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Tuning the universality class of phase transitions by feedback:
Open quantum systems beyond dissipation
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We shift the paradigm of feedback control from the control of quantum states to the control of phase
transitions in quantum systems. We show that feedback allows tuning the universality class of phase transitions
via modifying its critical exponent. We expand our previous treatment [Ivanov et al., Phys. Rev. Lett. 124, 010603
(2020)] of the Dicke model and go beyond the approximation of the adiabatically eliminated light field. Both
linearized and nonlinear models of spin ensembles are considered. The tunability of quantum fluctuations near
the critical point by the feedbacks of nontrivial shapes is explained by considering the fluctuation spectra and the
system behavior at single quantum trajectories.
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I. INTRODUCTION

In our Letter [1], we have studied feedback-induced phase
transitions (FPT) [1–3] in open quantum systems, which are
not dissipative ones, but are coupled to a measurement de-
vice. The first experiment implementing the feedback control
of Dicke phase transition using a Bose-Einstein condensate
(BEC) trapped in a cavity has been reported in Ref. [4]. The
general concept of quantum phase transitions (QPT) [5] is
very important not only in physics of various systems (e.g.,
atomic and condensed matter ones), but in other fields as
well, e.g., quantum information and technologies [6], machine
learning [7], and complex networks [8]. In contrast to familiar
thermal transitions, QPT is driven by quantum fluctuations
existing even at zero temperature in closed systems. Since
the extensive studies of lasers [9] the notion of phase tran-
sitions has been adopted to nonequilibrium open systems.
The dissipation in open systems provides fluctuations via
the system-bath coupling, and the dissipative phase transition
(DPT) takes place between nontrivial nonequilibrium steady
states [10,11].

In Ref. [1] we extended the consideration of phase transi-
tions in open systems by including the quantum measurements
and feedback control. The quantum description of a system
being continuously measured is more detailed than that of a
dissipative system: the latter is its limiting case, where the
measurement results are completely ignored [12]. We have
shown that adding the measurement-based feedback can in-
duce phase transitions. Moreover, the feedback allows for
controlling quantum properties of the transition by tuning its
critical exponents and thus their universality class [1,2]. In
the perspective of such feedback-induced phase transitions the
role of quantum fluctuations becomes especially emphasized.
The quantum noise here drives the phase transition similar to
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QPT for closed systems, but it becomes now “better observ-
able” via the stochastic nature of the measurement outcome.
Moreover, the effect of quantum noise is now twofold: the di-
rect disturbance of the system via the measurement backaction
and the feedback loop enhanced fluctuations of the measured
signal.

Such tunable feedback-induced phase transitions can be
obtained in many-body problems, e.g., the feedback-induced
supersolidlike, antiferromagnetic, and other states in optical
lattices [3,13], time crystals [1,14], etc. The influence of quan-
tum measurements on phase transitions in many-body systems
was considered without feedback, e.g., in Refs. [15–36].

Feedback is a very general idea of modifying system
parameters depending on the measurement outcomes: the ex-
amples spread from contemporary rock and classical music
(e.g., the Sampo device [37]) to reinforcement learning [38].
The concept of feedback control has been successfully ex-
tended to quantum domain [12,39–55] resulting in quantum
metrology aiming to stabilize nontrivial quantum states and
squeeze their noise [56–58]. The measurement backaction
typically defines the limit of control, thus playing an impor-
tant but negative role. In Ref. [1] we have shown that the
feedback can do more than just the quantum state control,
but it allows for the phase transition control as well. In this
case the measurement fluctuations and feedback enhanced
fluctuations drive the transition playing an essentially positive
role.

In its essence the quantum system coupled to a classical
feedback loop is a hybrid system. Such systems are actively
studied in the field of quantum technologies, where various
systems have been already coupled [59]: atomic, photonic,
superconducting, mechanical, etc. The goal is to use ad-
vantages of various components, while avoiding using their
disadvantages. In this sense, we address a hybrid quantum-
classical system, where the quantum system can be a simple
one providing the quantum coherence, while all other prop-
erties necessary for tunable phase transition are provided
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by the classical feedback loop: nonlinear interaction, non-
Markovianity, and fluctuations.

We have shown [1] that FPT leads to effects similar to
particle-bath problems (e.g., spin-boson, Kondo, Caldeira-
Leggett, quantum Browninan motion, dissipative Dicke mod-
els) describing very different physical systems from quantum
magnets to cold atoms [60–67]. In particular, it becomes pos-
sible to address important questions about quantum-classical
mapping between Floquet time crystals [68,69] and long-
range interacting spin chains. Our model is directly applicable
to many-body systems such as those of many-body cavity
QED (cf. for reviews [70–73]). These systems have been
recently marked by experimental demonstrations of superra-
diant Dicke [4,74], lattice supersolid [75,76], and other phase
transitions and phenomena [77–80], as well as theory pro-
posals [64,65,81–89]. Nevertheless, effects we discuss here
require one to go beyond the cavity-induced autonomous feed-
back [90], where the feedback time response is limited to an
exponentially decaying function.

Here we provide a more detailed theoretical description
of the feedback control of phase transitions focusing on the
Dicke model. We go beyond the approximation of the adia-
batically eliminated light field [1] and treat light as a fully
dynamical variable. Interestingly, while the adiabatic model
corresponds well to the experiments [4,74,75], the nonadia-
batic model corresponds to the experiments [76,91,92]. We
consider both linearized and nonlinear models of spin ensem-
bles. The tunability of quantum fluctuations near the critical
point by the feedbacks of nontrivial shapes is explained by
considering the fluctuation spectra and the system behavior at
single quantum trajectories.

