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Coherent single-photon scattering spectra for a giant-atom waveguide-QED system
beyond the dipole approximation
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We investigate the single-photon scattering spectra of a giant atom coupled to a one-dimensional waveguide
via multiple connection points or a continuous coupling region. Using a full quantum mechanical method, we
obtain the general analytic expressions for the single-photon scattering coefficients, which are valid in both
the Markovian and the non-Markovian regimes. We summarize the influences of the nondipole effects, mainly
caused by the phases accumulated by photons traveling between coupling points, on the scattering spectra.
We find that under the Markovian limit, the phase decay is detuning independent, resulting in Lorentzian line
shapes characterized by the Lamb shifts and the effective decay rates, while in the non-Markovian regime,
the accumulated phases become detuning dependent, giving rise to non-Lorentzian line shapes, characterized by
multiple side peaks and total transmission points. Another interesting phenomenon in the non-Markovian regime
is the generation of a broad photonic band gap by a single giant atom. We further generalize the case of discrete
coupling points to the continuum limit with atom coupling to the waveguide via a continuous area, and analyze
the scattering spectra for some typical distributions of coupling strength.
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I. INTRODUCTION

It is well known that natural atoms can be looked on as
pointlike particles for their sizes are much smaller than the
wavelength of the light they interact with. This treatment,
called the dipole approximation, is widely used in quantum
optics to simplify the descriptions of the interactions between
atoms and photons [1]. However, recent experiments in the
category of waveguide quantum electrodynamics (QED) [2,3]
have shown that this assumption can be violated [4]. In these
setups, superconducting artificial atoms (e.g., transmon qubits
[5]) can couple to the bosonic modes (surface acoustic waves
or microwaves) in a waveguide at multiple points, which
are spaced wavelength distances apart, to form the so-called
giant-atom structure [6–8]. In waveguide-QED systems con-
taining giant atoms, the multiple coupling points give rise to
interference effects, resulting in some novel phenomena that
are not present in quantum optics with pointlike small atoms,
e.g., frequency-dependent decay rate and Lamb shift of a
giant atom [8–10], and decoherence-free interaction between
multiple giant atoms [8,11]. By engineering the time delays
between coupling points to be comparable to the lifetime
of the atom, a single giant atom can realize non-Markovian
dynamics with polynomial, instead of exponential, sponta-
neous decay [7,12]. Another phenomenon for giant atoms
in the non-Markovian regime is the creation of bound states
[13,14]. Besides one-dimensional geometries based on super-
conducting circuits, the giant-atom scheme could be realized
in higher dimensions with cold atoms in optical lattices [15].
The interactions between a giant atom and bosonic modes in
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a nonlinear waveguide or a topological waveguide have also
been investigated [16,17].

The strong light-matter interactions in waveguide-QED
structures may enable us to control the propagating single
photons in the waveguide [2,3,18–20]. On the other hand, the
photon scattering spectra can be used to probe and character-
ize the interactions between emitters and photons, including
nondipole effects in giant-atom structures. However, to the
best of our knowledge, the photon scattering spectra for
waveguide-QED systems containing a giant atom with mul-
tiple coupling points have not been systematic studied, except
for some special cases, e.g., a giant atom with two coupling
points [12]. In this paper, we focus on the nondipole ef-
fects on the single-photon transport properties in a waveguide
coupled by a giant atom with multiple coupling points or
a continuous coupling region. We first obtain the analytical
solutions for the single-photon transmission and reflection co-
efficients utilizing a real-space scattering method [21]. Then
we analyze the influences of phase delay between coupling
points and number of coupling points on the scattering spec-
tra, in both the Markovian and the non-Markovian regimes.
We mainly focus on the deep non-Markovian regime, where
the phase-accumulated effects for detuned photons give rise
to abundant spectrum structures, including non-Lorentzian
line shapes with multiple peaks, a broad photonic band gap
generated by a single giant atom, and so on. The features
of spectra characterizing the transition from the Markovian
to the non-Markovian regime are also discussed. We fur-
ther generalize the results obtained from the case of discrete
coupling points to the continuum limit with infinitely many
coupling points or, in other words, the atom couples to the
waveguide through a continuous area. We investigate the in-
fluences of the effects beyond the dipole approximation on the
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FIG. 1. A schematic of a giant atom coupled to a one-
dimensional waveguide at multiple points xm.

scattering spectra for some typical distributions of coupling
strength.

It is worth noting that some interesting properties related
to photon transport of a giant atom with multiple points
[13,14,16], including the continuum limit [13], have been
investigated before. Here we comment on the connections
and differences between these previous works and our work.
In Refs. [13,14], the relaxation dynamics of an initially ex-
cited giant atom with multiple coupling points (including
the continuum limit in Ref. [13]) was studied. The main
result is the appearance of a bound state of bosonic modes
in the non-Markovian regime. However, in our work, we fo-
cus on the single-photon scattering spectra, where the atom
is initially in its ground state and a single photon incidents
from the waveguide. We also note that in Ref. [16], the

photon scattering problem for a giant atom coupling to a
coupled-resonator array through multiple connecting points is
investigated. In their model, the discrete bosonic modes are
provided by a cavity array. On the contrary, our work focuses
on waveguide-QED systems containing a one-dimensional
infinite waveguide (e.g., an infinite transmission line) with
continuous modes, which are widely adopted in current
experiments [6–8].

