
PHYSICAL REVIEW A 104, 042201 (2021)

Engineering of Hong-Ou-Mandel interference with effective noise
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The Hong-Ou-Mandel effect lies at the heart of quantum interferometry, having multiple applications in the
field of quantum information processing and no classical counterpart. Despite its popularity, only a few works
have considered polarization-frequency interaction within the interferometer. In this paper, we fill this gap. Our
system of interest is a general biphoton polarization state that experiences effective dephasing noise by becoming
entangled with the same photons’ frequency state, as the photons propagate through birefringent media. The
photons then meet at a beam splitter, where either coincidence or bunching occurs, after which the polarization-
frequency interaction continues on the output paths. Along with performing extensive theoretical analysis on the
coincidence probability and different polarization states, we outline multiple interesting applications that range
from constructing Bell states to an alternative delayed choice quantum eraser.
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I. INTRODUCTION

Hong-Ou-Mandel (HOM) interference has a pivotal role
in many-body quantum interferometry, capturing the bosonic
nature of photons [1,2]. When two identical photons meet at a
beam splitter, they exit in the same output mode with certainty.
In other words, they bunch. As the photons become more
distinguishable, coincidence becomes more probable. The
experimental signature of the HOM interference, i.e., the coin-
cidence rate dropping to zero with perfectly indistinguishable
photons, is referred to as the “HOM dip” [2–14]. The narrower
the dip (or, under special conditions, the peak [3,15]), the bet-
ter the resolution in estimating, e.g., path lengths. In addition
to its more common use in high-precision quantum metrol-
ogy [14], Bell state measurement [15], and teleportation [16],
HOM interference has found various new applications in
quantum information tasks. HOM interference was recently
used, e.g., in measurement-device-independent quantum key
distribution protocols [17,18].

Although the HOM interference has been studied exten-
sively, there is a surprising shortcoming connecting many
of the works. The focus is often in one degree of free-
dom only, e.g., polarization or frequency. The combined
polarization-frequency state is rarely explored, not to mention
their possible interaction, i.e., effective noise.

Noise is often considered detrimental to open quan-
tum systems [19]. In particular, pure dephasing induces a
quantum-to-classical transition by converting the coherences
of a given system to quantum correlations between the system
and its environment, which together form a closed sys-
tem [20,21]. Fortunately, decoherence can be controlled by
means of reservoir engineering, i.e., manipulating the environ-
ment degrees of freedom and the initial system-environment
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correlations [22]. In some cases, such systems undergo non-
Markovian dynamics and outdo their Markovian counterparts,
e.g., in the Deutsch-Jozsa algorithm [23] and superdense cod-
ing [24]. Furthermore, there are cases in which the mere
presence of noise can be utilized, non-Markovian or not;
in [25], it was experimentally demonstrated that even with an
unknown system-environment (or system-probe) coupling, it
is possible to obtain nontrivial information about the system
of interest by measuring the coupled probe.

Commonly in the linear optical framework, polarization
is the open system, frequency (or temporal) modes represent
the environment, and their interaction is implemented con-
trollably in a birefringent medium [24–42]. What is unitary
evolution for the total system containing both polarization
and frequency becomes nonunitary when focusing only on the
open system by tracing over the environment. So, despite the
lack of a more orthodox environment such as a heat bath, the
phase information of the polarization vanishes, corresponding
to effective dephasing noise. In [42], dephasing was studied
in the context of single-photon interference from the point
of view of open quantum systems. Here, we consider two
photons in a HOM interferometer, we analyze the effects of
dephasing noise before and after the beam splitter, and we
emphasize the coincidence/bunching paradigm, going well
beyond previous works dealing with HOM interference and
birefringence [43–49]. The generality of our model allows us
to explore the whole polarization-frequency space spanned by
the biphoton system, the rich polarization dynamics arising
from the “open system interferometer,” and the role of initial
correlations. It also enables us to optimize initial conditions
for various applications that range from constructing Bell
states to dynamical delayed choice erasure.

The paper is structured as follows: In Sec. II, we present
a general version of our model, which we will then study in
more detail in the following sections. In Sec. III, we calculate
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FIG. 1. A schematic picture of our system of interest (biphoton
polarization), its environment (biphoton frequency), and their in-
teraction within a HOM interferometer with dephasing noise both
before and after the beam splitter (t0, t1, tA, tB). Free evolution is only
considered before the beam splitter (t0 f , t1 f ).

the coincidence probability and analyze how different noise
configurations affect the HOM dip. From thereon, we focus
on a longer and more realistic path difference, and how noise
applied after the beam splitter can compensate it in different
dynamical tasks. In Sec. IV, we describe a robust method to
construct pure Bell states with dephasing, after which we con-
centrate on single-photon polarization dynamics at one of the
output modes only. In Sec. V, we show how different initial
conditions can be estimated with dephasing combined with
a sufficient dead time of the photodetector. Distinguishing
between coincidence and bunching events without an actual
coincidence counter is considered in Sec. VI. Section VII
concludes the paper.

II. THE MODEL

Our system of interest consists of two photons initially on
their own paths, which are labeled with 0 and 1. The photons
are sent to a beam splitter, from which they then go to Alice
(path A), Bob (path B), or one to each. Here, polarization-
frequency interaction is considered both before and after the
beam splitter, while free evolution is only considered on paths
0 and 1 (see Fig. 1). This is because we are interested in the
coincidence probability and the polarization dynamics after
interference, to which free evolution on paths A and B does
not contribute.

For simplicity, we assume that the initial polarization and
frequency states are pure and thus uncorrelated. The initial
state of the bipartite polarization-frequency system is then

|ψin〉 =
[
CHH

∫
dω0dω1g(ω0, ω1)â†

H (ω0)b̂†
H (ω1)

+ CHV

∫
dω0dω1g(ω0, ω1)â†

H (ω0)b̂†
V (ω1)

+ CV H

∫
dω0dω1g(ω0, ω1)â†

V (ω0)b̂†
H (ω1)

+ CVV

∫
dω0dω1g(ω0, ω1)â†

V (ω0)b̂†
V (ω1)

]
|0ab〉,

(1)

where Cλλ′ and g(ω0, ω1) are the probability amplitudes for
the two photons to be in the polarization state |λλ′〉 (λ, λ′ ∈
{H,V }) and the (angular) frequency state |ω0ω1〉, respectively.
a†

λ(ω0) is the creation operator corresponding to the polariza-
tion component λ and the frequency eigenstate |ω0〉 on path
0, while b†

λ(ω1) is related to path 1, and |0ab〉 is the vacuum
state. The creation operators transform in free evolution and
the polarization-frequency interaction according to

