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The quantum Rabi model (QRM) describes the interaction between a two-level system (qubit) and a quantum
harmonic oscillator. In the limit where the qubit frequency is smaller than the harmonic frequency, the QRM
can be well approximated by the adiabatic approximation (AA). The AA is widely used due to its simplicity
and explicit physical interpretation. However, the level crossings in the spectrum of the QRM predicted by the
AA are determined by the zeros of Laguerre polynomials, which deviate from the exact points. We propose an
approximation to the QRM that predicts the level crossings correctly. This is done by exploiting a surprising
connection between isolated exact solutions to the QRM and the Laguerre polynomials in the AA. We thus
refer to this approach as the generalized adiabatic approximation (GAA). By construction, the GAA always
predicts the exact exceptional spectrum and approximates the regular spectrum remarkably well in a much larger
parameter regime than the AA. This generalized approach offers a framework to deal with the family of Rabi-type
light-matter interaction models in a simple but accurate manner.
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I. INTRODUCTION

The quantum Rabi model (QRM) is one of the simplest
models in quantum physics [1,2]. It describes the interaction
between a two-level system and a harmonic oscillator. Despite
its simplicity, the QRM exhibits rich physics and has found
applications in various contexts, from quantum optics [3] to
solid state physics [4]. For example, in quantum optics, the
QRM describes the interaction between a two-level atom and
a linearly polarized radiation mode. On the other hand, in
solid state physics, an electron hopping between two sites and
interacting with a vibrational mode can be depicted by the
same Hamiltonian [5]. In the past decade, the realization of
the QRM in circuit quantum electrodynamics (cQED) systems
has been a particularly exciting development [6–8]. This is
partly because the cQED systems have become one of the
most promising candidates for quantum computation. In these
setups, the QRM describes a superconducting qubit coupled
to a circuit resonator [9,10].

The simple form of the QRM has undoubtedly concealed
the complexity of its solvability. After more than 80 years,
the QRM has only been solved in the past decade [11–15].
Moreover, there is still no simple closed-form expression for
the general energy eigenvalues of the QRM. In the analytic
solution, the energy spectrum of the QRM is classified into
regular and exceptional parts [11]. The regular spectrum, to
which most eigenvalues belong, is obtained through the zeros
of transcendental functions, whereas the exceptional solutions
are isolated and given by the zeros of constraint polynomials
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with the system parameters as variables [16]. These excep-
tional solutions correspond to the level crossings in the energy
spectrum of the QRM.

Due to the lack of simple closed-form solutions, a number
of approximations to the regular spectrum of the QRM are
still actively pursued. Apart from the celebrated rotating-wave
approximation (RWA) defining the Jaynes-Cummings model
[2], which is at the heart of light-matter interaction in the
strong coupling regime, the adiabatic approximation (AA)
[17] has also been extensively adapted by theorists and exper-
imentalists alike to describe the ultrastrong and deep-strong
coupling regimes. The well-known generalized rotating-wave
approximation (GRWA) has been developed by combining the
RWA and the AA, providing a framework to derive analytic
solutions to the QRM and its relatives [18,19]. Also, the AA
has been adapted to classify the coupling regimes in light-
matter interaction processes [20]. Experimentally, the AA has
been exploited to interpret the spectroscopic results obtained
in circuit QED experiments [21]. Several other approxima-
tions to the QRM have been developed, each tailored to a
particular range of parameters [22].

However, none of the existing approximations accurately
capture the level crossing points in the energy spectrum. For
example, the RWA breaks down in the ultrastrong coupling
regime, before the appearance of the first crossing points.
The AA predicts the level crossings through the zeros of
Laguerre polynomials, which are only exact when the qubit
frequency vanishes. To overcome this limitation, we propose
a simple-form approximation based on the displaced oscillator
picture and the exact solutions to the exceptional energy spec-
trum. We refer to this approach as the generalized adiabatic
approximation (GAA). By construction, this GAA always pre-
dicts exact level crossings and, surprisingly, it also performs
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remarkably well on approximating the regular spectrum. This
generalized approach offers a framework to treat light-matter
interaction models with isolated exact solutions [23].