The paper is organized as follows. In Sec. II, we give
a theoretical model, including the system Hamiltonian and
corresponding equations of motion, and further obtain the
transmittance and reflectance of single-photons scattering.
In Sec. III, we analyze the scattering spectra for the case
of discrete coupling points, both in the Markovian and the
non-Markovian regimes. In Sec. IV, we discuss the scattering
spectra under the continuum limit. Finally, further discussions
and conclusions are given in Sec. V.

II. MODEL AND SOLUTIONS

A. Hamiltonian and equations of motion

The configuration of the system is shown schematically
in Fig. 1, i.e., a two-level atom directly couples to a
one-dimension waveguide at N coupling points. Under the
rotating-wave approximation (RWA), the total Hamiltonian of
the system described by Fig. 1 can be written as (h̄ = 1)

Ĥ = ωa|e〉〈e| +
∫

dxĉ†
R(x)

(
−ivg

∂

∂x

)
ĉR(x) +

∫
dxĉ†

L(x)

(
ivg

∂

∂x

)
ĉL(x)

+
∫

dx
N∑

m=1

Vmδ(x − xm)

[ ∑
i=R,L

ĉ†
i (x)σ− + H.c.

]
. (1)

Here, ωa represents the atomic transition frequency; σ+ = |e〉〈g| and σ− = |g〉〈e| are the raising and lowering operators of the
atom, where |e〉(|g〉) represents the excited (ground) state; vg is the group velocity of the photons in the waveguide; ĉR(x) [ĉ†

R(x)]
and ĉL(x) [ĉ†

L(x)] are the field operators of annihilating (creating) the right- and left-propagating photons at position x in the
waveguide; and Vm is the coupling strength between the atom and the waveguide at the coupling point with coordinate xm.

We assume that initially a single photon with energy E incidences. Thus, in the single excitation subspace, the interacting
eigenstate of the system can be written as

|�〉 =
∫

dx�R(x)ĉ†
R(x)|∅〉 +

∫
dx�L(x)ĉ†

L(x)|∅〉 + faσ+|∅〉, (2)

where �R(x)[�L(x)] is the single-photon wave function of a right-moving (left-moving) photon; fa is the excitation amplitude
of the giant atom; and |∅〉 is the vacuum state, which means that there are no photons in the transmission line and the atom is in
its ground state. Substituting Eq. (2) into the eigenequation

Ĥ |�〉 = E |�〉 (3)

yields the following equations of motion:(
−ivg

∂

∂x
− E

)
�R(x) +

N∑
m=1

Vmδ(x − xm) fa = 0, (4a)

(
ivg

∂

∂x
− E

)
�L(x) +

N∑
m=1

Vmδ(x − xm) fa = 0, (4b)

N∑
m=1

Vm[�R(xm) + �L(xm)] + (ωa − E ) fa = 0. (4c)

033710-2



COHERENT SINGLE-PHOTON SCATTERING SPECTRA FOR … PHYSICAL REVIEW A 104, 033710 (2021)

B. Scattering coefficients

For a photon incident from the left, �R(x) and �L(x) take the form

�R(x) = eikx

[
ϑ (x1 − x) +

N−1∑
m=1

tmϑ (x − xm)ϑ (xm+1 − x) + tϑ (x − xN )

]
, (5a)

�L(x) = e−ikx

[
rϑ (x1 − x) +

N−1∑
m=1

rmϑ (x − xm)ϑ (xm+1 − x)

]
, (5b)

where k is the wave vector of the photon, tm (rm) is the transmission (reflection) amplitude for the mth [(m + 1)th] coupling point,
t (r) is the transmission (reflection) amplitude for the last (first) coupling point, and ϑ (x) denotes the Heaviside step function.

The reflectance and the transmittance can be further defined as R = |r|2 and T = |t |2. Substituting Eqs. (5a) and (5b) into
Eqs. (4a)–(4c), we can fix E = vgk and obtain

T =
(
	k − 1

2

∑N
m,n=1

√
γmγn sin |φmn|

)2

(
	k − 1

2

∑N
m,n=1

√
γmγn sin |φmn|

)2 + 1
4

(∑N
m,n=1

√
γmγn cos φmn

)2 , (6a)

R =
1
4

(∑N
m,n=1

√
γmγn cos φmn

)2

(
	k − 1

2

∑N
m,n=1

√
γmγn sin |φmn|

)2 + 1
4

(∑N
m,n=1

√
γmγn cos φmn

)2 , (6b)

where 	k = vgk − ωa is the detuning between the single
photon and the atom. In addition, we define the decay rate
of single coupling point γm = 2V 2

m/vg and the phase delay
φmn = k(xm − xn) = (1 + 	k/ωa )φ̃mn, where φ̃mn = ωa(xm −
xn)/vg. Note that the conservation of the photon number re-
sults in T + R = 1.

