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Dipole-dipole-interaction–driven antiblockade of two Rydberg atoms
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Resonant laser excitation of multiple Rydberg atoms are prohibited, leading to Rydberg blockade, when
the long-range van der Waals interactions are stronger than the laser-atom coupling. Rydberg blockade can
be violated, i.e., simultaneous excitation of more than one Rydberg atom, by off-resonant laser excitation,
causing an excitation antiblockade. Rydberg antiblockade gives rise to strongly correlated many-body dynamics
and spin-orbit coupling and also finds quantum computation applications. Instead of commonly used van der
Waals interactions, we investigate antiblockade dynamics of two Rydberg atoms interacting via dipole-dipole
exchange interactions. We study typical situations in current Rydberg atom experiments, where different types
of dipole-dipole interactions can be achieved by varying Rydberg state couplings. An effective Hamiltonian
governing underlying antiblockade dynamics is derived. We illustrate that geometric gates can be realized with
the Rydberg antiblockade which is robust against the decay of Rydberg states. Our study may stimulate new
experimental and theoretical exploration of quantum optics and strongly interacting many-body dynamics with
Rydberg antiblockade driven by dipole-dipole interactions.
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I. INTRODUCTION

Highly excited Rydberg atoms with principal quantum
number n � 1 exhibit strong and long-range van der Waals
(vdW) interactions due to their large polarizability (∼n7) and
strong interactions (∼n11) [1]. When excited from ground
states with resonant laser lights, a Rydberg blockade emerges
in which excitation of two neighboring Rydberg atoms are
prohibited due to energy shifts induced by vdW interactions.
The Rydberg blockade provides a mechanism for realizing
quantum logic gates [2–7], which have been demonstrated
experimentally [8–17]. In contrast to a Rydberg blockade,
the interaction-induced excitation of two Rydberg atoms is
referred to as a Rydberg antiblockade (RAB) [18]. Subse-
quently, the relevant experiment has also observed signatures
of Rydberg antiblockades [19]. The strict condition for a RAB
was analyzed [20,21]. The RAB plays roles in the study of
motional effects [22,23], dissipative dynamics [24–26], peri-
odically driving [27], and quantum computation [28,29]. The
RAB was also studied in the detection of structural phase
transitions [30], Rydberg spin system [31], cold atom ensem-
bles [32], as well as in strongly interacting Rydberg atom
experiments [33].

The vdW and dipole-dipole (DD) interactions exhibit
different features. In Fig. 1(a), we show the strength and
interaction range of DD and vdW interactions, respectively,
focusing on one group of specific Rydberg states. The DD
interaction is stronger at short distances, while the vdW inter-
action is stronger at long distances [7]. Most importantly, DD
interactions typically involve two or more Rydberg states in
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the dynamics. In Fig. 1(b), we show regimes to realize Ryd-
berg blockades [2–4], conventional RABs with simultaneous
driving [20,21,23–28,30–32], as well as sequential-driving-
based RABs [29], where the excitation conditions can be
controlled by laser detuning. When using DD interactions, the
density-density as well as spin flip-flop interactions coexist
[34,35], leading to complicated many-body dynamics [36].
The resonant DD interactions are considered to construct two-
[37] and three-qubit [38] quantum logic gates by using experi-
mentally observed Förster resonances [39]. It has been shown
that RABs can be used to limit the blockade error [40] and
to construct the multiple-qubit Toffoli and fan-out gates in a
fast way [41]. Recently, it has been shown that nonadiabatic
dynamics around a conical intersection can be studied under
the RAB condition with trapped Rydberg ions [42].

Although there are different level schemes to achieve DD
interactions, it is not clear how to achieve the RAB condi-
tion for the many types of DD interactions between Rydberg
atoms. Moreover, existing schemes typically require two or
more Rydberg atoms in the Rydberg state simultaneously for
a period of time [37–39,41] or to stay in a dark state [43].
This could reduce the coherence of the system due to, e.g.,
motional effects [22,23].

In this work we study RAB driven by different types
of Rydberg DD interactions. We propose new schemes
to realize RAB efficiently for three types of DD interac-
tions that are typically encountered in various experiments.
The first type is the Förster resonance, such as transitions
given by |d〉|d〉 ↔ |p〉| f 〉 + | f 〉|p〉 [44–47], and |p〉|p〉 ↔
|s〉|s′〉 + |s′〉|s〉 [48,49]. The second type is spin-exchange-
type Rydberg-Rydberg interactions (RRIs) via |s〉|p〉 ↔ |p〉|s〉
[50,51], |p〉|d〉 ↔ |d〉|p〉 [52], or |s〉|p′〉 ↔ |p〉|s′〉 [53]. The
third type is collective exchange interaction, i.e., |s〉|s′〉 ↔
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FIG. 1. (a) Two-body interaction strength for Rb atoms excited
to Rydberg state |100s〉 versus interatomic distance d . Rc denotes the
crossover distance between DD and vdW interactions [4]. (b) The
dynamics of Rydberg blockade and antiblockade with vdW-type
RRI. Egg, Erg, and Err denote the energies of the two-atom state
|gg〉, |gr〉 (|rg〉), and |rr〉, respectively. E ′

rr denotes the energy when
both atoms are excited in Rydberg states but excluding two-body
interactions. The resonant laser excitation (dotted-dashed line) leads
to the Rydberg blockade [2–4]. The middle excitation process (dotted
line) is the conventional Rydberg antiblockade with simultaneous
driving [20,21,23–28,30–32]. The right one (solid line) is the RAB
with sequential driving [29].

|p〉|p′〉 [37,41,49,54–57]. Effective Hamiltonians of the dif-
ferent types of DD interactions are provided. When applying
the proposed schemes in realizing quantum logic gates, the
main feature is that only a one-step Rabi oscillation between
the ground states and the multi-excited Rydberg states is re-
quired, without staying in the Rydberg states for a long period
of time, avoiding disadvantages found in other schemes. We
also discuss impacts of dissipation on the RAB and propose
parameters to probe RABs.

The remaining content of the paper is organized as fol-
lows: In Sec. II, we show details on how to achieve the RAB
regime. The effective Hamiltonian is given, and the respective
dynamics influenced by dissipation is studied with a quantum
master equation. We show the population evolution of dif-
ferent models. In Sec. III, the main difference between the
vdW and DD interactions are shown, which gives distinctive
dynamics. In Sec. IV, we show the potential applications of
the proposed RAB in building two-qubit quantum gates and
creating steady-state entanglement. The conclusion is given
in Sec. V.