II. DICKE MODEL WITH FEEDBACK

In order to illustrate new features of a phase transition
offered by the feedback control we consider the Dicke model
with an additional feedback loop [1]. Let us consider a collec-
tion of N spins (two-level atoms, qubits) equally coupled to a
single bosonic (optical cavity) mode. If we denote the cavity
frequency as δ and the spin frequency as ωR then the system
Hamiltonian becomes

H = δa†a + ωRSz + 2g√
N

Sx(a† + a). (1)

Here a† and a are the creation and annihilation operators
of the bosonic mode and Si = ∑

j σ
( j)
i are the components

(i = {x, y, z}) of the collective spin operator with σ
( j)
i being

the Pauli matrices of jth spin. The coupling strength between
the spins and the bosonic mode is characterized by the cou-
pling constant g. The units with h̄ = 1 are used throughout the
paper.

It is well known [93] that the open Dicke model possesses
the superradiant phase transition that separates the normal
phase with the number of quanta in the boson mode indepen-
dent from the number of spins N and the superradiant phase
where the number of quanta scales with N . In the absence of
feedback the critical value of the coupling constant reads [93]

gcrit =
√

ωR(κ2 + δ2)

4δ
, (2)

FIG. 1. Possible realization of the feedback-controlled Dicke
model with a BEC. The atoms are trapped in a 1D periodic potential
(red) with the potential depth controlled by changing the intensity
of the lattice laser. Additionally, the atoms are coupled to two light
modes: the transverse pump and a cavity mode (blue). The cavity
light is measured by the homodyne detector (HD). The signal of
the detector is processed with the kernel h(t ) and used to feedback
control the lattice potential.

where κ is the cavity decay rate. The direct observation of the
superradiant phase transition for two-level atoms in a cavity
is impractical due to low values of the atom-field coupling.
Nevertheless the transition has been observed with internal
atomic states coupled via Raman transition [94,95] and with
momentum states of a Bose-Einstein condensate in an optical
cavity [74,76]. In principle, the feedback control can be im-
plemented with both these models. Moreover, other systems
with the Hamiltonian similar to Eq. (1) can be proposed and
equipped with a feedback loop [1].

The critical exponents for the Dicke model have been
found to be different for open and closed systems. In partic-
ular, the critical exponent α that describes the divergence of
the number of photons in a cavity (∼|g − gcrit|−α) equals 1/2
for a closed system and 1 for an open one. This difference
demonstrates the effect of the environment-induced fluctua-
tions on the properties of the phase transition. It was shown
[64,65,96] that the appropriate environment engineering can
gradually change the critical exponent. However, experimen-
tal implementation of required spectral functions is usually a
difficult task: in a BEC the atomic dissipation is limited by
the Beliaev damping [97]. In contrast, the feedback that we
describe here can easily be implemented. We will demonstrate
that the feedback control of phase transitions can easily mod-
ify the critical behavior of the system.

For concreteness we consider an implementation of the
feedback control in the Dicke model based on the momentum
states of a BEC [74,76,98]. We assume that the BEC is trapped
in a quasi-1D periodic potential V (t ) cos2(k0x), where V (t )
is the amplitude of this potential that is controlled by the
feedback loop, see Fig. 1, and k0 is the wave number of the
laser forming such a lattice.

In addition to this periodic potential, the BEC is coupled
to an optical cavity. The modes of this cavity are labeled as
al ; the frequencies of the modes are ωl . Note that we do
not require the high finesse of this cavity. Contrary to the
experiments [74,76] in the feedback scheme the cavity can be
considered as a quantum meter for the atoms or spins. Thus it
would be even beneficial to have a cavity that produces only
little effect on the atoms. Moreover, having enough sensitivity
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of light detectors the feedback scheme can possibly be real-
ized without a cavity [2]. The Hamiltonian of the atoms and
the cavity modes reads

H =
∑

l

ωl a
†
l al +

∫ L

0
�†(x)Ha1�(x)dx +

∑
l

ζl
(
a†

l + al
)
,

(3)

where ζl are the external classical pumps of the light modes.
Here the single-atom Hamiltonian Ha1 after adiabatic elimina-
tion of the excited atomic level is written as

Ha1 = p2

2ma
+ V (t ) cos2(k0x)

+ 1

	a

∑
l,m

glu
∗
l (x)a†

l gmum(x)am, (4)

where the first term is the atomic kinetic energy with ma being
the mass of the atom and 	a is the detuning between the mode
frequency and the atom transition frequency. The coupling
between the atoms and the light modes are described by the
constants gl,m; the mode functions are ul,m(x).

The simplest configuration allowing for the detection of
the distribution of atoms along the lattice axis involves only
two light modes; see Fig. 1. One mode is the transverse
pump with the uniform distribution along the lattice axis. The
corresponding mode function can be chosen as upump(x) = 1.
The other mode has the spatial dependence u1(x) ∼ cos k1x.
Assuming the frequency of the two modes equals the double
frequency of the lattice laser the scattering of the light from
the pump mode upump into the mode u1 will be maximal if
the atoms will be tightly localized in the lattice sites. Indeed
the localized atoms will serve as a diffraction grating with the
period d = λ0/2 providing the diffraction maximum condi-
tion if λ0/2 = λ1. Thus the uniformity of the BEC distribution
determines the amount of light scattered from apump into the
mode a1. This light can be used for the feedback control.

Let us decompose the field operator according to the spatial
dependence of the Hamiltonian

�(x) = 1√
L

c0 +
√

2

L
c1 cos k1x, (5)

where c0,1 are the annihilation operators of the atomic waves
with momenta 0 and k1, respectively. After the substitution of
Eqs. (4) and (5) in Eq. (3) the Hamiltonian transforms to

H = δa†a + ωRSz + 2√
N

Sx[g(a† + a) + GI (t )], (6)

which is the Hamiltonian of the Dicke model (1) with the feed-
back control part proportional to I (t ). In Eq. (6) we introduced
the following notations: δ = ω1 − ω0 + Ng2

1/(2	a) is the de-
tuning of the pump mode and the measured mode including
the dispersive shift, ωR = k2

1/2ma is the recoil frequency,
and the effective coupling rate is g = �pg0

√
(N/2)/	a with

the pump Rabi frequency �p = gpumpapump. The feedback
is performed via GI (t ) = √

N/8V (t ). The spin operators
are Sx = (c†

1c0 + c†
0c1)/2, Sy = (c†

1c0 − c†
0c1)/2i, and Sz =

(c†
1c1 − c†

0c0)/2. The total number of atoms N = c†
1c1 + c†

0c0

is assumed to be fixed and therefore can be considered as a

c number. The obtained Hamiltonian (6) describes the Dicke
model with the possibility to control the lattice potential.