It should be emphasized that the expressions (6a) and
(6b) are valid in both the Markovian and the non-Markovian
regimes. In a single giant atom, non-Markovianity can be
realized by engineering the time delays between coupling
points to be comparable to the relaxation time [12,22]. Other
systems that can exhibit time-delay effects include an atom in
front of a mirror [23–26] and distant atoms coupled locally to
the same environment [25,27–32]. For a giant atom with mul-
tiple spaced coupling points, we can define a characteristic
time T = (xN − x1)/vg = φ̃N1/ωa for light to travel between
the leftmost and the rightmost coupling points. In the Marko-
vian regime, T should be much smaller than the relaxation
time 1/�̃, where

�̃ =
(

N∑
m=1

√
γm

)2

(7)

is the atomic decay rate in the dipole-approximation limit
φ̃N1 → 0. When the condition T ∼ 1/�̃ is satisfied, the giant
atom enters the non-Markovian regime. Alternatively, we can
expressed the non-Markovian condition in terms of phase
delay as

φ̃N1 ∼ ωa

�̃
. (8)

Under the Markovian limit, we can replace the detuning-
dependent phase factor φmn in Eqs. (6a) and (6b) by the
detuning-independent one φ̃mn. Such an approximation re-
quires φ̃mn	k/ωa � 1, and this is true under Markovian limit
φ̃N1 � ωa/�̃, given that the bandwidth 	k of interest here is

of the order of �̃. Then the corresponding transmission and
reflection coefficients become

T = (	k − 	L)2

(	k − 	L)2 + 1
4�2

eff

, (9a)

R =
1
4�2

eff

(	k − 	L)2 + 1
4�2

eff

, (9b)

giving rise to Lorentzian line shapes centered at 	k = 	L

with width �eff , where

	L = 1

2

N∑
m,n=1

√
γmγn sin |φ̃mn|, (10a)

�eff =
N∑

m,n=1

√
γmγn cos φ̃mn (10b)

are the Lamb shift and effective decay rate, respectively [9].
The Lamb shift is caused by the interaction with the vacuum
fluctuations of the bosonic field and the effective decay rate is
relevant to the interference effects of reemitted photons from
different coupling points.

Based on these results, we will investigate the single-
photon transport properties for the case of discrete coupling
points in the next section. And we will further discuss the con-
tinuum limit with infinitely many coupling points in Sec. IV.

III. SCATTERING SPECTRA FOR THE CASE OF
DISCRETE COUPLING POINTS

Here we focus on the case that the distance between
neighboring connection points is a constant d and the cou-
pling strength is the same at each coupling point (with
γm = γ ). By defining the detuning-independent and detuning-
dependent phase delays between neighboring points as θ̃ =
ωad/vg and θ = kd = (1 + 	k/ωa )θ̃ , one can write φmn as
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φmn = (m − n)θ . Correspondingly, the transmission and re-
flection coefficients given by Eqs. (6a) and (6b) become

T =
(
	k − γ

2
N sin θ−sin Nθ

1−cos θ

)2

(
	k − γ

2
N sin θ−sin Nθ

1−cos θ

)2 + γ 2

4

(
1−cos Nθ
1−cos θ

)2 , (11a)

R =
γ 2

4

(
1−cos Nθ
1−cos θ

)2

(
	k − γ

2
N sin θ−sin Nθ

1−cos θ

)2 + γ 2

4

(
1−cos Nθ
1−cos θ

)2 . (11b)

Note that currently the phase delay between xN and x1

is φ̃N1 = (N − 1)θ̃ , and the atomic decay rate under the
dipole-approximation limit becomes �̃ = N2γ . Thus, the non-
Markovian condition (8) can be rewritten as

N2(N − 1)θ̃ ∼ ωa

γ
. (12)

In the following, we will investigate the features of scattering
spectra in the Markovian and the non-Markovian regimes,
respectively.

A. Spectra for the discrete case: The Markovian regime

Under the Markov limit, we can replace the phase factor
θ in Eqs. (11a) and (11b) by θ̃ . Then the corresponding
transmission and reflection coefficients can be expressed by
Eqs. (9a) and (9b), with the Lamb shift and effective decay
rate taking the form

	L = γ

2

N sin θ̃ − sin N θ̃

1 − cos θ̃
, (13a)

�eff = γ
1 − cos N θ̃

1 − cos θ̃
. (13b)

Now we begin to discuss the scattering spectra for this case.
Without loss of generality, in the following we focus on the
reflectance R only, for the transmittance T and the reflectance
R are constrained by the relation T + R = 1. In Fig. 2, we
plot the reflectance R as functions of the scaled detuning
	k/γ and the phase delay θ̃ for different N . Note that 	L

and �eff change periodically with θ̃ ; thus, without loss of gen-
erality, in Fig. 2 the range of θ̃ is chosen as θ̃ ∈ [0, 2π ]. In the
Markovian regime considered here, for different phase delay θ̃

and number of coupling points, N , the reflection spectra have
a Lorentzian line shape centered at 	k = 	L with width �eff