â†
λ(ω0) �→ ei(t0 f +n0λt0 )ω0 â†

λ(ω0),

b̂†
λ(ω1) �→ ei(t1 f +n1λt1 )ω1 b̂†

λ(ω1), (2)

where t0 f (t1 f ) is the duration of free evolution on path 0 (1),
t0 (t1) is the total interaction time on path 0 (1), and n0λ (n1λ)
is the refractive index of a birefringent medium on path 0 (1)
corresponding to the polarization component λ. The action of
the beam splitter reads

â†
λ(ω0) �→ [â†

λ(ω0) + b̂†
λ(ω0)]/

√
2,

b̂†
λ(ω1) �→ [â†

λ(ω1) − b̂†
λ(ω1)]/

√
2, (3)

where, on the right-hand side, â†
λ(ω j ) refers to path A and

b̂†
λ(ω j ) to path B. Finally, the dephasing implemented by Alice

and Bob on their paths after the beam splitter is described by
the transformations

â†
λ(ω0) �→ einAλtAω0 â†

λ(ω0),

b̂†
λ(ω1) �→ einBλtBω1 b̂†

λ(ω1). (4)

Plugging Eqs. (2)–(4) into Eq. (1) gives us the output state,

|ψout〉 =
∑

λ,λ′=H,V

Cλλ′

2

∫
dω0dω1g(ω0, ω1)

× ei[(t0 f +n0λt0 )ω0+(t1 f +n1λ′ t1 )ω1]

× [ei(nAλtAω0+nAλ′ tAω1 )â†
λ(ω0)â†

λ′ (ω1)

− ei(nAλtAω0+nBλ′ tBω1 )â†
λ(ω0)b̂†

λ′ (ω1)

+ ei(nBλtBω0+nAλ′ tAω1 )b̂†
λ(ω0)â†

λ′ (ω1)

− ei(nBλtBω0+nBλ′ tBω1 )b̂†
λ(ω0)b̂†

λ′ (ω1)]|0ab〉, (5)

where we still have not considered if both of the photons go
to Alice or Bob (bunching), or one to each (coincidence). The
projection operator corresponding to Alice receiving only one
photon is given by

P̂A =
∫

dωâ†
H (ω)|0a〉〈0a|âH (ω)+

∫
dωâ†

V (ω)|0a〉〈0a|âV (ω),

(6)

while the projector corresponding to Alice receiving both of
the photons is

P̂AA = 1

2

∑
λ,λ′=H,V

∫
dω0dω1â†

λ(ω0)â†
λ′ (ω1)

× |0a〉〈0a|âλ(ω0)âλ′ (ω1) ⊗ |0b〉〈0b|, (7)

and similarly for Bob.
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III. COHERENT ENGINEERING OF THE COINCIDENCE
PROBABILITY

Here, we calculate the coincidence probability for our sys-
tem and discuss a few scenarios in which the path difference is
zero, i.e., t0 f − t1 f = 0, to see how dephasing alone affects the
HOM dip and how it differs from the conventional case. Note
that throughout this paper, we use the term “path difference”
to refer to the difference in free evolution on paths 0 and 1,
although dephasing is applied upon the same paths.

Let us simplify the analysis by assuming that g(ω0, ω1) =
g(ω1, ω0) and using the bivariate Gaussian

|g(ω0, ω1)|2 = 1

2π
√

det C
e− 1

2 (
ω−〈
ω〉)T C−1(
ω−〈
ω〉) (8)

with the vectors 
ω = (ω0, ω1)T and 〈
ω〉 = (〈ω0〉, 〈ω1〉)T ,
and the covariance matrix elements Ci j = 〈ωiω j〉 − 〈ωi〉〈ω j〉.
For further simplicity, we assume that 〈ω0〉 = 〈ω1〉 = μ and
C00 = C11 = σ 2, i.e., that the mean frequency μ and the
variance σ 2 are the same for both photons. The correlation
coefficient K = C01/C00 quantifies the initial frequency corre-
lations and satisfies |K| � 1. The joint spectrum (8) is a good
approximation of the one produced in spontaneous parametric
downconversion with the pump frequency 2μ [34–37,41,50–
52]. Large enough ratio μ/σ guarantees that taking the
integrals over frequency from −∞ to ∞ is also a good ap-
proximation.

The coincidence probability, i.e., the probability for both
Alice and Bob receiving one photon, then becomes

Pc = tr[P̂A ⊗ P̂B|ψout〉〈ψout|P̂A ⊗ P̂B] (9)

= 〈ψout|P̂A ⊗ P̂B|ψout〉 (10)

= 1

2

{
1 − |CHH |2e−(1−K )(�τ f +�τHH )2 − |CVV |2e−(1−K )(�τ f +�τVV )2

− 2|CHV ||CV H |e− 1
2 [(�τ f +�τHH )2−2K (�τ f +�τHH )(�τ f +�τVV )+(�τ f +�τVV )2] cos[η(τ0 − τ1) + θHV − θV H ]

}
, (11)

where �τ f = σ (t0 f − t1 f ), �τλλ = σ (n0λt0 − n1λt1), τ j =
σ�n jt j = σ (n jH − n jV )t j , j ∈ {0, 1}, η = μ/σ , and θHV

(θV H ) is the phase of CHV (CV H ). The exponential functions
that are weighted by the probabilities |Cλλ|2 depict the tempo-
ral differences between the input paths’ λ components. The
cross-terms, on the other hand, experience oscillation with
the frequency μ. The μ-dependency of Eq. (11) comes solely
from dephasing. In this setting, Pc is not affected by the
dephasing on paths A and B. The receiver-specific bunching
probability, i.e., the probability for Alice (Bob) to receive both
of the photons, is simply PA(B)

b = (1 − Pc)/2.

We note that, when the two photons entering the beam
splitter are separable in polarization and differ only by their
path lengths, Eq. (11) reduces to

Pc = 1
2

[
1 − e−(1−K )�τ 2

f
]
, (12)

which describes the classical HOM dip of a bivariate Gaussian
as a function �τ f [1,11,13]. The narrowest HOM dip is given
by frequency-anticorrelated photons (K = −1), while the dip
“fattens” as K approaches 1 and the frequencies become
positively correlated [4,53]. This is due to HOM-type inter-
ference being differential-frequency interference [54]. That is,
the Gaussian (8) can be decomposed into the form |g+(ω0 +
ω1)|2|g−(ω0 − ω1)|2, where only the latter term contributes to
Pc. |g−(ω0 − ω1)|2 approaches the δ function as K → 1 but is
well-defined at K = −1.