If the number of atoms N in a BEC is large, and the
excitation number is small, the Hamiltonian in Eq. (6) can be
linearized and approximated as [1]

H = δa†a + ωR

2
c†

1c1 + (c†
1 + c1)[g(a† + a) + GI (t )]. (7)

Let us now specify the feedback control. The purpose of
the control is to steer the atoms towards the phase transition
and modify the critical behavior. Thus the natural algorithm is

I (t ) ∼
∫

h(t − τ )(a + a†)dτ, (8)

which acts on the atoms in a similar way as the cavity field.
The new feature due to the feedback is the time-response ker-
nel h(t ) that can be customized to affect the critical behavior
of the system. Thus the signal for the feedback loop should be
obtained from the measurement of the cavity mode quadra-
ture. Equation (8) is the simplest possibility that illustrates the
purpose of the feedback control. Below we will define a more
general feedback algorithm that will be demonstrated to have
certain advantages over Eq. (8).

The practical realization of the feedback loop in the system
with a BEC should not possess technical difficulties. The
characteristic frequency of the system dynamics is ωR which
for the rubidium BEC is ωR = 2π × 4 kHz. The bandwidth of
modern electronics approaches GHz range. Such a bandwidth
allows for almost any interesting feedback regimes including
the quasi-instantaneous feedback.

One can think of other implementations of the feedback
loop as well. A possible option would be the control of the
coupling constant g, for example, via the pump mode apump

as has been implemented in the experiment [4]. This would
result in highly nonlinear dynamics.

Another option is, instead of creating the external potential
V with k0 = k1/2, one can inject the feedback signal directly
through the cavity mirror as the pump ζ1(t ). In this case, an
additional laser with doubled wavelength is not necessary.
While the initial Hamiltonian Eq. (6) will be somewhat dif-
ferent, after the adiabatic elimination of light mode (as in
Ref. [1]), the equation for the spin components will be the
same as in the case we consider here, if one chooses the pump
through the mirror as ζ1(t ) ∼ I (t ).

Note that the notion of the collective effective spins in
ultracold gases is not limited to the momentum modes. In
optical lattices two effective modes can be represented by
atoms in two spatial modes (positions). The simplest case
of two spatial modes is atoms at odd and even sites of an
optical lattice. The phase transition in such a lattice system
leads to the so-called lattice supersolid state, which has been
obtained experimentally [75,76]. The physical origin of both
types of phase transitions (with and without a lattice) can
be traced to the spatial self-organization of cold atoms into
a checkerboard pattern in a transversely pumped cavity [71].
An important property of such lattice systems is that they can
be generalized to many spatial modes [99] (modeling large
spins) and include real spin degrees of freedom of ultracold
fermions. The effective spin operators will then be represented
by sums of on-site atom number operators n̂i, Sx ∼ ∑

i An
i n̂i
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[16,70,100,101], or the so-called bond operators bi (i.e., the
annihilation operators of an atom at a lattice site i, n̂i = b†

i bi)
representing the matter-wave interference between neighbor-
ing sites, Sx ∼ ∑

i Ab
i b†

i bi+1 [81,102–104] (here, An
i and Ab

i
are some coefficients tunable by the optical geometry). For
example, the effective spin can correspond to the atom num-
ber difference between odd and even sites [for An

i = (−1)i]
[15,105], represent the magnetization [15] or staggered mag-
netization [106] of fermions, etc.

We have already demonstrated [3] the stabilization of
many-body states by feedback in such lattice systems (e.g.,
the feedback-generated supersolidlike and antiferromagnetic
states), which is an example of the feedback-induced phase
transition (FPT) as well, as it appears above some critical
feedback strength. Expanding our idea of tuning the univer-
sality class towards truly many-body interacting atomic and
molecular [107] systems can be a promising direction of re-
search.

III. HEISENBER-LANGEVIN APPROACH
AND THE LINEARIZED MODEL

We start the theoretical analysis of the system by deriv-
ing the Heisenberg-Langevin equations with feedback [12].
The dynamics of the spins inside the leaky cavity can be
obtained from the Hamiltonian (1) adding cavity decay with
the rate κ and vacuum noise fa entering the system via
the partially transparent mirror. The vacuum noise corre-
lation function is 〈 fa(t + τ ) f †

a (t )〉 = 2κδ(τ ). The resulting
Heisenberg-Langevin equations read

ȧ = −iδa − i
2g√

N
Sx − κa + fa,

Ṡx = −ωRSy,

Ṡy = ωRSx − 2√
N

[g(a† + a) + GI (t )]Sz,

Ṡz = 2√
N

[g(a† + a) + GI (t )]Sy. (9)

The added feedback term in Eq. (9) drives the collective spin
with the strength proportional to the feedback control signal
I (t ). In order to write the feedback contribution in the similar
form as the direct coupling term the feedback gain G is explic-
itly separated. The feedback control I (t ) is an operator in the
Heisenberg picture. The expression for I (t ) that is even more
general than that given by Eq. (8) is

I (t ) =
√

2κ

∫ ∞

−∞
h(t − z)F[ξθ (z)]dz. (10)

Here the kernel h(t ) encodes the timing of the feedback
algorithm and the function F describes the instantaneous
transformation of the measured homodyne signal ξθ (z) by the
feedback loop. The simplest possibility that will be considered
below is the linear feedback with F[ξθ (z)] = ξθ (z).