This paper is organized as follows. In Sec. II, we review
the AA and collect the results for level crossing points of the
QRM. In particular, we discuss the Laguerre polynomials in
the AA and the constraint polynomials defining the exact ex-
ceptional solutions. In Sec. III, we observe the similarity and
difference in these results and obtain an approximation which
outperforms the AA and expands the validity into nonpertur-
bative regimes. We demonstrate the advantages of the GAA
by comparing the approximations with the numerical results.
Some further discussion is given in Sec. IV with concluding
remarks in Sec. V.

II. ADIABATIC APPROXIMATION AND EXCEPTIONAL
SOLUTIONS

A. Model Hamiltonian

In terms of the Pauli matrices σx and σz for a two-level
system with level splitting �, the Hamiltonian of the QRM
reads (h̄ = 1)

H = �

2
σz + ωa†a + gσx(a† + a). (1)

The quantum harmonic oscillator, or the single-mode bosonic
field, is described by the creation and annihilation operators
a† and a with frequency ω. The interaction between the two
systems is via the coupling g.

The QRM conserves parity of the excitation number, which
corresponds to a Z2 symmetry [11,15]. Indeed, it can be
easily shown that Hamiltonian (1) commutes with the parity
operator P = σzeiπa†a, namely, [H, P] = 0. This implies that
the QRM Hamiltonian matrix can be diagonalized into two
blocks, each belonging to a parity subspace. Eigenvalues from
different symmetry sectors are allowed to cross due to this Z2

symmetry. More specifically, crossings exist within level pairs
in the energy spectrum of the QRM.

B. Displaced oscillator picture and adiabatic approximation

The QRM is trivially solvable in the atomic degeneracy
limit � = 0, where the Hamiltonian reduces to

H�=0 = ωa†a + gσx(a† + a). (2)

In the basis of | ± x〉, where σx| ± x〉 = ±| ± x〉, we can
rewrite the Hamiltonian in the form of displaced creation and
annihilation operators, namely,

H�=0 = ω
[(

a† ± g

ω

)(
a ± g

ω

)]
− g2

ω
. (3)

It follows that Hamiltonian (2) is diagonalized by a unitary
transformation generated by the position displacement oper-
ator D(α) = exp[−α(a† − a)], with displacement amplitude
α = ±g/ω associated with the spin states. This gives rise to
the solutions

�do
n,± = |n±,±〉,

Edo
n,± = n ω − g2

ω
,

(4)

FIG. 1. Sketch of the displaced oscillator picture for the QRM.
When � = 0, the two oscillators are independent of each other and
the energy levels are doubly degenerate, as described by Eq. (4).
When � �= 0, but the assumption �/ω � 1 holds, the qubit term
�

2 σz induces tunneling between the degenerate eigenstates |n−, −〉
and |n+, +〉 and all other tunneling processes may be considered neg-
ligible. When �/ω is large enough and the above assumption fails,
higher-order tunneling processes need to be taken into consideration.

of Hamiltonian (2). Here, |n±,±〉 = |n±〉 ⊗ | ± x〉, with
|n±〉 = D(±g/ω)|n〉 being the displaced Fock states, also
known as the generalized or extended coherent states [24,25].
Intuitively, Eq. (3) can be understood as two displaced har-
monic oscillators, with the displacement amplitude ±g/ω
associated with the qubit states |± x〉, as shown visually in
Fig. 1. This interpretation is known as the displaced oscillator
picture and has been extensively used in light-matter interac-
tion models [25–28].

Next, we write the QRM Hamiltonian in the basis of dis-
placed oscillator eigenstates (4) and switch on the parameter
�. The qubit term 1

2�σz couples these eigenstates. Equiv-
alently, this coupling may be understood as the tunneling
between the two displaced oscillators. The key assumption
of the AA is that only the tunneling process between the
eigenstates with the same n is considered, and higher-order
terms are neglected. By doing so, the QRM Hamiltonian is
decomposed into block-diagonal form, consisting of infinitely
many 2 × 2 blocks,

HAA
n =

(
Edo

n,+
�
2 〈n−|n+〉

�
2 〈n−|n+〉 Edo

n,−

)
, (5)

which can be readily solved. The term 〈m−|n+〉 is the overlap
between the generalized coherent states |m−〉 and |n+〉, given
by (m � n),