On the other hand, with no restrictions on the initial polar-
ization state’s separability, but fixing �τ f = 0 (and keeping
the noise configurations on paths 0 and 1 still the same), we
get

Pc = 1
2 |CHV − CV H |2. (13)

With the singlet state |�−〉 = (|HV 〉 − |V H〉)/
√

2, it is pos-
sible to obtain Pc = 1, as was experimentally demonstrated
in [15].

As one might expect—and clearly sees from Eq. (11)—
dephasing only affects the probabilities when there is some
imbalance between the two input modes. The coincidence
probabilities (12) and (13) can be obtained even in noisy
circumstances if the dephasing channels are just identical,
which goes to show that the HOM interference also accounts
for polarization-frequency correlations. The following re-
mark supports this claim. Should the initial polarization state
be | + +〉 = (|HH〉 + |HV 〉 + |V H〉 + |VV 〉)/2, full deco-
herence results in a fully mixed polarization state and, with
equal path lengths and interaction times, the coincidence
probability Pc = 0 [see Eq. (13)]. On the other hand, one
can construct the same polarization state entering the beam
splitter by statistical mixing and obtain Pc = 1/4. This is due
to having no polarization-frequency correlations.

We now consider two scenarios in which dephasing does
have some effect on Pc in more detail. In both of them, �τ f =
0. First, we have the initial polarization state |λλ〉 and n0λ =
n1λ = nλ, so that the coincidence probability becomes

Pc = 1
2

[
1 − e−(1−K )σ 2n2

λ(t0−t1 )2]
. (14)

Because nλ > 1, we can reach a narrower HOM dip in this
case than with Eq. (12), meaning that the differences in thick-
nesses of two of the same birefringent media can be estimated
with better resolution than the path differences related to free
evolution. This result can be applied, e.g., in high-precision
measurement of the birefringent material’s thermal expansion
or the refractive index’s dependency on different factors like
temperature and stress. In Fig. 2, we have plotted the “tradi-
tional” Pc [Eq. (12)] with K = 0 and −1, and the “noisy” Pc

[Eq. (14)] with K = −1 and nλ = 2.903 (the refractive index
of extraordinary ray for rutile at 589.3 nm [55]).

Secondly, we consider the case in which the media are
equally thick but whose fast axes are perpendicular to each
other, i.e., σ (n0H − n0V )t0 = σ (n1V − n1H )t1 = τ . With these
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FIG. 2. The HOM dips related to free evolution with K = 0
(dotted) and K = −1 (dashed), and dephasing with nλ = 2.903 and
K = −1 (solid) as functions of the scaled path/interaction difference
σ�t .

choices, the coincidence probability becomes

Pc = 1
2

[
1 − (|CHH |2 + |CVV |2)e−(1−K )τ 2

− 2|CHV ||CV H |e−(1+K )τ 2
cos(2ητ + θHV − θV H )

]
,

(15)

which decreases with increasing interaction time τ ; Pc

approaches 1/2 independently of the initial polarization
state when τ → ∞ and |K| �= 1. This again illustrates
the significance of the polarization-frequency correlations.
Interestingly, K = 1 protects the polarization subspace
span({|HH〉, |VV 〉}) from dephasing, while K = −1 protects
span({|HV 〉, |V H〉})—excluding rotation dictated by the co-
sine term—which is the exact opposite of the usual case [50].
Note that the oscillations and K = −1 allow one to have
Pc = 1 with any initial polarization state of the form (|HV 〉 +
eiφ|V H〉)/

√
2. In general, different orientations of the bire-

fringent media allow for flexible engineering of the HOM dip.

IV. CONSTRUCTING BELL STATES WITH
DELAY-COMPENSATING NOISE

The condition �τ f = 0 is required, e.g., in constructing
Bell states by guiding two photons carrying the polarization
qubits |H〉 and |V 〉 simultaneously into a beam splitter [56].
In reality, exact control over the path lengths is extremely
demanding. Hence, we shall focus on �τ f �= 0 (and even
|�τ f |  0) in the rest of the paper. Furthermore, we will
consider dephasing on the exit paths only and, in this sec-
tion, show how it can be used to construct Bell states. A
delay-independent method to prepare Bell states with beam
splitters and half-wave plates was demonstrated quite recently
in [10]. We mitigate the problem with path difference in an
alternative fashion that requires fewer resources and—with
little modification—produces the same biphoton polarization
state regardless of whether a coincidence or bunching occurs.
The idea behind our method is rather simple; horizontally and
vertically polarized photons are guided into a beam splitter at
different times, after which dephasing noise is implemented
at the exit paths. The photons propagate in the dephasing

channels with different velocities and overlap at some point in
time, becoming fully entangled. With dephasing, the temporal
overlap of the photons is considerably easier to achieve than
in free air.

In principle, our method would work as well with dephas-
ing applied before the beam splitter. However, controlling the
interaction times after the beam splitter may be more conve-
nient for spatially separated parties. In addition, our results
show that the photons do not have to overlap at the beam split-
ter. A special case of our scheme was already demonstrated
in [44], which we go well beyond by considering different
noise configurations, a free correlation coefficient, and local
Bell states corresponding to the bunching events.

Let us fix CHV = 1 and t0 = t1 = 0 in Eq. (5). The state
after the beam splitter and the interaction times tA and tB can
now be written as

|ψout〉 = 1

2

∫
dω0dω1g(ω0, ω1)ei(t0 f ω0+t1 f ω1 )

× [ei(nAH tAω0+nAV tAω1 )â†
H (ω0)â†

V (ω1)

− ei(nAH tAω0+nBV tBω1 )â†
H (ω0)b̂†

V (ω1)

+ ei(nBH tBω0+nAV tAω1 )b̂†
H (ω0)â†

V (ω1)

− ei(nBH tBω0+nBV tBω1 )b̂†
H (ω0)b̂†

V (ω1)]|0ab〉. (16)

In the case of coincidence (whose probability is Pc = 1/2
due to the orthogonal initial states), the polarization state
shared by Alice and Bob is (see the detailed derivation in
Appendix A)

�c(tA, tB) = 1

2

⎛
⎜⎝

0 0 0 0
0 1 �c(tA, tB) 0
0 �c(tA, tB)∗ 1 0
0 0 0 0

⎞
⎟⎠, (17)

where �c(tA, tB) = − exp {iη(τA − τB) − 1
2 [(τA + �τ f )2 −

2K (τA + �τ f )(τB + �τ f ) + (τB + �τ f )2]} is the nonlocal
decoherence function with τ j = σ�n jt j = σ (n jH − n jV )t j ,
j ∈ {A, B}. In the case of bunching on Alice’s side (whose
probability is PA

b = 1/4), the polarization state is (see
Appendix A for details)

�A
b (tA) = 1

2

⎛
⎜⎜⎝

0 0 0 0
0 1 �A

b (tA) 0
0 �A

b (tA)∗ 1 0
0 0 0 0

⎞
⎟⎟⎠, (18)

where �A
b (tA) = −�c(tA, tA) = e−(1−K )(τA+�τ f )2

, and similarly
for Bob. From Eqs. (17) and (18), it is clear that no noise is
needed if �τ f = 0. In such a situation, Alice and Bob either
share the Bell state |�−〉 (which can be changed to other Bell
states by either Alice or Bob applying proper Pauli operators)
or have |�+〉 = (|HV 〉 + |V H〉)/

√
2 completely on their side.

