
l

[〈l|�†Pnm�|l〉e−i(l )
nm (t )e−βεl eβl2C]∑

l [〈l|�†Pnm�|l〉e−βεl eβl2C]
.

(C8)

APPENDIX D: MASTER EQUATION WITH A
TIME-DEPENDENT SYSTEM HAMILTONIAN

In Sec. III, we applied the master equation [see Eq. (16)]
to the large spin-boson model with the system Hamiltonian
parameters changed suddenly. In particular, for the numerical
results presented, the tunneling amplitude was not changed,
that is, �0 = �, while the energy-level splitting was changed
from ε0 to ε instantaneously at t = 0. We examine in this
Appendix what happens if we do not change the energy-level
spacing instantaneously. In particular, we consider that for
t � 0, the system Hamiltonian is HS (t ) = ε(t )

2 Jz + �Jx, where
ε(t ) = (ε0 − ε)e−t/tε + ε. tε is a measure of how quickly we
change the energy-level spacing, with a smaller value of tε in-
dicating a quicker transition from ε0 to ε. This time-dependent
Hamiltonian can be used in the master equation (16), with the
system unitary time-evolution operator calculated numerically
via the split-operator method, thereby also entailing numerical
evaluation of the operator JR

corr(β, t ) as well as the third term in
the master equation. Results for different values of tε are illus-
trated in Fig. 14. As expected, for small values of tε, the results

t

j x

FIG. 14. Behavior of jx versus t for N = 2, taking into account
the initial correlations, with the time-dependent system Hamiltonian.
The solid black curve is for tε → 0; for the dashed red curve tε = 0.1,
while tε = 1 for the dot-dashed magenta curve. As usual, we have
used dimensionless units with h̄ = 1, with the rest of the parameters
being ε0 = 4, ε = 2, � = �0 = 1, G = 0.05, β = 1, and ωc = 5.
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with the time-dependent Hamiltonian agree very closely with
our previous results, in which we assumed that the system
Hamiltonian is changed instantaneously. Such agreement is
expected when tε is smaller than the environment correlation
time (which is related to the inverse of the cutoff frequency)
as well as the timescale set by the system Hamiltonian (which
is on the order of the inverse of

√
ε2 + �2).

APPENDIX E: BATH CORRELATION FUNCTION FOR
THE HARMONIC OSCILLATOR ENVIRONMENT

To calculate Bcorr(λ, t ) = TrB[ρBB(λ)B(it )]=〈B(λ)B(it )〉B

for the harmonic oscillator environment, we first note that

B(λ) = ∑
k (g∗

ke−λωk bk + gkeλωk b†
k ).

Using this, we find that

Bcorr(λ, t ) =
∑
k,k′

〈g∗
kgk′e−λωk eiωk′ t (1 + b†

kb′
k )

+ gkg∗
k′eλωk e−iωk′ t b†

kb′
k〉B

=
∑

k

|gk|2{e−ωk (λ−it ) + (e−ωk (λ−it ) + eωk (λ−it ) )nk}

=
∑

k

|gk|2{e−ωk (λ−it ) + 2nk cosh (λωk − iωkt )},

with nk given by

nk = 1

2

{
coth

(
βωk

2

)
− 1

}
.

APPENDIX F: ENVIRONMENT CORRELATION
FUNCTION WITH THE SPIN ENVIRONMENT

Consider the system-environment Hamiltonian given in
Sec. IV. We evaluate

C(τ ) = TrB{ρBB(iτ )B}.

Here B(iτ ) = eiHBτ Be−iHBτ denotes the collective environ-
ment operator B = ∑

k gkσ
(k)
z in the interaction picture. The

exponential eiHBτ factors into single-spin terms, leading to

eiHBτ ≡ ei
∑

k H (k)
B τ =

∏
k

eiH (k)
B τ .

Therefore, we can write the environment self-correlation func-
tion as

C(τ ) =
∑

k j

gkg jTrB
{
ρBeiH (k)

B τ σ (k)
z e−iH (k)

B τ σ ( j)
z

}
.

Using the fact that the environmental spins do not directly
interact with each other and are therefore uncorrelated, this
can be simplified to [42]

C(τ ) =
∑

k

g2
kTrB

{
ρBσ (k)

z (τ )σ (k)
z

}
,

where σ (k)
z (τ ) = eiH (k)

B τ σ (k)
z e−iH (k)

B τ and H (k)
B = ωk

2 σ (k)
x . This

simplifies to a product of traces over the individual environ-
ment spins, that is,

C(τ ) =
∑

k

g2
k

1

Zk
TrBk

{
e−βH (k)

B σ (k)
z (τ )σ (k)

z

}
, (F1)

where Zk = TrBk {e−βH (k)
B }. These traces are most easily evalu-

ated by working in the eigenbasis of σ (k)
x . We find that

e−βH (k)
B σ (k)

z (τ )σ (k)
z

= e−βωk/2+iωkτ |+〉k〈+|k + eβωk/2−iωkτ |−〉k〈−|k,
where |+〉k and |−〉k are the eigenstates of σ (k)

x and

Zk = TrBk {e−βH (k)
B } = eβωk/2 + e−βωk/2.

Using these, we obtain the environment correlation function

C(τ ) =
∑

k

g2
k

{
cos (ωkτ ) − i tanh

(
ωk

2kBT

)
sin (ωkτ )

}
.
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