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Quantum state truncation using an optical parametric amplifier and a beam splitter
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We present a scheme of quantum state truncation in the Fock basis (quantum scissors), based on the combined
action of a nondegenerate optical parametric amplifier and a beam splitter. Differently from previously proposed
linear-optics-based quantum scissors devices, which depend on reliable Fock state sources, our scheme requires
only readily available Gaussian states, such as coherent state inputs (vacuum state included). A truncated state
is generated after performing photodetections in the global state. We find that, depending on which output ports
each of the two photodetectors is positioned, different types of truncated states may be produced: (i) states
having a maximum Fock number of N , or (ii) states having a minimum Fock number N . In order to illustrate
our method, we discuss an example having as input states a coherent state in the beam splitter and vacuum
states in the amplifier, and show that the resulting truncated states display nonclassical properties, such as sub-
Poissonian statistics and squeezing. We quantify the nonclassicality degree of the generated states using the
Wigner-Yanase skew information measure. For complementarity, we discuss the efficiency of the protocol, e.g.,
generation probability as well as the effects of imperfections such as the detector’s quantum efficiency and dark
counts rate.
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I. INTRODUCTION

The engineering of quantum states of light has experienced
extraordinary progress in recent years [1]. Despite the fact
that the photon concept emerged in the early days of quantum
theory, the generation of pure photon number states, or Fock
states |n〉, has been particularly challenging. Early attempts
to generate, for instance, single photon states to some de-
gree of control occurred only in the 1970s, using nonlinear
media [2], or in atomic systems [3]. This was well after the
generation of coherent states (laser light) in the 1960s [4],
and before the successful production of squeezed states of
light [5]. Since those pioneering experiments, there have been
considerable efforts to generate states of light having diverse
nonclassical properties [1,6], also because they are essential
resources for the development of quantum technologies [6–8].
Amongst the proposed methods, we may cite quantum state
engineering schemes using arrays of beam splitters with in-
jection of suitable states (usually Fock states) followed by
photodetections [9]. There are also proposals based on the
use of specifically engineered nonlinear media [10,11], as
well as in cavity QED systems [12–14]. Needless to say it
is worth looking for alternative generation schemes, since
quantum state engineering protocols are in general not easy to
implement.

An appealing approach is to try to modify an already
existing state of light by applying some kind of operation
on it. As examples of such operations we could cite photon
addition [15], photon subtraction [16], and the removal of
specific components in the Fock basis (“hole burning”) [17].
We remark that the removal of the vacuum state is enough
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to transform an arbitrary state into a nonclassical one, as
discussed in [18]. Another interesting procedure is the so-
called quantum state truncation, also know as “quantum
scissors” after Ref. [19]. A quantum scissors device trans-
forms a quantum state of light, say |ϕ〉, into a state having
a finite number of Fock components, that can be a superpo-
sition of the vacuum state |0〉 and the one photon state |1〉:
T̂ |ϕ〉 = c0|0〉 + c1|1〉. We note that the truncation of quantum
states in the Fock basis can also be performed in vibrational
states of a trapped ion system [20]. A typical quantum scissors
device for light [19] consists of two beam splitters placed
side by side, having the vacuum state |0〉 and a single photon
Fock state |1〉 as input states of the first beam splitter, and an
arbitrary state |ϕ〉 as input state of the second beam splitter.
The other input of the second beam splitter is precisely the
transmitted output of the first beam splitter. Two photodetec-
tors are placed in the output ports of the second beam splitter,
and the detection of one photon in one and no photons in the
other projects the reflected output of the first beam splitter into
a truncated state [19]. Such a process is allowed because the
quantum state |ϕ〉 is mixed with an entangled state (involving
the vacuum state |0〉 and a single photon state |1〉) in the sec-
ond beam splitter. We stress that in general, quantum scissors
schemes require the injection of Fock states [19,21,22], i.e.,
the prior generation of a highly nonclassical state. In recent
years, there has been renewed interest in the study of quantum
state truncation. In particular, one can find in the literature a
number of works about possible applications, such as entan-
glement improvement [23,24], continuous variable quantum
key distribution [25], quantum repeaters, [26], and noiseless
amplification [22,27].