However, as mentioned earlier, calibrating �τ f in such pre-
cision is very difficult. Due to the birefringences �n j being
close to zero, the timescales of dephasing are more accessible
than the timescales of free evolution.

There are different protocols that Alice and Bob can agree
on. They can apply the same amount of noise (τA = τB),
“opposite amounts” of noise (τA = −τB, i.e., Bob rotates his
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FIG. 3. Absolute values of the decoherence function �c as func-
tions of the thickness of quartz, when the fast axes on Alice and Bob’s
sides are aligned (blue, solid), perpendicular (green, dashed), when
only Alice or Bob implements noise (black, dotted), and when there
is no noise on either side (red, dash-dotted). The path differences are
(a),(b) 0 mm; (c),(d) −0.1 mm; and (e),(f) −0.2 mm. The correlation
coefficients K are (a),(c),(e) 0; (b),(d),(f) −1. In each panel, we have
used the bandwidth of 650 GHz and �n = 0.009.

birefringent medium by 90 degrees), only one of them applies
noise, and so on. In Fig. 3, we have plotted the absolute values
of �c(tA, tB) corresponding to the three protocols described
above with different values of �τ f and K . The blue curves
also describe �

j
b(t j ). For comparison, we have also plotted the

constant “decoherence function” e−(1−K )�τ 2
f , which is related

to the conventional case without noise.
From Fig. 3 we see that, to reach the maximum purity

of |�−〉, Alice and Bob applying the same amount of noise
requires the least of it, and that the maximum value of
|�c(t j, t j )| = |� j

b(t j )| is independent of K . With K = −1, it
is striking that Alice or Bob alone—with the phase difference
of π—can fully entangle their shared polarization state and,
while doing so, purify the state |�+〉 related to bunching in
the half-way. Perpendicular axes and K = −1 result in the
decoherence-free subspace span({|HV 〉, |V H〉}) that, in this
case, is highly sensitive to �τ f . Comparing the rows with each
other, it becomes clear what we mean by the “accessibility
of timescales.” With our parameter choices, it takes less than
0.2 mm for the coherence terms in the usual case to reach
zero, while the coherence length related to our method is of
the order of 10 mm.

To prepare the same Bell state independently of coinci-
dence and bunching (up to a global phase factor), Alice and
Bob need to align their fast axes and use equal interaction
times. With tA = tB = −�t f /�n, Alice and Bob either share
the singlet state |�−〉 or have |�+〉 completely on their side.
However, if either Alice or Bob operates with σz after the
noise, the state becomes |�+〉 in all cases; should a coinci-
dence occur, σz operates only once and transforms |�−〉 into
|�+〉. Bunching, on the other hand, translates into operating
with σz to either both of the photons or neither one, leaving
the state as it was. In this special case, we obtain a success
rate of 1.

FIG. 4. Different single and biphoton polarization states after
the beam splitter of a HOM interferometer, before and after the
polarization-frequency interaction. We stress that this figure is purely
schematic, as it is not until the detectors that the coincidence
and bunching events actualize. For clarity, the quarter-wave plate,
half-wave plate, and polarizer needed in single-photon polarization
tomography on Alice’s side are not shown in this figure.

Clearly, our method can also be applied in estimating dif-
ferent parameters when there is no more information about
them in the coincidence rate. Alice and Bob can, e.g., estimate
K and �τ f by monitoring the nonlocal dephasing dynamics.
In the case of parallel media, the point of time corresponding
to |�c(t j, t j )| = |� j

b(t j )| = 1 is directly proportional to �τ f ,
while the width of the decoherence functions is related to
K . In the following section, we will propose an alternative
method for this task that, against intuition, does not require
communication between Alice and Bob.

V. LOCAL EVALUATION OF INITIAL CORRELATIONS
AND PATH DIFFERENCE

Let us now focus on Alice alone and what she can conclude
from single-photon process tomography data without commu-
nicating with Bob (the opposite roles are handled similarly).
In particular, they do not share a coincidence counter, so that
Alice cannot distinguish between the coincidence (c) photons
and bunched (b) photons. The polarization state that Alice can
construct with tomographic measurements is a mixed state
consisting of c and b photons (see Fig. 4). We make the
important assumption that |�τ f | is great enough to temporally
separate the b photons so that their contributions on the state
tomography can be treated separately. First, we show that,
when using an ideal photodetector with close-to-zero dead
time, i.e., the time that the detector is off after each detection,
K and �τ f cannot be detected by monitoring the local single-
qubit dynamics. Then, we show that increasing the dead time
allows Alice to locally evaluate the correlations and path
difference. It is important to notice here that Alice performs
single-photon tomography, although sometimes, as a result of
bunching, she receives a biphoton polarization state. We also
note that our scheme cannot distinguish between classical and
quantum correlations, while, e.g., Refs. [57,58] introduced a
local method to detect bipartite quantum discord.

For simplicity—and reasons that we will discuss later—we
assume that the initial polarization state is separable and that
the local states are identical, so that only K and �τ f affect the
coincidence probability given by Eq. (12). Then, the polariza-
tion states carried by the c and b photons are, respectively (see
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the detailed derivations in Appendix B),

�̃A
c (τA) =

( |CH |2 CHC∗
V κ−(τA)

C∗
HCV κ−(τA)∗ |CV |2

)
(19)

and

�̃A
b (τA) =

( |CH |2 CHC∗
V κ+(τA)

C∗
HCV κ+(τA)∗ |CV |2

)
, (20)

where

κ±(τA) = 1 ± e−(1−K )�τ 2
f cosh[(1 − K )�τ f τA]

1 ± e−(1−K )�τ 2
f

eiητA− 1
2 τ 2

A .

