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Quantum optical cluster states have been increasingly explored in the light of their importance for
measurement-based quantum computing. Here we set forth a method for generating quantum controlled cluster
states: pumping an optical parametric oscillator with spatially structured light. We show that state-of-the-
art techniques for producing clusters in the spectral and temporal domains are improved by a structured
light pump, which manipulates the spatial mode couplings in the parametric interaction. We illustrate the
method considering a second-order pump structure and show that a simple mode rotation yields differ-
ent cluster states, including but not limited to the two-dimensional square and hexagonal lattices. We
also introduce a novel technique for generating nonuniform cluster states and propose a simple setup for
its implementation.
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I. INTRODUCTION

Practical quantum optical computers have become closer
to reality after recent developments with optical parametric
oscillators (OPO). The OPO is a versatile device capable of
generating large-scale entanglement in either time, frequency,
or spatial domains. In the time domain, for example, a scheme
with multiple degenerate OPOs and time-shifted Einstein-
Podolsky-Rosen (EPR) pairs was shown to produce cluster
states with up to ∼106 entangled modes with a few available
at a time [1,2]. More recently, the same approach was used to
generate a square lattice cluster state, a universal resource for
one-way quantum computing [3,4].

An alternative approach uses a single nondegenerate OPO
and a spectrally shaped pump beam to tailor the interaction
between shifted frequency combs—also known as a quantum
optical frequency combs (QOFC). Such a device was shown to
produce different outcomes, be it in the form of parallel copies
of low-dimensional states [5] or large-scale cluster states
[6,7]. More recently, a novel scheme was proposed to produce
square lattice cluster states via phase modulation of the QOFC
[8], which is promising for integrated quantum photonics.
Nonetheless, a singular technique of synchronously pumping
the OPO with a pulsed laser was also proven to produce
cluster states [9,10] with modes encoded in the temporal shape
of the down-converted fields.

On a lower scale, the spatial degree of freedom was also
shown to improve the capabilities of currently available sys-
tems by increasing the dimensionality of the parameter space.
For example, one could mention the production of multi-
partite entanglement between first-order spatial modes in a
type-II OPO [11–14]. In a series of recent reports, several
cluster states have also been produced with orbital angular
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momentum (OAM) modes in a four-wave mixing setup
[15–20] with applications to quantum teleportation and quan-
tum networks. One should also mention the proposals for
production of both spatial-only [21] and spatiospectral [22]
graph states with OAM modes in the OPO.

In this paper, we investigate the role of the pump spatial
structure in the two main techniques for generating cluster
states with OPOs, namely, the frequency and time shifting
of quantum combs. We show that the nonlinear interaction
between higher-order spatial modes can be easily manip-
ulated with the pump structure, allowing for the versatile
control of the states produced by the aforementioned tech-
niques. We illustrate the method considering a second-order
pump mode, showing that it leads to quantum controlled
one-dimensional (1D) clusters in the spectral domain. Further-
more, we show that time shifting the 1D spectral clusters leads
to different two-dimensional (2D) clusters in the hybrid spec-
trotemporal domain, including, but not limited to the square
and hexagonal topologies. Lastly, we propose a technique
for generating nonuniform 2D clusters, exploring the rapidly
switching pump structure obtained by polarization modulation
of classically nonseparable vector modes.

The paper is organized as follows. In Sec. II we introduce
the formalism we use to derive the quantum states produced
by the OPO. In Sec. III we analyze the tuning of the quadri-
partite interaction enabled by a varying second-order spatial
mode in the pump field. This is the building block we use to
implement quantum control over spectral clusters in Sec. IV
and spectrotemporal clusters in Secs. V and VI. Lastly, in
Sec. VII we comment on the possible experimental challenges
of the proposed setups.