Here we propose a hybrid quantum scissors scheme em-
ploying linear (beam splitter) and nonlinear (nondegenerate
optical parametric amplifier) devices, as displayed in Fig. 1.
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FIG. 1. Schematic illustration of the proposed setup: a nonde-
generated optical parametric amplifier (NOPA) with classical pump
(strength s and phase φ), having â and b̂ input modes. One of the
output modes feeds a beam splitter (BS), which has a second input
mode, ĉ. Photodetectors may be placed in pairs in the output modes,
either in b̂out and ĉout or âout and ĉout.

We show that, in our method, truncated states may be gen-
erated in a straightforward way without having to resort to
Fock states as inputs. Rather, it is sufficient to have vacuum
states entering the amplifier input ports and a coherent state
as input to the beam splitter. We also show that it is possible
to generate two distinct classes of truncated states simply by
placing the photodetectors in different exit ports. Furthermore,
our alternative scheme offers additional possibilities for the
output states, depending on the strength and phase of the
parametric amplifier.

This paper is organized as follows: In Sec. II we present
our nonlinear-linear quantum scissors. In Sec. III we study a
specific example of truncated state generation using Gaussian
state inputs. We also discuss some nonclassical properties as
well as the degree of nonclassicality of the generated states
using the Wigner-Yanase skew information [28,29]. The ef-
ficiency of the protocol taking into account imperfections in
the photodetections is analyzed in Sec. IV, and in Sec. V we
conclude our work.

II. A SCHEME FOR GENERALIZED QUANTUM
STATE TRUNCATION

Our proposal is based in sequential interactions using the
setup shown in Fig. 1. It employs a nonlinear device, namely,
a nondegenerate optical parametric amplifier placed beside a
linear device, a beam splitter, in such a way that one of the
amplifier’s output ports (along mode b̂; see Fig. 1) becomes
one of the beam splitter’s input modes. The other input port of
the beam splitter (mode ĉ) is fed by an arbitrary quantum state
of light. Photodetectors may be placed in two output ports, out
of the three existing ones. We consider two configurations:
(i) both photodetectors in the two output ports of the beam
splitter (b̂out and ĉout modes), or (ii) one photodetector in an
output port of the beam splitter (ĉout mode) and the other
in the remaining output port of the amplifier (âout mode).
Naturally, the generated quantum state of light, conditioned
to the corresponding photodetections, will come out through
the port which has been left open. As we are going to see be-
low, different families of nonclassical states can be generated,
depending on the positions in which the detectors are placed.

We consider a simple case, in which the initial state en-
tering the amplifier/beam-splitter device is such that both

input modes of the amplifier are in the vacuum state, and
the input mode ĉ (beam splitter) is in a generic pure state
|ψ〉 = ∑

ψi|i〉, or

|�in〉 =
∞∑

i=0

ψi|0, 0, i〉, (1)

where |0, 0, i〉 ≡ |0〉a ⊗ |0〉b ⊗ |i〉c. The combined action of
the amplifier and beam splitter on the initial state |�in〉 may
be represented as

|�out〉 = R̂(θ )Ŝ(ξ )|�in〉, (2)

being Ŝ = exp[ξ ∗âb̂ − ξ â†b̂†] the two-mode squeezing oper-
ator and R̂ = exp[iθ (â†b̂ + âb̂†)] the operator associated to
the beam-splitter action. The relevant parameters here are ξ =
seiφ , where s is basically the strength of the amplifier (s � 0),
and φ is the phase of the pump field (treated as classical here).
The parameter θ is related to the (complex) transmittance T
and reflectance R of the beam splitter (|T|2 + |R|2 = 1). After
some algebra (see details in the Appendix), the output state
prior to the photodetections will read

|�out〉 =
∞∑

i=0

∞∑
n=0

i∑
j=0

n∑
m=0

√
i!

j!(i − j)!

√
n!

m!(n − m)!