II. ANTIBLOCKADE WITH DIFFERENT TYPES
OF DD INTERACTIONS

A. Rydberg antiblockade with Förster resonance

1. Level scheme and model

To realize a Förster resonance we consider the exper-
imental configuration [45] |p〉 ≡ |61P1/2, mJ = 1/2〉, |d〉 ≡
|59D3/2, mJ = 3/2〉, and | f 〉 ≡ |57F5/2, mJ = 5/2〉 of two
87Rb atoms, as shown in Fig. 2. By applying an electric field
ε = 32 mV/cm, these Rydberg states can be brought to exact
resonance. One of the states in computational space is chosen
as |1〉 ≡ |5S1/2, F = 2, mF = 2〉 [45] and the other state |0〉 in
the computational subspace is decoupled with the excitation

FIG. 2. (a) Left panel shows two Rydberg atoms with reso-
nant RRI. |0〉 and |1〉 are two ground states. |p〉, |d〉, and | f 〉 are
three Rydberg states with the Förster resonance interaction Ĥd =
Vd (|dd〉〈p f | + |dd〉〈 f p| + H.c.). Right panel gives the effective
RAB process in the dressed-state basis. (b) Populations of difference
states for RAB scheme in Sec. II A during one evolution period
T = 2π�/�2 with the consideration of practical atomic sponta-
neous emission γp = 1.89 kHz, γd = 4.55 kHz, and γ f = 7.69 kHz.
The inset shows that the dressed state decays to zero at the end of
the laser pulse. Parameters are � = 2π × 5 MHz and � is set to
satisfy the antiblockade condition. The initial state is |11〉 and the
interatomic distance is 3 μm.

process and may be chosen as |0〉 ≡ |5S1/2, F = 1, mF = 0〉.
The excitation is accomplished by a two-photon process with
two lasers with wavelengths 795 nm (π polarization) and
474 nm (σ+ polarization) [45]. Bichromatic classical fields
are imposed on these two atoms to off-resonantly drive the
transition |1〉 ↔ |d〉 with an identical Rabi frequency � but
opposite detuning �. With the rotating-wave approximation,
the Hamiltonian for this system can be written as Ĥ = Ĥ� +
Ĥd (h̄ ≡ 1), where

Ĥ� = �

2
(ei�t + e−i�t )(|1〉1〈d| ⊗ I2 + I1 ⊗ |1〉2〈d|) + H.c.

= �

2
(ei�t + e−i�t )(|10〉〈d0| + |11〉〈d1| + |1p〉〈d p|

+ |1d〉〈dd| + |1 f 〉〈df | + |01〉〈0d| + |11〉〈1d|
+ |p1〉〈pd| + |d1〉〈dd| + | f 1〉〈 f d|) + H.c.,

Ĥd =
√

2Vd |dd〉〈rp f | + H.c., (1)

where I j denotes the identity matrix of atom j, and Vd =
C3/r3

d denotes the DD interaction strength. Here C3 =
2.54 GHz μm3 [45,58] and rd denotes the interatomic dis-
tance. |mn〉 denotes two atom state |m〉1 ⊗ |n〉2 and will be
used throughout this paper. We have defined two-atom state
|rp f 〉 ≡ (|p f 〉 + | f p〉)/

√
2.
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2. Effective Hamiltonian

To simplify the calculation, we first derive a Hamiltonian
using the dressed state basis. It should be mentioned that the
dressing here is different from Rydberg dressing of the ground
state, which mainly generates long-range interactions be-
tween ground-state atoms [59–84]. One can diagonalize Ĥd as√

2Vd (|+〉〈+| − |−〉〈−|) with |±〉 ≡ (|dd〉 ± |rp f 〉)/
√

2 be-
ing the dressed states. Then the Hamiltonian can be written
as

Ĥ� = �

2
(ei�t + e−i�t )

[√
2|11〉〈�| + |�〉(〈+| + 〈−|)] + H.c.

+ �

2
(ei�t + e−i�t )(|01〉〈0d| + |10〉〈d0|) + H.c.,

Ĥd =
√

2Vd (|+〉〈+| − |−〉〈−|), (2)

in which |�〉 ≡ (|1d〉 + |d1〉)/
√

2. From Eq. (2),
Hamiltonian Ĥ� itself describes resonant interactions
when � = 0. However, when Vd � �, after rotating the
total Hamiltonian Ĥ with respect to Ĥd , one can see
that the two-excitation Rydberg states would be coupled
off-resonantly with large detuning. Thus, the Rydberg
blockade is produced. In the following we show how to
achieve the RAB even when Vd � �.

When the RRI strength is much stronger than Rabi fre-
quency, the aim is to use the laser detuning to compensate the
energy shift induced by the RRI [85]. And it is precisely from
this point that one always rotates the whole Hamiltonian with
respect to the RRI-related Hamiltonian, which is convenient to
get the relation between laser detuning and RRI strength since
Vd is also moved to the exponential part (i.e., contributing
to the phase) [85,86]. With this at hand, one can employ the
second-order perturbation theory to obtain the RAB condition.
After rotating the whole Hamiltonian Ĥ� + Ĥd with respect to
eiĤd t , this yields [27]

Ĥ =
{

�

2

[√
2(ei�t + e−i�t )|11〉〈�|

+(ei(�−√
2Vd )t + e−i(�+√

2Vd )t )|�〉〈+|
+(ei(�+√

2Vd )t + e−i(�−√
2Vd )t )|�〉〈−|

+(ei�t + e−i�t )(|01〉〈0d| + |10〉〈d0|)] + H.c.

}
. (3)

If the conditions {�,� ± √
2Vd} � �, and Vd = √

2� are
satisfied, the effective form of Hamiltonian (3) can be
achieved through the second-order perturbation calculation
[87–90] as (see Appendix A for details)

Ĥe = �2

2�
|11〉〈+| − |11〉〈−| + H.c.

+ �2

3�
(|+〉〈+| − |−〉〈−|). (4)

From Eq. (4), one can see that the collective ground state |11〉
is resonantly coupled with the two-excitation Rydberg state
|rp f 〉 with effective Rabi frequency �eff ≡ �2/�, leading to
the RAB. Here the Stark shift in Eq. (4) would no doubt
influence the dynamics. One can remove the Stark shift by

modifying the condition Vd = √
2� to

Vd =
√

2� − �2
/(

3
√

2�
)
,

the effective Hamiltonian (4) would be changed to

Ĥe = �2

2
√

2�
|11〉(〈+| − 〈−|) + H.c. (5)

Here we should mention that, in Ref. [45], the ground state
|gg〉 (corresponding to |11〉 in our paper) is excited to the Ry-
dberg state |dd〉 first via a π pulse through the detuned laser.
Then the electric field is tuned to make state |dd〉 resonant
with (|p f 〉 + | f p〉)/

√
2. We consider the strong Förster reso-

nant interactions from the beginning, and designed schemes to
achieve the Rabi oscillation from collective ground state to the
two-excitation Rydberg state (|p f 〉 + | f p〉)/

√
2. Meanwhile,

the states |00〉, |01〉, and |10〉 are decoupled with the two-
excitation Rydberg states, which is convenient when applying
this model for quantum information processing.