(21)
According to the Copenhagen interpretation, the states (19)
and (20) do not exist until the corresponding photons have al-
ready been observed by the detector(s), and so Eqs. (19)–(21)
actually describe the photons’ average contributions to single-
photon polarization tomography when they are projected on
Alice and Bob (coincidence), or both on Alice (bunching).
Naturally, bunching on Bob’s side does not contribute to the
state that Alice obtains by averaging over multiple c and b
photons. With an ideal photodetector, that state is the convex
combination

�̃A(τA) = Pc�̃
A
c (τA) + 2PA

b �̃A
b (τA) (22)

= Pc�̃
A
c (τA) + Pb�̃

A
b (τA) (23)

=
( |CH |2 CHC∗

V κ (τA)
C∗

HCV κ (τA)∗ |CV |2
)

, (24)

where

κ (τA) = eiητA− 1
2 τ 2

A . (25)

There is no information about K or �τ f in κ (τA) which, quite
interestingly, is just the common decoherence function related
to Gaussian single-photon dephasing [40–42].

We now assume that the dead time of Alice’s photodetec-
tor is great enough to filter out every second b photon [cf.
Eq. (C3) in Appendix C]. Consequently, the renormalized (rn)
state of Alice’s polarization qubit reads

�̃A
rn(τA) = Pc�̃

A
c (τA) + PA

b �̃A
b (τA)

tr[Pc�̃A
c (τA) + PA

b �̃A
b (τA)]

(26)

=
( |CH |2 CHC∗

V κrn(τA)
C∗

HCV κrn(τA)∗ |CV |2
)

, (27)

where the decoherence function is

κrn(τA) = 3 − e−(1−K )�τ 2
f cosh[(1 − K )�τ f τA]

3 − e−(1−K )�τ 2
f

eiητA− 1
2 τ 2

A .

(28)

We have plotted the absolute values of κrn(τA) in Fig. 5 with
different values of K and |�τ f |, which Alice can estimate by
fitting κrn(τA) to her measurement data. Together, the height
of the “recoherence peak” (i.e., the peak corresponding to
the reviving coherences) gives an estimate for K and its
position for |�τ f |. Clearly, our method works best for the
initial polarization states that maximize the local coherences,

FIG. 5. Absolute values of the renormalized decoherence func-
tion κrn as functions of the unitless interaction time τA. Black, solid:
|�τ f | = 1; blue, dashed: |�τ f | = 2; red, dotted: |�τ f | = 3. (a) K =
−1.0, (b) K = −0.8, and (c) K = −0.6.

e.g., | + +〉, and K ≈ −1. Nevertheless, it is interesting to
notice that κrn(τA) → κ (τA) as K → 1. This results from the
decreasing contribution of the c photons and the fact that more
and more similar frequency states are being superposed in the
beam splitter, which makes κ+(τA) approach κ (τA).

We note that the decoherence function κ (τA) [Eq. (25)] is
also obtained more generally without the simplifying assump-
tion of initially separable and identical polarization states [cf.
Eq. (B5)]. However, we would not obtain the unique deco-
herence function κrn(τA) [Eq. (28)] without the assumption.
Moreover, separability rules out the Bell states that would
invalidate our method by zero local coherences.

VI. DISTINGUISHING BETWEEN COINCIDENCE
AND BUNCHING EVENTS

As was observed in the previous section, the polarization
states carried by the c and b photons behave differently in a
single-qubit dephasing channel. This suggests that Alice could
distinguish between coincidence and bunching events without
communicating with Bob—at least up to some probability that
we aim to find in this section. We assume that we are well
outside the HOM dip, i.e., (1 − K )�τ 2

f  0, meaning that
Pc ≈ Pb ≈ 1/2. Otherwise the task of distinguishing between
coincidence and bunching events would become biased or
even meaningless.

In particular, we wish to maximize the trace distance mea-
suring the distinguishability of two states. For the c and b

042201-6



ENGINEERING OF HONG-OU-MANDEL INTERFERENCE … PHYSICAL REVIEW A 104, 042201 (2021)

FIG. 6. Dephasing dynamics of the c and b photons, when the initial polarization state is (|�+〉 + |HV 〉)/
√

2. (a) Real (light-blue, dashed)
and imaginary parts (blue, dotted) and the absolute value (dark-blue, solid) of ν−(τA). (b) Real (light-red, dashed) and imaginary parts (red,
dotted) and the absolute value (dark-red, solid) of ν+(τA). (c) Trace distance between �̃A

c (τA) and �̃A
b (τA). (d) Trajectories of �̃A

c (τA) (blue, solid)
and �̃A

b (τA) (red, dashed) on the xy plane of the Bloch ball. We have used the parameter values �τ f = −3 and, for illustrative purposes, η = 1.

photons’ polarization states, the trace distance is given by

Dtr
(
�̃A

c (τA), �̃A
b (τA)

) = 1

2
tr
∣∣�̃A

c (τA) − �̃A
b (τA)

∣∣ (29)

≈ ∣∣CHH
(
C∗

HV e− 1
2 γ+ + C∗

V H e− 1
2 γ−

)
+C∗

VV

(
CHV e− 1

2 γ+ + CV H e− 1
2 γ−

)∣∣,
(30)

where γ± = �τ 2
f − 2K�τ f (�τ f ± τA) + (�τ f ± τA)2. In the

case of separable and identical initial polarization states, we
obtain

Dtr
(
�̃A

c (τA), �̃A
b (τA)

) = |CH ||CV |e−(1−K )�τ 2
f − 1

2 τ 2
A

× 2 cosh((1 − K )�τ f τA), (31)

which reaches the maximum value of 1/2 when |CH | =
|CV | = 1/

√
2, K = −1, and τA = ±2�τ f . However, we can

do better by relaxing the assumption of separability. Notic-
ing that when e− 1

2 γ+ = 1, e− 1
2 γ− ≈ 0 (and vice versa), we

can focus on the γ+ terms and fix CV H = 0. Simplifying the
problem by letting Cλλ′ ∈ R+, we obtain the trace distance
1/

√
2 when CHH = CVV = 1/2, CHV = 1/

√
2, K = −1, and

τA = −2�τ f . With these restrictions, but keeping the inter-
action time τA free, the polarization states corresponding to c
and b photons read, respectively,

�̃A
c (τA) = 1

2

(
1 ν−(τA)

ν−(τA)∗ 1

)
(32)

and

�̃A
b (τA) = 1

2

(
1 ν+(τA)

ν+(τA)∗ 1

)
, (33)

where

ν±(τA) = 1√
2

eiητA
[
e− 1

2 τ 2
A ± e− 1

2 (τA+2�τ f )2]
. (34)

In Fig. 6, we have plotted ν±(τA), Dtr(�̃A
c (τA), �̃A

b (τA)), and
the trajectories of the c and b photons’ polarization states
inside the Bloch ball, when the initial polarization state is
(|�+〉 + |HV 〉)/

√
2. From Fig. 6, we see that the trajectories

of the different polarization states coincide until they first
become fully mixed, where they then split up on opposite
directions of momentary recoherence. Remarkably, the states
achieve the same purity as that from where they started. At
these local maxima, it is possible for Alice to maximize her
probability to correctly identify the c and b photons without
communicating with Bob, i.e., correctly guess if also Bob
receives (or received) a photon.