〈m−|n+〉 = exp[−2α2]|2α|n−m

√
m!

n!
Ln−m

m (4α2). (6)

Here, Ln−m
m (x) are the associated Laguerre polynomials. The

eigenstates and eigenvalues of Eq. (5) are

�AA
n,± = 1√

2
(|n+,+〉 ± |n−,−〉),

EAA
n,± = nω − g2

ω
± �AA

n ,

(7)

033712-2



GENERALIZED ADIABATIC APPROXIMATION TO THE … PHYSICAL REVIEW A 104, 033712 (2021)

where the tunneling strength is described by

�AA
n = �

2
exp

[
−2g2

ω2

]
Ln

(
4g2

ω2

)
, (8)

where Ln(x) = L0
n (x) are the standard Laguerre polynomials.

The solutions in Eq. (7) are in a form as simple as that of
the celebrated RWA. In this paper, we aim to maintain this
simplicity with a higher degree of approximation.

The AA has been derived several times in different con-
texts in the literature; see, e.g., Refs. [17,29,30]. Because it
is in simple form and physically intuitive, the AA has been
widely used both theoretically and experimentally. A gener-
alized rotating-wave approximation (GRWA) was derived by
combining the AA and the RWA [18], leading to a framework
to analytically deal with the QRM and its related models
[19]. In other work, the AA is adapted to define the so-called
perturbative deep-strong coupling (DSC) regime [20]. On the
experimental side, the AA has been used to explain “the inver-
sion of qubit energy levels” in cQED setups operating in the
DSC regime [21].

It is intuitive to interpret the AA in the displaced oscillator
picture shown in Fig. 1. When � = 0, the two harmonic
oscillators are displaced by a distance of ±g/ω, respectively.
If � becomes nonzero, it induces tunneling between the two
oscillators. Under the condition � � ω, the level gaps be-
tween different oscillator levels are so large that the qubit
energy quanta can never excite the oscillator states. Thus, the
interaction or tunneling may be thought of as only occurring
between the levels that have the same energy index n. The
tunneling strengths are then indicated by the overlap between
the degenerate eigenstates of the oscillators, namely, the
term �AA

n .
We can see from the form of the Laguerre polynomials

that the tunneling strengths are nonmonotonic with respect
to the displacement amplitude g/ω [17]. Indeed, for certain
values of g/ω, the tunneling strengths on some levels vanish,
corresponding to the level crossings in the energy spectrum as
a function of g. To be specific, from Eq. (7), the energy gap
between the nth pair of levels is given by

δEAA
n = EAA

n,+ − EAA
n,− = � exp

[
−2g2

ω2

]
Ln

(
4g2

ω2

)
. (9)

Thus, the locations of the level crossing points, where the
energy gap is zero, are determined by the zeros of the La-
guerre polynomials Ln(4g2/ω2). Since � does not enter the
arguments of the Laguerre polynomials, it is obvious that the
level crossings predicted by the AA are independent of �.

We note that the tunneling strengths between nondegener-
ate levels are never strictly zero unless � = 0. In this regard,
the AA is only exact in the limit �/ω → 0+. If � becomes
large and comparable with ω, the performance of AA worsens.
A manifestation of this is that the level crossings predicted
by the AA substantially deviate from the exact ones. In the
displaced oscillator picture, this means that the tunneling be-
tween nondegenerate levels is no longer negligible. In this
case, the tunneling cannot be simply described by the La-
guerre polynomials Ln. Effectively, the two potentials are no
longer harmonic. Furthermore, if � > ω, the AA breaks down
by introducing unphysical level crossings into the energy

spectrum in the regime g/ω < 0.5. We further illustrate these
arguments in Sec. III.

After the above analysis, the amendment to the AA natu-
rally relies on taking into account the effect of �. We now
turn to obtain some intuition from the exact solutions for the
exceptional spectrum of the QRM.

