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Superradiant emission of a thermal atomic beam into an optical cavity
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We theoretically analyze the collective dynamics of a thermal beam of atomic dipoles that couple to a single
mode when traversing an optical cavity. For this setup we derive a semiclassical model and determine the onset
of superradiant emission and its stability. We derive analytical expressions for the linewidth of the emitted
light and compare them with numerical simulations. In addition, we find and predict two different superradiant
phases; a steady-state superradiant phase and a multicomponent superradiant phase. In the latter case we observe
sidebands in the frequency spectrum that can be calculated using a stability analysis of the amplitude mode of
the collective dipole. We show that both superradiant phases are robust against free-space spontaneous emission
and T2 dephasing processes.
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I. INTRODUCTION

The study of collective effects in atomic and molecular
ensembles with cavity-mediated interactions is a very active
research topic in quantum gas physics. Ongoing research
focuses on the simulation and exploration of many-body sys-
tems [1–5] and also their application to metrology that takes
advantage of the collective behavior [6–10].

An example of such a collective effect is superradiance,
which describes the collective light emission enhanced by the
buildup of macroscopic coherence in the ensemble of atomic
or molecular dipoles. Originally, superradiance was predicted
for free-space systems, that is, when the interparticle distance
is smaller than the optical wavelength [11,12]. However, this
condition can be overcome by trapping the light in a con-
fined volume, such as an optical cavity, and maintaining the
condition of strong coupling of the particles to a single lossy
resonator mode. More explicitly, superradiance in this case
requires the cavity linewidth to be large compared to the
collective linewidth of the dipoles. This results in a situation
in which the coherence is stored in the atomic dipoles while
the cavity mode is overdamped.

The superradiant laser [13,14] takes advantage of this ef-
fect and relies on a stable coherent collective dipole. This
laser has the potential to produce light with an ultranarrow
linewidth [13,15] that reflects the extremely high-quality fac-
tor of the electronic transition [16,17]. In addition, recent
studies have analyzed such systems as manifestation of phase
synchronization [18–20], connected them to time crystals
[21–27], and discussed them as candidates for active optical
clocks [28,29].

A number of previous superradiant laser proposals and
current experiments suggest trapping the atoms inside of the
cavity [13–15,30–37] with potential continuous incoherent
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repumping as its energy source. However, this is typically
not easy to realize due to the need for closed transitions and
external fields to trap the atoms. Furthermore, these addi-
tional complexities will usually lead to radiative heating of
the atomic cloud and also to atom loss.

Another approach to achieve superradiant lasing is to cou-
ple a beam of moving atomic dipoles to a single resonator
mode [38–40]. In this case, the atoms can be precooled and
prepared in the excited state before entering the cavity. This
spatially separates the quantum state preparation stage from
the collective emission that occurs while atoms travel through
the cavity volume. Such designs are less prone to the adverse
effects of radiative heating and may allow for an alternative
pathway towards continuous-wave superradiant lasing in the
optical domain [38].

In this paper we study in detail the effect of Doppler
broadening on collective emission when atoms traverse the
optical resonator. We consider this to be the dominant broad-
ening mechanism for metastable atomic dipoles and thermal
atomic beams. We derive a general theoretical framework to
study the collective emission of the atomic beam that in-
cludes a description of the atomic state when the atoms move
through the cavity. This is then used to analyze the stabil-
ity of the nonsuperradiant (NSR) and superradiant atomic
configurations. For the latter, we predict a stable phase of
the emitted light whereby phase diffusion is suppressed be-
cause of the formation of a large and robust collective dipole.
Analyzing a realistic physical example, we show that super-
radiant emission is possible when the collective linewidth
exceeds both the transit time and Doppler broadening. In
this regime we show that superradiant emission can appear
in two forms: (i) steady-state superradiance (SSR), where
the collective dipole is stable and phase diffusion dominates
the dynamics of the collective dipole, and (ii) multicom-
ponent superradiance (MCSR), where the amplitude of the
collective dipole oscillates in time. In the MCSR phase, we
observe long-lived coherent oscillations in which the Doppler
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FIG. 1. Schematic of the system (a) and the atom-cavity coupling
(b). We consider a beam of two-level atoms in the excited state
|e〉 traversing an optical cavity of loss rate κ with a given velocity
distribution. The x and z axes are chosen perpendicular and parallel
to the cavity axis. The atomic beam is much broader than the optical
wavelength λ so that the atoms experience different phases of the
cavity mode (blue and red denote different signs of the cavity mode
function). The excited state |e〉 of the atomic dipoles (b) couples to
the ground state |g〉 via photon emission into the cavity with coupling
gη(x). The function η(x) is the mode function of the cavity.

broadening itself is responsible for establishing the dynamical
phase.

This paper is organized as follows. In Sec. II we intro-
duce the model and derive the theoretical description that we
will use throughout the paper. This description is analyzed in
Sec. III using a mean-field treatment. We derive the stability
of the mean-field results and use them in Sec. IV to give
analytical expressions for the linewidth of the emitted light.
In Sec. V we present the analysis of the dipole dynamics of
a thermal beam traversing the cavity and compare simulation
and analytical results. We conclude our discussion in Sec. VI.

II. DERIVATION OF THE MODEL

In this section we introduce the physical setup of the sys-
tem and derive a theoretical description for it.

A. System and master equation

We consider a beam of metastable atomic dipoles with
mass m that travel through an optical cavity. Within the cavity
the atoms couple to a single resonator mode. We choose x
and z axes perpendicular and parallel to the cavity axis, re-
spectively [see Fig. 1(a)]. We describe the evolution of the
atomic dipoles and the cavity field using a master equation for
the density matrix ρ̂, including internal and external degrees
of freedom of the atoms and the cavity variables. The time
evolution of ρ̂ is given by

d ρ̂

dt
= 1

ih̄
[Ĥ, ρ̂] + κL[â]ρ̂, (1)

where L[Ô]ρ̂ = (2Ôρ̂Ô† − Ô†Ôρ̂ − ρ̂Ô†Ô)/2 is the Lind-
blad superoperator.

The first term in Eq. (1) describes the coherent evolution
and is governed by the Hamiltonian

Ĥ =
∑

j

[ p̂2
j

2m
+ h̄g

2
η(x̂ j )(â

†σ̂−
j + σ̂+

j â)

]
, (2)

which is presented in the frame rotating with the rest-
frame atomic transition frequency ωa. We have assumed the
resonance condition of zero detuning between the cavity
frequency ωc and ωa, i.e., �c ≡ ωc − ωa = 0. The summa-
tion runs over all atoms in the beam. Inside the summation,
the first term describes the atomic kinetic energy, and the
second term describes the coherent coupling of atom j
to the single resonator mode. Here, x̂ j = (x̂ j, ŷ j, ẑ j )T and
p̂ j = ( p̂x, j, p̂y, j, p̂z, j )T are the position and momentum op-
erators that satisfy the commutation relations [α̂ j, p̂β,k] =
ih̄δ jkδαβ , with α, β ∈ {x, y, z}. The function gη(x̂) describes
the coupling between the cavity and atoms [Fig. 1(b)], where
g is the vacuum Rabi frequency at the field antinodes and
η(x) is the spatial mode profile. The operators â and â† are
the photonic annihilation and creation operators that fulfill
the usual bosonic commutation relation [â, â†] = 1, while
σ̂+

j = |e〉 j〈g| j and σ̂−
j = |g〉 j〈e| j are the atomic spin raising

and lowering operators, where |e〉 j , |g〉 j are the electronic
excited and ground state of atom j, respectively.

The second term in Eq. (1) describes the leakage of cavity
photons into the electromagnetic field modes external to the
cavity. The rate κ is the cavity decay rate and determines the
linewidth of the cavity field mode when the atoms are not
present. In the main part of this paper we will consider the
cavity decay channel as the only source of decoherence, while
we discuss additional noise sources in Sec. V E.

B. Elimination of the cavity field

We describe our system in the superradiant regime where
κ exceeds all other atomic relaxation frequencies [15,38,41].
In this regime we can adiabatically eliminate the fast cavity
variables, which leads to an effective master equation for the
atomic degrees of freedom described by the reduced density
matrix

ρ̂atom = Trcav(ρ̂), (3)

where Trcav( . . . ) denotes the partial trace over the cavity
degrees of freedom. The resulting master equation for ρ̂atom

reads as

d ρ̂atom

dt
= 1

ih̄

[∑
j

p̂2
j

2m
, ρ̂atom

]
+ �cL[Ĵ−]ρ̂atom, (4)

where the incoherent part is governed by the single-atom
linewidth

�c ≡ g2

κ
. (5)

We have also introduced the generalized collective dipoles

Ĵ± =
∑

j

η(x̂ j )σ̂
±
j . (6)

Instead of studying the dynamics of the density matrix
ρ̂atom in the Schrödinger picture described by Eq. (4), we will
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now describe the equivalent dynamics of the atomic operators
σ̂±

j , σ̂ z
j , x̂ j , and p̂ j in the Heisenberg picture. Since Eq. (4)

describes the dynamics of an open quantum system, we need
to include the correct noise terms in these atomic operator
formalisms. The resulting stochastic equations are called the
Heisenberg-Langevin equations [42] and are given by

d σ̂−
j

dt
= �c

2
η(x̂ j )σ̂

z
j Ĵ− + Ŝ−

j , (7)

d σ̂ z
j

dt
= − �cη(x̂ j )(Ĵ

+σ̂−
j + σ̂+

j Ĵ−) + Ŝz
j , (8)

d x̂ j

dt
= p̂ j

m
, (9)

dp̂ j

dt
= ih̄�c

2
(σ̂+

j Ĵ− − Ĵ+σ̂−
j )∇xη(x)|x=x̂ j

+ N̂ j . (10)

The noise terms are given by Ŝ−
j = η(x̂ j )σ̂ z

j F̂−,

Ŝz
j = −2η(x̂ j )(F̂+σ̂−

j + σ̂+
j F̂−) for the internal degrees

of freedom. The force acting on atom j is given by Eq. (10)
and arises physically from the photon recoil. It includes the
noisy component N̂ j = ih̄∇xη(x)|x=x̂ j (σ̂

+
j F̂− − F̂+σ̂−

j ).

The terms F̂± are effective stochastic variables on the
coarse-grained timescale on which this system of equations
evolve and satisfy the correlations 〈F̂−(t )F̂−(t ′)〉q =
0 = 〈F̂+(t )F̂−(t ′)〉q and 〈F̂−(t )F̂+(t ′)〉q = �cδ(t − t ′),
F̂+ = (F̂−)†. The expectation value 〈. 〉q is over the cavity
degrees of freedom and the free-space photonic modes
external to the cavity.