After applying dephasing noise for the duration of τA =
−2�τ f , Alice could, e.g., rotate her states π/2 around the
axis n̂ = (sin ϕ, cos ϕ, 0), where ϕ = −2η�τ f , and use a po-
larizing beam splitter; first, the rotation operator

Rn̂(π/2) = 1√
2

(
1 −eiϕ

e−iϕ 1

)
(35)

transforms the states (32) and (33) into

Rn̂(π/2)�̃A
c (−2�τ f )Rn̂(π/2)† = 1

2
√

2

(√
2 + 1 0

0
√

2 − 1

)

(36)

and

Rn̂(π/2)�̃A
b (−2�τ f )Rn̂(π/2)† = 1

2
√

2

(√
2 − 1 0

0
√

2 + 1

)
.

(37)
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Operating with the rotation matrix Rn̂(π/2) like this is
justified, because the transformations induced by Rn̂(π/2)
on the creation operators commute with the projectors (6)
and (7).

Then, after separating the H and V components with a
polarizing beam splitter, 85.4% of the photons in Alice’s H
branch are c photons while 14.6% are b photons, and vice
versa in the V branch, given that Pc ≈ Pb ≈ 1/2. Hence, Alice
can achieve the success rate of 85.4% by guessing that Bob
(i) receives a photon if a detector in her H branch clicks, and
(ii) does not receive a photon if a detector in her V branch
clicks. It is interesting to notice that even with a separable
initial polarization state and K = 0 it is possible to achieve
a success rate higher than 50% in a task that is nonlocal by
its nature. This is due to the beam splitter, where the photons
interact and gain different phase factors with coincidence and
bunching.

Going back to the start, our protocol can be directly ap-
plied in engineering of the HOM dip, as it constitutes a new
kind of delayed choice quantum eraser. Delayed choice quan-
tum erasure refers to erasing the distinguishing information
of the input paths after the beam splitter and thus reviving
the interference pattern. Traditionally, in the case of HOM
interference, orthogonal polarizations mark the input paths,
while the HOM dip is revived with polarizers [3]. Our results
suggest that the same is possible with a distinct path difference
marking the input paths, say, (1 − K )�τ 2

f  0, so that there
is no interference at the beam splitter. By scanning across the
width of the recoherence peak with different interaction times
and comparing her photon counts with Bob’s counts, Alice
can reconstruct the HOM dip. Of course, Bob can also im-
plement the above-described operations. Different interaction
times τA and τB and choices on whether to collect photons
from the H or V branch allow Alice and Bob to create multiple
distinct HOM dips. However, one must be careful how to
define the coincidence probability here. For example, it might
happen that the photon pair is projected on Alice and Bob’s
H branches, although Bob is collecting his photons from the
V branch. As such cases incorrectly contribute to the overall
coincidence rate, it would be more appropriate to talk about
pseudo-HOM dips.

VII. CONCLUSIONS

In this paper, we have expanded the recently introduced
concept of an open system interferometer [42] by considering
interacting polarization and frequency degrees of freedom of
two photons. To better understand the role of initial frequency

correlations, we have used the bivariate Gaussian distribu-
tion. In most previous works related to HOM interference,
dephasing has been neglected because the birefringence of air
and state-of-the-art optical fibers is practically zero. Thus, our
setting may appear artificial at first. However, it turns out that
amplified noise within the HOM interferometer has a wide
range of interesting applications.

We have shown that dephasing provides various ways to
engineer the HOM dip. For example, the larger the refrac-
tive index, the narrower the HOM dip can be achieved as
a function of the interaction time difference. We have also
presented an alternative method to construct nonlocal and
local Bell states corresponding to coincidence and bunching,
respectively, that is based on compensating the path difference
before the beam splitter with dephasing after the beam splitter.
In a special case, the nonlocal and local Bell states coincide,
and we obtain a success rate of 1.

In the rest of the paper, we have concentrated on how
to approach two nonlocal tasks locally, i.e., without Alice
and Bob comparing their photon count statistics with each
other. First, we have considered the task of evaluating the
correlation coefficient and path difference by single-photon
tomography and with the help of sufficiently long dead time
of the photodetector. To the best of our knowledge, the dead
time has not been discussed before in this particular context.
Secondly, we have shown how to improve the probability to
distinguish between coincidence and bunching events without
an actual coincidence counter. Based on these results, we have
proposed an alternative delayed choice quantum eraser.

The complexity of our model increases rapidly when em-
ploying different frequency distributions, wave plates, and
more beam splitters. Still, the results arising from our sim-
ple setup already highlight the fact that, to better understand
biphoton interference, one needs to consider the overall
polarization-frequency state. In general, different noise con-
figurations within the HOM interferometer constitute a very
promising resource for different quantum information tasks.
We hope that our work will also inspire further research
on combined continuous- and discrete-time open system
dynamics, described here by dephasing and beam splitter,
respectively.
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APPENDIX A: CALCULATING THE BIPHOTON POLARIZATION STATES CORRESPONDING TO COINCIDENCE
AND BUNCHING

Here, we calculate the biphoton density matrices of polarization corresponding to coincidence and bunching events. For
generality, we account for dephasing on paths 0, 1, A, and B, and the difference in the duration of free evolution on paths 0 and 1.
In the case of coincidence, Alice and Bob share the non-normalized polarization-frequency state �c = P̂A ⊗ P̂B|ψout〉〈ψout|P̂A ⊗
P̂B, where the state |ψout〉 is given by Eq. (5), and the projectors P̂A and P̂B are given by Eq. (6). The density matrix elements
〈ξξ ′|�c|λλ′〉 of the normalized bipartite polarization state �c are then given by

〈ξξ ′|�c|λλ′〉 = 1

Pc

∫
dω0dω1〈0ab|âξ (ω0)b̂ξ ′ (ω1)�câ†

λ(ω0)b̂†
λ′ (ω1)|0ab〉, (A1)
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where Pc is the coincidence probability given by Eq. (11), and ξ, ξ ′, λ, λ′ ∈ {H,V }. The resulting matrix elements of �c read