(labeled by the red long-dashed lines and white short-dashed
lines in Fig. 2, respectively). We can see that the Lamb shift
	L = 0 when θ̃ = nπ (n ∈ N). The effective decay �eff reach
a maximum value �eff = �̃ at θ̃ = 2nπ (n ∈ N). In addition,
when N > 2 [see Figs. 2(b)–2(d)], the effective decay �eff

takes some additional local maximum values. From Eq. (13b),
one can derive that the condition for reaching these values
is N cot(N θ̃/2) = cot(θ̃/2). Finally, when θ̃ = 2nπ/N (n ∈
N+, and mod[n, N] 
= 0), the effective decay �eff = 0, i.e.,
the atom decouples from the waveguide, resulting in the total
transmission of the incident photons (with R = 0 for all 	k;
see Fig. 2).

FIG. 2. Reflectances R as functions of the scale detuning 	k/γ

and the phase delay θ̃ for different N : (a) N = 2, (b) N = 3, (c) N =
4, (d) N = 5. The red long-dashed lines are used to label the loca-
tions of the reflection peaks, i.e., the Lamb shifts 	L. The distances
between the white short-dashed lines are equal to the effective decay
rates �eff .

B. Spectra for the discrete case:
The non-Markovian regime

In the non-Markovian regime, the phase θ̃	k/ωa accumu-
lated in free propagation for finite detuning cannot be ne-
glected. Thus, Eqs. (11a) and (11b) with detuning-dependent
phase θ = (1 + 	k/ωa )θ̃ should be used to describe the trans-
mission and reflection property of the system. In addition,
one can see from Eq. (12) that the system can enter the non-
Markovian regime by increasing either the phase delay θ̃ or
the number of coupling points, N . In the following, we will
discuss these two cases, respectively.

1. Influences of θ̃: Non-Lorentzian line shapes due to
detuning-dependent phase-accumulated effects

The reflection spectra in the non-Markovian regime for
fixed N = 2 but different θ̃ are shown in Fig. 3. Specifi-
cally, the spectra in the moderately non-Markovian regime
(with T ∼ 1/�̃ or, equally, φ̃N1 ∼ ωa/�̃) are shown in
Figs. 3(a)–3(c) and the spectra in the deep non-Markovian
regime (with T � 1/�̃ or, equally, φ̃N1 � ωa/�̃) are shown
in Figs. 3(d)–3(f). We can see that in both the moderately
and the deep non-Markovian regimes, the line shapes are
non-Lorentzian and, in addition, the spectra become asym-
metric when θ̃ 
= nπ , which is very different from those in
the Markovian regime.

In the moderately non-Markovian regime, the curves begin
to deviate from the Lorentzian line shape, but still remain the
single-peak structure, as shown in Figs. 3(b) and 3(c). For
comparison, we also plot the spectra under the Markovian
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FIG. 3. Reflectances in (a)–(c) the moderately non-Markovian
regime and (d)–(f) the deep non-Markovian regime for fixed N = 2
but different θ̃ . Here we set ωa = 103γ . (a) Reflectances R as func-
tions of the scaled detuning 	k/γ and the phase delay θ̃ in the
moderately non-Markovian regime. The orange solid line and blue
dashed line show cross sections at the phase delays (b) θ̃ = 80π

and θ̃ = 81π and (c) θ̃ = 80.5π and θ̃ = 81.5π , respectively, which
are indicated by the dashed lines in (a). The solid and dashed thin
lines in (b) and (c) are plotted according to the expressions given by
Eq. (9b) under the Markovian limit for comparison. (d) Reflectances
R as functions of the scaled detuning 	k/γ and the phase delay θ̃

in the deep non-Markovian regime. The orange solid line and blue
dashed line show cross sections at the phase delays (e) θ̃ = 600π and
θ̃ = 601π and (f) θ̃ = 600.5π and θ̃ = 601.5π , respectively, which
are indicated by the dashed lines in (d).

limit, as shown by the solid and dashed thin lines in Figs. 3(b)
and 3(c).

In the deep non-Markovian regime, the spectra exhibit
more abundant structures, as shown in Figs. 3(d)–3(f). First,
when θ̃ = 2nπ and

θ̃ >
6ωa

N (N2 − 1)γ
, (14)

two additional total reflection points in the central peak ap-
pear, as shown by the orange solid line in Fig. 3(e). Otherwise,
there is only one total reflection point at 	k = 0. In addition,
when the phase delay is taken as θ̃ = (2n + 1)π , different
from the vanished reflection spectra in the Markovian regime
[or almost vanished reflection spectra in the moderately non-
Markovian regime; see dashed thick lines (blue) in Fig. 3(b)],
some reflection peaks at 	k 
= 0 appear because the phase
accumulated in free propagation for finite detuning cannot be
neglected. Finally, the phase-accumulated effects for detuned
photons can give rise to some total-transmission points in the
spectra, as shown in Figs. 3(d)–3(f). Specifically, according
to Eq. (11b), the condition for total transmission, R = 0, is
cos Nθ − 1 = 0 and cos θ − 1 
= 1. By using this condition

(a)

(b)