Since the homodyne measurement is performed on the
light outside the cavity the vacuum noise reflected from the
output mirror contributes to the signal. This effect is taken
into account using the input-output formalism [108]

ξθ (t ) =
√

2κxθ (t ) − fθ /
√

2κ, (11)

FIG. 2. Dependence of the critical value of the feedback gain
on the measurement strength κ for the quadratures x0 (x quadra-
ture) and xπ/2 (y quadrature). If x quadrature of the cavity field is
measured, Gcrit grows for large κ . If y quadrature is measured, then
Gcrit approaches the constant value ωR/(4g). For small κ the critical
gain becomes negative since the phase transition here happens even
without feedback. Other relevant parameters are g = ωR, δ = ωR, and
h(0) = s.

where xθ = (a e−iθ + a†eiθ )/2 is the light quadrature and the
Langevin force fθ = ( fae−iθ + f †

a eiθ )/2 is the quadrature of
the vacuum noise fa.

The analysis of nonlinear operator equations (9) is rather
difficult. It is however possible to estimate the critical condi-
tion, where the nonzero spin projection 〈Sx〉 emerges. Taking
the averages in Eq. (9), neglecting the quantum correlations
and quantum noise terms, assuming that the system below
transition is weakly excited (approximating 〈Sz〉 as −N/2),
and assuming the stationary solutions with zero derivatives,
one obtains for the critical feedback gain

GcritH (0) = ωR(κ2 + δ2) − 4δg2

4gκCθ

, (12)

where H (0) = ∫ ∞
0 h(t )dt is the zero-frequency Fourier coef-

ficient of the feedback kernel h(t ) and Cθ = δ cos θ + κ sin θ .
Note that using the feedback one can reach the phase transi-
tion even for the coupling constant g < gcrit that is below the
critical value given in Eq. (2).

The dependence of critical value of the feedback gain on
the cavity decay rate κ is shown in Fig. 2. The trend for large
κ depends on the measured field quadrature. If x quadrature
is measured (dashed curve), that is θ = 0, then the critical
value Gcrit linearly increases with κ . Using this regime for
an experimental implementation is not very convenient. The
optical cavity in feedback experiments is an auxiliary compo-
nent helping to increase measured signal. However, choosing
to measure x quadrature one should limit the value of κ (or
use strong feedback) taking a sufficiently high-fines cavity.
On the other hand, measuring the y quadrature there will be no
restrictions on the value of κ: the larger κ , the closer Gcrit is to
its limiting value ωR/(4g). Thus it is advantageous to use the
y-quadrature measurement. This type of measurement will be
assumed considering all the numerical examples in this paper.
Interestingly, within the approximation of the adiabatically
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eliminated light presented in Ref. [1], changing the quadra-
ture, which is measured, affects only some coefficients of the
final model. In contrast, in the full model without adiabatic
elimination, the measurement of different quadratures can
lead to rather different equations.

Note that for small values of κ the critical gain Gcrit

becomes negative for both measurement scenarios. This indi-
cates that the phase transition in these cases takes place even
without any feedback. Another perspective would be to use
negative feedback G < 0 to prevent the transition to the super-
radiant phase and keep the system in the normal phase even for
g > gcrit . This may be important for enhancing the quantum
properties of light in the field of cavity QED of quantum gases
[70–72,109]. Moreover, this will be useful for obtaining fully
quantum optical lattices [81,82,104,110–112] with a plethora
of novel phenomena unobtainable in standard optical lattices
created by prescribed classical laser beams. As we have shown
for such systems [81,111], the quantum properties of light are
the most important, when they are not masked by strong light
scattering associated with the self-organized phase.

Let us now perform the linearization and focus on the
quantum behavior of the system below the phase transition.
Using in the Hamiltonian the Holstein-Primakoff representa-
tion Sz = b†b − N/2, S− = √

N − b†bb, S+ = b†
√

N − b†b,

and Sx = (S+ + S−)/2, and then assuming the number of
excitations being much smaller than N , the linearized
Langevin-Heisenberg equations can be found. In terms of spin
quadratures these equations take the following form:

Ẋ = ωRY,

Ẏ = −ωRX − 2gx − GI,

ẋ = δy − κx + fx,

ẏ = −δx − κy − 2gX + fy. (13)

Here X = (b† + b)/2 and Y = (b − b†)/2i are the atom-field
quadrature operators, while x = (a† + a)/2 and y = (a −
a†)/2i are their cavity-field analogs. The quadrature Langevin
forces are defined as fx = ( f †

a + fa)/2 and fy = ( fa −
f †
a )/2i. The feedback signal operator in quadrature notation

reads

I (t ) = 2κ

∫ t

−∞
h(t − z)[xθ (z) − fθ (z)/(2κ )]dz. (14)

The linear operator equations (13) can be solved using Fourier
transformation. The algebraic system of equations for the
Fourier amplitudes takes the form

⎡
⎢⎣

κ + iω −δ 0 0
δ κ + iω 2g 0
0 0 iω −ωR

2g + 2κGH (ω) cos θ 2κGH (ω) sin θ ωR iω

⎤
⎥⎦

⎛
⎜⎜⎝

x̃
ỹ
X̃
Ỹ

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

f̃x

f̃y

0
GH (ω)

(
cos θ f̃x + sin θ f̃y

)

⎞
⎟⎟⎠, (15)

where the variables with the tilde signs represent the Fourier transforms of the variables without the tildes.
The solution of this system is readily found to be given by

X̃ (ω) = D−1(ω)F (ω),

F (ω) = [Mx(ω) f̃x + My(ω) f̃y], (16)

where the deterministic dynamics is defined by

D(ω) = ω2
R − ω2 − 2gωR

2gδ + 2κGH (ω)[δ cos θ + (κ + iω) sin θ ]

δ2 + (κ + iω)2 , (17)

while the noise contribution is mediated via

Mx(ω) = ωRGH (ω) cos θ + ωR
−2g(κ + iω) + 2κGH (ω)[δ sin θ − (κ + iω) cos θ ]

δ2 + (κ + iω)2 (18)

and

My(ω) = ωRGH (ω) sin θ − ωR
2gδ + 2κGH (ω)[δ cos θ + (κ + iω) sin θ ]

δ2 + (κ + iω)2 . (19)

The noise spectral correlation function S(ω) is defined via
〈F (ω)F (ω′)〉 = S(ω)δ(ω + ω′) and reads

S(ω) = πκ|Mx(ω) − iMy(ω)|2. (20)

This result is obtained assuming the fact that the feedback ker-
nel h(t ) is a real function with the Fourier transform obeying
H (−ω) = H∗(ω).