C. Exact solutions for the exceptional spectrum

As pointed out in Sec. I, there are no simple closed-form
solutions to the regular spectrum of the QRM. Instead, only
the level crossing points in the spectrum can be determined
through finite-term constraint polynomials of system param-
eters [31,32]. For this reason, the QRM is also referred to
as quasisolvable [33–35]. These isolated solutions are called
Juddian points and the determining polynomials have been
derived via different approaches [5,16,36,37]. The simplest
way to derive the constraint polynomials is probably through
Bargmann representation of the bosonic operators, as de-
scribed in Ref. [23]. In the following analysis, we set ω = 1
for simplicity.

The constraint polynomials, denoted by Pn
n (g,�), obey the

recurrence relation

Pn
0 (g,�) = 1, Pn

1 (g,�) = 4g2 + �2

4
− 1,

Pn
k (g,�) =

(
4kg2 + �2

4
− k2

)
Pn

k−1(g,�)

−4k(k − 1)(n − k + 1)g2Pn
k−2(g,�). (10)

The zeros of Pn
n (g,�) determine the degenerate points of the

nth pair of levels in the QRM. Note that n = 0 corresponds to
the ground state and the first-excited state.

Here we now consider the pair of levels with n = 2 as an
example to demonstrate how the constraint polynomials are
used to solve for the level crossing points. From the recurrence
relation (10), we have

P2
2 (g,�) = 4 − 32g2 + 32g4 − 5�2

4
+ 3g2�2 + �4

16
. (11)

If we further fix � = 1.2, the equation P2
2 (g,�) = 0 then

gives two positive solutions for g, which are approximately
0.3074 and 0.8778, which can be confirmed by the crossing
points in the energy spectrum displayed in Fig. 2(b).

From the constraint polynomials, the number of degenerate
points on each level is also known. To be specific, a mathemat-
ically proven theorem [16,38] states that there are n − k level
crossing points on the nth level for � in the range

2k < �/ω < 2(k + 1), (12)

with positive integer k. In other words, there are more level
crossings in higher levels. This fact is also partly true for La-
guerre polynomials in the AA. However, as already stressed,
the dependence on � of the number of crossings cannot be
correctly treated there.

It is interesting to note that level crossing points are deter-
mined by certain polynomials both in the AA and the exact
solutions. Our next task is to find the possible connection be-
tween Laguerre polynomials and the constraint polynomials.
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FIG. 2. (a)–(c) Low energy levels of the QRM with respect to coupling g/ω obtained through exact diagonalization (gray solid lines), AA
(red dotted lines), and GAA (blue dashed lines), with (a) �/ω = 0.7, (b) �/ω = 1.2, and (c) �/ω = 2. In (a), both the AA and GAA work
very well within the perturbative regime. In (b), the AA fails by introducing unphysical crossings before the first real crossing points. In (c),
the AA completely fails, whereas the GAA works remarkably well..

III. GENERALIZED ADIABATIC APPROXIMATION

A. Laguerre polynomials versus constraint polynomials

We know from the constraint polynomials in Eq. (10) that
the positions of the level crossing points in the spectrum
depend on the value of �, in contrast to the predictions of
the AA. Interestingly, if we set � = 0 and eliminate the terms
containing � from the constraint polynomials, we arrive at the
Laguerre polynomials up to an integer overall coefficient.

We again take the case of n = 2 as an example. The corre-
sponding Laguerre polynomial is

L2(4g2) = 1 − 8g2 + 8g4. (13)

Meanwhile, with � = 0, the constraint polynomial Eq. (11)
becomes

P2
2 (g, 0) = 4 − 32g2 + 32g4 = 4L2(4g2). (14)

In this case, the Laguerre polynomial L2(4g2) and the con-
straint polynomial P2

2 (g, 0) share the same zeros, and thus give
the same level crossing points. This comparison justifies the
fact that the AA is only exact in the limit � → 0+. In fact, the
larger � is, the larger the deviation of the AA.

The � terms in the constraint polynomials, e.g., in Eq. (11),
may be understood as the correction terms accounting for

the tunneling processes between nondegenerate levels in the
displaced oscillator picture. These correction terms become
dominant when � is comparative with or even larger than ω,
where the assumption of the AA is invalid.

Since both the regular and exceptional spectra of the QRM
are described by Laguerre polynomials in the AA, we expect
that the constraint polynomials, which include the correction
terms, can approximate the regular eigenvalues with a better
performance. To this end, we need to properly correct the AA
tunneling strength �AA

n in Eq. (8).