×
√

(i − j + n − m)!
√

( j + m)! ψi An(s, φ)

× T jT∗n−mRm(−R∗)i− j |n, i − j + n − m, j + m〉,
(3)

with An(s, φ) = sech s(−eiφ tanh s)n.

A. Photon detectors placed in both the beam
splitter’s output ports

If the photodetectors are placed in such a way that one is
at b̂out and the other at ĉout, having one photon detected in
b̂out and no photons detected in ĉout, the following conditional
truncated state will be generated in mode âout:

∣∣�(1,0)
a

〉 = − 1√
p(1,0)

a

sech s(ψ1R
∗|0〉 + ψ0eiφ tanh s T∗|1〉),

(4)
with

p(1,0)
a = sech2s(|R|2|ψ1|2 + |T|2|ψ0|2 tanh2 s). (5)

The state in Eq. (4), a quantum superposition of the vacuum
state and the one-photon state, has the form of a typical
truncated state obtained via a conventional quantum scissors
device [19]. We remind the reader that in the quantum scissors
schemes previously discussed in the literature, states which
are difficult to generate in a controlled way (Fock states) are
required as input states. In our method there is no need of
a previous generation of Fock states; the input states in the
amplifier are simply vacuum states (apart from the classical
pump), with an arbitrary state |ψ〉 entering the beam splitter’s
port ĉ.

It is possible to generalize the result above for N photons
being detected in b̂out and no photons in ĉout. In this case the
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generated state will be

∣∣�(N,0)
a

〉 = 1√
p(N,0)

a

sech s
N∑

n=0

√
N!

n!(N − n)!

×ψN−n(−eiφ tanh s)nT∗n(−R∗)N−n|n〉, (6)

with

p(N,0)
a = sech2s

N∑
n=0

N!

n!(N − n)!
|ψN−n|2

× |T|2n|R|2(N−n) tanh2n s. (7)

In other words, our scheme allows, in principle, the generation
of a truncated state up to Fock number N .

We note that Fock states as well as the vacuum state can
also be output states of the quantum scissors device for partic-
ular values of the transmittance. From Eq. (4) it follows that
if |T| = 1 a one photon state |1〉 is generated, while if |T| = 0,
the resulting state in âout will be simply the vacuum state.

B. Photon detectors placed in the beam splitter’s
and amplifier’s output ports

In this case the photodetectors will be placed in the ports
corresponding to the âout (amplifier) and ĉout (beam splitter)
modes. For instance, if one photon is recorded at the amplifier
output and no photon is detected at the beam-splitter output,
the generated state at port b̂out will be

|�(1,0)
b 〉 = 1√

p(1,0)
b

sech s(−eiφ tanh s)T∗

×
∞∑

i=0

√
i + 1ψi(−R∗)i|i + 1〉, (8)

with

p(1,0)
b = sech2s tanh2 s|T|2

∞∑
i=0

(i + 1)|ψi|2|R|2i. (9)

Note that the vacuum component |0〉 has been removed
from the state in Eq. (8), i.e., the states of the type |�(1,0)

b 〉
are nonclassical [18].

Again, we may generalize the above result if N photons
are recorded at the amplifier’s output port (mode âout) and no
photon is recorded at the beam-splitter port. In this case, the
generated state will read

∣∣�(N,0)
b

〉 = 1√
p(N,0)

b

sech s(−eiφ tanh s)NT∗N

×
∞∑

i=0

√
(i + N )!

i!N!
ψi(−R∗)i|i + N〉 (10)

with

p(N,0)
b = sech2s tanh2N s|T|2N

∞∑
i=0

(i + N )!

i!N!
|ψi|2|R|2i. (11)

FIG. 2. Mandel’s Q parameter relative to state |�a〉 as a function
of s for φ − β = π/2 rad and θ = π/4 rad.

Thus, such scheme makes it possible to generate states trun-
cated from Fock number N , i.e., all components having n < N
being null.

Interestingly, the two different photodetector placements
discussed lead to the generation of states that are somehow
“complementary”: in Sec. II A we showed how states with
a maximum Fock number N can be generated, and here in
Sec. II B, we saw that it is also possible to generate states
having a minimum Fock number N .