C. Parameter regime and c-number approximations

Our theoretical description is used to analyze the dynamics
of the atoms that travel ballistically through the cavity. This
requires neglecting optomechanical forces in Eq. (10) by as-
suming

dp̂ j

dt
= 0 (11)

for all atoms. We discuss the validity of this approximation
in Appendix A. Moreover, we will mostly work in the regime
where atoms collectively emit into the cavity mode. This is
possible if the transit time τ of an individual atom is of the
same order of magnitude as the characteristic timescale of su-
perradiant emission 1/(N�c), where N is the mean intracavity
atom number.

In order to simulate the Heisenberg-Langevin equations in
Eqs. (7)–(10), we make a semiclassical approximation where
we exchange the quantum operators by c numbers and use
noise terms that simulate quantum noise [38,39,43]. This
semiclassical description can be derived by first writing the
Heisenberg-Langevin equations for the dipole components
σ̂ x

j = σ̂−
j + σ̂+

j , σ̂
y
j = i(σ̂−

j − σ̂+
j ), σ̂ z and then exchanging

them with their corresponding c-number equivalents sx
j , sy

j ,
and sz

j . The same approach is repeated with the external
operators x̂ j and p̂ j that are replaced by their correspond-
ing classical counterparts x j and p j . With this procedure we

obtain the following c-number stochastic differential equa-
tions:

dsx
j

dt
= �c

2
η(x j )s

z
jJ

x + Sx
j , (12)

dsy
j

dt
= �c

2
η(x j )s

z
jJ

y + Sy
j , (13)

dsz
j

dt
= − �c

2
η(x j )

(
Jxsx

j + Jysy
j

)+ Sz
j , (14)

dx j

dt
= p j

m
, (15)

where

Jα =
∑

j

η(x j )s
α
j , α ∈ {x, y} (16)

are the c-number collective dipole components. We have ne-
glected single-atom terms in Eqs. (12)–(15) that scale with
�c compared to the collective terms that scale with N�c.
The noise terms are defined by Sα

j = η(x j )sz
jFα , α ∈ {x, y},

and Sz
j = −η(x j )(sx

jF x + sy
jF y). The independent random

noise terms F x and F y fulfill 〈F x(t )F x(t ′)〉 = �cδ(t − t ′) =
〈F y(t )F y(t ′)〉. These equations have been derived using the
symmetric orderings of the operators and replacing these by
their classical c-number counterparts [38].

Aside from the noise that is induced by F x and F y we also
need to include another noise source that arises from intro-
ducing new atoms into the cavity. We assume throughout this
paper that the atoms enter in the excited state |e〉. In that case
an atom indexed by j enters the cavity with sz

j = 1. Since the
atom is in |e〉, the quantum uncertainty in sx

j and sy
j is maximal.

This is modeled by randomly and independently initializing
sx

j = ±1 and sy
j = ±1 [43]. With this methodology we fulfill

up to second order the correct initial spin moments for the
entering atoms, i.e., 〈sα

j 〉 = 〈σ̂ α
j 〉, 〈sα

j sα
k 〉 = 〈σ̂ α

j σ̂ α
k 〉 = δ jk , α ∈

{x, y}, and 〈sx
js

y
k〉 = 〈{σ̂ x

j σ̂
y
k }sym〉 = 0, where δ jk is Kronecker

delta and {σ̂ x
j σ̂

y
k }sym ≡ (σ̂ x

j σ̂
y
k + σ̂

y
k σ̂ x

j )/2 is the symmetric or-
dering of operators σ̂ x

j and σ̂
y
k .

In the next subsection we will apply Eqs. (12)–(15) with
the noise terms introduced above to derive a phase-space
density description of the atomic dipoles.

D. Phase-space density description

The phase-space density description of our model is de-
rived by defining the classical phase-space density and the
spin densities of the atomic beam as

f (x, p, t ) =
∑

j

δ(x − x j )δ(p − p j ), (17)

sα (x, p, t ) =
∑

j

sα
j δ(x − x j )δ(p − p j ), (18)

where sα
j is the single-atom spin component with α ∈ {x, y, z}.

The collective dipole components defined in Eq. (16) are given
by

Jα =
∫

dx
∫

dp η(x)sα (x, p, t ), α ∈ {x, y} (19)
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and Eqs. (12)–(15) can be rewritten with density variables as

∂ f

∂t
+ p

m
· ∇x f = 0, (20)

∂sx

∂t
+ p

m
· ∇xsx = �c

2
η(x)szJx + Sx, (21)

∂sy

∂t
+ p

m
· ∇xsy = �c

2
η(x)szJy + Sy, (22)

∂sz

∂t
+ p

m
· ∇xsz = − �c

2
η(x)(Jxsx + Jysy) + Sz. (23)

Here, Eq. (20) describes the free flight of the atomic beam.
The noise terms are given by Sα = η(x)Fαsz, with α ∈
{x, y}, and Sz = −η(x)(F xsx + F ysy). We emphasize that
these noise terms are still local in time but long range in space.

The initial conditions for the atoms entering the cavity can
be formulated as noisy spatial boundary conditions for the
stochastic partial differential equations (20)–(23). In order to
formulate these boundary conditions, we define x = −x0 as
the position on the x axis where the atoms enter the cavity.
Notice that the exact choice of x0 depends on the choice of
the mode function η(x) and can in principle be x0 = ∞. We
assign

f (−x0, y, z, p, t ) = f0(y, z, p, t ), (24)

sx(−x0, y, z, p, t ) =W x(y, z, p, t ), (25)

sy(−x0, y, z, p, t ) =W y(y, z, p, t ), (26)

sz(−x0, y, z, p, t ) = f0(y, z, p, t ) (27)

as the initial conditions for the system at every instant of time
t . Here, we have used

f0(y, z, p, t ) =
∑

j

δ(x0 − x j )δ(p − p j ), (28)

and ascribed x0 = (−x0, y, z)T to be the entrance surface.
Since the atoms enter the cavity in |e〉, the boundary condi-
tions for f and sz are the same. The initial noise terms in the
sx and sy components can be described by

W α (y, z, p, t ) =
∑

j

sα
j δ(x0 − x j )δ(p − p j ), α ∈ {x, y}.

(29)

These noise terms have the second moments

〈W α (W β )′〉 = m

px
δαβδ(t − t ′)δ(y − y′)δ(z − z′)

× δ(p − p′) f0(y, z, p, t ), (30)

where we have simplified notation as W α = W α (y, z, p, t ) and
(W β )′ = W β (y′, z′, p′, t ′). Notice that such noise processes
are both spatially and temporally local.

Throughout this paper we will assume that the distribution
of the atoms is spatially homogeneous. This requires that
the diameter of the atomic beam is much larger than λ [see
Fig. 1(a)] and the cavity waist w. This assumption allows
for the formulation of an averaged atomic density ρ(p) us-
ing the ensemble average 〈. . . 〉ens of the boundary condition

f0(y, z, p, t ), i.e.,

ρ(p) ≡ 〈 f0(y, z, p, t )〉ens, (31)

which is independent of space and time. As a result, after
a time t that is much larger than τ , we achieve a station-
ary state for f that satisfies 〈 f 〉ens = ρ(p) and describes a
spatially homogeneous atomic density in the cavity mode
volume. However, this does not imply that the spin densities
sa are spatially homogeneous, which can already be seen in a
mean-field description.

III. MEAN-FIELD ANALYSIS

In order to describe the mean-field dynamics of the spin
densities, we discard for the moment any noise terms in-
troduced by W α and Fα , α ∈ {x, y}. The resulting partial
differential equations from Eqs. (21)–(23) read as

∂sx

∂t
+ p

m
· ∇xsx = �c

2
η(x)Jxsz, (32)

∂sy

∂t
+ p

m
· ∇xsy = �c

2
η(x)Jysz, (33)

∂sz

∂t
+ p

m
· ∇xsz = − �c

2
η(x)(Jxsx + Jysy). (34)

In the following two subsections we will distinguish between
the case when there is no superradiance Jx = Jy = 0 and
when there is superradiance (Jx, Jy ) �= (0, 0).

A. Nonsuperradiant phase (NSR)

The system is in the nonsuperradiant phase (NSR) when
there is no collective dipole, i.e., Jx = Jy = 0. In this phase,
the mean-field stationary state is given by

sx = 0, (35)

sy = 0, (36)

sz = ρ(p). (37)

Here, we only report the density inside of the cavity for t 	 τ .
Although Eqs. (35)–(37) always represent a stationary so-

lution of the mean-field equations, they are not necessarily
stable. Any noise, for instance introduced by W α and Fα ,
could potentially destabilize the stationary state.

In order to determine the stability of the NSR phase, we
calculate the evolution of small fluctuations in spin densities
by letting sx = δsx and sy = δsy and sz = ρ(p) + δsz. We do
not need to specify the source of these small terms explicitly,
but note that such fluctuations will be introduced by the noise
processes when extending the theory to the full description of
the dipole densities.

The equations for δsx, δsy, and δsz are given by

∂δsx

∂t
+ p

m
· ∇xδsx ≈ �c

2
η(x)δJxρ(p), (38)

∂δsy

∂t
+ p

m
· ∇xδsy ≈ �c

2
η(x)δJyρ(p), (39)

∂δsz

∂t
+ p

m
· ∇xδsz ≈ 0, (40)
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where we have neglected terms that are second order in the
fluctuations. Since Eqs. (38) and (39) are equivalent, we solve
without loss of generality only the equation for δsx.

Using the Laplace transformation

L[g](ν) =
∫ ∞

0
dt e−νt g(t ), (41)

we can find a closed expression for L[δJx] given by

L[δJx] =
∫

dt e−νt
∫

dx
∫

dp η
(
x + p

mt
)
δsx(x, p, 0)

D(ν)
, (42)

where δJx = ∫ dx
∫

dp η(x)δsx and

D(ν) = 1 − �c

2

∫ ∞

0
dt e−νt

∫
dx
∫

dp η

(
x + p

m
t

)
ηρ

(43)

is the dispersion relation for the NSR phase. The detailed
derivation is reported in Appendix B.

The zeros of the dispersion relation D(ν) determine the
exponents in the time evolution of δJx. Assuming that these
exponents are negative, the largest exponent (with smallest
absolute value) determines the characteristic timescale for a
perturbation to relax the spin states again to zero. On the
other hand, if there exists a zero of the dispersion relation with
positive real part, then the NSR phase is unstable. In this case
the real part can be seen as the superradiant emission rate.

B. Steady-state superradiant phase (SSR)

We will now investigate the mean-field properties of the
superradiant phase with a stationary collective dipole. We
will refer to the phase as steady-state superradiant (SSR)
providing the system reaches a stationary state that fulfills
(Jx, Jy) �= (0, 0). Strictly speaking, this is only true in the
absence of noise. In the presence of noise, (Jx, Jy ) �= (0, 0)
is almost always true. In that case steady-state superradiance
can be well characterized by the length of the vector (Jx, Jy)
increasing in proportion to the intracavity atom number N ,
i.e., ‖(Jx, Jy )‖ ∝ N .