3. Population dynamics at the Rydberg antiblockade regime

The effective Hamiltonian (5) shows that perfect Rabi
oscillation between the ground state and the doubly excited
Rydberg state can happen. In this section, we check the valid-
ity of the effective Hamiltonian (5) by comparing dynamics
obtained from the original Hamiltonian in the RAB regime.
We furthermore take into account spontaneous emission of
Rydberg states. The dynamics of the system is governed by
the master equation

˙̂ρ = i
[
ρ̂, Ĥ

] + 1

2

∑
k

[
2L̂k ρ̂L̂†

k − L̂†
kL̂k ρ̂ − ρ̂L̂†

kL̂k
]
, (6)

where ρ̂ denote the density matrix of system state, L̂k is the
kth Lindblad operator describing the dissipation process, and
Ĥ = Ĥ� + V̂d is the original Hamiltonian (1). The lifetimes
for |p〉, |d〉, and | f 〉 are about 0.53, 0.22, and 0.13 ms, respec-
tively [91,92]. The Lindblad operators are given explicitly as

L̂1 = √
γp/2|0〉1〈p|, L̂2 = √

γp/2|1〉1〈p|,
L̂3 =

√
γd/2|0〉1〈d|, L̂4 =

√
γd/2|1〉1〈d|,

L̂5 = √
γ f /2|0〉1〈 f |, L̂6 = √

γ f /2|1〉1〈 f |,
L̂7 = √

γp/2|0〉2〈p|, L̂8 = √
γp/2|1〉2〈p|,

L̂9 =
√

γd/2|0〉2〈d|, L̂10 =
√

γd/2|1〉2〈d|,
L̂11 = √

γ f /2|0〉2〈 f |, L̂12 = √
γ f /2|1〉2〈 f |, (7)

where γ j denotes the atomic spontaneous emission rate.
Numerical results by solving the master equation are

shown in Fig. 2(b). The evolution of the state under the given
RAB condition is plotted, where the calculation takes into
account practical atomic spontaneous emission rates. It can be
seen that the initial state can be fully converted to the dressed
state, as described by the effective Hamiltonian. Here we
should point out that the original Hamiltonian rather than the
effective Hamiltonian is used in evolving the master equation.
This means that the ideal RAB can be achieved with the DD
interaction through the Förster resonance.
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FIG. 3. (a) Left panel shows two Rydberg atoms with DD
interactions. |0〉 and |1〉 are two ground states. |p〉 and |d〉 are two Ry-
dberg states with the spin-exchange interaction Ĥd = Vd (|pd〉〈d p| +
H.c.). Right panel shows the effective RAB process in the dressed
state basis. (b) Populations of the states for RAB scheme in Sec. II B
under one evolution period T = 2π�/�2 with the consideration
of practical atomic spontaneous emission γp = 1.69 kHz and γd =
4 kHz. Parameters are chosen as � = 2π × 5 MHz and � is set to
satisfy the antiblockade condition. The initial state is set as |11〉 and
the interatomic distance is set as 3 μm.

B. Rydberg antiblockade with spin-exchange interaction

1. Level scheme and model

As shown in Fig. 3, we consider the experimental configu-
ration as [52] |d〉 ≡ |62D3/2, mJ = 3/2〉, |p〉 ≡ |63P1/2, mJ =
1/2〉. These two Rydberg states are resonant with each other.
One of the ground states are chosen as |1〉 ≡ |5S1/2, F =
2, mF = 2〉 [52] and the remaining computational state can
be chosen as |0〉 ≡ |5S1/2, F = 1, mF = 0〉. The excitation
process from |1〉 to state |d〉 is accomplished by a two-photon
transition with wavelengths 795 nm (π polarization) and
474 nm (σ+ polarization), respectively. We also consider the
single-photon excitation process from |1〉 to |p〉 [52]. For the
left (right) Rydberg atom in the left panel, bichromatic clas-
sical fields are imposed to off-resonantly drive the transition
|1〉 ↔ |p(d )〉 through single-photon (two-photon) process
with an identical Rabi frequency � but opposite detuning �.
After the rotating-wave approximation, the Hamiltonian for
this concrete system can be written as

Ĥ� = �

2
(ei�t + e−i�t )(|1〉1〈p| ⊗ I2 + I1 ⊗ |1〉2〈d|) + H.c.

= �

2
(ei�t + e−i�t )(|10〉〈p0| + |11〉〈p1| + |1p〉〈pp|

+ |1d〉〈pd| + |01〉〈0d| + |11〉〈1d| + |p1〉〈pd|
+ |d1〉〈dd|) + H.c.,

Ĥd = Vd |pd〉〈d p| + H.c., (8)

in which Vd = C3/r3
d with C3 being 7.965 GHz μm3 here

[52,58] and rd denoting the interatomic distance. In the
following we show how to achieve the RAB with this
Hamiltonian.

2. Effective Hamiltonian

We first define the dressed states |±̃〉 ≡ (|pd〉 ± |d p〉)/
√

2
by diagonalizing the RRI Hamiltonian. Using the dressed
states, one can rewrite Eq. (8) as

Ĥ� = �√
2

(ei�t + e−i�t )

[
|11〉〈
| + 1√

2
|
〉(〈+̃| + 〈−̃|)

]

+ �

2
(ei�t + e−i�t )(|01〉〈0d| + |10〉〈d0|) + H.c.,

Ĥd = Vd (|+̃〉〈+̃| − |−̃〉〈−̃|), (9)

with |
〉 ≡ (|1d〉 + |p1〉)/
√

2. Following a process similar to
that used in Sec. II A and considering � � � and RAB condi-
tion Vd = 2� − �2/(3�), we obtain the respective effective
Hamiltonian (see Appendix B for details)

Ĥe = �2

2
√

2�
|11〉(〈+̃| − 〈−̃|) + H.c., (10)

which means the Rabi oscillation between the collective
ground state |11〉 and the two-excitation Rydberg state |p f 〉
emerges and the RAB can be achieved with an effective π

pulse, i.e., �2t/� = π .
Now we discuss the differences in excitation process be-

tween our scheme and that in Ref. [52]. In Ref. [52], the atoms
are excited step by step. First, one of the Rydberg atoms is
excited to the |d〉 state through a two-photon process. Then
the state of the excited Rydberg atom is transferred from |d〉
to |p〉 through microwave-field coupling. Immediately, the re-
maining Rydberg atom is excited to state |d〉 with � � 5.76Vd

and, along with this process, the spin-exchange process also
happens. The blockade effect in Ref. [52] does not work
because Vd is less than �. In our scheme in Sec. II B, by using
the dressed state and appropriately choosing the parameters,
RAB can be accomplished in one step under the condition
Vd � �.