In a more explicit form the noise spectral density reads

S(ω) = πκω2
R

∣∣∣∣2g[κ + i(ω − δ)]

δ2 + (κ + iω)2

+ GH (ω)e−iθ

(
2κ[κ + i(ω − δ)]

δ2 + (κ + iω)2
− 1

)∣∣∣∣
2

. (21)

The frequency dependence of S(ω) is due to both the effect of
the feedback transfer function H (ω) and the dynamics of the
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cavity mode. As a result the noise acting on the atoms is non-
Markovian even in the absence of feedback (G = 0). In the
case of the large cavity decay rate κ (large strength of the cav-
ity measurement) the only possible reason for non-Markovian
dynamics is the feedback-induced noise processing. In the
Fourier domain the adiabatic elimination of the cavity mode
is formally done by neglecting iω as compared with the decay
rate κ . The adiabatic elimination results in the spectral corre-
lation function presented in Ref. [1]:

Sa(ω) = πω2
Rκ

κ2 + δ2
|2g + G(κ − iδ)e−iθ H (ω)|2. (22)

The critical value of the feedback gain in linear regime Gcrit

is determined from the condition D(0) = 0. If this condition
is fulfilled then the low-frequency (long-wavelength) fluctu-
ations 〈X 2〉 will dominate and grow to infinity at the critical
point. This is exactly what is expected at the critical point.
Since the low-frequency range determines the critical value,
the result for Gcrit is exactly the same as that without the
adiabatic elimination of the cavity field [1]:

GcritH (0) = ωR(κ2 + δ2) − 4g2δ

4gκCθ

. (23)

Note that this result exactly coincides with the critical value
estimation (12) from the dynamical equations.

The dynamics of the quadrature X can also be formulated
in time domain. The equation of motion reads

Ẍ (t ) + ω2
RX (t ) − 4ωRg

∫ t

0
E θ (t − z)X (z)dz = F θ (t ). (24)

Here the kernel E θ is defined as

E θ (t ) = ge−κt sin δt

+ Gκ

∫ t

0
h(t − z)e−κz sin (δz + θ )dz (25)

and the Langevin force operator appearing in the right-hand
side of Eq. (24) is expressed as

F θ (t ) = −ωR

∫ t

0
dt ′ fa(t ′)

[
ge−(κ+iδ)(t−t ′ ) − G

2
e−iθ h(t − t ′)

+ Gκ e−iθ
∫ t−t ′

0
dt ′′h(t − t ′ − t ′′)e−(κ+iδ)t ′′

]
+ H.c.

(26)

In this form Eq. (24) is similar to the equation describing
Brownian motion in a harmonic potential [38].

This integro-differential equation is similar to the one pre-
sented in Ref. [1] for the adiabatically eliminated light field,
though with a very different kernel function. An important
consequence of such a difference of kernels consists of the
fact that here (in the full model without the adiabatically
eliminated light) the measurement of different quadratures
(different θ ) leads to rather different equations. In contrast,
in the simplified adiabatic model [1], the measurement of
different quadratures affects only some coefficients of the final
simplified model.

The Heisenberg-Langevin approach allows for the calcula-
tion of the stationary fluctuations below the phase transition.

The atomic X -quadrature fluctuation can be found from the
correlation function

〈X 2〉 = 〈X (t + τ )X (t )〉|τ=0 = 1

4π2

∫ ∞

−∞

S(ω)

|D(ω)|2 dω. (27)

For the linear model this quantity becomes infinite as the
feedback strength approaches the critical value Gcrit .

We can now analyze the behavior of the quadrature
fluctuation 〈X 2〉 near the phase transition and evaluate the
critical exponent α. The dependence of 〈X 2〉 on the feedback
gain G for G < Gcrit will be numerically approximated by
〈X 2〉 = A/|1 − G/Gcrit|α + B, where A and B are constants
determined along with the critical exponent α during the least-
mean-square fitting.

IV. CRITICAL EXPONENTS

In Ref. [1], we have shown that a very useful choice of
the feedback transfer kernel h(t ) is the power function of the
form

h(t ) = h(0)

(
t0

t + t0

)s+1

. (28)

In view of the space-time analogy [1] this time dependence
corresponds to the spatial Ising-type interaction with vari-
able interaction length extensively used in different models
of condensed-matter physics. In addition, this system may
correspond to models with the spatial long-range tunnel-
ing as well, where different critical exponents were found
[22–25].

The instantaneous feedback (s → ∞) with h(t ) ∼ δ(t ) will
lead to the short-range in time S2

x term as in the Lipkin-
Meshkov-Glick (LMG) model [113,114] originating from
nuclear physics. A more exotic h(t ) such as a sequence of
amplitude-shaped time delays h(t ) ∼ ∑

n δ(t − nT )/ns+1 will
enable studies of discrete time crystals [68,115] and Floquet
engineering [69] with long-range interaction

∑
n Sx(t )Sx(t −

nT )/ns+1, where the crystal period may be T = 2π/ωR.
The global interaction is given by constant h(t ). The Dicke
model can be restored even in the adiabatic limit by expo-
nentially decaying and oscillating h(t ) mimicking a cavity
response.