II. FORMALISM

The Hamiltonian of the optical parametric interac-
tion under the undepleted pump approximation is the
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following [23]:

Ĥ = ih̄κ
∑
mn

Gmn(â†
mâ†

n − âmân), (1)

where â†
m,n (âm,n) are the creation (annihilation) operators of

the down-converted modes and κ is a coupling strength, which
is proportional to the second-order susceptibility. The matrix
G is the adjacency matrix of the Hamiltonian graph [24,25],
which in the case of perfect phase matching can be written as

Gmn =
∑

l

αl�lmn. (2)

It depends on the modal content of the pump via the ampli-
tudes αl , and on the coupling among pump (p), signal (s),
and idler (i) transverse modes via the overlap integral �lmn =∫

d2r u(p)
l (r)u(s)∗

m (r)u(i)∗
n (r). The overlap integral contains the

selection rules of the transverse mode coupling as extensively
discussed in Refs. [26,27].

Our goal is to investigate the production and manipulation
of multipartite entanglement using the pump spatial struc-
ture as resource. For this purpose, we consider the case of
a second-order pump mode, whose electric field can be gen-
erally written in the Hermite-Gaussian basis (HGmn) [28] as
Ep = α20HG20 + α11HG11 + α02HG02, coupling to first-order
modes in the signal and idler. According to the selection
rules detailed in Refs. [26,27], three concurrent nonlinear
processes are allowed in this case, namely, HG02 → HG10 +
HG10, HG02 → HG01 + HG01 and HG11 → HG10 + HG01.
Such concurrent interactions are known to yield quadripartite
continuous-variable (CV) entangled states as experimentally
verified in Ref. [13].

In the next section, we explore the control over the
aforementioned multimode entangled states by tuning the
interaction Hamiltonian (1) with a varying pump spatial
structure.

III. QUADRIPARITE CLUSTER STATES FROM A
SPATIALLY STRUCTURED PUMP

Let us consider a convenient example of pump structure,
defined by the amplitudes α11 = sin 2θ and α20 = −α02 =
cos 2θ/

√
2. This corresponds to a HG11 mode rotated clock-

wise by θ − π/4, whose electric field can be written in
the Hermite-Gaussian basis [28] as Ep = cos 2θ (HG02 −
HG20)/

√
2 + sin 2θ HG11. Naming the first-order down-

converted modes as {â1, â2, â3, â4} = {â(s)
10 , â(s)

01 , â(i)
10, â(i)

01} with
s and i standing for signal and idler, respectively, the adja-
cency matrix (2) becomes

G(θ ) =
(

0 α

α 0

)
, (3)

α = 1√
2

(
cos 2θ sin 2θ

sin 2θ − cos 2θ

)
, (4)

up to a multiplicative constant that can be absorbed into the
coupling strength κ . The action of such multimode squeezing
interaction in phase space is fully described by a symplectic
matrix (see Appendix A), which in the present case is given by
S = eγ M with M = diag[G,−G] and γ = 2κt for an interac-
tion time t . From S we readily obtain the covariance matrix of

FIG. 1. Peres-Horodecki (PPT) values obtained for a HG11 pump
mode rotated clockwise by π/4 − θ . Each curve corresponds to a
different value of θ , and we considered γ = 0.1.

the transformed quantum state to which we apply the Simon
criterion [29] to identify entanglement.

We show in Fig. 1(a) the lowest symplectic eigenvalues
(PPT values) of the partially transposed covariance matrices
obtained for the adjacency matrix (3). The PPT values
are shown for the seven possible bipartitions, namely,
(1) 1|234, (2) 2|134, (3) 3|124, (4) 4|123, (5) 12|34, (6)
13|24, and (7) 14|23 for different values of the rotation angle
θ . Note that for all angles between 0 < θ < π/4, all the PPT
values are lower than one, indicating genuine quadripartite
entanglement. The quadripartite entanglement is broken only
for θ = 0 or θ = π/4 in which cases, at least, one of the three
HG components is absent.