3. Population dynamics

The full Hamiltonian of the model in Sec. II B is shown
in Eq. (8). The lifetimes for |p〉 and |d〉 are around 0.59 and
0.25 ms, respectively [91,92]. The resulting master equation
is similar. Due to the change of Rydberg levels, the Lindblad
operators are changed to

L̂1 = √
γp/2|0〉1〈p|, L̂2 = √

γp/2|1〉1〈p|,
L̂3 =

√
γd/2|0〉1〈d|, L̂4 =

√
γd/2|1〉1〈d|,

L̂5 = √
γp/2|0〉2〈p|, L̂6 = √

γp/2|1〉2〈p|,
L̂7 =

√
γd/2|0〉2〈d|, L̂8 =

√
γd/2|1〉2〈d|. (11)

In Fig. 3(b), we plot the evolution of the state for the above
RAB regime under the given RAB condition by taking into
account the decay of Rydberg states. When numerically solv-
ing the master equation (6), the original Hamiltonian (8) rather
than the effective Hamiltonian is used. As shown in Fig. 3(b),
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FIG. 4. (a) Left panel shows level scheme of the two Rydberg
atoms. |0〉 and |1〉 are two ground states. |s〉 and |p〉 are two Rydberg
states for the left atom, and |s′〉 and |p′〉 are two Rydberg states for
the right atom. These two Rydberg atoms are interacting each other
through the spin-exchange interaction Ĥd = Vd (|ss′〉〈pp′| + H.c.).
Right panel shows the effective RAB process in the dressed state
basis. (b). Population dynamics for RAB scheme in Sec. II C under
one evolution period T = 2π�/�2 with atomic spontaneous emis-
sion rate γs = 8.33 kHz, γs′ = 7.69 kHz, γp = 4 kHz, γp′ = 3.7 kHz.
Parameters are � = 2π × 5 MHz and � is set to satisfy the an-
tiblockade condition. The initial state is |11〉 and the interatomic
distance is 2 μm.

we achieve the RAB such that only the initial and the dressed
state participate in the dynamics.

C. Rydberg antiblockade with collective-exchange interaction

1. Level scheme and model

As shown in Fig. 4, we consider two Rydberg atoms,
and each has two ground states |0〉 and |1〉. The left
(right) atom has two Rydberg states |s〉 and |p〉 (|s′〉 and
|p′〉). The experimental configuration is considered as [55]
|s〉 ≡ |48S1/2, mJ = 1/2〉, |p〉 ≡ |48P1/2, mJ = 1/2〉, |s′〉 ≡
|50S1/2, mJ = 1/2〉, |p′〉 ≡ |49P1/2, mJ = 1/2〉. These states
are resonant with each other when applying an electric field
ε = 710 mV/cm and choosing rd = 2 μm with C3 to be
0.6 GHz μm3. Two ground states in computational subspace
can be chosen as |1〉 ≡ |5S1/2, F = 2, mF = 0〉 and |0〉 ≡
|5S1/2, F = 1, mF = 0〉 [55]. The excitation from |1〉 to |s〉 or
|s′〉 can be implemented by a two-photon process [55].

We consider two bichromatic classical fields are imposed
to off-resonantly drive the transition |1〉 ↔ |s(s′)〉 with an
identical Rabi frequency � but opposite detuning �. With the
rotating-wave approximation, the Hamiltonian for this system
can be written by Ĥ = Ĥ� + Ĥd , where

Ĥ� = �

2
(ei�t + e−i�t )(|1〉1〈s| ⊗ I2 + I1 ⊗ |1〉2〈s′|) + H.c.

= �

2
(ei�t + e−i�t )(|10〉〈s0| + |11〉〈s1| + |1s′〉〈ss′|

+|1p′〉〈sp′| + |01〉〈0s′| + |11〉〈1s′| + |s1〉〈ss′|
+ |p1〉〈ps′|) + H.c.,

Ĥd = Vd |ss′〉〈pp′| + H.c. (12)

As in previous sections, Ĥ� and Ĥd describe the laser-atom
coupling and the dipole-dipole interaction, respectively.

2. Effective Hamiltonian

To derive the effective Hamiltonian, one can diagonalize
the Hamiltonian Ĥd to get the dressed states. Using the re-
spective dressed state, Hamiltonian (12) can be reformulated
to be

Ĥ� = �√
2

(ei�t + e−i�t )

[
|11〉〈�| + 1√

2
|�〉(〈+′| + 〈−′|)

]

+ �

2
(ei�t + e−i�t )(|01〉〈0s′| + |10〉〈s0|) + H.c.,

Ĥd = Vd (|+′〉〈+′| − |−′〉〈−′|), (13)

with |�〉 ≡ (|1s′〉 + |s1〉)/
√

2 and |±′〉 = (|ss′〉 ± |pp′〉)/
√

2.
We find that the RAB condition Vd = 2� − �2/(3�) can be
obtained when � � �. This leads to the effective Hamilto-
nian (see Appendix B for details)

Ĥe = �2

2
√

2�
|11〉(〈+′| − 〈−′|) + H.c., (14)

which indicates the Rabi oscillation between collective
ground state |11〉 and the two-excitation Rydberg state |pp′〉.
The ground state is completely transferred to the dressed
state when �2t/� = π is fulfilled. In addition to the cases
discussed here, the RAB with the resonant DD interaction
discussed in Refs. [93,94] can also be realized in a similar
way.

In Ref. [55], the optically trapped cloud of 2 × 104 87Rb
gate and source atoms are used for studying the enhancement
of single-photon nonlinearity. At zero electric field, the inter-
action between the |ss′〉 pair which is of vdW type and much
less than the DD interaction. Thus the collective ground state
can be excited to |ss′〉 and the single-photon nonlinearity was
observed to be enhanced by electrically tuning |ss′〉 and |pp′〉
pair states into resonant interactions [55]. In this section, the
resonant DD interaction is an initial consideration and on that
basis we design the pulse to achieve the RAB in one step with
the condition Vd � �.

3. Population dynamics

For the model considered in Sec. II C, the full Hamiltonian
is shown in Eq. (12). When including the lifetimes for |s〉, |s′〉,
|p〉, and |p′〉, which are 0.12, 0.13, 0.25, and 0.27 ms, respec-
tively [91,92], the dynamics of the system can be obtained
by solving the master equation with the following modified
Lindblad operators:

L̂1 =
√

γs/2|0〉1〈s|, L̂2 =
√

γs/2|1〉1〈s|,
L̂3 = √

γp/2|0〉1〈p|, L̂4 = √
γp/2|1〉1〈p|,

L̂5 =
√

γs′/2|0〉2〈s′|, L̂6 =
√

γs′/2|1〉2〈s′|,
L̂7 = √

γp′/2|0〉2〈p′|, L̂8 = √
γp′/2|1〉2〈p′|. (15)
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In Fig. 4(b), we plot the evolution of the state for the
RAB regime realized with the collective exchange interaction.
The finite lifetime in the Rydberg state is taken into account
in the simulation. The numerical simulation agrees with the
prediction by the effective Hamiltonian nicely, indicating that
an ideal RAB regime can be achieved with this type of DD
interaction.