1. Analytical solution to the SSR phase

Our model has an underlying U(1) symmetry as we show
in Appendix C, therefore, this SSR phase can be seen as a
symmetry-broken phase [44]. We can always rotate the sys-
tem to a frame where the stationary collective dipole (Jx, Jy)
points in x direction (see Fig. 2). We denote the new x axis
by ‖ and the perpendicular direction by ⊥. The resulting
equations in the new frame are

∂s‖

∂t
+ p

m
· ∇xs‖ = �c

2
η(x)J‖sz + S‖, (44)

∂s⊥

∂t
+ p

m
· ∇xs⊥ = �c

2
η(x)J⊥sz + S⊥, (45)

∂sz

∂t
+ p

m
· ∇xsz = − �c

2
η(x)(J‖s‖ + J⊥s⊥) + Sz, (46)

with corresponding input noise W ‖ and W ⊥. Since the col-
lective dipole points in the ‖ direction, the perpendicular
direction ⊥ is solely noisy with zero mean, implying that

FIG. 2. Schematic of the stationary collective dipole in the Jx-Jy

plane. Its mean length is given by J‖
0 as defined in Eq. (49). The

dynamics of its length fluctuations, δJ‖, we interpret as a Higgs
mode, and the dynamics of its phase fluctuations, δJ⊥, as a Goldstone
mode (see Sec. III B 2).

J⊥ ≈ 0. This leads to the stationary solution for the dipole
density s⊥ ≈ 0.

Neglecting all noise sources, we can derive the stationary
mean-field densities. The mean-field dipole in the perpendic-
ular direction is just s⊥

0 = 0. The mean-field densities s‖
0 and

sz
0 are determined by

p
m

· ∇xs‖
0 = �c

2
η(x)J‖

0 sz
0, (47)

p
m

· ∇xsz
0 = − �c

2
η(x)J‖

0 s‖
0, (48)

where

J‖
0 =

∫
dx
∫

dp η(x)s‖
0 (49)

is the stationary length of the collective dipole. Equations (47)
and (48) can be collected into a single equation

p
m

· ∇x

[
(s‖

0)2 + (sz
0

)2] = 0

and therefore solved as

sz
0 = ρ(p) cos[K (x, p)], (50)

s‖
0 = ρ(p) sin[K (x, p)], (51)

where the argument K (x, p) is determined by

p
m

· ∇xK (x, p) = �c

2
η(x)J‖

0 . (52)

We will now derive the stability of the SSR phase.

2. Stability of the SSR phase

Similar to our methods in Sec. III A, we derive the
dynamics of small perturbations around the stationary mean-
field results by writing the spin densities as s‖ = s‖

0 + δs‖,

033711-5



SIMON B. JÄGER et al. PHYSICAL REVIEW A 104, 033711 (2021)

sz = sz
0 + δsz, and s⊥ = δs⊥. The dynamics of the small

fluctuations is governed by the following set of linearized
equations:

∂δs‖

∂t
+ p

m
· ∇xδs‖ = �c

2
η(x)δJ‖sz

0 + �c

2
η(x)J‖

0 δsz, (53)

∂δs⊥

∂t
+ p

m
· ∇xδs⊥ = �c

2
η(x)δJ⊥sz

0, (54)

∂δsz

∂t
+ p

m
· ∇xδsz = − �c

2
η(x)(δJ‖s‖

0 + J‖
0 δs‖). (55)

Notice that using Eq. (54) the dynamics of δs⊥ is completely
decoupled from the dynamics of δs‖ and δsz. We will rely on
this fact to treat the dynamics of these equations separately.
Specifically, we interpret the dynamics of δJ‖ and δJ⊥ as the
Higgs and the Goldstone mode, respectively (see Fig. 2), as
we will now elaborate on by examining key aspects of the
form of the solutions.

Higgs mode. The time evolution of δs‖ together with the
coupling to δsz describes the relaxation dynamics of the am-
plitude of the collective dipole. This can be interpreted as a
Higgs mode [45,46].

Using the Laplace transform defined in Eq. (41) we can
find the following equation:

L[δJ‖] = A‖(ν)

D‖(ν)
, (56)

where we have defined δJ‖ = ∫ dx
∫

dp δs‖ and the Higgs
mode dispersion relation

D‖(ν) = 1 − �c

2

∫ ∞

0
dt e−νt

∫
dx
∫

dp η

(
x − p

m
t

)
ηsz

0.

(57)

Details of this derivation and the exact form of A‖(ν) are
reported in Appendix D. We emphasize that in the limit of
no superradiance, i.e., sz

0 = ρ, we obtain the same dispersion
relation as we have derived in Eq. (43).

If the SSR phase is stable, we need all the zeros of the
dispersion relation D‖(ν) to have negative real parts. These
zeros describe the relaxation dynamics of perturbations in the
collective dipole’s longitudinal direction.

Goldstone mode. The dynamics of δs⊥ is decoupled from
the Higgs mode and describes the evolution of fluctuations
perpendicular to it. This is related to the dynamics of the
phase of the collective dipole (see Fig. 2). Because of this
observation we refer to this mode as the Goldstone mode
[47,48].

Using the Laplace transform we find

L[δJ⊥] = A⊥(ν)

D⊥(ν)
, (58)

with δJ⊥ = ∫ dx
∫

dp δs⊥ and the Goldstone mode disper-
sion relation

D⊥(ν) = ν

∫∞
0 e−νt dt

∫
dx
∫

dp η
(
x + p

mt
)
s‖

0

J‖
0

. (59)

Details of this derivation are shown in Appendix E.
In order for the SSR phase to be stable we require that ev-

ery zero of Eq. (59) cannot have a positive real part. However,

we find that the Goldstone dispersion relation always has a
zero ν = 0 in the SSR phase. This shows that there is no
damping of the phase as a consequence of the underlying U(1)
symmetry. Every noise will lead to a slight and slow change
in J⊥. This dynamics is slow compared to the exponents given
by the Higgs dispersion relation that determine the relaxation
time to the stable length of the collective dipole. However, the
slow change in J⊥ leads to phase diffusion and this determines
the linewidth of the emitted light in the SSR phase [49] as we
will explain in the next section.

IV. ANALYTICAL ESTIMATES FOR THE LINEWIDTH

In the “bad-cavity” regime, where the cavity linewidth
exceeds all other frequencies in the system, the coherence
is stored in the collective dipole rather than in the cavity
field. Therefore, the first-order coherence function g1(t ) for
the cavity field is determined by the dipole-dipole correlations

lim
t0→∞〈â†(t + t0)â(t0)〉 ∝ lim

t0→∞〈Ĵ+(t + t0)Ĵ−(t0)〉. (60)

In our semiclassical description we exchange the quantum
operators for their classical noisy counterparts and corre-
spondingly define the g1 function as

g1(t ) = lim
t0→∞〈J∗(t + t0)J (t0)〉, (61)

where we have used J∗ = (Jx + iJy)/2 and J = (Jx − iJy)/2.

A. Linewidth in the NSR phase

We first study the behavior of the g1 function in the NSR
phase. Here, both dipole components Jx and Jy can be an-
alyzed independently since they are dominated by noise. In
this regime we can calculate the g1 function as

g1(t ) ≈ lim
t0→∞

〈Jx(t + t0)Jx(t0)〉 + 〈Jy(t + t0)Jy(t0)〉
4

. (62)

Since the noise terms are isotropic, the correlation functions
for Jx and Jy are the same. Without loss of generality we will
focus on the Jx correlation function. For this we define the gx

1
function as

gx
1(t ) = lim

t0→∞〈Jx(t + t0)Jx(t0)〉. (63)

In Appendix F we show that in the long-time limit t 	 τ we
find

gx
1(t ) ∝ eν0t , (64)

where ν0 is the zero with the largest real part of the dispersion
relation in Eq. (43). In fact, in the NSR phase, we require
that all zeros of Eq. (43) are negative. Therefore, the g1

function shows an exponential decay on a typical timescale
−1/Re(ν0). On the other hand, if we approach the transition
to the SSR phase we expect that Re(ν0) becomes vanishingly
small. This results in a increasing coherence time when ap-
proaching the threshold to SSR.

However, also in the SSR phase, we do not find an actual
diverging coherence time. In this phase we have to use a
different method to find an estimate for the linewidth as we
will now show.
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B. Linewidth in the SSR phase

The dynamics of g1 and its analysis are very different in
the SSR phase. The main difference is that the collective
dipole is macroscopic and not dominated by noise. As we
have shown in the previous section, we can still decouple two
different modes of this dipole, one along the direction of the
collective dipole (Higgs mode) and another perpendicular to
this direction (Goldstone mode). It is reasonable to write the
g1 function in Eq. (61) as

g1(t ) = lim
t0→∞

〈J‖(t + t0)J‖(t0)ei[ϕ(t+t0 )−ϕ(t0 )]〉
4

, (65)

where we define the collective dipole to be J (t ) =
J‖(t )e−iϕ(t )/2.

Since the length of the dipole is assumed to be stable, we
can always write J‖(t ) = J‖

0 + δJ‖(t ), where the first term
is the stationary length of the collective dipole and δJ‖(t )
describes noisy fluctuations around this length (see Fig. 2).
Assuming now that all zeros of the Higgs dispersion relation
in Eq. (57) have negative real part, we can conclude that these
fluctuations decay rapidly. Therefore, we can simplify the g1

function as

g1(t ) ≈ lim
t0→∞

(J‖
0 )2

4
〈ei[ϕ(t+t0 )−ϕ(t0 )]〉. (66)

In this picture the dynamics of the g1 function is determined
by the dynamics of its phase. The dynamics of the phase can
be approximated by

dϕ(t )

dt
≈

dJ⊥
dt

J‖
0

. (67)

With this result it is sufficient to determine the time evolution
of J⊥. In Appendix G we show that in the limit t 	 τ we can
find the following form for the g1 function:

g1(t ) ∝ e− �
2 t , (68)

with a linewidth

� = 4

�cC2
⊥(J‖

0 )2
+ tchar

C2
⊥(J‖

0 )2
. (69)

Here, tchar is the characteristic time that has the form

tchar =
∫ ∞

−∞
dt
∫

dx
∫

dp ρ(p)η

(
x + p

m
t

)
η(x) (70)

and the quantity C⊥ is defined as

C⊥ =
∫∞

0 dt
∫

dx
∫

dp η
(
x + p

mt
)
s‖

0

J‖
0

. (71)

C. Discussion and limitations

Here we give an example of the order of magnitude, in
particular, regarding the number N of dipoles that effectively
interact with the cavity mode. We discuss the behavior of the
presented quantities when we increase N . Notice that we scale
�c ∝ N−1 so that N�c is of order 1. Since g ∝ 1

√
V where

V is the quantization volume of the cavity mode, this limit
implies that N�c ∝ N/V is constant. In addition, this implies

a linear scaling of the maximum output power of the field

κ〈â†â〉 ≈ �c〈Ĵ+Ĵ−〉 ∝ N. (72)

This choice of scaling allows the dispersion relations given
in Eqs. (43), (57), and (59) to be independent of N . Therefore,
the linewidth in the NSR phase, given by 2ν0, is of order 1
which is the scaling of the collective linewidth. In the SSR
phase, however, we have J‖

0 ∝ N and therefore (J‖
0 )2 ∝ N2

implying a coherent collective dipole. In this regime the
linewidth, given in Eq. (69), is of order � ∝ 1/N where we
have used that tchar ∝ N and C⊥ ∝ 1. This highlights the fact
that a macroscopic, coherent collective dipole ∝N is needed
for a narrow linewidth that is a factor N smaller than that in
the NSR phase.