From the symplectic formalism we also get the squeezed
supermodes—combinations of field quadratures that become
squeezed in the interaction—-, given by the negative eigen-
vectors of the matrix M. They are

[−Q̂1 cos 2θ − Q̂2 sin 2θ + Q̂3] ∝ e−γ /
√

2,

[Q̂1 sin 2θ − Q̂2 cos 2θ − Q̂4] ∝ e−γ /
√

2,

[P̂1 cos 2θ + P̂2 sin 2θ + P̂3] ∝ e−γ /
√

2,

[P̂1 sin 2θ − P̂2 cos 2θ + P̂4] ∝ e−γ /
√

2. (5)

These combinations of field quadratures after appropriate
phase shifts are the approximate nullifiers of a quadripartite
cluster state whose adjacency matrix is precisely G due to the
fact that G2 = 1 [24].

In the following sections, we will use the aforementioned
quadripartite system as a building block to perform quantum
control over large-scale cluster states produced by state-of-
the-art techniques, namely, the QOFC and the time shifting
with delay lines.

IV. SPATIOSPECTRAL CLUSTER STATES

A QOFC [5–7] is usually obtained from a type-I (or type-
0) OPO operating below threshold and close to degeneracy,
which features several longitudinal modes simultaneously
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FIG. 2. Cluster states produced by dual-frequency spatially structured pump. In (a) we show the considered pump modes, which are rotated
petal modes. The produced cluster states are shown for p1 = 1 and p2 = 3, and the following combinations of spatial modes: (b) θ1 = θ2 =
π/8, (c) θ1 = θ2 = 0, and (d) θ1 = θ2 = π/4. Although in (b) the cluster has a dual-rail structure, in (c) and (d) it is dismantled in two
independent single-rail clusters. The numbers in (b)–(d) are the weights of the cluster edges.

close to resonance [30,31]. The down-converted frequencies
are ωn = ω0 + nδ, where ω0 is an arbitrary offset and δ is
the cavity-free spectral range. Due to energy conservation, the
pair {n1, n2} only couples to a pump frequency given by ωp =
2ω0 + pδ, where p = n1 + n2 is the pump index. Therefore,
each spectral component p of the pump produces multiple
EPR pairs dispersed in the frequency domain, fundamentally
limited by the phase-matching bandwidth of the nonlinear
crystal [32]. When two pump frequencies are used, the EPR
pairs concatenate and form a large-scale 1D cluster state [6].

Here we consider a dual-frequency pump with a rotated
HG11 mode in each frequency component, which is labeled
by the indices {p1, p2} for the frequencies and {θ1, θ2} for the
rotation angles as shown in Fig. 2(a). Although each pump
spectral component produces several quadripartite entangled
states, both combined yield a cluster state known as a dual-rail
quantum wire [1,6], shown in Fig. 2(b) for θ1 = θ2 = π/8 (see
Appendix B for detailed calculations).

Note that each cluster node has a given frequency and
spatial mode, whereas the edges are controlled by the rotation
angles of the pump modes. This is exemplified in Figs. 2(c)
and 2(d), which show the extreme cases in which, at least,
one of the pump HG components is absent. In these cases,
the dual-rail structure is dismantled in two independent single
rails, connecting identical (orthogonal) spatial modes for θ1 =
θ2 = 0 (θ1 = θ2 = π/4). These particular examples already
show that pumping an OPO with structured light provides
an efficient way to implement quantum control over spectral
cluster states.

V. EXTENSION TO UNIVERSAL CLUSTER STATES

The dual-rail cluster state, although highly scalable, is
one dimensional and, thus, not suitable for universal for
measurement-based quantum computation (MBQC) [33].
However, it is possible to create a 2D cluster by mixing
several dual-rail clusters emitted sequentially by the OPO
[34]. When sufficiently squeezed [35] and used alongside
non-Gaussian resources, such as Gottesman-Kitaev-Preskill

states and photon-number resolving measurements [36,37],
a 2D cluster state is suitable for fault-tolerant and univer-
sal MBQCs. In this section we discuss how the strategy of
Ref. [34] can be applied to spatially structured fields and
how the quantum control over the primary dual-rail clusters
manifests in the resulting universal resource.