III. COMPARISON WITH VAN DER
WAALS-INTERACTION-BASED RYDBERG

ANTIBLOCKADE

A. Characteristic interatomic distance

For a given Rydberg state, the DD interaction dominates
at shorter distances compared with the vdW interaction.
Roughly, one can separate the two interactions with a char-
acteristic distance Rc = [4(C3)2/δ2]1/6 [95], where C3 is the
dispersion coefficient, and δ is the detuning of the relevant
Rydberg pair states participating in the DD interaction [4,95].
The vdW interaction plays dominant roles when the inter-
atomic distance r is larger than Rc. As a result, one should
consider alternative theories to analyze the RAB and related
dynamics [20,21,23–28,30–32]. The present work focuses on
the regime where the interatomic distance r is less than Rc. As
an example, we show the characteristic interatomic distance
for |nS1/2, mJ = 1/2〉 versus principle quantum number n in
Fig. 5(a). By fitting the numerical data, it is found that the
characteristic distance Rc ∝ n3.655, agreeing with the scaling
analysis in Ref. [95]. It should be noted that here we suppose
the channel 2|nS1/2〉 → |nP1/2〉 + |(n − 1)P1/2〉 is the domi-
nant channel for simplicity and make numerical calculations.
In practice, one might have to consider contributions from all
transition channels for evaluating the characteristic distance.

B. Dependence on laser parameters

So far we have assumed that the laser parameters (Rabi
frequency and detuning) are constant in deriving the Hamilto-
nian. In many experiments, fluctuations of the laser param-
eters cannot be neglected. Importantly, the RAB based on
DD and vdW interactions exhibits different responses to the
parameter fluctuation. We illustrate the dependence of the two
types of interactions by constructing a RAB-based controlled-
Z gate. To qualify the fidelity of the gate, we consider
the initial state as |ψ (0)〉 = (|00〉 + |01〉 + |10〉 + |11〉)/4
and the ideal output state is |ψ (t )〉 = (|00〉 + |01〉 + |10〉 −
|11〉)/4. The fidelity is then defined as F = 〈ψ (t )|ρ(t )|ψ (t )〉
throughout this paper. The fidelity of the controlled-Z gate
versus the fluctuations of � (�) is shown in Fig. 5(b)
[5(c)]. The gate fidelity based on the DD interaction de-
creases more slowly than the vdW interaction when increasing
the amplitudes of the fluctuations. This example shows that
DD-interaction-based RAB has stronger robustness on the
parameter fluctuations than vdW-based counterparts in con-
struction of quantum logic gates.

When deriving the effective Hamiltonian via the second-
order perturbation theory, the laser detuning should be larger
than the Rabi frequency. Meanwhile, the RAB condition sets
the relation between the RRI and laser detuning (V ≈ �). For
given Rydberg states, the DD interaction is stronger than the

FIG. 5. (a) Characteristic interatomic distance Rc for the state
|nS1/2, mJ = 1/2〉 [95]. Fidelities of the controlled-Z gate versus
fluctuations of the laser parameters, i.e., deviations (b) d� and
(c) d�. For the DD interaction, the energy levels are same as those
in Fig. 2 with � = 2π × 9.9 MHz, γp = 1.89 kHz, γd = 4.55 kHz,
and γ f = 7.69 kHz. The interatomic distance is 3 μm, and � is
determined through the RAB condition given in Sec. II A. For the
vdW interaction, the energy levels are the same as those in Fig. 2
without considering |p〉 and | f 〉 states. The vdW interaction is
given by the Hamiltonian HvdW = C6/r6|d〉〈d| ⊗ |d〉〈d| with C6 =
1700 GHz μm6 [58] with interatomic distance 6.6 μm. Besides, � =
2π × 2.2 MHz, γd = 4.55 kHz, and the RAB condition in Ref. [86]
are considered. For panels (b) and (c), the gate time is determined by
T = 2π�/�2.

vdW interaction [see Fig. 1(a)], where the range of the allowed
Rabi frequency is larger when using the DD interaction than
the vdW interaction. To illustrate this, we again examine the
performance of the controlled-Z gate by using the DD and
vdW interaction. As shown in Fig. 6(a), the gate fidelity drops
apparently when increasing � in case of the vdW interaction.
In contrast, the fidelity decreases slowly with increasing �

[Fig. 6(b)]. In fact, the fidelity in the latter case is greater
than 0.9 for a large range of �. This indicates that one can
achieve robust controlled-Z gate not only with flexible laser
parameters, but can achieve high gate speed using the DD
interaction.

C. Dependence on fluctuations of the interatomic distance

In this section, we discuss the influence of the deviation
of atom-atom distance on the RAB without setting a concrete
energy level. The DD and vdW interactions are given by [4]

Vd = C3

r3
d

and VvdW = C6

r6
vdW

, (16)

where C3 and C6 denote the coefficients of the DD and vdW
interactions, respectively. As the vdW and DD interaction
have different length scales, we use rd and rvdW to denote the
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FIG. 6. Fidelities of the controlled-Z gate versus Rabi frequency
at the gate time T = 2π�/�2. For DD interactions, the energy level
and parameters are chosen as that in Fig. 5, except that the Rabi
frequency is varied from 2π × 0.5 to 2π × 30 MHz. The detuning
is chosen to satisfy the RAB condition given in Sec. II A. For vdW
interactions, the energy level is the same as that in Fig. 2 without
considering |p〉 and | f 〉 and the RAB condition in given in Ref. [86].
In both cases, the arrow indicates the range of Rabi frequencies
where the gate fidelity is larger than 0.9.

interatomic distance. When there is a small deviation in the
distance, one can find that the change of the interaction energy
are

dVd = −3Vd

rd
drd and dVvdW = −6VvdW

rvdW
drvdW, (17)

where drd and drvdW are small deviations with respect to
the interatomic distance. Recently it has been shown that
this deviation can lead to interesting many-body phases
[30,42,96,97].