We believe that our proposal will extend the studies in the
field of time crystals [68,115–121] and Floquet engineering
[69]. The time crystals are a recently proposed notion, where
phenomena studied previously in space (e.g., spin chains, etc.)
are now studied in the time dimension as well. Typically, the
system is subject to the external periodic modulation of a
parameter [e.g., periodic g(t )], which is considered as creating
a “lattice in time.” Our approach makes possible introducing
the effective “interaction in time.” This makes the modulation
in the system not prescribed, but dependent on the state of the
system (via Sx). This resembles a true lattice in space with
the interaction between particles. In other words, our model
enables not only creating a lattice in time, but introducing
the tunable interaction in time to such a lattice (without the
necessity of having the standard particle-particle interaction
in space [122,123]).

Moreover, h(t ) can have minima, maxima, and even change
its sign, which creates analogies with the molecular potentials
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FIG. 3. Quadrature fluctuation spectra for the system without feedback for different values of the atom-cavity coupling g. All spectra show
the strong low-frequency peaks that tend to the zero frequency, when one approaches the critical coupling gcrit (the so-called mode softening).
Panels (a) and (b) correspond to κ = ωR and κ = 0.1ωR, respectively. In the case of lower damping (b), the quadrature fluctuations have another
higher-frequency peak that is only slightly shifted up during the increase of the coupling g. δ = 2ωR.

(now in time, not in space) and raises intriguing questions
about the creation of time molecules and time-molecule crys-
tals.

All such h(t ) can be realized separately or simultaneously
to observe the competition between different interaction types.
It will be interesting to extend this approach to a broader range
of effective spin interactions [114,124,125].

Further results of this paper do not rely on the effective
Hamiltonians [82]. This discussion motivates us to use in the
simulations h(t ) given by Eq. (28), which is unusual in feed-
back control. In the numerical examples we will take h(0) = s
to make the critical value Gcrit insensitive to the parameter s:
this will allow us to focus on the influence of the feedback
exponent s on the quantum fluctuations, rather than on a trivial
shift of the transition point.

Before addressing the results with feedback let us recall
the behavior of the quadrature fluctuations when the system
approaches the Dicke phase transition. The quadrature fluc-
tuation spectra for this case are shown in Fig. 3. Figure 3(a)
corresponds to κ = ωR, while Fig. 3(b) shows the results for
κ = 0.1ωR. Different curves in both subplots represent differ-
ent values of the coupling constant g. All spectra demonstrate
strong peaks near the resonance frequency ωR that move to-
wards ω = 0 as the coupling constant approaches its critical
value, Eq. (2). This is a known “mode softening” effect.

In Fig. 3(b) the quadrature fluctuations have another
weaker peak near the cavity resonance frequency δ = 2ωR.
It is the higher-frequency mode of two coupled oscillators,
atoms and the cavity field, that typically corresponds to the
relative motion of the oscillators. This resonance is only
slightly shifted to higher frequency as the coupling grows.
Thus the oscillations at the frequency close to δ remain in the
system even above the phase transition. The “relative motion”
mode is also present in Fig. 3(a), but it is not resolved since
the resonances for κ = ωR are quite broad.

The quadrature fluctuations with feedback are shown in
Fig. 4. Figure 4(a) corresponds to the slow feedback s = 0.5,
Fig. 4(b) shows the results for s = 1, and Fig. 4(c) corresponds
to the fast feedback s = 5. The systems far from the critical

point are represented by solid curves, the systems close to the
transition are represented by dotted curves, and the intermedi-
ate case is shown by dashes.

The slow feedback, s = 0.5, demonstrates the trend that is
quite different from the system without the feedback [compare
Fig. 4(a) with Fig. 3]. Increasing the gain G the resonance
near ωR does not visibly move towards the zero frequency.
Approaching the phase transition the fluctuations at zero fre-
quency grow resulting in two pronounced peaks: around zero
and around ωR. The feedback frequency transfer function for
the slow feedback has a narrow peak only at the zero fre-
quency; thus the feedback does not strongly affect the shift of
the resonance at ωR. Therefore, the description of the system
behavior in terms of the mode softening is not strictly valid
for this case.

In Fig. 4(b) the fluctuation spectra correspond to s = 1.
Here the shift of the resonance to lower frequency is more
pronounced than for s = 0.5, but the growth of the additional
peak at zero frequency dominates.

The results for the fast, s = 5, feedback are shown in
Fig. 4(c). The transformation of the spectrum approaching
the critical point is now quite similar to the transformation
without the feedback (compare with Fig. 3). The feedback
transfer function is now broad enough to affect the system
resonance frequencies. The action of feedback is similar to
the increase of the coupling constant g. Thus one can expect
that the critical behavior for the fast feedback (which is close
to the instantaneous, Markovian, one) is similar to an open
Dicke model without feedback. Note that in the model with
adiabatically eliminated light of Ref. [1] such a similarity is
even stronger, because, as we have already mentioned, here
the full model is more sensitive to the choice of the quadrature,
which is detected, than the simplified model [1].

Integrating the quadrature fluctuation spectra, Eq. (16),
similar to those presented in Fig. 4, we obtain the av-
erage quadrature fluctuations below the phase transition.
The examples of the fluctuation trends as the system ap-
proaches the critical point for different s are shown in
Fig. 5(a). The unlimited growth of the quadrature fluctuations
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FIG. 4. Quadrature fluctuations with feedback. (a) The slow feedback s = 0.5, (b) the results for s = 1, and (c) the fast feedback s = 5.
The systems far from the critical point are represented by solid curves, the systems close to the transition are represented by dotted curves, and
the intermediate cases are shown by dashed curves. While the fast feedback (s = 5) leads to a typical scenario of the mode softening (cf. Fig. 3
with no feedback), the curves for slower feedbacks with s = 0.5 and s = 1 show a different behavior. g = 0.1ωR, κ = ωR, δ = 2ωR, θ = π/2,
and h(0) = s.

approaching Gcrit is the manifestation of the phase transition
in a linear model. The growing rates for different s look
different.