We illustrate in Fig. 3(a) the proposed experimental setup,
which is the spatial-mode equivalent of the scheme reported in
Ref. [34]. First, the OPO is pumped by the continuous-wave
spatiospectrally structured field detailed in the previous sec-
tion and produces a stream of the dual-rail clusters shown in
Fig. 2. Although the outgoing fields are also continuous wave,
they have a coherence time on the order of the OPO lifetime,
measured as the inverse of the squeezing bandwidth. This
allows one to divide the down-converted fields in independent
“time bins”’ or temporal modes k ∈ Z, which are emitted
sequentially by the OPO [1–3].

The spatiospectral clusters in each temporal index k carry
first-order HG spatial modes, which are separated in a trans-
verse mode beam splitter (TBS) [38,39]. The vertically
oriented HG01 modes are then time delayed by one temporal
index and reunited with the HG10 modes. The last element
before the detection is a Dove prism, which performs a π/4
clockwise rotation on the spatial modes.

The graph of the resulting 2D cluster state is shown
in Fig. 3(b), and detailed calculations of the correspond-
ing nullifiers are provided in Appendix C. The cluster is a
macro-node-based bilayer lattice [4,34], with each macronode
containing a pair of orthogonal HG modes with the same
spectral and temporal indices. The reconfigurability of the 2D
cluster is evidenced by the dependence of the cluster edges on
the pump structure, contained in the following parameters:

a = cos 2θ1

2r
, b = sin 2θ1√

2r
, (6)

c = cos 2θ2

2r
, d = sin 2θ2√

2r
, (7)
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FIG. 3. (a) Experimental apparatus for the production of a bilayer 2D lattice with structured light. The detailed cluster graph is shown in
(b). In panels (c)–(f), we show the resulting clusters for different pump structures, defined by the the rotation angles θ1 and θ2 indicated in each
panel. The filled and unfilled squares indicate frequency indices n with different parities, and the shaded regions in (c)–(e) highlight the 2D
structures achieved in each case.

where r, given by

r =
√

6 − cos 4θ1 − cos 4θ2

2
√

2
. (8)

We show in Figs. 3(c)–3(f) the graphs of the resulting clusters
for some combinations of pump angles.

The quantum control feature displayed by the dual rails of
Fig. 2 is clearly inherited by the 2D structures obtained with
the temporal encoding. For θ1 = θ2 = π/4, as highlighted in
Fig. 3(c), the OPO produces two independent bilayer square
lattices [34], connecting macronodes with neighboring tem-
poral indices and frequency indices of different parities. On
the other hand, for θ1 = 0 and θ2 = π/4 (θ1 = π/4 and θ2 =
0), we show in Figs. 3(d) [3(e)] that the produced clusters are
bilayer hexagonal lattices, which are also universal for MBQC
[40]. Finally, for θ1 = θ2 = 0, the connections between dif-
ferent temporal modes vanish, and the cluster loses its 2D
character. These results show that with the proposed strategy
cluster transformations which would require cumbersome sets
of local measurements can be performed by a single change in
the pump spatial structure.

VI. TIME-VARYING PUMP STRUCTURE

The 2D clusters in the aforementioned discussion are built
by time shifting a sequence of identical spatiospectral 1D
clusters. An additional layer of quantum control is achieved if
the pump structure is such that the OPO produces a sequence
of different 1D clusters instead. To illustrate this phenomenon,
we show in Fig. 4 the resulting clusters for a pump field
switching back and forth between two configurations on a
time scale shorter than the down-converted time bins, ac-
cording to the nullifiers derived in Appendix C. Note that

two completely different structures are produced in this case.
whereas in Fig. 4(a) we have a kagomelike pattern, the graph
of Fig. 4(b) displays a nonuniform pattern. Naturally, this

(a)

(b)

FIG. 4. Graphs for cluster states produced by a pump structure
{θ1, θ2} varying between (a) {0, π/4} and {π/4, 0} and (b) {0, π/4}
and {π/4, π/4}.
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FIG. 5. Simplified experimental arrangement to produce separate
time-varying spatial structures for the two pump frequency compo-
nents. The pump frequency modes p1 and p2 carry second-order
vector vortices in their transverse structures, and the spatial mode
switching is achieved by passing each of them through a polarization
EOM, a nonpolarizing beam splitter (BS), and a polarizer (Pol).

additional layer of quantum control can be further explored by
considering different sequences of three or more pump spatial
structures using the 2D building blocks shown in Fig. 3.