To achieve the RAB, the laser detuning has to satisfy the
condition Vd = √

2� − �2/(3
√

2�) in this work and VvdW =
2� − 2�2/3� in the vdW interaction discussed in Ref. [86].
Thus, a large-interaction-energy shift dVd and dVvdW will
invalidate the RAB condition. To determine the effect of drd

and drvdW quantitatively, we consider the following situation:
When (i) Vd = VvdW we consider identical deviations of the in-
teratomic distance, i.e., drd = drvdW. For the vdW interaction,
the detuning � has to be adjusted by 0.501 67dVvdW to achieve
the RAB. For the DD interaction, � need to be adjusted by
0.708 18dVd . Now if we force 0.501 67dVvdW = 0.708 18dVd ,
one can derive the relation between the atomic distance,
rvdW � 1.416 79rd . This means that dVvdW is greater than
dVd if rvdW < 1.416 79rd , and vice versa. When one builds
a controlled-Z gate, the DD (vdW) interaction based RAB
leads to higher gate fidelity when rvdW < 1.416 79rd (rvdW >

1.416 79rd ), as depicted in Fig. 7(a). In the second case (ii) we
consider Vd � VvdW, and rd ≈ rvdW. In this case, one can see
that dVd � dVvdW is achieved with the same deviation of in-
teratomic distance (drd = drvdW). This means the vdW-based
RAB is more robust than the DD-interaction case. As depicted
in Fig. 7(b), the gate fidelity decreases relatively slowly when
using the vdW interaction.

FIG. 7. Fidelity of the RAB-based gates with respect to devia-
tion of interatomic distances at the gate time T = 2π�/�2. Panel
(a) [(b)] corresponds to case (i) [(ii)] in Sec. III C. Here, � = 2π ×
6.663 MHz, � = 10�, and rd = 3 μm. Vd = 2π × 94 MHz. For
panel (a) Vvdw = Vd , while for panel (b), Vvdw is shown in the legend
of the figure.

IV. APPLICATIONS OF THE
DIPOLE-DIPOLE-INTERACTION–INDUCED

RYDBERG ANTIBLOCKADE

Applications of the Rydberg antiblockade have been dis-
cussed extensively recently [18–21,23–33,37–41,43,98]. Here
we illustrate that the DD-interaction-based RAB can be
applied in geometric quantum computation and dissipative
dynamics. To be concrete, we focus on the RAB scheme dis-
cussed in Sec. II A. It is possible to realize similar applications
through other schemes.

A. Two-qubit geometric quantum gate

We first consider how to construct the controlled-arbitrary-
phase geometric gate given by the matrix

ÛCP =

⎛
⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 eiθ

⎞
⎟⎟⎠ (18)

in the computational space {|00〉, |01〉, |10〉, |11〉}. By
appropriately modulating the Rabi frequencies of the ini-
tial Hamiltonian at the half evolution time (T/2), one can
achieve the effective Hamiltonian in the time interval [T/2, T ]
[87–90],

Ĥe = − eiθ�2

2
√

2�
|11〉(〈+| − 〈−|) + H.c., (19)

where the phase is controlled by the laser.
The fidelity of the gate is shown in Fig. 8(a) by numerically

solving the master equation with the original Hamiltonian,
in which the initial state is |ψ (0)〉 = (|00〉 + |01〉 + |10〉 +
|11〉)/4 and the ideal output state is |ψ (t )〉 = Û |ψ (0)〉. The
definition of the fidelity is the same as that in Sec. III B.
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FIG. 8. (a) Evolution of the fidelity of the geometric controlled-
arbitrary-phase gate. The parameters are the same as in Fig. 2.
(b) Bloch-sphere representation of the geometric quantum operation.
The coupling to the dressed state via RAB gives rise to the desired
phase shift to the computational basis at the end of the gate operation.

With the consideration of dissipation, the gate fidelity is
0.9969, 0.9962, 0.9949, 0.9938, and 0.9936 when θ equals
π , 3π/4, π/2, π/4, and π/6, respectively. The geometric
feature of the phase can be easily verified since |11〉 →
|rp f 〉 → eiθ |11〉 is achieved and 〈� j |Ĥe|�k〉 = 0 [99–103] is
satisfied, where |� j〉 (|�k〉) is any one of the four states in
{|00〉, |01〉, |10〉, |11〉}. Thus, θ is the nonadiabatic geometric
phase, which is half of the solid angle enclosed by the evolu-
tion path [104], as shown in Fig. 8(b).

B. Steady entanglement

Steady-state entanglement can be created via dissipation
in strongly interacting Rydberg systems [24,105]. Following
similar ideas, a weak microwave field drives resonantly the
transition between two ground states |0〉 and |1〉 [Fig. 9(a)],

Ĥmw =
√

2ω

2
(|00〉 + |11〉)〈T | + H.c., (20)

where |T 〉 ≡ (|01〉 + |10〉)/
√

2 is a triplet Bell state. The
singlet state |S〉 ≡ (|01〉 − |10〉)/

√
2 is decoupled to Hamil-

tonian (20) and is the desired steady entangled state. We learn
from Eq. (20) that the microwave shuffles the states |00〉, |T 〉,
and |11〉, but keeps |S〉 invariant. Since the Stark shifts do not

FIG. 9. (a) Dynamical processes to generate the steady entangled
state by combining the unitary and dissipative dynamics. (b) Infi-
delity of the steady entangled state (|01〉 − |10〉)/

√
2 versus ω/�′

eff .
The interatomic distance is 3 μm, and the Rabi frequency is s
� = 2π × 1 MHz. � is determined through Vd = √

2�.

influence the dissipative dynamics, we thus consider turning
off the red-detuned laser and modifying the RAB condition
as Vd = √

2�. The effective Hamiltonian that control unitary
dynamics can be written in the form Ĥ ′

e = (�′
eff/2)(|11〉〈+| +

H.c.) + Ŝ, where �′
eff = √

2�2/(2�) and Ŝ denotes the Stark
shift.

Combining the effective Hamiltonian Ĥ ′
e with the mi-

crowave Hamiltonian Ĥmw in Eq. (20) and the dissipative
dynamics as depicted in Fig. 9(a), the desired state |S〉 would
be prepared as the steady state of the system. In other words,
once |S〉 is occupied through the dissipative dynamics, the
entangled state is created successfully. Otherwise, if the other
three states are occupied, the unitary dynamics will excite the
two-atom state to |rp f 〉, which would decay to the ground
subspace again. In Fig. 9(b), we plot the infidelity 1 − F of
the steady state by numerically solving the master equation
(6) with the full Hamiltonian, and the practical parameters of
RRI and atomic spontaneous emission rate. We find that the
fidelity of achieving the desired state can be higher than 0.999.

V. CONCLUSION

In conclusion, we have proposed three schemes to con-
struct the RAB dynamics with different types of DD
interactions that are commonly realized in current Rydberg
atom experiments. Based on the dressed-state picture, we
have derived the effective Hamiltonian that governs the two-
atom dynamics. We have verified the validity of the effective
Hamiltonian by numerically solving the master equation by
taking into account Rydberg state decay. In contrast with the
vdW-based RAB due to pure energy shifts by the density-
density interaction, our study is valid when the interatomic
distance is relatively small, where the DD interaction dom-
inates. In this regime, we have shown that the DD-induced
RAB leads to robust dynamics against laser-parameter and
interatomic-distance fluctuations.