The dependencies presented in Fig. 5(a) are approximated
by the function 〈X 2〉 = A/|1 − G/Gcrit|α + B for G < Gcrit

fitting the parameters with the least-mean-square method. The
results for the critical exponent α are calculated for different
values of s and are presented in Fig. 5(b). For small s the
critical exponent tends to zero. Increasing s the critical ex-
ponent grows approaching the limiting value α = 1. Thus the
critical behavior of the system can be controlled by selecting
the feedback time response. Choosing the value of s one can
therefore choose the universality class the system belongs to.
This is very simple compared to the reservoir engineering
approach.

According to the space-time analogy, varying the param-
eter s of feedback response h(t ) (28) corresponds to varying
the length of effective spin-spin interaction. For h(t ) (28), its
spectrum is expressed via the exponential integral H (ω) =
h(0)t0e−iωt0 Es+1(iωt0). At small frequencies its imaginary part

behaves as ωs for s < 1, resembling the spectral function of
sub-Ohmic baths. For large s, α approaches unity, as h(t )
becomes fast and feedback becomes nearly instantaneous such
as interactions in the open LMG and Dicke models, where
α = 1 [64,65,126].

V. QUANTUM TRAJECTORIES

One can get an interesting insight in the system dynamics
simulating single quantum trajectories. Weak measurements
constitute a source of competition with unitary dynamics
[15,16,105,106], which is well seen in quantum trajectories
formalism [11,127–132], underlining the distinction between
measurements and dissipation. Thus they can affect phase
transitions, including the many-body ones [15–36].

The evolution of the quantum state of the continuously
observed system is determined by the stochastic master
equation

dρc = −i[H, ρc]dt + D[a]ρcdt + H[a]ρcdW, (29)

FIG. 5. Tuning the universality class of phase transitions. Integrated quadrature fluctuations 〈X 2〉 (a) for different values of s that are used
to calculate the critical exponents and the dependence of critical exponent α on the feedback exponent s (b). The lines in (a) show the fits
for numerical simulations. The growth of the quadrature fluctuations approaching Gcrit (shown in logarithmic scale) is the manifestation of
the phase transition in a linear model. The feedback time response determined by s can continuously change the critical exponent of the
transition in a wide range, which corresponds to tuning the universality class of the phase transition. g = 0.5ωR, κ = ωR, δ = 2ωR, θ = π/2,
and h(0) = s.
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FIG. 6. Stochastic trajectories of the collective spin quadrature 〈X 〉c for s = 0.5 (left column) and s = 5 (right column) in the linear
approximation. Different rows correspond to different values of the feedback gain. For G = 0.01Gcrit the quadrature has an oscillating nonzero
value on a single trajectory. Crossing the critical point Gcrit the oscillatory dynamics changes to growth. The growth rate is greater for greater
s. The different temporal behaviors for different s can be compared to the different fluctuation spectra for different s in Fig. 4. One can see that
the mode softening picture is not applicable to the slow feedback case: instead of decreasing frequency, one sees the increasing noise due to
the appearance of the peak at zero frequency in Fig. 4(a). Other parameters are g = 0.1ωR, κ = ωR, δ = 2ωR, θ = π/2, and h(0) = s.

where the dissipation and noise contributions are defined as

D[a]ρc = 2κ[aρca† − (a†aρc + ρca†a)/2],

H[a]ρc =
√

2κ[a e−iθρc + ρca†eiθ

− Tr{a e−iθρc + ρca†eiθ }ρc]. (30)

The increment of the Wiener process representing the quan-
tum noise of the continuous weak measurement is denoted
by dW . The Hamiltonian H = Hs + Hf b is now the sum of
the system Hamiltonian Hs, which is given by Eq. (6) for the
nonlinear and by Eq. (7) for the linearized spin models, and
the feedback Hamiltonian is

Hf b = G(b† + b)Ic(t ). (31)

Here Ic is the feedback signal expressed similarly to Eq. (10),
but it is not an operator:

Ic(t ) =
√

2κ

∫ ∞

−∞
h(t − z)dξθ (z). (32)

The increment of the measured signal dξc being the outcome
of a homodyne detector reads

dξθ (t ) =
√

2κ〈xθ 〉cdt + dW. (33)

The simulation of the stochastic evolution according to
Eq. (29) with the feedback kernels h(t ) as defined in Eq. (28)

will be presented for a single spin nonlinear model and N-
spins linearized model.

A. Quantum trajectories for linear model

Although we have the quasianalytical result for the lin-
earized spin model it is interesting to look at the behavior
of the system at a single trajectory. The results of numerical
simulations of Eq. (29) with the linearized Hamiltonian (7) are
shown in Fig. 6. Here the stochastic trajectories of collective
spin quadrature 〈X 〉c for s = 0.5 (left column) and s = 5 (right
column) are shown for different values of G (different rows).

If G = 0.01Gcrit (the first row in Fig 6) the spin quadrature
demonstrates quite regular oscillations. These oscillations are
induced by the measurement backaction noise. They corre-
spond to the resonant peaks in the fluctuation spectra in Figs. 3
and 4.