We also propose a simple experimental arrangement for
the fast switching between different pump structures, dis-
played in Fig. 5. First, each pump spectral component is
prepared in a second-order vector vortex mode, whose elec-
tric field is given by E = (HG20 − HG02)eh/

√
2 + HG11ev,

where eh and ev denote horizontal and vertical polariza-
tions, respectively. Then the beams pass through polarization
electro-optical modulators (EOM), that switch the polariza-
tions in MHz frequencies, and through a polarizer. Due
to the nonseparability between spatial structure and polar-
ization of such modes, the outcome of the polarizer will
be a superposition of second-order petal modes with dif-
ferent frequencies, switching between angles controlled by
the EOMs.

As the EOM frequencies easily surpass the squeezing
bandwidth of typical OPOs, we can assume that the pump
modes are constant for the duration of a time bin and change
sharply at the end. Such square wave changes in the pump
manifest equivalently in the interaction Hamiltonian, which
then becomes a piecewise constant function of time, different
for each temporal index. This results in a sequence of dual-
rail clusters that can be directly controlled by the waveforms
applied to the EOMs.

VII. EXPERIMENTAL FEASIBILITY

Although the production and manipulation of large-scale
cluster states in the spectral and temporal domains are already
well-established techniques, adding the spatial degree of free-
dom may bring additional challenges. The most prominent
bottleneck would be the astigmatism introduced by the non-
linear crystal [41], which would separate the frequency combs
for the modes HG10 and HG01. Although a solution for this
problem has been reported [12], its application to large-scale
clusters remains to be tested.

The characterization of the produced state can also be
challenging, as standard homodyne measurements require
independent local oscillators in all the different spatial
modes and frequencies. This may be critical specially
if higher-order modes are used. One possible path to

overcome this limitation is the parametric homodyne tech-
nique [42], which eliminates the need for local oscillators
and makes the squeezing measurements robust to noise. As-
sociated with modern mode-sorting strategies [43–45], this
technique is promising for MBQC with spatially structured
clusters.

VIII. CONCLUSION

We have presented a method to control continuous-variable
cluster states produced by OPOs, exploring the spatial struc-
ture of the pump field. Considering second-order pump
modes, we have shown that reconfigurable 1D cluster states
are produced in the spectral domain, extending to universal 2D
clusters after time shifting with a delay line. Nonetheless, the
2D clusters inherit the reconfigurability of the 1D resource and
can assume different topologies as the pump field is rotated.
We have also proposed a novel scheme for generating nonuni-
form 2D clusters using a rapidly switching pump structure
and presented a simple experimental scheme for its imple-
mentation using nonseparable vector beams and polarization
modulators. Our results open a path for the production and
control of large-scale cluster states, settling the importance of
the spatial degree of freedom for measurement-based quantum
computing.
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APPENDIX A: SYMPLECTIC FORMALISM

In this Appendix we introduce the symplectic formalism
that we use in our entanglement analysis. First, we define the
quadrature vector x̂ = (Q̂1Q̂2 · · · Q̂nP̂1P̂2 · · · P̂n) for which the
symmetrized covariance matrix is given by [25]

V = cov x̂ = 1
2 〈{x̂†, x̂T }〉. (A1)

In the above equation, we used the following definition for the
anticommutator:

{r̂, ŝT } := r̂ŝT + (ŝr̂T )T , (A2)

where r̂ and ŝ are operator-valued vectors, and the Hermitian
conjugation only applies to the operators within the vectors
[25]. Note that with our definitions for the field quadratures
[Q̂ = â + â† and P̂ = −i(â − â†)], the covariance matrix of
the vacuum is simply V = 1, where 1 is the identity matrix.