The DD-induced RAB can be applied to realize vari-
ous quantum information tasks [18–21,23–33,37–41,43,98]
due to the selective two-body excitation process in the un-
derlying dynamics. As examples, we have shown that the
proposed RAB can be used in geometric quantum computa-
tion and state entanglement preparation. Along with the rapid
development in optical trapping [106] and in microwave-
[47,53,96,107–109] and electric-field control [3,37,41,44–
46,48–50,54–57,93,94,110–112] of the resonant DD RRI, our
schemes and the related applications may be tested and real-
ized in future experiments.

ACKNOWLEDGMENTS

S.-L.S. acknowledges support from the Natural Science
Foundation of Henan Province (202300410481), National
Natural Science Foundation of China (NSFC) under Grant No.
11804308, and the China Postdoctoral Science Foundation
(CPSF) under Grant No. 2018T110735. W.L. acknowledges
support from the EPSRC through Grant No. EP/R04340X/1
via the QuantERA project “ERyQSenS,” the Royal Society
Grant No. IEC\NSFC\181078.

033716-8



DIPOLE-DIPOLE-INTERACTION–DRIVEN … PHYSICAL REVIEW A 104, 033716 (2021)

FIG. 10. (left) Dynamical process of Eq. (3) when the initial state
is |11〉. (right) Dynamical process of Eq. (4). The right panel is
the effective process of the left panel if the antiblockade condition√

2Vd − � = � is satisfied, which is similar to the “two-photon
process.”

APPENDIX A: DERIVATION OF EQ. (4)

We now show the derivation process of the effective Hamil-
tonian (4). We start from the rotated Hamiltonian in Eq. (3),

Ĥ =
{

�

2

[√
2(ei�t + e−i�t )|11〉〈�|

+ (ei(�−√
2Vd )t + e−i(�+√

2Vd )t )|�〉〈+|
+ (ei(�+√

2Vd )t + e−i(�−√
2Vd )t )|�〉〈−|

+ (ei�t + e−i�t )(|01〉〈0d| + |10〉〈d0|)] + H.c.

}
. (A1)

From Eq. (3), it can be seen that |11〉 couples with |�〉
through two channels with detuning � and −�. Meanwhile,
|�〉 couples with |±〉 through two channels with detuning
� ∓ √

2Vd and −� ∓ √
2Vd , respectively. To be more clearly,

in the left panel of Fig. 10, we plot the dynamics of Eq. (3)
with the initial state being |11〉. It can be readily get that
if one want to achieve the coupling between |11〉 and |+〉
(|−〉), as shown in the right panel of Fig. 10, via second-order
perturbation theory,

√
2Vd − � = � should be satisfied. On

that basis, Eq. (A1) simplifies to

Ĥ =
{

�

2

[√
2(ei�t + e−i�t )|11〉〈�|

+ (e−i�t + e−i3�t )|�〉〈+| + (ei3�t + ei�t )|�〉〈−|

+ (ei�t + e−i�t )(|01〉〈0d| + |10〉〈d0|)] + H.c.

}
. (A2)

We now show the derivation process of Eq. (4). Based on
Fig. 10 and Eqs. (A1) and (A2), one can see that |+〉 and
|−〉 cannot couple with each other through the intermediate
state |�〉 via second-order perturbation theory. That is because
the coupling between |+〉 and |−〉 are oscillating with high
frequency ei2�t and should be discarded. The Rabi frequency
corresponding to the transition between state |+〉 and state
|11〉 are calculated as

〈+|Ĥ|�〉〈�|Ĥ|11〉
�

=
√

2�2

4�
,

〈11|Ĥ|�〉〈�|Ĥ|+〉
�

=
√

2�2

4�
. (A3)

Similarly, the Rabi frequency corresponding to the transition
frequency between state |−〉 and state |11〉 can be calculated
as

〈−|Ĥ|�〉〈�|Ĥ|11〉
−�

=
√

2�2

−4�
,

〈11|Ĥ|�〉〈�|Ĥ|−〉
−�

=
√

2�2

−4�
. (A4)

The Stark shifts of state |+〉, |−〉, |10〉, and |01〉 are

�2

3�
= 〈+|(�

2 ei�t |+〉〈�|)|�〉〈�|(�
2 e−i�t |�〉〈+|)|+〉

�
+ 〈+|(�

2 ei3�t |+〉〈�|)|�〉〈�|(�
2 e−i3�t |�〉〈+|)|+〉

3�
,

�2

−3�
= 〈−|(�

2 e−i�t |−〉〈�|)|�〉〈�|(�
2 ei�t |�〉〈+|)|+〉

−�
+ 〈+|(�

2 e−i3�t |−〉〈�|)|�〉〈�|(�
2 ei3�t |�〉〈−|)|−〉

−3�
,

0 = 〈10|(�
2 ei�t |10〉〈d0|)|d0〉〈d0|(�

2 e−i�t |d0〉〈10|)|10〉
�

+ 〈10|(�
2 e−i�t |10〉〈d0|)|d0〉〈d0|(�

2 ei�t |d0〉〈10|)|10〉
−�

,

0 = 〈01|(�
2 ei�t |01〉〈0d|)|0d〉〈0d|(�

2 e−i�t |0d〉〈01|)|01〉
�

+ 〈01|(�
2 e−i�t |01〉〈0d|)|0d〉〈0d|(�

2 ei�t |0d〉〈01|)|01〉
−�

, (A5)

respectively. Besides, the coupling between |10〉 (|01〉) and the single-excited state is large detuned and should be discarded.
Besides, it should be noted that it is needless to calculate the Stark shift of |�〉 since it is also discarded due to the large detuning
condition. So the effective Hamiltonian of the system can be written as

Ĥe =
√

2�2

4�
(|11〉〈+| − |11〉〈−| + H.c.) + �2

3�
(|+〉〈+| − |−〉〈−|), (A6)

which is exactly Eq. (4).