(c)

FIG. 4. Reflection spectra for fixed θ̃ = 2π and different N . Here
we set ωa = 104γ . (a) Reflectances in the Markovian regime with
N = 2 (orange solid line), N = 3 (blue dashed line), and N = 4
(green dot-dashed line), respectively. (b) Reflectances in the mod-
erately non-Markovian regime with N = 12 (orange solid line) and
N = 14 (blue dashed line). The curves with Lorentzian line shapes
(solid and dashed thin lines) are plotted according to the expressions
given by Eq. (9b) under the Markovian limit for comparison. (c) Re-
flectances in the deep non-Markovian regime with N = 21 (orange
solid line) and N = 30 (blue dashed line).

and letting θ̃ = 2nπ + δ̃ (δ̃ ∈ [0, 2π ), n ∈ N), the locations
of the total-transmission points shown in Figs. 3(d)–3(f) can
be expressed as

	k =
(

2n′π
N

− δ̃

)
ωa

θ̃
, (15)

where n′ ∈ Z and mod [n′, N] 
= 0. This means that the
atom decouples from the photon modes with these frequen-
cies, due to destructive interference.

2. Influences of N: Generation of photonic band gap

Next we turn to investigate the influence of the num-
bers of coupling points, N . The reflection spectra for fixed
θ̃ = 2π and different N are shown in Fig. 4. For small N
satisfying the Markov condition N2(N − 1)θ̃ � ωa/γ , the
reflectance has a Lorentzian line shape with the width �̃ =
N2γ , as shown in Fig. 4(a). For N satisfying the moderately
non-Markovian condition N2(N − 1)θ̃ ∼ ωa/γ , the reflection
spectra are shown by the orange solid and blue dashed lines
in Fig. 4(b). For comparison, we also plot the Lorentzian
spectra under the Markovian limit using Eq. (9b), as shown
by the solid and dashed thin lines in Fig. 4(b). One can find
that the reflection spectra in the moderately non-Markovian
regime slightly deviate from the Lorentzian line shape. In
addition, with the number of coupling points increasing, the
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width of peak, which can also be approximated as �̃ = N2γ ,
will increase.

Now we consider the reflection spectra for the case of N
satisfying the deep Markov condition N2(N − 1)θ̃ � ωa/γ

(note that N should be carefully chosen to satisfy �̃ � ωa to
ensure the validity of the RWA.). If the value of N reaches
the threshold for the appearance of three maximums in the
central peak [given by Eq. (14)], the spectrum exhibits a
band gap forbidding transmission of photons, as shown by the
orange solid line in Fig. 4(c). The width of the band gap has
an order of magnitude of �̃ = N2γ . Thus, for a solid-state
quantum system (usually with γ /ωa  10−4–10−3 [18,33]),
only a small amount of coupling points is required to obtain
a broad bandwidth up to 0.1ωa. Note that a photonic band
gap can also be generated by a waveguide-QED system with
an N-qubit array [34,35]. However, for a waveguide-QED
system with giant atoms, only a single atom with multiple
coupling points is required to achieve this goal, which may
greatly decrease the complexity of the design. In combination
with tunable couplings between artificial atoms (e.g., super-
conducting qubits) and waveguides [3], this property could be

used as broadband single-photon switches. Finally, when N is
further increased, becoming larger than the threshold given by
Eq. (14), three total reflection points in the central peak appear
instead of one [see the blue dashed line in Fig. 4(c)]. Another
feature of the spectra in this regime is the steep walls on both
sides of the central peak with a distance of about 2ωa/N .

IV. SCATTERING SPECTRA UNDER THE CONTINUUM
LIMIT

In previous discussions, each coupling area is considered
to be pointlike. Here we will generalize the results obtained
from discrete-coupling configurations to the continuum limit.
Namely, the coupling area can be regarded as an ensemble
of infinitely many coupling points with coupling strengths
described by a distribution function. These configurations
can be more easily realized by a giant-atom waveguide-QED
system based on superconducting circuits, where the dis-
tance between coupling points can be designed to be much
smaller than the wavelength of microwave photons. Under the
continuum limit, Eqs. (6a) and (6b) become

T = [	k − ∫
dφ̃dφ̃′v(φ̃)v(φ̃′) sin |φ − φ′|]2[

	k − ∫
dφ̃dφ̃′v

(
φ̃
)
v
(
φ̃′) sin |φ − φ′|]2 + [∫

dφ̃dφ̃′v
(
φ̃
)
v
(
φ̃′) cos (φ − φ′)

]2 , (16a)

R =
[∫

dφ̃dφ̃′v
(
φ̃
)
v
(
φ̃′) cos (φ − φ′)

]2[
	k − ∫

dφ̃dφ̃′v
(
φ̃
)
v
(
φ̃′) sin |φ − φ′|]2 + [∫

dφ̃dφ̃′v
(
φ̃
)
v
(
φ̃′) cos (φ − φ′)

]2 , (16b)

where v(φ̃) is the distribution of coupling strength, satisfy-
ing

∫
dφ̃v(φ̃) = (�̃/2)1/2. The phase is defined as φ = kx =

(1 + 	k/ωa )φ̃, where φ̃ = ωax/vg. And �̃, like the discrete
case, is the atomic decay rate under the dipole-approximation
limit, where all the couplings are regarded as converging to a
single point. Note that here we achieve the scattering ampli-
tudes under the continuum limit by directly using the discrete
expressions given by Eqs. (6a) and (6b). One can also at first
provide the continuous forms of the Hamiltonian and the wave
functions, and then solve the corresponding eigenequations to
obtain the scattering amplitudes (see Appendix A).