We remark that the calculation of the g1 function in the
NSR phase needs the zero ν0 of D(ν) to be sufficiently isolated
such that the contribution of exponents with faster decay rate
only plays a minor role. In general it is possible that ν0 is com-
plex in that case. Since the dispersion relation is real, there is
always a second root ν∗

0 that would need to be included in our
calculation. However, this will not affect the decay of the g1

function for very large values of t that is only determined by
the real part of ν0.

In the SSR phase, our calculation is only valid if every
zero of the dispersion relation of the Higgs mode [Eq. (57)] is
negative. In this case the decay of the Higgs mode is a factor
N faster than the dephasing process determined by �. How-
ever, if a zero of Eq. (57) has zero real part, our calculation
becomes invalid and predicts an instability of the system. In
this situation, the system will be either not superradiant or in
a dynamical multicomponent superradiant (MCSR) phase, as
we will see later in Sec. V. Such an instability will also occur
if there is a solution ν0 with positive real part to D⊥(ν0) = 0,
where D⊥(ν0) is the Goldstone dispersion relation [Eq. (59)]
(see Ref. [39]).

V. A THERMAL BEAM TRAVERSING THE CAVITY

We will now analyze an explicit model in detail. To be
specific, we use a cavity mode function that is given by

η(x) = [�(x + w) − �(x − w)] cos(kz), (73)

where �(x) is the Heaviside step function, w is the cavity
mode waist, and k is the wave number. We consider an atomic
beam traversing this cavity mode with a constant single veloc-
ity vx = px/m and a homogeneous spatial atomic density. The
transit time is then τ = 2w/vx. In the z direction, we assume a
Maxwell distribution of velocities. We can thus express ρ(p)
as

ρ = ρ(pz ) = N

2wλ

√
βz

2mπ
e−βz

p2
z

2m , (74)

where N is the intracavity atom number and βz characterizes
the momentum width in the z direction.

A. NSR phase

In the NSR phase all atoms remain in the excited state
while they traverse the cavity. The stability of this phase is
determined by the dispersion relation in Eq. (43). For the
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FIG. 3. The zero ν0 of D(ν ) from Eq. (75) with the largest real
part as a function of the Doppler width δD and of the collective
linewidth N�c, all in units of 1/τ . In the region where ν0 > 0 (shown
as white region) the state of the atomic beam is unstable and the
beam of excited dipoles will undergo superradiant emission. The
solid black line indicates the transition where ν0 = 0 [Eq. (77)].

specific case of Eqs. (73) and (74), we can solve the integrals
in Eq. (43) analytically and obtain

D(ν) = 1 + N�cτ

4
F (ν), (75)

with

F (ν) = 1 − e− δ2
Dτ2+2ντ

2

δ2
Dτ 2

−
√

π

2δ2
Dτ 2

e
ν2

2δ2
D

(
1 + ντ

δ2
Dτ 2

)

×
⎡
⎣erf

⎛
⎝ν + δ2

Dτ√
2δ2

D

⎞
⎠− erf

⎛
⎝ ν√

2δ2
D

⎞
⎠
⎤
⎦.

Here, we have defined the Doppler width as

δD = k�pz

m
= k√

mβz
, (76)

and erf (. . .) denotes the error function. The zero ν0 of Eq. (75)
with the maximum real part is shown in Fig. 3 as a function
of N�cτ and δDτ . For our parameter range solutions are re-
stricted to the domain ν0 ∈ R. The shaded area where ν0 < 0
describes the region where the NSR phase is stable. Here,
fluctuations decay with the exponent ν0. In the white region
where ν0 � 0 we expect that fluctuations will be amplified
and therefore the atoms will undergo superradiant emission.
The condition ν0 = 0 describes the phase boundary between
the superradiant emission and the NSR phase. This phase
boundary can be calculated by solving D(0) = 0 which results
in the equation

N�cτ

8
= δ2

Dτ 2

√
2πδDτ erf

[
δDτ√

2

]+ 2e− δ2
Dτ2

2 − 2
. (77)

We first consider the limit where Doppler broadening is very
small, i.e., δDτ � 1. In this case, the atoms remain almost

in the same position in the standing wave while traversing
the cavity. For this choice the right-hand side of Eq. (77)
simplifies and we obtain

N�cτ

8
= 1. (78)

This shows that even in the absence of Doppler broadening,
the collective linewidth N�c has to overcome transit-time
broadening 1/τ , i.e., N�c > 8/τ , so that the atomic beam can
induce superradiant emission above threshold. We mention
that the factor 8 depends on the geometry of the cavity mode.
Therefore, a different mode function from the one chosen in
Eq. (73) can also result in a different factor.

In the large Doppler broadening limit δDτ 	 1, the atoms
move many wavelengths during the transit time τ . In that case,
the right-hand side of Eq. (77) can again be simplified, giving

N�c

8
= δD√

2π
. (79)

This result is a second condition for superradiance; the col-
lective linewidth has to overcome Doppler broadening, i.e.,
N�c > 8δD/

√
2π . Remarkably, this condition is completely

independent of τ .
Both conditions N�c > 8/τ and N�c > 8δD/

√
2π are vis-

ible in Fig. 3 in the small (δDτ � 1) and large (δDτ 	 1)
Doppler broadening limits, respectively.

We will now present results for the g1 function in the
NSR phase as defined in Eq. (61) for t0 	 τ . The analytical
estimates of g1(t ) have already been discussed in Sec. IV A.
Numerically, we find that the g1 function has a nonvanishing
imaginary part. However, this imaginary part becomes vanish-
ingly small after averaging over many trajectories. In Fig. 4,
we plot the absolute value of the g1 function in (a) for δDτ =
0.1, N�cτ = 4 and in (b) for δDτ = 10, N�cτ = 20. Well in-
side the NSR phase, these parameters are chosen to represent
the case (a) where transit-time broadening dominates Doppler
broadening with δDτ = 0.1, and (b) where Doppler broad-
ening dominates transit-time broadening with δDτ = 10. For
both cases we observe a long-time behavior that is essentially
exponential. To show this we have performed a numerical
fit to the tail of the g1 function assuming an exponential
∝exp(ct ) and have calculated for (a) cτ ≈ −1.9, and for (b)
cτ ≈ −6.5. Those two values are in very good agreement with
the calculated values of ν0 that are for (a) ν0τ = −1.8, and
for (b) ν0τ = −6.2 (see Sec. IV A). However, the short-time
behavior for both parameter choices is not exponential. In
Fig. 4(a) we observe initially an almost linear decay of the
g1 function that abruptly ends at the transit time t = τ . The
g1 function in Fig. 4(b) shows a Gaussian behavior for short
times. The timescale where this Gaussian behavior is visible
in much shorter t < 0.1τ in agreement with the timescale
expected from the larger Doppler width t ∼ 1/(δD) = 0.1τ .
The two-stage behavior of the g1 function has the signature of
being dominated by single-particle effects for short times and
by collective effects, as determined by ν0, for long times.

In the next subsection we will discuss the superradiant
regime.
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FIG. 4. The absolute value of the g1 function [Eq. (61)] normal-
ized by |g1(0)| as a function of time t in units of τ for (a) δDτ = 0.1,
N�cτ = 4 and (b) δDτ = 10, N�cτ = 20. The g1 function is calcu-
lated by numerically integrating Eqs. (20)–(23) using Eqs. (73) and
(74) over a total time tsim = 200τ with N = 2000 atoms, and aver-
aging over 100 trajectories. For the calculation of g1 we have chosen
t0 = 10τ . The red dashed line is an exponential fit ∝exp(ct ) of the
tail with an exponent cτ ≈ −1.9 (a) and cτ ≈ −6.5 (b), respectively.
The values of ν0 (see Fig. 3) for the same parameters are ν0τ = −1.8
(a), and ν0τ = −6.2 (b).

B. SSR phase

For the analysis of the SSR phase we solve the partial
differential equation (52). The solution is given by

K (x − w, z, pz ) = �cJ‖
0 m

2kpz

[
sin (kz) − sin

(
kz − kpz

mvx
x

)]
.

(80)

This solution has the correct boundary condition
K (−w, z, pz ) = 0 implying that all atomic dipoles are in
the excited state when entering the cavity. Substituting
Eq. (80) in Eq. (51) and then calculating J‖

0 defined in
Eq. (49), we obtain

J‖
0 = N

∫ ∞

−∞
du

e
− u2

2δ2
D√

2πδ2
D

1 − J0
[�cJ‖

0 τ

2
sin ( uτ

2 )
uτ
2

]
�cJ‖

0 τ

2

, (81)

where Jn is the Bessel function of the first kind of order n.
This is a nonlinear equation for J‖

0 that can be simplified by
defining the average dipole j‖0 = J‖

0 /N that can be calculated

by

j‖0 =
∫ ∞

−∞
du

e
− u2

2δ2
D√

2πδ2
D

1 − J0
[N�cτ j‖0

2
sin ( uτ

2 )
uτ
2

]
N�cτ j‖0

2

. (82)

This shows the value of j‖0 is completely determined by the
value of N�cτ and δDτ . For j‖0 �= 0 we obtain a superradiant
scaling [15]

(J‖
0 )2 = N2( j‖0 )2 ∝ N2. (83)

The stability of this collective dipole is determined by the
zero ν0 with the largest real part of the Higgs and Goldstone
mode dispersion relations [Eqs. (57) and (59)]. However, for
the considered parameter regime we only find an instability in
the Higgs mode and not in the Goldstone mode. Because of
this, we focus on the Higgs mode dispersion relation in Fig. 5.
In order to calculate the zeros of the Higgs dispersion, we
substitute Eq. (82) in Eq. (80) to solve for K (x, p), and then
use Eq. (50) to calculate the zeros of the dispersion function
(57). We numerically solve the equation and report the real
and imaginary parts of the solution in Figs. 5(a) and 5(b),
respectively.