Now we turn to the Heisenberg time evolution of the
quadrature vector x̂ under a Gaussian Hamiltonian—a Hamil-
tonian at most quadratic in the field operators. It can be shown
that [46]

x̂(t ) = Sx̂(0), (A3)
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FIG. 6. Proposed experimental scheme for the production of 2D cluster states with structured light.

where S = S(t ) is a symplectic matrix of complex numbers
and t is the time. In the special case where the initial state is
vacuum, the covariance matrix after the Gaussian interaction
is simply given by [25]

V = SST , (A4)

which is the expression we use in the following analysis.
There are different criteria to identify the entanglement

of a Gaussian state, but here we focus on the one proposed
by Simon [29]. It consists of a generalization to continuous
variables of the PPT criterion [47], which relies on the pos-
itivity of the density matrix after partial transposition. For
CV systems, the partial transposition translates into a “local
time reversal” (Q̂ j → Q̂ j and P̂j → −P̂j) of the transposed
subsystem [29], and the condition for a physical covariance
matrix is

V + i� � 0, (A5)

where

� = −i[x̂, x̂T ] =
(

0 I
−I 0

)
, (A6)

with the commutator of operator-valued vectors defined in
analogy to (A2). If the partially transposed covariance matrix
violates (A5), the chosen bipartition is entangled.

The violation of (A5) can be conveniently tested by inspec-
tion of the symplectic eigenvalues, defined as the ordinary
eigenvalues of the matrix −i�V. With our definitions, if
the lowest symplectic eigenvalue of the partially transposed
covariance matrix (PPT value) is lower than unit, (A5) is
violated and the selected bipartition is entangled.

APPENDIX B: CLUSTER NULLIFIERS FOR A
DUAL-FREQUENCY PUMP

Here we consider in more detail the case of a dual-
frequency pump, labeled by the indices {p1, θ1} and {p2, θ2}
with p j indicating the frequency and θ j indicating the spatial
mode in that frequency. The two pumps are assumed to have
the same intensity and phase for simplicity. The corresponding
interaction Hamiltonian can be written as

Ĥ = i
κ

2
h̄

∑
n

(
V T

n ḠVn-H.c.
)
, (B1)

where the summation is over the frequency indices n of the-
QOFC. Also, the matrices Ḡ and Vn are given by

Ḡ =
⎛
⎝G(θ1) 0

0 G(θ2)

⎞
⎠, Vn =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

b̂†
p1−n

ĉ†
p1−n

b̂†
n

ĉ†
n

b̂†
p2−n

ĉ†
p2−n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (B2)

where we have renamed the operators â j
10 and â j

01 as b̂ j and
ĉ j , respectively, with j being the frequency index.

From (B2), we obtain the corresponding symplectic matrix
and extract the squeezed supermodes. In particular, we obtain
that the following quantities are squeezed:

Xh = Q̂n
h − {

aQ̂p1−n
h + bQ̂p1−n

v + cQ̂p2−n
h + dQ̂p2−n

v

}
,

Xv = Q̂n
v − {

bQ̂p1−n
h − aQ̂p1−n

v + dQ̂p2−n
h − cQ̂p2−n

v

}
, (B3)

where the subscripts h and v indicate the spatial modes
HG10 and HG01, respectively, and the parameters a–d are
defined in Eq. (7). These squeezed quantities are the ap-
proximate nullifiers of a one-dimensional cluster state known
as a dual-rail quantum wire [6], whose graph is shown
in Fig. 2.