B. Corrected tunneling strengths

With Pn
n (g, 0)/Ln(4g2) being an integer, it is natural to

propose the normalized constraint polynomials

Kn(g,�) = Pn
n (g,�)

Pn
n (0, 0)

. (15)

The first few Laguerre polynomials Ln(4g2) and normalized
constraint polynomials Kn(g,�) are listed in Table I. It is easy
to confirm Kn(g, 0) = Ln(4g2), which justifies the choice of
the normalization factor in Eq. (15).

Until this point, substantial improvements can already
be obtained by simply replacing the Laguerre polynomials
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TABLE I. The first few Laguerre polynomials and normalized constraint polynomials defined in Eq. (15).

n Laguerre polynomials Ln(4g2) Normalized constraint polynomials Kn(g, �)

0 1 1
1 1 − 4g2 1 − 4g2 − �2

4

2 1 − 8g2 + 8g4 1 − 8g2 + 8g4 − 5�2

16 + 3�2g2

4 + �4

64

3 1 − 12g2 + 24g4 − 32g6

3 1 − 12g2 + 24g4 − 32g6

3 − 49�2

144 + 29g2�2

18 − 11g4�2

9 + 7�4

288 − g2�4

24 − �6

2304

in Eq. (7) with the normalized constraint polynomials in
Eq. (15). By doing so, the exceptional eigenvalues are exact
and the regular spectrum is also seen to be approximated with
very good agreement.

Further corrections can be obtained by going back to the
displaced oscillator picture. The two oscillators are displaced
by a distance of ±g/ω, which becomes exact when � = 0.
However, if � is nonzero, the tunneling leads to an effective
displacement on the oscillators [27]. This effect due to � is
neglected in the AA. Meanwhile, the constraint polynomials
can be regarded as the Laguerre polynomials plus the effect
of extra displacements due to �. Therefore, we are in a
position to seek more accurate displacements αn(g,�) such
that Ln(4α2

n ) = Kn(g,�), predicting the exact level crossings.
Note that we use the subscript in αn to account for the fact
that the oscillators are no longer harmonic. It turns out to
be highly nontrivial, or even impossible, to find such exact
displacement amplitudes αn. The fundamental reason is that
the displaced oscillator picture is never exact for � nonzero.
Thus, we cannot expect exact results from an approximating
treatment. However, it is still meaningful to look for displace-
ment amplitudes αn which are more accurate than g/ω to
improve the AA and the subsequent results.

Our strategy is to find corrected arguments for the Laguerre
polynomials such that Ln(4α2

n ) have the exact �2n terms.
Careful observation of Table I indicates that the corrected
arguments αn should then satisfy

4α2
n =

{
4g2 + �2

4 n√n!
, n ∈ N+

4g2, n = 0.
(16)

This correction can be easily derived through the recurrence
relation as shown in Appendix A. It can be confirmed that
the other � terms in the new Laguerre polynomials Ln(4α2

n )
are also very close to those in Kn(g,�). Therefore, αn can
be regarded as a good approximation to the real displacement
amplitudes. We note that when n = 0, there is no � term in
L0(4g2) and thus no correction in this case.

The corrected arguments (16) immediately lead to the cor-
rected tunneling strengths,

�GAA
n = �

2
exp

[ − 2α2
n

]
Kn(g,�), (17)

which is the key result of the GAA. Note that in Eq. (17) we
stick to exact polynomials Kn(g,�) rather than the “nearly
exact” Ln(4α2

n ). A comparison between these two options is
discussed in Sec. IV B.

C. Energy spectrum

It is now straightforward to write the eigenvalue expres-
sions under the GAA. We replace the tunneling strengths �AA

n
in Eq. (8) with the corrected ones �GAA

n in Eq. (17) to obtain
the eigenvalues

EGAA
n,± = n ω − g2

ω
± �GAA

n (g,�). (18)

In this way, the energy eigenvalues are corrected without
destroying the simplicity of the AA.