APPENDIX B: DERIVATION OF EQ. (10)

Following a similar process, Eqs. (10) and (14) can
also be achieved with the corresponding given antiblockade

conditions. Alternatively, here we use another method [87–90]
based on time averaging to calculate the effective Hamiltonian
(10). First, we rotate the whole Hamiltonian with respect to
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Û = ei2�(|+̃〉〈+̃|−|−̃〉〈−̃|)t . The total Hamiltonian in the rotated frame is then changed to

Ĥrotate = �√
2

(ei�t + e−i�t )|11〉〈
| + �

2
(e−i�t + e−i3�t )|
〉〈+̃| + �

2
(ei3�t + ei�t )|
〉〈−̃|

+ �

2
(ei�t + e−i�t )(|01〉〈0d| + |10〉〈d0|) + H.c. + (Vd − 2�)(|+̃〉〈+̃| − |−̃〉〈−̃|). (B1)

We now briefly review the effective Hamiltonian formula in Refs. [87–90]. For a Hamiltonian in the interaction picture,

Ĥ =
N∑

n=1

ĥ†
neiωnt + ĥne−iωnt , (B2)

if the large-detuning condition is satisfied, the effective Hamiltonian would be

Ĥeff =
N∑

m,n=1

1

h̄ωmn

[
ĥ†

m, ĥn
]
ei(ωm−ωn )t , (B3)

where ωmn = 2ωmωn/(ωm + ωn). After using Eq. (B2), the processes to calculate the effective form of Eq. (B1) are as follows:

�2

2
√

2�

[|11〉〈
|ei�t , |
〉〈+̃|e−i�t
]
ei(�−�)t = �2

2
√

2�
|11〉〈+̃|,

�2

2
√

2�

[|
〉〈11|ei�t , |−̃〉〈
|e−i�t
]
ei(�−�)t = − �2

2
√

2�
|−̃〉〈11|,

�2

2
√

2�

[|+̃〉〈
|ei�t , |
〉〈11|e−i�t
]
ei(�−�)t = �2

2
√

2�
|+̃〉〈11|,

�2

2
√

2�

[|
〉〈−̃|ei�t , |11〉〈
|e−i�t
]
ei(�−�)t = − �2

2
√

2�
|11〉〈−̃|,

�2

2�

[|11〉〈
|ei�t , |
〉〈11|e−i�t
]
ei(�−�)t = �2

2�
(|11〉〈11| − |
〉〈
|),

�2

2�

[|
〉〈11|ei�t , |11〉〈
|e−i�t
]
ei(�−�)t = �2

2�
(|
〉〈
| − |11〉〈11|),

�2

4�

[|+̃〉〈
|ei�t , |
〉|〈+̃|e−i�t
]
ei(�−�)t = �2

4�
(|+̃〉〈+̃| − |
〉〈
|),

�2

12�

[|+̃〉〈
|ei3�t , |
〉|+̃〉|e−i3�t
]
ei(3�−3�)t = �2

12�
(|+̃〉〈+̃| − |
〉〈
|),

�2

12�

[|
〉〈−̃|ei3�t , |−̃〉〈
|e−i3�t
]
ei(3�−3�)t = �2

12�
(|
〉〈
| − |−̃〉〈−̃|),

�2

4�

[|
〉〈−̃|ei�t , |−̃〉〈
|e−i�t
]
ei(�−�)t = �2

4�
(|
〉〈
| − |−̃〉〈−̃|),

�2

4�

[
(|01〉〈0d| + |10〉〈d0|)ei�t , (|0d〉〈01| + |d0〉〈10|)e−i�t

]
ei(�−�)t = �2

4�
(|01〉〈01| − |0d〉〈0d|),

�2

4�

[
(|0d〉〈01| + |d0〉〈10|)ei�t , (|01〉〈0d| + |10〉〈d0|)e−i�t

]
ei(�−�)t = �2

4�
(|0d〉〈0d| − |01〉〈01|). (B4)

It should be noted that the high-frequency oscillation terms
are discarded and were not shown in Eq. (B4). The sum of the
terms in Eq. (B4) induces the effective Hamiltonian as

Ĥe = �2

2
√

2�
(|11〉〈+̃| − |11〉〈−̃| + H.c.)

+ �2

3�
(|+̃〉〈+̃| − |−̃〉〈−̃|)

+ (Vd − 2�)(|+̃〉〈+̃| − |−̃〉〈−̃|), (B5)

in which the Stark shift terms of state |+̃〉 and state |−̃〉 exactly
cancel out (Vd − 2�)(|+̃〉〈+̃| − |−̃〉〈−̃|) when the antiblock-
ade condition Vd = 2� − �2/(3�) is satisfied. After using
|±̃〉 ≡ (|pd〉 ± |d p〉)/

√
2 the total effective Hamiltonian of

the system in the rotated frame becomes

Ĥe = �2

2�
|11〉〈d p| + H.c., (B6)

which means Eq. (10) is achieved. Similarly, to deviate
Eq. (14), either one of the above two methods are feasible.

033716-10



DIPOLE-DIPOLE-INTERACTION–DRIVEN … PHYSICAL REVIEW A 104, 033716 (2021)

[1] T. F. Gallagher, Rydberg Atoms (Cambridge University Press,
Cambridge, 2005).

[2] D. Jaksch, J. I. Cirac, P. Zoller, S. L. Rolston, R. Côté, and
M. D. Lukin, Phys. Rev. Lett. 85, 2208 (2000).

[3] M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch,
J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 87, 037901 (2001).

[4] M. Saffman, T. G. Walker, and K. Mølmer, Rev. Mod. Phys.
82, 2313 (2010).

[5] D. Comparat and P. Pillet, J. Opt. Soc. Am. B 27, A208 (2010).
[6] W. Li and I. Lesanovsky, Appl. Phys. B: Lasers Opt. 114, 37

(2014).
[7] M. Saffman, J. Phys. B: At., Mol. Opt. Phys. 49, 202001

(2016).
[8] L. Isenhower, E. Urban, X. L. Zhang, A. T. Gill, T. Henage,

T. A. Johnson, T. G. Walker, and M. Saffman, Phys. Rev. Lett.
104, 010503 (2010).

[9] X. L. Zhang, L. Isenhower, A. T. Gill, T. G. Walker, and M.
Saffman, Phys. Rev. A 82, 030306(R) (2010).

[10] T. Wilk, A. Gaëtan, C. Evellin, J. Wolters, Y. Miroshnychenko,
P. Grangier, and A. Browaeys, Phys. Rev. Lett. 104, 010502
(2010).

[11] K. M. Maller, M. T. Lichtman, T. Xia, Y. Sun, M. J.
Piotrowicz, A. W. Carr, L. Isenhower, and M. Saffman, Phys.
Rev. A 92, 022336 (2015).

[12] Y. Zeng, P. Xu, X. He, Y. Liu, M. Liu, J. Wang, D. J. Papoular,
G. V. Shlyapnikov, and M. Zhan, Phys. Rev. Lett. 119, 160502
(2017).

[13] C. J. Picken, R. Legaie, K. McDonnell, and J. D. Pritchard,
Quantum Sci. Technol. 4, 015011 (2018).

[14] H. Levine, A. Keesling, A. Omran, H. Bernien, S. Schwartz,
A. S. Zibrov, M. Endres, M. Greiner, V. Vuletić, and M. D.
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