III. STATE GENERATION FROM COHERENT STATES:
NONCLASSICAL PROPERTIES

We may use the parametrization T = cos θ and R = i sin θ ,
so that we are left with three parameters: (s, φ), which are
related to the amplifier/pump, and θ , related to the beam
splitter’s transmittance. This gives a great flexibility to our
generation scheme, since we can tune the properties of the
generated states by changing experimentally controlled pa-
rameters. Now we would like to illustrate our method by
choosing specific input states (mode ĉ), namely, the “quasi-
classical” coherent states |ψ〉 = |α〉, with α = |α|eiβ . In this
case the truncated states |�(N,0)

a 〉 (and their properties), will
depend on the phase difference φ − β, as one can see in
Eq. (6).

A. Sub-Poissonian statistics

A well-known measure of photon number fluctuations is
the Mandel Q parameter, defined as Q = 〈(�n̂)2〉/〈n̂〉 − 1.
It has a minimum value of Q = −1 for Fock states, and is
null for coherent states, i.e., it indicates deviations from the
characteristic Poissonian photon statistics of a coherent state.
We firstly analyze the occurrence of sub-Poissonian statistics
of the generated truncated state |�a〉 discussed in Sec. II A.
To begin with, we may set |α| = 1, φ − β = π/2 rad, θ =
π/4 rad (a 50:50 beam splitter), and vary the strength s. The
result, in Fig. 2 (for different values of N), shows that the
generated states exhibit sub-Poissonian statistics. If we now
set the parameters s = 0.5, φ − β = π/2 rad, and vary θ , we
obtain the results shown in Fig. 3, i.e., the generated states are
also mostly sub-Poissonian. The states discussed in Sec. II B,
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FIG. 3. Mandel’s Q parameter relative to state |�a〉 as a function
of θ for s = 0.5 and φ − β = π/2 rad.

|�b〉, may also exhibit sub-Poissonian statistics, although in a
lesser degree than the states |�a〉.

In our scheme, energy is injected into the system via both
the classical pump and the input field (mode ĉ). We therefore
expect that the nonclassical properties of the output field will
depend on s, as well as on α (in case of a coherent state input).
In Fig. 4 we have a plot of Mandel’s Q parameter as a function
of s and |α|, for the state |�a〉 with N = 1. We note that for
larger values of |α| the output state is driven onto a Poissonian
state. Yet, small values of |α| combined with a not too weak
pumping favors the generation of sub-Poissonian states.

B. Quadrature squeezing

Another important nonclassical feature to be discussed is
the so-called squeezing; the reduction of fluctuations in the
quadrature variables below the characteristic value of a coher-
ent state. For instance, if 〈(�X̂ )2〉 < 1/4 the quadrature X̂ ,
defined as X̂ = (â + â†)/2, is said to be squeezed. The trun-
cated states |�a〉 may exhibit squeezing in the X̂ quadrature
for φ − β = π/2 rad and θ = π/4 rad, as shown in Fig. 5,
where the variance of X̂ is plotted as a function of s. Squeezing
may also be present for different combinations of the involved

FIG. 4. Mandel’s Q parameter relative to state |�a〉 as a function
of |α| and s, for θ = π/4 rad, φ − β = π/2 rad, and N = 1.

FIG. 5. Variance of X̂ relative to state |�a〉 as a function of s for
φ − β = π/2 rad and θ = π/4 rad.

parameters, as is evident from the plots of 〈(�X̂ )2〉 as a
function of φ − β (Fig. 6), with θ = π/4 rad, as well as a
function of θ (Fig. 7), with φ − β = π/2 rad. In both cases
s = 0.5, and squeezing occurs for ranges of values of φ − β

(or θ ).
Squeezing in the truncated state |�a〉 depends not only on

the pump strength s but also on the input state amplitude, α.
As clearly shown in Fig. 8, combinations of values of s and |α|
may yield significant amounts of squeezing to the generated
states.