We turn now to calculating the energy spectrum and check
the improvements offered by the GAA. The lowest energy
levels of the QRM with different values of � are shown in
Figs. 2(a)–2(c). For comparison, we also show the spectrum
obtained through exact diagonalization. We already know
that the AA works reasonably well provided �/ω < 1, but
breaks down beyond this regime. Indeed, from Fig. 2(a) with
�/ω = 0.7, we can see that both AA and GAA approximate
the exact eigenvalues with good agreement. Only marginal
improvement can be found in the GAA around level crossing
points. When �/ω = 1.2, as displayed in Fig. 2(b), the adi-
abatic approximation breaks down by introducing unphysical
level crossings that do not exist in the exact energy spectrum.
Moreover, the existing level crossings are also obviously out
of phase. In Fig. 2(c) where �/ω = 2, the improvements are
even more profound. The AA completely breaks down in
all finite coupling regimes, while the GAA approximates the
overall spectrum with a remarkable agreement. We note that
there are no level crossings between the ground state and the
first-excited state, and thus the GAA brings no improvement
to the lowest two energy levels. This exception can also be
deduced from the fact that P0

0 = L0(4g2) = 1, which does not
depend on �. Thus, for the sake of clarity, the lowest two
levels are not shown in the figures. In summary, substan-
tial improvements to the energy levels offered by GAA can
be seen.

Since the positions of the degenerate points are always
exact in the GAA, the level crossings may be regarded as
calibration points. It is therefore natural to expect that the
GAA works even better for higher levels of the QRM due to
the increasing number of level crossings. This can be seen in
the higher energy levels of the QRM in Fig. 2. For �/ω = 1.2,
the AA induces unphysical crossings and deviates from the
exact degenerate points, whereas the GAA works very well, as
anticipated. In Fig. 2, for �/ω = 2, the assumption of the AA
completely breaks down and the energy levels wildly cross
each other. The GAA, however, still works remarkably well
and all the characteristic properties of the energy levels of the
QRM remain.
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FIG. 3. Energy levels of the QRM with respect to �/ω obtained through exact diagonalization (gray solid line), AA (red dotted line), and
GAA (blue dashed line). (a) The decoupled limit g/ω = 0. The AA is exact in this limit, while the GAA deviates around odd integer values of
�. (b) Low levels with g/ω = 0.5. The AA fails for large �/ω, whereas the GAA captures the overall dependence on � very well. (c) Higher
levels with g/ω = 0.5. The GAA captures the overall dependence on �, but fails to describe the strong avoided crossings for extreme values
of �/ω.

Having seen that the GAA outperforms the AA in the large
� regime, we are in a position to explore the validity of the
GAA with respect to the parameter �. We first consider the
decoupled limit g = 0, which is another trivial case of the
QRM, with

Hg=0 = �

2
σz + ωa†a. (19)

The eigenvalues for the uncoupled case are simply Eg=0
n,± =

n ω ± �/2. The energy spectrum in the decoupled limit is
displayed in Fig. 3(a). The AA predicts the correct eigenvalues
in this limit. However, this correctness leads to unphysical
crossings when �/ω > 1, as can be observed in Figs. 2(b).
The GAA, on the other hand, is not always exact in this limit,
but the overall approximating behavior is rather good. When
g = 0, the constraint polynomials reduce to the nice form

Pn
n (0,�) =

n∏
k=1

(
�2

4
− k2

)
, (20)

correctly predicting the degeneracies when �/ω takes even
integer values. It is nontrivial to obtain a similar closed-form
expression for the general case Pn

n (g,�).
The lowest energy levels with fixed parameter g/ω = 0.5

are displayed in Fig. 3(b), from which we observe that the
GAA performs remarkably well in a large parameter regime.
The AA, on the other hand, fits well for small � but deviates
substantially for large �. From the AA results in Eq. (7),
eigenvalues are linearly dependent on � if other parameters
are fixed, which is not true in the exact results. We also expect
that the large number of level crossings in higher levels helps
guarantee the performance of the GAA. The higher levels in
an even larger parameter regime are displayed in Fig. 3(c).
In the displaced oscillator picture, extremely large � means
very strong and complicated tunneling processes between the
two oscillators. Indeed, the AA completely breaks down for
�/ω > 2 in most coupling regimes. Owing to the rich cross-
ing points, the overall eigenvalue structure is still captured by

the GAA. In Fig. 3(c), apart from the real crossings predicted
by GAA, we also observe many strong avoided crossings in
the regime where �/ω > 5. These avoided crossings cannot
be depicted by the current approximation and higher-order
corrections are needed.