〈λλ|�c|λλ〉 = |Cλλ|2
2Pc

[
1 − e−(1−K )�τ 2

λλ

]
, λ ∈ {H,V }, (A2)

〈λλ′|�c|λλ′〉 = 1

4Pc

{|CHV |2 + |CV H |2 − 2|CHV ||CV H |e− 1
2 (�τ 2

HH −2K�τHH �τVV +�τ 2
VV )

× cos[η(τ0 − τ1) + θHV − θV H ]
}
, λ, λ′ ∈ {H,V }, λ �= λ′, (A3)

〈HH |�c|HV 〉 = CHH

4Pc

{
C∗

HV eiη(τ1+τB )(e− 1
2 (τ1+τB )2 − e− 1

2 [�τ 2
HH −2K�τHH (�τHV +τB )+(�τHV +τB )2])

+ C∗
V H eiη(τ0+τB )

(
e− 1

2 (τ0+τB )2 − e− 1
2 [�τ 2

HH −2K�τHH (�τV H −τB )+(�τV H −τB )2]
)}

, (A4)

〈HH |�c|V H〉 = CHH

4Pc

{
C∗

HV eiη(τ1+τA )
(
e− 1

2 (τ1+τA )2 − e− 1
2 [�τ 2

HH −2K�τHH (�τHV +τA )+(�τHV +τA )2]
)

+ C∗
V H eiη(τ0+τA )

(
e− 1

2 (τ0+τA )2 − e− 1
2 [�τ 2

HH −2K�τHH (�τV H −τA )+(�τV H −τA )2]
)}

, (A5)

〈HV |�c|VV 〉 = C∗
VV

4Pc

{
CHV eiη(τ0+τA )

(
e− 1

2 (τ0+τA )2 − e− 1
2 [�τ 2

VV −2K�τVV (�τHV +τA )+(�τHV +τA )2]
)

+ CV H eiη(τ1+τA )(e− 1
2 (τ1+τA )2 − e− 1

2 [�τ 2
VV −2K�τVV (�τV H −τA )+(�τV H −τA )2])}, (A6)

〈V H |�c|VV 〉 = C∗
VV

4Pc

{
CHV eiη(τ0+τB )

(
e− 1

2 (τ0+τB )2 − e− 1
2 [�τ 2

VV −2K�τVV (�τHV +τB )+(�τHV +τB )2]
)

+ CV H eiη(τ1+τB )
(
e− 1

2 (τ1+τB )2 − e− 1
2 [�τ 2

VV −2K�τVV (�τV H −τB )+(�τV H −τB )2]
)}

, (A7)

〈HH |�c|VV 〉 = CHHC∗
VV

4Pc
eiη(τ0+τ1+τA+τB ){e− 1

2 [(τ0+τA )2+2K (τ0+τA )(τ1+τB )+(τ1+τB )2]

+ e− 1
2 [(τ0+τB )2+2K (τ0+τB )(τ1+τA )+(τ1+τA )2]

− e− 1
2 [(�τHV +τA )2−2K (�τHV +τA )(�τV H −τB )+(�τV H −τB )2]

− e− 1
2 [(�τHV +τB )2−2K (�τHV +τB )(�τV H −τA )+(�τV H −τA )2]

}
, (A8)

〈HV |�c|V H〉 = 1

4Pc

{
CHV C∗

V H eiη(τ0−τ1+τA−τB )− 1
2 [(τ0+τA )2−2K (τ0+τA )(τ1+τB )+(τ1+τB )2]

+ C∗
HV CV H eiη(−τ0+τ1+τA−τB )− 1

2 [(τ0+τB )2−2K (τ0+τB )(τ1+τA )+(τ1+τA )2]

− |CHV |2eiη(τA−τB )− 1
2 [(�τHV +τA )2−2K (�τHV +τA )(�τHV +τB )+(�τHV +τB )2]

− |CV H |2eiη(τA−τB )− 1
2 [(�τV H −τA )2−2K (�τV H −τA )(�τV H −τB )+(�τV H −τB )2]

}
, (A9)

where the path difference has been included in the shorthand notations �τλλ′ = σ (t0 f + n0λt0 − t1 f − n1λ′t1), λ, λ′ ∈ {H,V },
unlike in the main text.

In the case of bunching on Alice’s side, the non-normalized polarization-frequency state becomes �A
b = P̂AA|ψout〉〈ψout|P̂AA,

where P̂AA is given by Eq. (7). The density matrix elements 〈ξξ ′|�A
b |λλ′〉 of the normalized polarization state �A

b are then given
by

〈ξξ ′|�A
b |λλ′〉 = 1

2PA
b

∫
dω0dω1〈0ab|âξ (ω0)âξ ′ (ω1)�A

b â†
λ(ω0)â†

λ′ (ω1)|0ab〉, (A10)

where the factor of 1/2 is a normalization constant coming from the commutation relation of bosonic creation and annihilation
operators, and PA

b = (1 − Pc)/2. The density matrix elements of �A
b now read

〈λλ|�A
b |λλ〉 = |Cλλ|2

4PA
b

[
1 + e−(1−K )�τ 2

λλ

]
, λ ∈ {H,V }, (A11)

〈λλ′|�A
b |λλ′〉 = 1

8PA
b

{|CHV |2 + |CV H |2 + 2|CHV ||CV H |e− 1
2 (�τ 2

HH −2K�τHH �τVV +�τ 2
VV )

× cos[η(τ0 − τ1) + θHV − θV H ]
}
, λ, λ′ ∈ {H,V }, λ �= λ′, (A12)
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〈HH |�A
b |λλ′〉 = CHH

8PA
b

{
C∗

HV eiη(τ1+τA )
(
e− 1

2 (τ1+τA )2 + e− 1
2 [�τ 2

HH −2K�τHH (�τHV +τA )+(�τHV +τA )2]
)

+ C∗
V H eiη(τ0+τA )

(
e− 1

2 (τ0+τA )2 + e− 1
2 [�τ 2

HH −2K�τHH (�τV H −τA )+(�τV H −τA )2]
)}

, λ, λ′ ∈ {H,V }, λ �= λ′, (A13)

〈λλ′|�A
b |VV 〉 = C∗

VV

8PA
b

{
CHV eiη(τ0+τA )(e− 1

2 (τ0+τA )2 + e− 1
2 [�τ 2

VV −2K�τVV (�τHV +τA )+(�τHV +τA )2])