Increasing G and approaching its critical value we expect
to observe the increase of the oscillation period reflecting
the appearance of the soft mode. This is seen for the fast
feedback with s = 5 (right column in Fig. 6), but this is not
the case for the slow feedback with s = 0.5 (left column). For
G = 0.99Gcrit the quadrature oscillations for s = 0.5 become
affected by the growing fluctuations at the zero frequency
[see discussions of Fig. 4(a) with spectra], while the spectral
peak near the resonance frequency ωR is still pronounced. This
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FIG. 7. Quantum trajectories for the conditional spin component 〈Sx〉c of a single nonlinear spin. The plots on the left-hand side, labeled
(a), contain the trajectories for the slow feedback, s = 0.5. The right-hand side plots, labeled (b), show the fast feedback trajectories, s = 5.
For the weak feedback (G = 0.01Gcrit) the spin starts to almost regularly oscillate due to the homodyne measurement backaction. There is
no difference between s = 0.5 (a.1) and s = 5 (b.1). Just above the threshold, G = 2Gcrit , the feedback still results in oscillatory dynamics,
which may be quite irregular (a.2). Well above the threshold 〈Sx〉c reaches a stationary value [(a.3) and (b.3)]. Other parameters are g = 0.1ωR,
δ = 2ωR, κ = ωR, θ = π/2, and h(0) = s.

makes the oscillations noisy but still visible at the original fre-
quency, which is different from the mode softening scenario.

Above the critical point the oscillations completely disap-
pear and the exponential growth of the spin quadrature takes
place for both values of s; see the lowest row in Fig. 6.
Note that growth rate is quite different for the slow and fast
feedback. The time scale for the slow feedback is larger than
that for the fast one. Nevertheless, the phase transition takes
place for both cases at the same value of Gcrit [if we normalize
the feedback kernel as h(0) = s].

B. Quantum trajectories for nonlinear single-spin model

The examples of stochastic trajectories for a single non-
linear spin are shown in Fig. 7. It demonstrates the spin
component 〈Sx〉c = Tr{ρcSx} averaged over the conditional
state of the observed quantum system. The plots on the
left-hand side, labeled (a), contain the trajectories for slow
feedback, s = 0.5. The right-hand side plots, labeled (b), show
the fast feedback trajectories, s = 5. For the weak feedback
(G = 0.01Gcrit) the spin starts to almost regularly oscillate due
to the homodyne measurement backaction. The oscillations
are around zero value of Sx; thus averaged over time such a
behavior results in almost zero value of the spin component.
This dynamics corresponds to the normal phase of the spin
system and the cases of slow and fast feedbacks are very
similar to each other.

Just above the threshold, G = 2Gcrit , the feedback still
results in oscillatory dynamics, which may be quite irregular;
cf. Fig. 7(a.2). This is similar to the behavior of the quadrature
X in the linearized model; cf. Fig. 6(a.2). Thus the slow
feedback with the narrow-band transfer function supports the
low-frequency noise and suppresses oscillations [cf. Fig. 4(a)
for the spectra of the linearized model].

Well above the threshold 〈Sx〉c rapidly saturates to its
maximal value [Figs. 7(a.3) and 7(b.3)], but the sign of the
spin component is not predefined and can take both positive
and negative values. The dependence of the absolute value
of such steady states averaged over many trajectories on the
feedback parameter G is shown in Fig. 8. Below the critical
point G < Gcrit the spin component is nearly zero, while it
starts to grow for G > Gcrit . The stationary value of the spin
component saturates in the superradiant phase well above the
threshold.

VI. CONCLUSIONS

In summary, we presented a theoretical description of the
feedback-induced quantum phase transition in a collective
spin system and tuning its universality class. This shifts the
paradigm of the feedback control from the control of quantum
states (as known in quantum metrology) to the control of
phase transitions in quantum systems. The feedback loop is
assumed to be based on the quadrature measurement of the
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FIG. 8. Feedback-induced phase transition for a single nonlinear
spin. The stationary values of 〈Sx〉 averaged over many trajectories
depending on the feedback gain G. g = 0.1ωR, κ = ωR, δ = 2ωR,
s = 1, θ = π/2, and h(0) = s.

cavity light interacting with the spins. Starting with a nonlin-
ear model we determined the critical value of the feedback
gain and demonstrate that the dependence of the critical gain
on the cavity decay rate is different for different measurement
scenarios. The measurement of x quadrature results in the
critical gain linearly increasing with the decay rate, while the
y-quadrature measurement results in the limited critical gain.

The analysis of the linearized spin model in the
Heisenberg-Langevin approach allowed for the determination
of the feedback-induced drift and the quantum noise acting
on the system. The quantum noise is shown to be colored with
the spectral density dependent on the feedback response shape
resulting in the non-Markovian behavior of spins.

By approximating the trend of the spin-quadrature fluctu-
ations near the critical gain by a power function, the critical
exponents α have been found. The value of the critical expo-
nent can be controlled in the range α ∈ (0, 1) by changing the
feedback loop timing parameter s. This opens new perspective
for quantum simulations of systems belonging to different
universality classes.

The dynamics of a single nonlinear spin and linearized
N-spin models have been numerically simulated at single
quantum trajectories. For the feedback gain far below the crit-
ical value the main effect of the feedback is the measurement
backaction. The quadrature measurement results in breaking
the time symmetry and the appearance of coherent oscillations
at a single quantum trajectory. If one calculates the expecta-
tion value of the spin variables, such oscillations are lost due
to averaging over many trajectories, because of the random
phase of the single-trajectory oscillations. Thus the mean so-
lution below the threshold is a trivial zero, while, in contrast,
the coherent oscillations are visible in each single realization.
Only for a fast (nearly instantaneous) feedback, approach-
ing the critical point the period of the oscillations increases,
reflecting the softening of the spin mode. For the slow (long-
memory) feedback such a simplified picture is not relevant.

While we considered both linear and nonlinear quantum
systems, the feedback was assumed to be a linear one. A
possible extension of the model can be the consideration
of a feedback, nonlinearly dependent on the measured light
variable. This can be useful, e.g., for simulations of the spin-
boson and other impurity models with the nonlinear coupling
between the particle and bath [133]. Such models can describe
realistic systems such as the quadratic coupling of a qubit to its
environment [134], as well as experiments with semiconduc-
tor quantum dots [135] and bismuth donors in silicon [136].

Another possible extension of the model is considering
several feedback loops simultaneously. Such a configura-
tion can be useful for modeling spins coupled to several
baths [137], which is important for simulating realistic qubits
[138,139] and impurities in quantum magnets [138–141].
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