IV. FURTHER DISCUSSION

A. Validity

Although the GAA is seen to work very well in a large
parameter regime, it is still meaningful to discuss the validity
of the approximation. We consider the cases where the GAA
does not provide any improvements.

The GAA always offers a remarkable description of the
energy levels containing crossing points due to the corrected
tunneling strength �GAA

n in Eq. (17). However, there are no
level crossings in the lowest pair of levels, i.e., the ground state
and the first-excited state. In this case, K0(g,�) = L0(4g2) =
1, implying no correction from �. Therefore, the GAA brings
no improvement to the ground state and the first-excited state.
For completeness, we note that these states can be well de-
scribed by the nonorthogonal qubit states in all parameter
regimes [27,39].

More generally, the description of the lowest k pairs of
energy levels cannot be much improved by the GAA for �

in the range 2k < �/ω < 2(k + 1). This is due to the result
given in Eq. (12). The number of crossing points on level n is
dependent on the value of �. Therefore, for extremely large
�, the lowest levels are separated and no crossings exist.

Regarding another aspect of the validity, we note that the
GAA may also predict unphysical level crossings in some
extreme parameter regimes, e.g., when �/ω > 5 or g/ω > 2.
This is due to the same reason as that in the AA. Specifically,
the Hilbert space of the GAA is split into infinitely many
two-dimensional invariant subspaces, and eigenvalues from
different sectors are allowed to cross. This problem can be
solved to some extent by looking for a more precise set of αn
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FIG. 4. A comparison between the two options, Ln(4α2
n ) and

Kn(g, �), in the expression of the GAA. The exact numerical results
and the AA are also included as benchmarks.

in Eq. (16). However, in the parameter regimes of interest, the
GAA is simple and accurate enough.

B. Further discussion on Ln(4α2
n)

In Eq. (16), we obtained the n-dependent displacement
amplitudes αn(g,�). However, in the corrected tunneling
strengths (17), we choose the exact normalized constraint
polynomials Kn(g,�) rather than the “nearly exact” Laguerre
polynomials Ln(4α2

n ). Here we briefly discuss the difference
between these two options, which we refer to as GAA-K and
GAA-L for simplicity.

We take the level pair with n = 5 as an example and
calculate the eigenvalues through the two different options.
The numerically exact results and the AA are also included
for comparison. The results are displayed in Fig. 4. The case
�/ω = 0.7 is demonstrated in Fig. 4(a), where both the AA
and the GAA are valid. In this case, there is no noticeable
difference between the two options of the GAA. As shown in
Figs. 4(b) and 4(c), when �/ω = 1.2 and �/ω, the AA de-
viates largely from the exact numerical results, while both of
the GAA options give a reasonably good overall performance.
In these cases, however, we notice that GAA-L has some mi-
nor deviations around the level crossings. On the other hand,

GAA-K always has exact level crossings by construction. The
deviation of GAA-L can be even larger if we increase the
value of �/ω, as shown in Fig. 4(d).

We conclude this comparison by pointing out that GAA-K
gives the best performance in calculating the eigenvalues.
However, GAA-L comes with a form quite similar to the
AA and thus may be more suitable to use in some unitary
transformations.

C. Potential applications to other models

The exact exceptional solutions exist in many light-matter
interaction models [23]. Thus, the present GAA offers a
framework to approximate these systems with both simplicity
and accuracy. An important example is the biased or asymmet-
ric quantum Rabi model (AQRM), where the Z2 symmetry
is broken by a bias term [11]. In the AQRM, the level
crossings are generally lifted apart from some special cases.
However, the isolated exceptional solutions exist even without
level crossings in the spectrum or any obvious symmetry in
the Hamiltonian. The corresponding constraint polynomials
and their properties have been explored in detail [32,38,40].
We expect the present GAA can approximate the AQRM
and, importantly, recover the conical intersections in the
spectrum [41].