APPENDIX C: TIME-STAGGERING OF 1D CLUSTERS
STATES

1. Fixed pump structure

In this Appendix we detail the generation of a 2D cluster
state from the dual-rail clusters defined in (B3), following the
strategy described in Ref. [34]. The proposed experimental
setup is shown in Fig. 6. First, the OPO generates a sequence
of dual-rail quantum wires arriving at point 0, each one with
a different temporal index k. Then the HG10 transverse modes
are delayed by one temporal index with respect to the HG01

modes, before reaching the point 1. The last transformation is
a spatial mode rotation with a dove prism, which mixes the
spatial modes arriving at 2 at the same time. The correspond-
ing transformations of the field quadratures from 0 to 2 are the
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FIG. 7. Graph of the 2D cluster state defined by the nullifiers
(C3) and (C4).

following:

Q̂(0)
h,k = 1√

2

(
Q̂(2)

h,k − Q̂(2)
v,k

)
,

Q̂(0)
v,k = 1√

2

(
Q̂(2)

h,k+1 + Q̂(2)
v,k+1

)
, (C1)

where the upper indices 0 and 2 indicate the different stages
in the setup. Note that the frequency index was omitted in
the above equations, but these transformations apply indepen-
dently to all the frequencies of the QOFC.

The next step is to map the linear optical transformations
(C2) on the 1D dual-rail clusters. From (B3), we obtain

Xh,k = Q̂n
h,k − Q̂n

v,k − [
a
(
Q̂p1−n

h,k − Q̂p1−n
v,k

) + b
(
Q̂p1−n

h,k+1 + Q̂p1−n
v,k+1

) + c
(
Q̂p2−n

h,k − Q̂p2−n
v,k

) + d
(
Q̂p2−n

h,k+1 + Q̂p2−n
v,k+1

)]
,

Xv,k = Q̂n
h,k+1 + Q̂n

v,k+1 − [
b
(
Q̂p1−n

h,k − Q̂p1−n
v,k

) − a
(
Q̂p1−n

h,k+1 + Q̂p1−n
v,k+1

) + d
(
Q̂p2−n

h,k − Q̂p2−n
v,k

) − c
(
Q̂p2−n

h,k+1 + Q̂p2−n
v,k+1

)]
, (C2)

where the temporal index k was added as a label in all the operators. Lastly, as any linear combination of Xh,k and Xv,k′ is
squeezed, we can define the following squeezed supermodes:

X +
k = (Xv,k−1 + Xh,k )/2

= Q̂n
h,k −

[
− aQ̂p1−n

v,k − cQ̂p2−n
v,k + b

2

(
Q̂p1−n

h,k+1 + Q̂p1−n
v,k+1 + Q̂p1−n

h,k−1 − Q̂p1−n
v,k−1

) + d

2

(
Q̂p2−n

h,k+1 + Q̂p2−n
v,k+1 + Q̂p2−n

h,k−1 − Q̂p2−n
v,k−1

)]
,

(C3)

X −
k = (Xv,k−1 − Xh,k )/2

= Q̂n
v,k −

[
−aQ̂p1−n

h,k − cQ̂p2−n
h,k + b

2

( − Q̂p1−n
h,k+1 − Q̂p1−n

v,k+1 + Q̂p1−n
h,k−1 − Q̂p1−n

v,k−1

) + d

2

( − Q̂p2−n
h,k+1 − Q̂p2−n

v,k+1 + Q̂p2−n
h,k−1 − Q̂p2−n

v,k−1

)]
.

(C4)

These quantities, after appropriate phase shifts, become the
approximate nullifiers of the 2D cluster shown in Fig. 7.

2. Time-varying pump structure

The clusters generated by a time-varying pump structure
can be obtained in a similar manner. For that purpose, we first

add the temporal index k to the cluster edges, i.e.,

a → ak, b → bk,

c → ck, d → dk, (C5)

taking into account that the 1D clusters in different time bins
can be different. We obtain the 2D cluster nullifiers by repeat-
ing the procedure leading to Eqs. (C3) and (C4) for a given
pair of pump structures at the times k and k − 1. The result is,
in general, a nonuniform 2D pattern as presented in Fig. 4.
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