We find a parameter regime where Re(ν0) < 0 and this
marks the regime where the SSR phase is stable. However, we
observe also an unstable area that is defined by Re(ν0) > 0.
This area is indicated by a gray color in Fig. 5 and is bounded
by a dashed line that has been determined numerically. In this
parameter range we expect neither the NSR nor the SSR phase
to be stable. Therefore, we find a dynamical and superradiant
behavior of the system that is most clearly visible in the
spectrum that has several peaks. Because of this, we refer to
this phase as multicomponent superradiant (MCSR).

In the SSR phase, where Re(ν0) < 0, we always find a
nonvanishing imaginary part Im(ν0) indicating that any fluc-
tuation in the collective dipole length will decay as a damped
oscillation. For the whole parameter region of the SSR phase
we have also calculated the Goldstone dispersion relation and
have not found any additional instabilities.

Figure 5(c) shows the normalized collective dipole j‖0 cal-
culated using Eq. (82). We see that the maximum dipole in the
SSR regime is close to N�cτ = 20 and for δDτ � 1. Using
the previous results we can also calculate the linewidth �

using Eq. (69). We expect that this analytical result is valid as
long as the collective dipole is stable. The results are apparent
in Fig. 5(d). Here, we report a narrow linewidth, � < 40�c,
only for sufficiently small values of δDτ � 5.

To analyze and compare our analytical results, we have
simulated Eqs. (20)–(23) across the different transitions be-
tween the SSR, MCSR, and NSR phases.

C. Transition from SSR to NSR

We first analyze our simulations for the transition from
SSR to the NSR phase for various values of δDτ and fixed
N�cτ = 20. In Fig. 6 we show the results of our numerical in-
tegration where different markers indicate different intracavity
atom numbers [see inset of Fig. 6(a)].

In Fig. 6(a) we show the collective dipole correlation
〈J∗J〉 = 〈(Jx )2 + (Jy)2〉/4 (proportional to the intensity of the
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FIG. 5. The real part Re(ν0) (a) and the absolute value of the imaginary part |Im(ν0)| (b) in units of 1/τ of the zero ν0 with the largest
real part of the Higgs dispersion relation [Eq. (57)] as a function of the Doppler width δD and the collective linewidth N�c in units of 1/τ .
The parameter region where the Higgs mode is unstable, Re(ν0) > 0, is marked as gray area and bounded by a dashed black line. We call this
phase multicomponent superradiant (MCSR). The solid black line, given by Eq. (77), marks the transition from SSR to the NSR phase (see
also Fig. 3). (c), (d) Show the value of the collective dipole j‖0 [Eq. (82)] and the linewidth � [Eq. (69)] in units of �c, respectively. They are
shown as a function of the same parameters as (a) and (b) for the parameter regime where the Higgs mode is stable. For all calculations we
have used Eqs. (73) and (74).

output field) where the red dashed vertical line marks the
threshold between the SSR and NSR phases. The analytical
prediction is visible as a black solid line and agrees very well
with the simulated results. In general we observe that the
analytical result is in better agreement for larger intracavity
atom number N .

In Figs. 6(b) and 6(c) we show the linewidth � that is ex-
tracted by fitting the g1 function in Eq. (61) with exp(−�t/2).
In Fig. 6(b) the linewidth � is shown in units of the collective
linewidth N�c while in Fig. 6(c) we show the linewidth in
units of the single-atom linewidth �c. We observe conver-
gence of the simulation data for different N in the NSR phase
in Fig. 6(b). On the other hand, we observe convergence of
the simulation data in the SSR phase in Fig. 6(c). This finding
suggests that the linewidth � scales with N�c in the NSR
phase while it scales with �c in the SSR phase.

To further compare our numerical results with analytical
predictions we have also calculated the exponent ν0 that is the
zero of the dispersion relation in Eq. (75) and plotted it as the
black solid line in Fig. 6(b). Numerical and analytical results
are in very good agreement in the NSR phase. This description
breaks down at the transition where the exponent ν0 vanishes.
After that in the SSR phase we expect that the linewidth of
the collectively emitted light is dominated by phase diffusion.
In order to show this, we have calculated the linewidth in
Eq. (69) using Eqs. (80) and (82). This linewidth is plotted
as the black line in Fig. 6(c). We find good agreement of the
theoretical prediction and the numerical result.

For the derivation of the linewidth in the SSR phase we
have assumed a stable length of the collective dipole. This

is guaranteed by choosing N�cτ = 20, where there is no
instability in the superradiant regime [see Fig. 5(a)]. In the
next subsection we will explicitly study the crossover from
the SSR to the MCSR phase, where the Higgs mode becomes
unstable.

D. Transition from SSR to MCSR

We choose N�cτ = 50 and perform simulations for dif-
ferent values of δDτ across the transition between the SSR
and MCSR phases [see Fig. 5(a)]. In Fig. 7(a) we show
〈J∗J〉 = 〈(Jx )2 + (Jy)2〉/4 for different values of N [see inset
of Fig. 7(a)]. The red dashed vertical lines mark the thresholds
from SSR to the MCSR phase, and from the MCSR to the SSR
phase. The first threshold is close to δDτ ≈ 3 while the second
threshold appears at δDτ ≈ 12. For comparison, we have also
calculated the predicted mean-field value using Eq. (82) that
is visible as the black solid line. We find very good agreement
in the superradiant phase for small values of δDτ . At the
threshold we see an increase of 〈J∗J〉 in the numerical results
that shows a clear deviation from the black line.

The instability at the transition from SSR to the MCSR
phase has been derived from the Higgs dispersion relation
that describes the relaxation dynamics of the amplitude of the
collective dipole. Therefore, we expect to see this instability
also in the fluctuations of the collective dipole length. For this
we calculate the g2 function which is defined as

g2(t ) = 〈J∗(t + t0)J (t + t0)J∗(t0)J (t0)〉
〈J∗J〉2

, (84)
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FIG. 6. (a) The normalized collective dipole correlation
〈J∗J〉/N2, (b) the linewidth � in units of the collective linewidth
N�c, and (c) the linewidth in units of the single-atom linewidth �c

as a function of the Doppler width δD in units of 1/τ . The different
markers correspond to different intracavity atom number N as
described in the inset of (a). The linewidth is calculated by fitting
the g1 function using t0 = 10τ to an exponential ∝exp(−�t/2) over
a time interval of length tf = 20τ . The solid line in (a) is the value
of ( j‖0 )2/4 calculated from Eq. (82). The linewidths in (b) visible
as solid line are −2ν0, where ν0 is the zero with the largest real
part of the dispersion relation in Eq. (75). In (c) the solid line gives
the solution of Eq. (69) calculated using Eq. (80) for given values
of j‖0 . The red dashed vertical lines mark the transition from SSR
to the NSR phase. We have chosen N�cτ = 20 with a simulation
time of tsim = 200τ and a total number of trajectories 200 000/N for
corresponding N .

where t0 	 τ is a sufficiently long time. We plot g2(0) − 1
in Fig. 7(b) for the same values of δDτ . We find g2(0) = 1
well inside the SSR regime (δDτ < 3); therefore, we expect
second-order coherent light. Beyond the transition (δDτ � 3)
we find a sudden increase of g2(0) highlighting the transi-
tion point. This increase cannot be explained by chaotic light
because it even exceeds the value of g2(0) = 2. Remarkably,
the second threshold δDτ ≈ 12 is not visible in (b) while we
would expect a transition to the SSR phase there with g2(0) ≈
1. We understand that this finding is due to finite-size effects
that are pronounced in this regime because of a small value
of 〈J∗J〉/N2 � 2 × 10−3. This is comparable with finite-size
effects that we consider to scale like 1/N .

Because the exponent ν0 also has an imaginary part
[Fig. 5(b)], we also expect an oscillatory behavior in the

FIG. 7. The collective dipole correlation 〈J∗J〉/N2 (a) and the
value of g2(0) − 1 [Eq. (84)] (b) as a function of δD in units of 1/τ .
The different symbols indicate different intracavity atom numbers
N [see inset of (a)]. The solid line in (a) is the value of ( j‖0 )2/4
calculated from Eq. (82). (c) Shows the intensity spectrum |S2(ω)|
defined in Eq. (85) as a function of ω and δD in units of 1/τ .
The value of |S2(ω)| is normalized for every δD by the maximum
|Smax

2 | ≡ maxω|S2(ω)| and calculated for N = 4000. The red vertical
dashed lines indicate the threshold from SSR to MCSR and from the
MCSR to the SSR phases [see Fig. 5(a)]. The red horizontal solid
lines in (c) are the values of ±Im(ν0) corresponding to the zero ν0 of
Eq. (57) with the largest real part. For the calculation of g2 we have
used t0 = 10τ and for the calculation of S2(ω) and integration time
of tf = 20τ . All simulations were performed with N�cτ = 50 and
with a simulation time of tsim = 200τ . For every N we have averaged
over 200 000/N trajectories.

unstable phase. In order to analyze this we have calculated
the intensity spectrum

S2(ω) =
∫ tf

0
dt eiωt [g2(t ) − 1], (85)

where t f is the integration time. We plot |S2(ω)| in Fig. 7(c)
as a function of ω in units of 1/τ . The vertical red dashed
lines mark the thresholds and the red horizontal solid lines are
the values of ±Im(ν0) visible in Fig. 5(b). We find very good
agreement of the values of ±Im(ν0) with the peaks of |S2(ω)|
until δDτ � 12.

The transition between the SSR and the MCSR phase is
also visible in Fig. 7(c). The function |S2(ω)| shows very
broad peaks in the SSR phase suggesting that the amplitude
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FIG. 8. The spectrum |S1(ω)| [Eq. (86)] plotted for δDτ = 3 (a),
δDτ = 4.5 (b), δDτ = 6 (c) as a function of ω in units of 1/τ . The
different lines correspond to different intracavity atom numbers N
as shown in the inset of (a). The spectrum is normalized for every
δD by the maximum |Smax

1 | ≡ maxω|S1(ω)|. The red vertical lines in
(b) correspond to ±Im(ν0 ) where ν0 is the zero of Eq. (57) with
the largest real part. The red vertical lines in (c) correspond to
±Im(ν0 )/2. (d) Shows the spectrum |S1(ω)| as a function of δD and ω

in units of τ for N = 4000. The red dashed horizontal line marks the
threshold from the SSR to MCSR regime. The circles on this line are
the values of ±Im(ν0) for the given parameters. All simulations were
performed with N�cτ = 50, with a simulation time of tsim = 200τ

and averaged over 200 000/N trajectories. The spectra are calculated
using t0 = 10τ and tf = 20τ .

oscillations are strongly damped. This is not true in the MCSR
phase where the peaks are narrower suggesting long-lived
amplitude oscillations.