The anisotropic Rabi model, an interpolation between the
Jaynes-Cummings model and the QRM, is another system that
may benefit from the results presented in this paper. The AA
has been applied to the anisotropic QRM [42] and its isolated
exceptional solutions have also been discussed in detail [43].
Particularly, for some parameters, there are level crossing
points between the lowest two levels, in contrast to the present
QRM. A combination of these results should, in principle,
give rise to a better approximation to the model, including the
ground state and the first-excited state.

Since the GAA outperforms the AA in a very large param-
eter regime, it is also reasonable to expect improvements to
the results derived using the AA. The celebrated RWA breaks
down in the ultrastrong coupling regime (g/ω > 0.1), and var-
ious different approximations have been proposed to fix this
problem. Among them is the generalized rotating-wave ap-
proximation (GRWA), which works well for arbitrarily strong
coupling strength near resonance. The GRWA is derived by
first writing the QRM in the basis of AA eigenstates, and then
applying the RWA [18]. The GRWA works well for arbitrary
coupling strength g, but it fails for �/ω > 1 for the same
reason that the AA fails. It is to be expected that the GRWA
based on the GAA will lead to a better performance in a larger
regime of �. Comparison between the GRWA and the GAA
is shown in Appendix B.

V. CONCLUSION

In this paper, we propose the GAA to treat the QRM in
a simple but accurate manner. The basic idea is to combine
the perturbative AA and the isolated exact solutions to the
exceptional spectrum of the QRM. This is achieved through
the key observation that the constraint polynomials of system
parameters reduce to Laguerre polynomials of the AA in the
unperturbed limit � = 0. Thus, the constraint polynomials are
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considered as Laguerre polynomials corrected by the higher-
order tunneling processes in the displaced oscillator picture.
By construction, the GAA not only predicts the level crossing
points exactly, but also approximates the general spectrum
with remarkably good agreement in large parameter regimes.
Importantly, our results expand the perturbative treatment into
nonperturbative regimes.

The GAA offers a theoretical framework to analytically
treat a family of light-matter interaction models where iso-
lated exact solutions exist. The asymmetric and anisotropic
QRM are discussed as examples for further work. This ap-
proximation scheme is especially useful where the level
crossings play an important role, as, e.g., near the conical
intersection points of the AQRM.
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APPENDIX A: DERIVATION OF THE CORRECTED
DISPLACEMENT

From the recurrence relation (10), we know that the
highest-order � term is (�/2)2n. On the other hand, from the
compact expression (20) in the limit g = 0, we have

Pn
n (0, 0) = (−1)n

n∏
k=1

k2 = (−1)n(n!)2. (A1)

It follows that the highest-order � term in the normalized
constraint polynomial is

h1(�) = (−1)n �2n

4n(n!)2 . (A2)

We are looking for a variable of the Laguerre polynomials
of the form

x(g,�) = 4α2
n (g,�) = 4g2 + fn(�), (A3)

where fn(�) is a polynomial in � such that the resulting
Laguerre polynomials share the same highest-order � term
as the normalized constraint polynomials. The highest-order
� term can be determined through the closed form of the
Laguerre polynomials, given by

Ln(x) =
n∑

k=0

(
n
k

)
(−1)k

k!
xk . (A4)

With g = 0, the highest-order � term is

h2(�) = (−1)n

n!
fn(�)n. (A5)

On comparing h1(�) and h2(�), we have

(−1)n

n!
fn(�)n = (−1)n �2n

4n(n!)2 , (A6)

giving rise to the result

fn(�) = �2

4 n
√

n!
. (A7)

Finally, we obtain the corrected displacement amplitudes αn

given in Eq. (16).

APPENDIX B: COMPARISON WITH THE GENERALIZED
ROTATING-WAVE APPROXIMATION

The GRWA [18] describes the QRM with arbitrary cou-
pling strength g, provided that �/ω is near unity. Beyond this
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FIG. 5. Comparison between the GRWA and the GAA with different values of �/ω.

033712-8



GENERALIZED ADIABATIC APPROXIMATION TO THE … PHYSICAL REVIEW A 104, 033712 (2021)

limit of �, the GRWA breaks down. Moreover, unphysical
crossings are expected in the GRWA since it also decomposes
the Hilbert space into two-dimensional subspaces.

In Fig. 5, we compare the GRWA with the GAA to justify
the advantage of our method in a much larger parameter
regime.
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