C. Nonclassicality

Properties such as sub-Poissonian statistics and squeezing
capture different nonclassical aspects of quantum states of
light. Nonetheless, due to the multisided nature of quantum-
ness (nonclassicality), it is not an easy task to find a quantity
that would contain as much information as possible about the
nonclassical character of a quantum state. So far, we have
witnessed efforts to quantify nonclassicality from different
perspectives and, as a consequence, several figures of merit
have been introduced for this purpose. We may find in the
literature works discussing various nonclassicality criteria,
e.g., distance-based measures [30], nonclassical depth [31],

FIG. 6. Variance of X̂ relative to state |�a〉 as a function of φ − β

for s = 0.5 and θ = π/4 rad.
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FIG. 7. Variance of X̂ relative to state |�a〉 as a function of θ for
s = 0.5 and φ − β = π/2 rad.

quadrature-based measures [32,33], negativity of phase space
distributions [34], and operator ordering sensitivity [35]. A
recently introduced and interesting information-theoretic non-
classicality quantifier is the Wigner-Yanase skew information
[28,29]. For a pure, single mode state of the electromagnetic
field |�〉, the skew information is given by [28]

W (|�〉) = 1
2 + 〈�|â†â|�〉 − 〈�|â†|�〉〈|�â|�〉. (12)

Among other interesting properties, the skew information
is non-negative and for pure states has a minimum value of
Wmin = 1/2 (coherent states). Also, larger values of W indi-
cate a larger nonclassical character of a given state [28]. We
evaluated the skew information W for the states generated in
our scissors device. For instance, in Fig. 9 we have plotted W
as a function of s for the states |�a〉 setting φ − β = π/2 rad
and θ = π/4 rad. We note that the skew information is an
increasing function of s, which can be associated to an increas-
ing sub-Poissonian character (see Fig. 2). Also in this case
there are variable levels of squeezing, as seen in Fig. 5, i.e.,
W captures an overall nonclassical behavior of those states.
We could also set s = 0.5, φ − β = π/2 rad, and vary θ . The
resulting plots are shown in Fig. 10. Thus, the Wigner-Yanase

FIG. 8. Variance of X̂ relative to state |�a〉 as a function of |α|
and s, for θ = π/4 rad, φ − β = π/2 rad, and N = 1.

FIG. 9. Skew information relative to state |�a〉 as a function of s
for φ − β = π/2 rad and θ = π/4 rad.

skew information captures the nonclassical character of the
generated states, and it can be associated to sub-Poissonian
statistics and/or squeezing. In addition, as is clearly seen in
the graphs, the nonclassical features are more pronounced for
states having a higher maximum Fock number N .

IV. EFFICIENCY OF THE PROTOCOL

Quantum scissors rely on photodetections, and hence per-
form quantum state truncation nondeterministically. There-
fore, even under ideal conditions, success probabilities may
be associated to its realization. In addition, photodetectors are
imperfect, which certainly has a negative impact on the quality
of the generated states. In what follows we are going to discuss
some aspects of the efficiency of our scheme.

A. Generation probabilities

The probability of generation of state |�(N,0)
a 〉, that is,

p(N,0)
a , is given by Eq. (7) in Sec. II A. It basically depends

on θ , s, and the coefficients ψi (actually |ψi|2). Again, we
consider for simplicity a coherent state input |α〉 and a 50:50
beam splitter (θ = π/4 rad). We may gauge the dependence
of the probability of generation on the modulus of the coherent

FIG. 10. Skew information relative to state |�a〉 as a function of
θ for s = 0.5 and φ − β = π/2 rad.
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FIG. 11. Probability of generation of state |�a〉 as a function of
|α| and s, for N = 1, θ = π/4 rad, and φ − β = π/2 rad.

amplitude, |α|, as well as the amplifier strength s by plotting
p(N,0)

a as a function of these quantities. This is shown in Fig. 11
for N = 1 and in Fig. 12 for N = 3. Clearly there are optimum
values of |α| and s that maximize p(N,0)

a for a given N . Natu-
rally, for N = 3 there is a substantial drop in the probability
of generation, compared to N = 1, while the maximum value
of p(3,0)

a occurs for slightly larger values of both |α| and s, as
we see in the figures.