+ CV H eiη(τ1+τA )
(
e− 1

2 (τ1+τA )2 + e− 1
2 [�τ 2

VV −2K�τVV (�τV H −τA )+(�τV H −τA )2]
)}

, λ, λ′ ∈ {H,V }, λ �= λ′, (A14)

〈HH |�A
b |VV 〉 = CHHC∗

VV

4PA
b

eiη(τ0+τ1+2τA )
{
e− 1

2 [(τ0+τA )2+2K (τ0+τA )(τ1+τA )+(τ1+τA )2]

+ e− 1
2 [(�τHV +τA )2−2K (�τHV +τA )(�τV H −τA )+(�τV H −τA )2]

}
, (A15)

〈HV |�A
b |V H〉 = 1

8PA
b

{|CHV |2e−(1−K )(�τHV +τA )2 + |CV H |2e−(1−K )(�τV H −τA )2

+ 2|CHV ||CV H |e− 1
2 [(τ0+τA )2−2K (τ0+τA )(τ1+τA )+(τ1+τA )2] cos[η(τ0 − τ1) + θHV − θV H ]

}
. (A16)

The matrix elements of �B
b (bunching on Bob’s side) are the same, except with the labels B instead of A.

APPENDIX B: CALCULATING THE SINGLE-PHOTON POLARIZATION STATES CORRESPONDING TO COINCIDENCE
AND BUNCHING

Here, we calculate Alice’s single-photon polarization states corresponding to coincidence and bunching events. Bob’s states
are calculated similarly. Once the two-photon state �c corresponding to coincidence is known, Alice’s state �̃A

c is obtained by
taking partial trace over Bob’s photon,

�̃A
c =

(〈HH |�c|HH〉 + 〈HV |�c|HV 〉 〈HH |�c|V H〉 + 〈HV |�c|VV 〉
〈V H |�c|HH〉 + 〈VV |�c|HV 〉 〈V H |�c|V H〉 + 〈VV |�c|VV 〉

)
. (B1)

In the case of bunching, the single-photon states are obtained by taking partial trace of �A
b over the other photon. The resulting

states are found to be equal,

�̃A
b =

(〈HH |�A
b |HH〉 + 〈HV |�A

b |HV 〉 〈HH |�A
b |V H〉 + 〈HV |�A

b |VV 〉
〈V H |�A

b |HH〉 + 〈VV |�A
b |HV 〉 〈V H |�A

b |V H〉 + 〈VV |�A
b |VV 〉

)
(B2)

=
(〈HH |�A

b |HH〉 + 〈V H |�A
b |V H〉 〈HH |�A

b |HV 〉 + 〈V H |�A
b |VV 〉

〈HV |�A
b |HH〉 + 〈VV |�A

b |V H〉 〈HV |�A
b |HV 〉 + 〈VV |�A

b |VV 〉
)

. (B3)

If Alice performs single-photon tomography when there is no dephasing prior to the beam splitter, the state that Alice can
construct with an ideal photodetector is

�̃A(τA) = Pc�̃
A
c (τA) + 2PA

b �̃A
b (τA) (B4)

= 1

2

(
1 + |CHH |2 − |CVV |2 [CHH (C∗

HV + C∗
V H ) + (CHV + CV H )C∗

VV ]κ (τA)
[C∗

HH (CHV + CV H ) + (C∗
HV + C∗

V H )CVV ]κ (τA)∗ 1 − |CHH |2 + |CVV |2
)

, (B5)

where no assumptions about the initial polarization state have been made, and the decoherence function κ (τA) is given by
Eq. (25). Interestingly, �̃A(0) is just the average of the initial pathwise states, �̃A(0) = (�̃0 + �̃1)/2.

APPENDIX C: DERIVING THE CONDITION
FOR SUFFICIENTLY LONG DEAD TIME

Here, we derive the condition for the dead time of a pho-
todetector to filter out every second b photon. Essentially, the
detector needs to be off for the time span during which it could
detect the second photon. We have plotted the fast and slow
components of two consecutive b photons in Fig. 7. The time
span in question is given by t ′ − t , where t (t ′) is the earliest
(latest) point of interaction time where the detector is reached.

Denoting the thickness of the medium by d , we obtain

d = ct

min{nH , nV } (C1)

= c(t ′ − |�t f |)
max{nH , nV } (C2)

⇔ t ′ − t = |�n|
min{nH , nV } t + |�t f |. (C3)
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FIG. 7. The fast and slow components of two consecutive b pho-
tons. The birefringent medium starts from the bottom of the picture
and ends at the black dash-dotted line, which also represents the pho-
todetector; possible free evolution between the medium and detector
need not be taken into account, because that would mean all of the
components traveling parallel to each other. Recoherence reaches its
maximum value at the intersection of the first slower component (red,
solid) and the second faster component (blue, dashed).

Evidently, the longer the interaction time t being imple-
mented, the longer the time span is between the furthest
components. Furthermore, for the single-photon tomography
to work as proposed in Sec. V, Alice should detect one c
photon to every b photon on average. This means that the
c photons must not be filtered, which again means that the
time between each photon-pair generation must be larger than
|�t f |.

Above, we treated the photons as temporally localized
particles, although fully correlated or anticorrelated photons

are delocalized in time. However, our analysis is justified by
the fact that detecting one of the photons localizes the other
one. In the special case of the real-valued probability ampli-
tude g(ω0, ω1) = |g(ω0, ω1)|, the (non-normalized) biphoton
probability amplitude at time (s0, s1) is obtained as the Fourier
transform of g(ω0, ω1) [59],

ĝ(s0, s1) =
∫

dω0dω1g(ω0, ω1)eis0ω0 eis1ω1 (C4)

=
√

8πσ 2
√

1 − K2e−σ 2(s2
0+2Ks0s1+s2

1 )+iμ(s0+s1 ).

(C5)

The corresponding (normalized) probability distribution is

|ĝ(s0, s1)|2 = 2σ 2
√

1 − K2

π
e−2σ 2(s2

0+2Ks0s1+s2
1 ), (C6)

and its margins are given by

|ĝ(s j )|2 =
√

2σ 2(1 − K2)

π
e−2σ 2(1−K2 )s2

j , (C7)

where j ∈ {0, 1}. Now, the conditional probability distribution
of the photon 0 given that the photon 1 has been detected at
some time S1 is

|ĝ(s0|s1 = S1)|2 = |ĝ(s0, S1)|2
|ĝ(S1)|2 (C8)

=
√

2σ 2

π
e−2σ 2(s0+KS1 )2

, (C9)

which is clearly localized in time. A more detailed discussion
on the localization of frequency-anticorrelated biphotons can
be found, e.g., in [60].
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