In the following discussion, we focus on these typi-
cal distributions: (a) uniform distribution, (b) exponential
distribution, (c) triangular distribution, (d) raised cosine dis-
tribution, and (e) double-exponential distribution, as shown
schematically in Fig. 5. For comparison purposes, we let all
distributions give rise to the same �̃. The expressions of
these distribution functions are given in Appendix B. For
cases (a)–(d), the coupling strength is concentrated around
one point with characteristic width �̃, and, for case (e),
there are two coupling-concentrated areas with a distance φ̃0

(here we express the width or distance in terms of phase
delay for photons with wave vector ωa/vg.). Accordingly,
the characteristic timescale for light traveling through the
coupling area is T = �̃/ωa [T = (�̃ + φ̃0)/ωa] for cases
(a)–(d) [for case (e)]. Below we will discuss the features of
scattering spectra for the continuum limit in both the Marko-
vian (with T � 1/�̃) and the non-Markovian (with T > 1/�̃)
regimes.

A. Spectra under the continuum limit: The Markovian regime

In the Markovian limit T � 1/�̃, similar to the discrete
case, we can replace the phase factor φ in Eqs. (16a) and (16b)
by φ̃. If we define the Lamb shift and effective decay for the
continuum case as

	L =
∫

dφ̃dφ̃′v(φ̃)v(φ̃′) sin |φ̃ − φ̃′|, (17a)

�eff = 2
∫

dφ̃dφ̃′v(φ̃)v(φ̃′) cos(φ̃ − φ̃′), (17b)

the transmission and reflection coefficients can be expressed
by Eqs. (9a) and (9b). The scattering spectra exhibit standard
Lorentzian line shapes, with 	L and �eff [their analytic ex-
pressions for distributions (a)–(e) are provided in Appendix B]
determining all features of the spectra. Thus, in the following,
we concentrate on the influences of coupling distributions on
these two quantities.

First we discuss the case in which the coupling distribution
is concentrated around one point, as shown in Figs. 5(a)–5(d).
The comparison of these distribution functions with the same
characteristic width �̃ is shown in Fig. 6(a). For a given width,
the degrees of localization of these distributions follow the
following order: (d) > (c) > (a) > (b). The corresponding
Lamb shifts 	L and effective decay rates �eff as functions
of characteristic width �̃ are shown in Figs. 6(b) and 6(c).
It is not surprising that for all cases, when �̃ → 0, the atom
becomes pointlike, with 	L → 0 and �eff → �̃ (i.e., the
results under the dipole approximation). For each coupling
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(a) (b)

(c) (d)

(e)

FIG. 5. Schematics of an atom coupling to a waveguide via a
region with some typical coupling distributions: (a) uniform dis-
tribution, (b) exponential distribution, (c) triangular distribution,
(d) raised cosine distribution, (e) double-exponential distribution.

(a)

(b)

(c)

FIG. 6. (a) Coupling strength distributions as functions of scaled
phase φ̃/�̃. (b),(c) The corresponding Lamb shifts and effective
decay rates as functions of characteristic width �̃. Curve a: uniform
distribution (red solid line); curve b: exponential distribution (orange
dashed line); curve c: triangular distribution (blue dot-dashed line);
curve d: raised cosine distribution (brown dotted line).

(a) (b)

(c) (d)

FIG. 7. Lamb shifts 	L and effective decay rates �eff of config-
uration (e) in Fig. 5 for different φ̃0 and �̃. (a),(b) The Lamb shifts
	L and effective decay rates �eff as functions of φ̃0 with different �̃.
A: �̃ = 0.1π ; B: �̃ = 0.2π ; C: �̃ = 0.5π ; D: �̃ = π ; E: �̃ = 2π ;
F: �̃ = 10π ; gray dashed lines: �̃ → 0, corresponding to the case
of two discrete coupling points. (c),(d) The Lamb shifts 	L and
effective decay rates �eff as functions of �̃ with different φ̃0

distribution, with the width �̃ increasing, 	L will first
increase and then decrease. For a more localized distribu-
tion, 	L reaches the maximum slower as �̃ increases [see
Fig. 6(b)]. On the other hand, the increase of �̃ will cause
the decrease of �eff , down to 0 for large �̃. For a more lo-
calized distribution, �eff decreases slower with the increasing
of �̃ [see Fig. 6(c)]. The reason for this is that when the
couplings distribute over an area, due to phase delays between
photons reemitted from different positions, the constructive
interference like the case of pointlike coupling cannot always
be achieved. Particularly, for a uniform distribution, the atom
decouples from the waveguide when �̃ = 2nπ (n ∈ N+), as
shown by the solid line in Fig. 6(c). In fact, when �̃ = 2nπ ,
the coupling region can always be divided into many pairs
of points with phase delay π and, moreover, the reemitted
fields from these points have the same intensities, resulting
in destructive interference and therefore vanished effective
decay rate.