B. Nonideal photodetection

Despite the advances regarding the quality of photode-
tectors, those devices are still not perfect. Some incoming
photons may not be recorded (quantum efficiency is not
100%), and sometimes detectors are spuriously activated
(dark counts). We assume that photon-number-resolving de-
tectors are employed, and counts up to N photons are
feasible [36]. The imperfections of a single detector can be
suitably modeled via the following positive-operator-valued

FIG. 12. Probability of generation of state |�a〉 as a function of
|α| and s, for N = 3, θ = π/4 rad, and φ − β = π/2 rad.

FIG. 13. Fidelity as a function of |α| for s = 0.5, θ = π/4, and
φ − β = π/2 rad. Here η = 0.7 and ν = 10−4.

measure [21,37]

�̂N =
N∑

n=0

∞∑
m=n

e−ννN−n

(N − n)!
ηn(1 − η)m−nCm

n |m〉〈m|, (13)

where η is the detector’s quantum efficiency, ν the dark count
probability, and Cm

n are binomial coefficients. In the setup we
are considering here, the action of each one of the detectors
will be modeled by �̂0 and �̂N for zero and for N photon
counts, respectively. We assume the same efficiency η and
dark count rate ν for both detectors. Due to these imperfec-
tions, the generated field should be represented by a density
operator, calculated by tracing over the detected modes. If the
detectors are placed in output ports b̂out and ĉout, the resulting
state will be

ρ̂ (η,ν)
a = ATrb,c[�̂0�̂N |�out〉〈�out|], (14)

where |�out〉 is the state in Eq. (3) and A is a normalizing
constant.

The performance of the protocol may be assessed by cal-
culating the fidelity F of the output state in relation to state
|�(N,0)

a 〉 (ideal output state), or

F = 〈
�(N,0)

a

∣∣ρ̂ (η,ν)
a

∣∣�(N,0)
a

〉
. (15)

We proceed by numerically computing the fidelity as a func-
tion of |α| and s, for different values of N , which is shown
in Figs. 13 and 14, respectively. Firstly, we note that although
the fidelity is clearly affected by the detection imperfections,
it is possible to generate truncated states with F � 0.9. Thus,
our modified scissors can, in principle, have a robustness
against imperfections comparable to that of conventional scis-
sors. Nevertheless, we observe that while in the conventional
scissors (with coherent state input) the fidelity F decreases
with increasing |α| [21], in our modified scissors F increases
with |α| instead, as seen in Fig. 13. On the other hand, the
fidelity decreases with increasing pump strength s, as shown
in Fig. 14. This behavior can be understood if we take a closer
look at the structure of the states generated by each type of
scissors. Consider for simplicity the particular case of having
50:50 beam splitters and N = 1. In a conventional scissors,
the truncated state generated from a coherent state |α〉 (α real)
is of the form |ϕ〉 = N (|0〉 + α|1〉), i.e., the coefficient of the
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FIG. 14. Fidelity as a function of s for |α| = 1, θ = π/4, and
φ − β = π/2 rad. Here η = 0.7 and ν = 10−4.

one-photon state is simply α. In our modified scissors though,
the resulting state is given by |ϕ′〉 = N ′(α|0〉 + tanh s|1〉),
and the coefficient of the one-photon state is tanh s. There-
fore, increasing the value of α (s) in conventional (modified)
scissors has the effect of decreasing the fidelity. Conversely, α
is the coefficient of the vacuum state in the modified scissors
output state and thus, increasing α should have the opposite
effect in this case, that is, an increase of the fidelity.

V. CONCLUSION

We proposed a scheme which allows quantum state trun-
cation via the combined action of a nondegenerate optical
parametric amplifier and a beam splitter. This makes it pos-
sible to perform the state truncation without the previous
generation of Fock states. In fact, there is no need of non-
classical input states whatsoever, and Gaussian states such
as vacuum states+coherent states are sufficient resources to
generate truncated output states which are nonclassical. This
is clearly advantageous, given that the experimental setup can
be substantially simplified. We should point out that a single
pumped nondegenerate parametric amplifier having vacuum
states as inputs, generates a two-mode squeezed vacuum state
as an output field. In our scheme, one of the modes of such an
entangled state is mixed with an arbitrary field in a beam split-
ter, and after the photodetections, the remaining field mode is
collapsed onto a truncated state. Accordingly, a nonclassical
resource appropriate for state truncation is provided by the
operation of the parametric amplifier itself, a device already
integrating the proposed arrangement.