We will study this dynamical feature using the spectrum

S1(ω) =
∫ tf

0
dt eiωt g1(t ), (86)

which we have calculated for the same parameters (see Fig. 8).
Figure 8(d) shows the absolute value of the spectrum |S1(ω)|
as a function of ω and δD in units of 1/τ . The horizontal
dashed red line marks the threshold from SSR to MCSR
around δDτ ≈ 3. The red circles indicate the value of ±Im(ν0)
at the threshold. In general we find three different appearances
in the spectrum:

(i) For sufficiently small values of δDτ we find one narrow
peak at ω = 0 indicating coherent and steady-state superra-
diant emission with the atomic transition frequency. As an

example we present a cut of the spectrum in this SSR phase
in Fig. 8(a) where we also compare the spectrum for different
values of N . We remark that in Fig. 8(a) the central peak is
Fourier limited because of the finite integration time tf .

(ii) Beyond the transition we find beside the central peak
at ω = 0 also sidebands. These sidebands appear at the pre-
dicted value of ±Im(ν0). This is also visible in Fig. 8(b) where
we have also plotted ±Im(ν0) as red vertical solid lines for the
given parameters. The sidebands become better resolved with
increasing N .

(iii) Well inside the unstable regime, we find a third behav-
ior where the central peak at ω = 0 vanishes and we observe
sidepeaks at odd multiples of ±Im(ν0)/2. This is best visible
in Fig. 8(c) where we also show ±Im(ν0)/2 as vertical red
solid lines corresponding to the given parameters. Here we
also find that the peaks become better resolved for increasing
N . The fact that we find a decreasing width of the sidebands
for increasing N , as visible in Figs. 8(b) and 8(c), suggests
that they are due to collective emission.

Remarkably, while the transition from (i) and (ii) is al-
ready visible in the length of the collective dipole and the
intensity spectrum, the transition (ii)–(iii) is only visible in
the coherences that are described by g1. In g1 the peaks occur
at ±Im(ν0)/2 while the peaks in g2 are still at ±Im(ν0). The
reason for this is that during an intensity oscillation period
T = 2π/Im(ν0) the collective dipole gains the opposite sign
(J → −J). This phase shift in the collective dipole results in
the same intensity (J∗J → J∗J) but doubles the period in J
to 2T . This highlights that the collective dipole is switching
between two Z2-symmetric states in (iii).

To provide further details on this transition we use now
a fixed value for the Doppler width δDτ = 6 and change
the collective linewidth N�cτ = 30–60. For these parameters
Fig. 5(a) predicts a transition from SSR to the MCSR phase.
The corresponding results for |S1(ω)| and |S2(ω)| are visible
in Figs. 9(a) and 9(b), respectively. The values of ±Im(ν0)
are visible as red lines in Fig. 9(b) and are in good agreement
with the sidebands of |S2(ω)|. We find that the sidebands
become narrower when entering the MCSR phase, indicating
long-lived intensity oscillations. In the spectrum |S1(ω)| in
Fig. 9(a) we have marked the theoretically predicted threshold
from SSR to MCSR as red dashed horizontal line. The cir-
cles on this line show the values of ±Im(ν0) that agree with
the emerging sidebands in |S1(ω)|. These sidebands become
more and more pronounced, emerging from a broad distri-
bution at approximately N�cτ ≈ 42. Beyond this point, we
find no central peak but a period doubling that we compare
to ±Im(ν0)/2 visible as the red lines in Fig. 9(a). We find
very good agreement between the sidebands of |S1(ω)| and
±Im(ν0)/2 for N�cτ � 42.

In Fig. 9(c) we show

�2 ≡ (N�c)2〈J∗J〉, (87)

which can be seen as the square of an effective Rabi frequency
driving the individual dipoles. The quantity is reported in units
of 1/τ 2 for different intracavity atom numbers [see legend of
Fig. 9(c)]. The black solid line is the theoretical prediction
obtained from Eq. (82) and is only in good agreement in the
SSR phase. The transition between the SSR and the MCSR
phases is shown as the vertical red dashed line. We find that
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FIG. 9. The spectrum |S1(ω)| [Eq. (86)] (a) and the intensity
spectrum |S2(ω)| [Eq. (85)] (b) as a function of N�c and ω in units
of 1/τ . Both spectra are normalized for every δD by the maximum
|Smax

n | ≡ maxω|Sn(ω)| with n ∈ {1, 2}. The red dashed horizontal line
in (a) marks the threshold between the SSR and the MCSR phase
and the circles are the values of ±Im(ν0). Here, ν0 is the zero of
Eq. (57) with the largest real part. The red solid vertical lines are
given by ±Im(ν0)/2. In (b) the red lines show the values of ±Im(ν0).
For all results in (a) and (b) we have used N = 4000, t0 = 10τ ,
tf = 20τ , and averaged over 50 trajectories. (c) Shows the squared
effective Rabi frequency [Eq. (87)] in units of 1/τ 2 as a function
of the collective linewidth N�c in units of 1/τ . The data are shown
for various values of N (see inset). The black solid line shows the
result obtained from Eq. (82) and the red vertical dashed line shows
the transition from SSR to MCSR. All simulations are performed for
δDτ = 6.

the effective Rabi frequency is always larger than the theoret-
ically predicted value.

E. Spontaneous emission and T2 dephasing

We will now discuss the effect of additional noise terms on
the observed superradiant phases. In order to do this, we study
as an example the contribution of free-space spontaneous
emission with rate γ1 and T2 dephasing with rate γ2 = 2/T2.
We report the dynamical equations that we use to model these
processes in Appendix H.

We first investigate how these noise sources affect the
SSR phase and in particular the intensity and the linewidth
of the produced light. In particular, we focus on the regime
where the collective linewidth is much larger than the Doppler

FIG. 10. The normalized collective dipole correlation 〈J∗J〉/N2

(a) and the linewidth � in units of the single-atom linewidth �c

(b) as a function of transit-time broadening τ−1 in units of N�c.
The black circles are simulation results using Eqs. (H2)–(H4). We
have fixed δD/(N�c ) = π × 10−2, γ1/(N�c ) = 10−2, γ2/(N�c ) =
5 × 10−3, and the intracavity atom number N = 2000. The linewidth
is calculated by fitting the g1 function using t0 = 10τ to an expo-
nential ∝exp(−�t/2) over a varying tf . All the simulations were
performed with tsim = 100τ and averaged over 100 trajectories. The
gray plus symbols are simulation results using the same parameters
except for γ1 = 0 = γ2. The gray dashed lines are analytical solu-
tions, giving in (a) the value of ( j‖0 )2/4 using Eq. (82), and in (b) the
linewidth Eq. (69) calculated using Eq. (80) with corresponding
values of j‖0 , respectively.

width δD/(N�c) = π × 10−2, the spontaneous emission rate
γ1/(N�c) = 10−2, and the dephasing γ2/(N�c) = 5 × 10−3.
We fix the intracavity atom number N = 2000 and vary the
ratio between τ−1 and N�c. In Fig. 10(a) we show the results
of 〈J∗J〉/N2 for these parameters as black circles. For compar-
ison, we have performed simulations with γ1 = 0 = γ2 visible
as gray pluses and also plotted the analytical result corre-
sponding to the solution of Eq. (82) as gray dashed line. While
we find almost perfect agreement between the analytical result
and the simulation with γ1 = 0 = γ2, the numerical results
including spontaneous emission are always smaller. This can
be expected because spontaneous emission and dephasing will
both result in a decrease of coherence in the atomic dipoles
and therefore result in a reduced light intensity. In addition,
free-space spontaneous emission also leads to a loss of excita-
tions into electromagnetic modes external to the cavity mode.
Nevertheless, we find very good agreement for the threshold
of superradiance that for the considered parameter regime is
close to τ−1/(N�c) = 1

8 . We also find a similar functional
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FIG. 11. Simulation results of the real part of g1(t ) normalized
by Re[g1(0)] for δDτ = 4.5 (a) and δDτ = 6.0 (b). For the black solid
lines we have used N�cτ = 50, γ1 = 0.05τ−1 with N = 4000 and
tsim = 200. The g1 function is calculated using t0 = 10τ and averaged
over 50 trajectories. For the gray dashed lines we have used the same
parameters except for γ1 = 0. These dashed lines are the real parts
of the g1 functions that are used to calculate the spectra shown in
Figs. 8(b) and 8(c).

behavior of 〈J∗J〉/N2 for the simulations with and without
spontaneous emission and dephasing.

Figure 10(b) shows the linewidth � calculated by fitting the
g1 function given by Eq. (61) with exp(−�t/2) obtained from
simulations including (black circles) and without spontaneous
emission and dephasing (gray pluses). We also compare our
results to the analytical estimate from Eq. (69) visible as
gray dashed line. We find very good agreement between the
simulations without spontaneous emission and dephasing and
the analytical result as long as τ−1/(N�c) > 10−2. Below this
point we find a rather small coherent collective dipole compo-
nent and cannot expect that the phase diffusion argument that
has been used to derive the analytical result will still be valid.
The simulations including spontaneous emission show a very
similar functional dependence but are almost always slightly
above the simulation results without spontaneous emission.
Still, we find a minimum linewidth of the order of �c that is
orders of magnitude smaller than γ1 and γ2. This highlights
the fact that the linewidth of the generated light is typically
not limited by any single-particle dephasing mechanism.

We will now study the stability of the MCSR phase. For
this we choose the same parameters where we have observed
the two different emission regimes in Figs. 8(b) and 8(c),

i.e., N�cτ = 50, δDτ = 4.5, and δDτ = 6.0, respectively. We
now add a small spontaneous emission rate γ1τ = 0.05 to our
previous simulations. We plot the real part of the g1 function
Re(g1) in Fig. 11 for δDτ = 4.5 (a) and δDτ = 6.0 (b). The
simulations without spontaneous emission are visible as gray
dashed lines and the simulations with spontaneous emission
as black solid lines. In Fig. 11(a) we find a positive Re(g1)
with oscillations for both simulation types that are in good
agreement. As a consequence, we also find a similar spectrum
as shown in Fig. 8(b). Remarkably, our simulation results
suggest that the oscillations have a slightly longer lifetime for
nonvanishing γ1.

Figure 11(b) shows very good agreement between the two
simulations with and without spontaneous emission. We find
Re(g1) oscillating around zero, therefore giving rise to a simi-
lar spectrum as in Fig. 8(c). Our findings show that the change
of the sign in Re(g1) that occurs with half the frequency of the
intensity oscillations is robust against small additional noise
sources.