Next we discuss the double-exponential distribution shown
in Fig. 5(e), where the coupling distribution is concentrated
around two points with a phase delay φ̃0. The characteristic
width of the coupling distribution around each point is �̃. The
Lamb shifts 	L and effective decay rates �eff as functions
of φ̃0 with different �̃ are illustrated in Figs. 7(a) and 7(b),
respectively. Under the limit �̃ → 0, the system reduces to
the discrete case with two coupling points; the corresponding
Lamb shift and effective decay rate are shown by the gray
dashed lines in Figs. 7(a) and 7(b) as a reference. When
�̃ → 0, the Lamb shift 	L → (�̃/4) sin φ̃0, as shown by the
gray dashed line in Fig. 7(a). As �̃ increases while �̃ < 2π ,
the curves deviate from the sine function, but the oscillation
characteristic still remains [see curves A–D in Fig. 7(a)]. As
�̃ continues to increase, this oscillation characteristic dis-
appears [see curves E and F in Fig. 7(a)]. Under the �̃ →
0 limit, the effective decay rate �eff → �̃(1 + cos φ̃0)/2, as
shown by the gray dashed line in Fig. 7(b). As �̃ increases,
�eff still remains a cosine function but with a smaller max-
imum, 16�̃/(�̃2 + 4)2 [see curves A–F in Fig. 7(b)], due
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to the coupling-decentralization effect. When �̃ � 2π , the
effective decay rates are close to 0 for all φ̃0. One can also
see from these curves that when φ̃0 = (2n − 1)π (n ∈ N+),
the atom decouples from the waveguide with �eff = 0 due
to destructive interference. In summary, when the coupling
strength around each coupling point is delocalized, the atom-
waveguide coupling as well as the phase-accumulated effects
become weakened. We also illustrate in Figs. 7(c) and 7(d)
the Lamb shifts and effective decay rates as functions of �̃

with different φ̃0. With the increase of �̃, the Lamb shifts will
first increase and then decrease. The effective decay rates for
different φ̃0 [except for some special values φ̃0 = (2n − 1)π ,
where �eff = 0 always holds] decrease to 0 as �̃ increases.

B. Spectra under the continuum limit: The non-Markovian
regime

If the coupling distribution between the atom and the
waveguide is concentrated around one point [e.g., cases
(a)–(d) in Fig. 5], the non-Markovian condition T > 1/�̃ re-
quires �̃ > ωa/�̃ � 1. However, one can see from Figs. 6(b)
and 6(c) that 	L and �eff vanish even for relatively small �̃.
Thus it is hard to realize non-Markovianity in these config-
urations. But for structures with two coupling-concentrated
regions [e.g., case (e) in Fig. 5], non-Markovianity can
also be realized by setting φ̃0 > ωa/�̃. The analytic expres-
sions of the scattering coefficients for this case are given in
Appendix C. The reflection spectra of the configuration (e)
for fixed φ̃0 = 500π (satisfying the non-Markovian condition)
and different �̃ are shown in Fig. 8. For comparison, we plot
the reflection spectra under the limit �̃ → 0 [blue thin lines in
Figs. 8(a) and 8(b)], where the system reduces to the discrete
case with two coupling points. The remarkable features of
the spectra in this parameter region are (1) a symmetric line
shape with three total reflection points in the central area,
and (2) some side peaks and total transmission points due to
phase-accumulated effects for detuned photons, as discussed
in Sec. III B. With �̃ increases, the reflection spectra become
asymmetric, while the total transmission points determined by
the relation cos (1 + 	k/ωa)φ̃0 + 1 = 0 still hold. In addition,
the number of total reflection points changes from three to one
[Fig. 8(a)]. As �̃ continues to increase to π , the width of the
central peak decreases and the side peaks gradually disappear
[Fig. 8(b)]. In summary, when the coupling strength around
each coupling point is delocalized, the phase-accumulated
effects due to detuning become weakened.

V. CONCLUSIONS AND DISCUSSIONS

We have investigated the single-photon scattering spectra
of a single two-level giant atom coupled to a one-dimensional
waveguide via N connection points or a continuous coupling
region. We provide the general analytical solutions for the
single-photon transmission and reflection coefficients, which
are valid in both the Markovian and the non-Markovian
regimes.