Differently from the conventional scissors [19], in our
modified quantum scissors the nonclassical properties of
the generated states can be selected by changing not
only the transmittance of the beam splitter, but also by ad-
justing the quantities associated to the classical pump in the
amplifier, the strength s and phase φ. We should also point out
that depending on the position of the photodetectors, different
classes of states can be produced. If the photodetectors are
placed in both output ports of the beam splitter, a state having
a maximum Fock number, say N , is generated. However, if
one photodetector is placed in one of the beam splitter’s ports
and the other in the amplifier’s output port, the generated

state will have the Fock components n < N removed. In other
words, the scheme presented here allows the generation of
states truncated in complementary sections of the Fock basis.
Our results are expected to be relevant for exploring possibili-
ties involving the combination of linear and nonlinear devices,
aiming at the manipulation of quantum states of light.
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APPENDIX: THE DERIVATION FOR EQ. (3)

We assume for the device in Fig. 1 a joint input state
having vacuum states in the amplifier’s input ports and an
arbitrary pure state |ψ〉 = ∑

ψi|i〉 in the beam splitter’s input
port. Thus, the combined action of the amplifier/beam splitter
R̂(θ )Ŝ(ξ )|�in〉, will be

|�out〉 = R̂(θ )Ŝ(ξ )|�in〉 =
∞∑

i=0

1√
i!

ψiR̂(θ )Ŝ(ξ )ĉ†i|0, 0, 0〉.
(A1)

Using now the following relations,

Ŝâ†Ŝ† = â† cosh s + b̂e−iφ sinh s,

Ŝb̂†Ŝ† = b̂† cosh s + âe−iφ sinh s,

Ŝĉ†Ŝ† = ĉ†,

Ŝ|0, 0, 0〉 =
∞∑

n=0

sech s(−eiφ tanh s)n|n, n, 0〉, (A2)

for the squeezing operator, and

R̂â†R̂† = â†,

R̂b̂†R̂† = T∗b̂† + Rĉ†,

R̂ĉ†R̂† = −R∗b̂† + Tĉ†,

R̂|0, 0, 0〉 = |0, 0, 0〉 (A3)

for the beam-splitter operator.
Applying the relations above to Eq. (A1), we obtain

|�out〉 = R̂(θ )Ŝ(ξ )|�in〉 =
∞∑

i=0

∞∑
n=0

1√
i!

ψiAn(ξ )R̂ĉ†i|n, n, 0〉

=
∞∑

i=0

∞∑
n=0

1√
i!

1√
n!

ψiAn(ξ )R̂b̂†nĉ†i|n, 0, 0〉

=
∞∑

i=0

∞∑
n=0

1√
i!

1√
n!

ψi An(s, φ)

× (T∗b̂† + Rĉ†)n(−R∗b̂† + Tĉ†)i|n, 0, 0〉, (A4)
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which results in

|�out〉 =
∞∑

i=0

∞∑
n=0

i∑
j=0

n∑
m=0

1√
i!

1√
n!

i!

j!(i − j)!

n!

m!(n − m)!
ψiAn(s, φ)(T∗b̂†)n−m(Rĉ†)m(−R∗b̂†)i− j (Tĉ†) j |n, 0, 0〉. (A5)

Finally,

|�out〉 =
∞∑

i=0

∞∑
n=0

i∑
j=0

n∑
m=0

√
i!

j!(i − j)!

√
n!

m!(n − m)!

√
(i − j + n − m)!

√
( j + m)! ψi An(s, φ)

× T jT∗n−mRm(−R∗)i− j |n, i − j + n − m, j + m〉. (A6)
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