VI. CONCLUSIONS

In this paper we have studied the onset and stability of
collective emission of an atomic beam that traverses an op-
tical cavity. We have developed a semiclassical theoretical
framework to study the dynamics of the atomic dipoles in
the presence of Doppler broadening. We have analyzed this
model using a mean-field description and determined the
stability of the nonsuperradiant (NSR) and steady-state su-
perradiant (SSR) phases. These results were used to analyze
the stationary light emission of the corresponding phases and
predict a linewidth of the emitted light. After that we inves-
tigated a model using numerical simulations and presented
analytical techniques that provide supporting analysis. We
explored a SSR phase and a dynamical superradiant phase
with a multicomponent superradiant (MCSR) light output.
With our derived theory we were able to quantitatively predict
the threshold of the MCSR phase and the occurrence of side-
bands in the spectra. In addition, we found that these results
are robust against free-space spontaneous emission and T2

dephasing processes if they are small compared to transit-time
broadening and Doppler broadening.

We highlight that the MCSR phase is observed in presence
of relatively large Doppler broadening. This is potentially
easier to realize in actual experimental setups working with
thermal atomic beams. Nevertheless, for the observation of
the MCSR phase one still requires a collective linewidth
that overcomes all broadening mechanisms including Doppler
broadening.

We have focused on the interplay between collective emis-
sion and thermal broadening in the parameter regime where
thermal effects dominate dephasing processes such as free-
space spontaneous emission. However, we expect that these
effects become important for cold or even ultracold atomic
beams when the Doppler broadening becomes comparable
to the linewidth of the atomic dipoles. In this parameter
regime one could potentially study subradiance in the regime
where the transit time becomes comparable to the atomic
lifetime [40,50]. Additionally, one could explore the regime
where the collective linewidth becomes comparable to the
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recoil frequency [51–56] and the semiclassical theory used in
this work becomes invalid. Such parameter regimes could be
achievable regarding the recent progress on producing high
phase-space density atomic beams [57].
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APPENDIX A: NEGLECTING OPTOMECHANICAL
FORCES

Our theoretical description is valid if optomechanical
forces can be neglected. In this Appendix we discuss the
validity of this approximation. Optomechanical forces are
described in Eq. (10). In order to justify the approximation
of a ballistic motion, we estimate the mean force Fmean ∼
h̄N�c∇xη(x) from Eq. (10) and the mean momentum change
Fmeanτ , where τ ≡ 2w/〈vx〉 is the transit time. Here w is the
cavity waist and 〈vx〉 = 〈px〉/m is the mean atomic velocity
in the x direction. The mean momentum change has to be
compared with the momentum widths of the initial atomic
momentum distribution in the corresponding Cartesian coor-
dinates. Along the z axis, assuming a standing-wave potential
with wave number k = 2π/λ, optomechanical forces are neg-
ligible if h̄kN�cτ � �pz, where �pz is the momentum width
in z direction. For N�cτ � 1 this requires a momentum width
that is much larger than a single-photon recoil h̄k. Vertical to
the cavity axis, the mean force can be roughly approximated
by h̄w−1N�c. The condition reads as then h̄w−1N�cτ � �py

and h̄w−1N�cτ � 〈px〉. Therefore, we conclude that optome-
chanical forces are negligible as long as the temperature of the
incoming atoms is sufficiently high.

APPENDIX B: STABILITY OF THE NSR PHASE

In this Appendix we present the derivation of the dispersion
relation for the NSR phase given in Eq. (43). Applying the
Laplace transform [Eq. (41)] on Eq. (38), we obtain

[ν − L0]L[δsx] = δsx(x, p, 0) + �c

2
η(x)ρ(p)L[δJx], (B1)

where we have used the definition

L0g(x) = − p
m

· ∇xg(x). (B2)

Next we multiply Eq. (B1) first by the inverse of [ν − L0] and
then by η(x). After an integration over space and momentum,
we obtain a linear equation for L[δJx]. This linear equation
can be solved to find the result

L[δJx] =
∫

dx
∫

dp η(x)[ν − L0]−1δsx(x, p, 0)

1 − �c
2

∫
dx
∫

dp η(x)[ν − L0]−1η(x)ρ(p)
. (B3)

The denominator is the dispersion function D(ν) and takes the
form

D(ν) =1 − �c

2

∫ ∞

0
dt e−νt

∫
dx
∫

dp η(x)eL0tη(x)ρ(p).

Now using the action of the propagator

eL0t f (x) = f

(
x − p

m
t

)
, (B4)

and after performing a change of variables x �→ x + pt/m we
obtain the form given by Eq. (43).

APPENDIX C: U(1) SYMMETRY OF THE MODEL

In this Appendix we show that Eqs. (21)–(23) as well as
their mean-field versions (32)–(34) have a U(1) symmetry.
This symmetry is given by a rotation with an arbitrary ϕ ∈ R,

(
sx

sy

)
=
(

cos ϕ − sin ϕ

sin ϕ cos ϕ

)(
s̃x

s̃y

)
(C1)

that transforms Eqs. (21) and (22) to

∂ s̃x

∂t
+ p

m
· ∇x s̃x = �c

2
η(x)J̃xsz + S̃x, (C2)

∂ s̃y

∂t
+ p

m
· ∇x s̃y = �c

2
η(x)J̃ysz + S̃y (C3)

with corresponding noisy initial conditions W̃ x and W̃ y. Here,
all objects labeled by ˜(. . . ) are transformed according to the
linear operation in Eq. (C1).

APPENDIX D: STABILITY OF THE SSR PHASE:
HIGGS MODE

In this Appendix we provide details for the derivation of the
Higgs mode dispersion relation given by Eq. (57). In order to
derive this dispersion relation, we first define δs+ = δs‖ + iδsz

and δs− = δs‖ − iδsz. We can then use Eqs. (53) and (55) to
derive two decoupled equations

∂δs+

∂t
+ p

m
· ∇xδs+ = − i

�c

2
ηJ‖

0 δs+ + �c

2
ρ(p)ηδJ‖e−iK ,

∂δs−

∂t
+ p

m
· ∇xδs− = i

�c

2
ηJ‖

0 δs− + �c

2
ρ(p)ηδJ‖eiK ,

where we have used the notations K = K (x, p), ρ = ρ(p),
and η = η(x). These equations can be solved using the
Laplace transform given by Eq. (41) and we find

[ν − L1]L[δs+] = δs+(x, p, 0) + �c

2
ρL[δJ‖]ηe−iK , (D1)

[ν − L2]L[δs−] = δs−(x, p, 0) + �c

2
ρL[δJ‖]ηeiK , (D2)
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where

L1g(x) = − p
m

· ∇xg(x) − i
�c

2
η(x)J‖

0 g(x), (D3)

L2g(x) = − p
m

· ∇xg(x) + i
�c

2
η(x)J‖

0 g(x). (D4)

We can now solve Eqs. (D1) and (D2) formally for L[δs+]
and L[δs−]. Using L[δs‖] = (L[δs+] + L[δs−])/2, multiply-
ing this expression by η(x), and integrating over the whole
phase space, we end up with an expression for L[δJ‖]. Solving
that equation for L[δJ‖] leads to the final expression given by

L[δJ‖] = A‖(ν)

D‖(ν)
, (D5)

with

A‖(ν) = 1

2

∫
dx
∫

dp η(x)[ν − L1]−1δs+(x, p, 0)

+ 1

2

∫
dx
∫

dp η(x)[ν − L2]−1δs−(x, p, 0), (D6)

D‖(ν) = 1 − �c

4

∫
dx
∫

dp η(x)[ν − L1]−1ηe−iKρ

− �c

4

∫
dx
∫

dp η(x)[ν − L2]−1ηeiKρ. (D7)

Using the actual form of the propagators

eL1t g(x) = e−i �c
2

∫ t
0 η(x− p

m τ )J‖
0 dτ g

(
x − p

m
t

)

= ei[K (x− p
m t,p)−K (x,p)]g

(
x − p

m
t

)
,

eL2t g(x) = ei �c
2

∫ t
0 η(x− p

m τ )J‖
0 dτ g

(
x − p

m
t

)

= ei[K (x,p)−K (x− p
m t,p)]g

(
x − p

m
t

)

and Eq. (50), we obtain the final result given in Eq. (57).

APPENDIX E: STABILITY OF THE SSR PHASE:
GOLDSTONE MODE

In this Appendix we show the details of the derivation for
the Goldstone mode dispersion relation given by Eq. (59). The
stability of the Goldstone mode can be calculated by solving

∂δs⊥

∂t
+ p

m
· ∇xδs⊥ = �c

2
η(x)δJ⊥sz

0(x, p).

Laplace transformation leads to

[ν − L0]L[δs⊥] = δs⊥(x, p, 0) + �c

2
L[δJ⊥]η(x)sz

0(x, p),

(E1)

where we used the definition of Eq. (B2). Using the same steps
as in Appendix B we find

L[δJ⊥] = A⊥(ν)

D⊥(ν)
, (E2)

with

A⊥(ν) =
∫

dx
∫

dp η(x)[ν − L0]−1δs⊥(x, p, 0), (E3)

D⊥(ν) = 1 − �c

2

∫
dx
∫

dp η(x)[ν − L0]−1ηsz
0. (E4)

Using Eq. (B4) we find the result

D⊥(ν) = 1 − �c

2

∫ ∞

0
dt e−νt

∫
dx
∫

dp η

(
x + p

m
t

)
ηsz

0.

(E5)

This dispersion relation, just like the dispersion relation for
the Higgs mode, simplifies to Eq. (43) in the limit J‖

0 → 0.
Let us emphasize that the dispersion relations for the Higgs
and the Goldstone look very similar but are only equivalent
in the NSR phase. In fact, in the superradiant phase one main
difference between the Higgs and Goldstone modes is that the
latter is always undamped. This can be seen using Eq. (47)
such that we can transform the dispersion relation (E5) to

D⊥(ν) = 1 −
∫∞

0 dt e−νt
∫

dx
∫

dp η
(
x + p

mt
) p

m · ∇xs‖
0

J‖
0

.

For this and the following equations we use the notation s‖
0 =

s‖
0(x, p). Applying Gauß theorem and explicitly using the fact

that the atoms enter in |e〉 and that the mode function vanishes
at infinity, we get

D⊥(ν) = 1 +
∫∞

0 dt e−νt
∫

dx
∫

dp d
dt η
(
x + p

mt
)
s‖

0

J‖
0

.

After another partial integration we obtain the final result
visible in Eq. (59) where we have used Eq. (49).

APPENDIX F: LINEWIDTH IN THE NSR PHASE

This Appendix provides details of the calculations of the
gx

1 function in the NSR phase. In order to do this, we integrate
Eq. (21) where we assume sz = ρ(p) and drop second-order
terms in the noise contribution. This integration is done us-
ing the characteristics method. Defining sx(t ) = sx[xi + p(t −
ti )/m, t], with xi = (−xi, yi, zi ) the position where the atom
enters the cavity and ti the initial time, we obtain

sx(t ) = sx(ti) +
∫ t

ti

dt ′η[x(t ′)]
[
�c

2
Jx(t ′) + F x(t ′)

]
ρ,

where x(t ′) = xi + p(t ′ − ti )/m. We can now use
t − ti = m(x + xi )/px to express sx(ti ) = W x(yi, zi, p, ti )
where yi = y − py(x + xi )/px, zi = z − pz(x + xi )/px, and
ti = t − m(x + xi )/px. After a change of variables t ′ �→ t − t ′
we get

sx(t ) = sx(ti )

+
∫ ∞

0
dt ′η[x(t − t ′)]

[
�c

2
Jx(t − t ′) + F x(t − t ′)

]
ρ,

where we extend the integral to infinity because
we assume that η(x) = 0 for x < −xi. Furthermore,
x(t − t ′) = x − pt ′/m is independent of t . Multiplying
sx(t ) by η(x) and integrating over the phase space leads to a
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linear equation for Jx. This can be solved using the Laplace
transformation and we get

L[Jx] = L[JW x ] + 2 1−D(ν)
�c

L[F x]

D(ν)
, (F1)

where D(ν) is the dispersion relation in Eq. (43), and

JW x (t ) =
∫

dx
∫

dp η(x)W x(yi, zi, p, ti ). (F2)

Notice that yi and zi depend on x and p. The time ti depends
on x, p, and t . Since we are in the NSR regime we expect all
zeros of D(ν) to be negative. We denote now by ν0 the zero
with the largest real part. We assume in the following that this
is a zero of first order. In the long-time limit we can conclude
that, defining the inverse of the residue of 1/D(ν) as

C0 = lim
ν→ν0

D(ν)

ν − ν0
, (F3)

the dipole is given by

Jx(t ) ≈ Jx
in(t ) + Jx

c (t ), (F4)

where

Jx
in(t ) =

∫ t
0 dt ′ eν0(t−t ′ )

∫
dx
∫

dp η(x)W x(yi, zi, p, t ′
i )

C0
, (F5)

Jx
c (t ) =

∫ t
0 dt ′ eν0(t−t ′ ) 2

�c
F x(t ′)

C0
(F6)

originate from the noise introduced by the incoming atoms
and by the cavity noise, respectively. Here, t ′

i = t ′ − m(x +
xi )/px.

Since the cavity noise and the input noise are independent,
the gx

1 function is now completely determined by

gx
1(t ) = 〈Jx(t + t0)Jx(t0)〉 ≈ gx

1,in(t ) + gx
1,c(t ), (F7)

where

gx
1,in(t ) = 〈Jx

in(t + t0)Jx
in(t0)

〉
, (F8)

gx
1,c(t ) = 〈Jx

c (t + t0)Jx
c (t0)

〉
. (F9)

It is straightforward to calculate the cavity noise that takes the
form

gx
1,c(t ) = 2eν0t

ν0�cC2
0

. (F10)

For the calculations of the contribution of the incoming atoms
we use the noise correlations that are defined in Eq. (30). The
input noise term takes the form

gx
1,in(t ) =

∫ t+t0
0 dt ′ ∫ t0

0 dt ′′eν0(t+2t0−t ′−t ′′ )χ (t ′ − t ′′)
C2

0

, (F11)

where

χ (t ′ − t ′′) =
∫

dx
∫

dp ρ(p)η

[
x + p

m
(t ′ − t ′′)

]
η(x).

(F12)

While the actual form of this integral is dependent on the
distribution and the mode function η, we can still analyze it in
the limit where the time is much larger than the transit time τ .

For a time t ′ 	 τ we obtain η(x + p
mt ′)η(x) ≈ 0. Therefore,

it is reasonable to define

tchar =
∫ ∞

−∞
dt ′χ (t ′), (F13)

and approximate

χ (t ′ − t ′′) ≈ tcharδ(t ′ − t ′′). (F14)

Here tchar is the characteristic timescale for the decay of χ .
Using Eq. (F14) we can calculate

gx
1,in(t ) ≈ tchareν0t

2ν0C2
0

. (F15)

We emphasize that the actual form of gx
1,in(t ) for small t � τ

depends on the density ρ(p) and the mode function η(x).
However, the results in Eqs. (F10) and (F15) show that the
long-time behavior (t 	 τ ) of the g1 function can be de-
scribed by an exponential with decay ν0.

APPENDIX G: LINEWIDTH IN THE SSR PHASE

In this Appendix we show how we find the linewidth �

given by Eq. (69). We use Eq. (45) to calculate s⊥(t ). Multi-
plying it by η(x) and integrating over the whole phase space,
we obtain J⊥. The resulting equation can be solved using a
Laplace transformation where we eventually get

L[J⊥] ≈ L[JW ⊥] + 2 1−D⊥(ν)
�c

L[F⊥]

D⊥(ν)
. (G1)

This result is completely equivalent to Eq. (F1) except we use
now the dispersion relation of the Goldstone mode in Eq. (59).
The noise equivalent to Eq. (F2) is given by

JW ⊥ (t ) =
∫

dx
∫

dp η(x)W ⊥(yi, zi, p, ti ). (G2)

The main difference between Eqs. (F1) and (G1) is the dif-
ferent zeros of the dispersion relations in Eqs. (43) and (E5).
While the zero of Eq. (43) always results in an exponential be-
havior, the dominant zero of Eq. (E5) is ν0 = 0. This implies
that the dynamics of J⊥ and the resulting phase ϕ = J⊥/J‖

0
are diffusive.

For simplicity let us again assume that ν0 = 0 is a
first-order zero of Eq. (E5). In that case we can define a
nonvanishing

C⊥ = lim
ν→0

D⊥(ν)

ν
=
∫∞

0 dt
∫

dx
∫

dp η
(
x + p

mt
)
s‖

0

J‖
0

, (G3)

and use it to obtain

J⊥(t ) ≈ J⊥
in (t ) + J⊥

c (t ), (G4)

where

J⊥
in (t ) =

∫ t
0 dt ′ ∫ dx

∫
dp η(x)W ⊥(yi, zi, p, t ′

i )

C⊥
, (G5)

J⊥
c (t ) =

∫ t
0 dt ′ 2

�c
F⊥(t ′)

C⊥
, (G6)

are the input and cavity noise terms, respectively.
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We can now give a simple expression for the g1 function

g1(t ) ≈ lim
t0→∞

(J‖
0 )2

4
e− 〈�ϕ(t,t0 )2〉

2 , (G7)

where �ϕ(t, t0) = ϕ(t + t0) − ϕ(t0). Let us without loss of
generality choose t0 = 0 and write �ϕ(t, 0) = �ϕ(t ). Since
input noise and cavity noise are independent, we obtain

〈�ϕ(t )2〉 = 〈�ϕin(t )2〉 + 〈�ϕc(t )2〉, (G8)

with �ϕin(t ) = J⊥
in /J‖

0 and �ϕc(t ) = J⊥
c /J‖

0 .
The term corresponding to the cavity noise is given by

〈�ϕc(t )2〉 = 4

�cC2
⊥(J‖

0 )2
t, (G9)

showing the usual increase of the variance with t of a diffusion
process.

For the noise term that arises from incoming atoms, we use
Eq. (30) to obtain

〈�ϕin(t )2〉 =
∫ t

0 dt ′ ∫ t
0 dt ′′χ (t ′ − t ′′)

C2
⊥(J‖

0 )2
, (G10)

where we have used the definition in Eq. (F12). While this
process has a nontrivial time dependence for t � τ we can
write in the large-time limit t 	 τ the expression

〈�ϕin(t )2〉 ≈ tchar

C2
⊥(J‖

0 )2
t, (G11)

with the characteristic timescale tchar defined in Eq. (F13). In
the long-time limit this leads to the result shown in Eqs. (68)
and (69).

APPENDIX H: SPONTANEOUS EMISSION
AND DEPHASING

In this Appendix we discuss how we can simulate spon-
taneous emission and dephasing. We also discuss when we
can neglect these effects. In the description that we have used
for the main part of the paper we have neglected free-space
spontaneous emission with rate γ1 as well as T2 dephasing.
This can be justified if γ1τ � 1 and τ/T2 � 1. In this limit,
both effects are negligible during the transit time of an atom,
and the corresponding noise is dominated by input noise and
cavity shot noise. In order to observe superradiance we re-
quire N�cτ > 1, which results in N�c 	 γ1 given γ1τ � 1.

This means that we assume a large collective cooperativity
NC = Ng2/(κγ1) 	 1.

We will now show how we can add the effects of sponta-
neous emission and dephasing to our model. For this we now
generalize the master equation in Eq. (1) to

d ρ̂

dt
= 1

ih̄
[Ĥ, ρ̂] + κL[â]ρ̂ +

∑
j

{
γ1L[σ̂−

j ] + γ2

4
L
[
σ̂ z

j

]}
ρ̂,

(H1)

where γ2 = 2/T2 is the rescaled T2 dephasing rate [13]. Using
this master equation, we can eliminate the cavity field and de-
rive the full c-number Heisenberg-Langevin equations. These
c-number stochastic differential equations for the dipole com-
ponents are given by

dsx
j

dt
= �c

2
η(x j )s

z
jJ

x − γ1 + γ2

2
sx

j + F x
j , (H2)

dsy
j

dt
= �c

2
η(x j )s

z
jJ

y − γ1 + γ2

2
sy

j + F y
j , (H3)

dsz
j

dt
= − �c

2
η(x j )

(
Jxsx

j + Jysy
j

)− γ1(sz
j + 1) + F z

j , (H4)

where we have used noise terms Fα
j = Sα

j + Fα
j,γ1

+ Fα
j,γ2

for α ∈ {x, y, z}. While the noise terms Sα
j have been given

in Eqs. (12)–(15), we now introduce two additional inde-
pendent noise sources Fα

j,γ1
and Fα

j,γ2
, which originate from

spontaneous emission and T2 dephasing, respectively. These
noise terms fulfill 〈Fα

j,γ1
(t )Fβ

k,γ1
(t ′)〉 = 2(Dj,γ1 )αβδ jkδ(t − t ′)

and 〈Fα
j,γ2

(t )Fβ

k,γ2
(t ′)〉 = 2(Dj,γ2 )αβδ jkδ(t − t ′), with the dif-

fusion matrices given by

Dj,γ1 =
β =x y z

α = x
y
z

⎛
⎜⎝

1 0 sx
j

0 1 sy
j

sx
j sy

j 2
(
1 + sz

j

)
⎞
⎟⎠ γ1

2
(H5)

and

Dj,γ2 =
β = x y z

α = x
y
z

⎛
⎝1 0 0

0 1 0
0 0 0

⎞
⎠γ2

2
. (H6)

We simulate Eqs. (H2)–(H4) for the numerical results we
present in Sec. V E.
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