For the case of discrete-coupling points, we analyze
the features of the scattering spectra in the Markovian, the
moderately non-Markovian, and the deep non-Markovian
regimes, respectively. We find that in the Markovian regime,

(a)

(b)

FIG. 8. Reflectances of configuration (e) in Fig. 5 for fixed φ̃0 =
500π and different �̃. Here, ωa = 250�̃. (a) �̃ = π/10 (red solid
line), �̃ = π/5 (orange dashed line), �̃ = π/4 (pink dot-dashed
line). (b) �̃ = π/3 (red solid line), �̃ = π/2 (orange dashed line),
�̃ = π (pink dot-dashed line). The blue thin lines in (a) and (b) are
the reflectance under the limit �̃ → 0, where the system reduces
to the discrete case with two coupling points. The insets are the
reflectances in the neighborhood of 	k .

the influence of detuning on the phase decay can be ignored,
resulting in Lorentzian line shapes characterized by the
Lamb shifts and the effective decay rates, while in the
non-Markovian regime, the accumulated phases become
detuning dependent, giving rise to non-Lorentzian line
shapes, characterized by multiple side peaks and total
transmission points. Anther remarkable and interesting
feature in this regime is the appearance of a broad photonic
band gap when the parameters are appropriately designed.
We further obtain the results for the continuum limit with the
atom coupled to the waveguide through a continuous region.
We analyze and compare the scattering spectra for some
typical distributions of coupling strength, and summarize the
influences of nondipole effects on the scattering spectra.

Our results show that the single-photon scattering spectra
could be powerful tools to probe nondipole effects and light-
matter interactions in giant-atom waveguide-QED structures.
Additionally, based on the analytical solutions for the dis-
crete and the continuum case, it is possible to control photon
transport on demand by suitably designing the coupling con-
figuration.

Finally, we wish to remark on the difference between
our model and waveguide-QED systems with multiple small
atoms [34–37]. For a waveguide-QED system with multiple
small atoms, due to photon exchange between different atoms,
photon-mediated interactions between atoms and collective
decays appear. In addition, a single photon can excite an
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atomic chain to its collective excited states. Accordingly, the
scattering spectra can exhibit some features like those in
the atomic coherence phenomena [36,37], while for a single
giant atom there are no atom-atom interactions, and photons
can only excite single-atom states instead of collective states.
But in this situation, there exists photon exchange between
different connecting points and interference effects between
decayed photons from these points. Thus the atom will ob-
tain a phase-dependent frequency shift and effective decay.
The scattering spectra will be strongly influenced by these
quantities.
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APPENDIX A: HAMILTONIAN AND SINGLE-PHOTON
WAVE FUNCTION UNDER THE CONTINUUM LIMIT

According to the Hamiltonian (1) of the discrete case, the
Hamiltonian under the continuum limit can be derived as

Ĥ = ωa|e〉〈e| +
∫

dxĉ†
R(x)

(
−ivg

∂

∂x

)
ĉR(x)

+
∫

dxĉ†
L(x)

(
ivg

∂

∂x

)
ĉL(x)

+
∫

dxV (x)

[ ∑
i=R,L

ĉ†
i (x)σ− + H.c.

]
, (A1)

where V (x) = ωav(φ̃)/
√

vg. Here, v(φ̃) is the distribu-
tion of the coupling strength defined in Sec. IV, satisfy-
ing

∫
dφ̃v(φ̃) = (�̃/2)1/2, with φ̃ = ωax/vg. According to

Eqs. (2) and (3), we can obtain(
−ivg

∂

∂x
− E

)
�R(x) + V (x) fa = 0, (A2a)

(
ivg

∂

∂x
− E

)
�L(x) + V (x) fa = 0, (A2b)

(ωa − E ) fa +
∫

dxV (x)[�R(x) + �L(x)] = 0. (A2c)

The wave functions of a single photon initially coming
from the left will be

�R(x) = eikxtc(x), (A3a)

�L(x) = e−ikxrc(x), (A3b)

where tc(x) [rc(x)] is the probability amplitude for a right-
going (left-going) photon appearing at position x, satisfying
the boundary condition tc(−∞) = 1 [rc(+∞) = 0]. And the
scattering amplitudes to be fixed can be defined as t =
tc(+∞) and r = rc(−∞). Substituting Eqs. (A3a) and (A3b)
into Eqs. (A2a) and (A2b), one can obtain the following
relations:

tc(x) = 1 − i
fa

vg

∫ x

−∞
V (x)e−ikxdx, (A4a)

rc(x) = −i
fa

vg

∫ ∞

x
V (x)eikxdx. (A4b)

Plugging these relations into Eq. (A2c), one can solve for
the excitation amplitude of the atom,

fa = i
√

vg
∫

dφ̃v(φ̃)eiφ

i	k − ∫
dφ̃dφ̃′v(φ̃)v(φ̃′)ei|φ−φ′ | , (A5)

where φ = kx = (1 + 	k/ωa )φ̃. Substituting Eq. (A5) into
Eqs. (A4a) and (A4b), one can obtain the scattering
amplitudes,

t = tc(+∞) = i	k − i
∫

dφ̃dφ̃′v(φ̃)v(φ̃′) sin |φ − φ′|
i	k − ∫

dφ̃dφ̃′v(φ̃)v(φ̃′)ei|φ−φ′| ,

(A6a)

r = rc(−∞) =
[∫

dφ̃dφ̃′v(φ̃)v(φ̃′) cos (φ − φ′)
]
eiα

i	k − ∫
dφ̃dφ̃′v(φ̃)v(φ̃′)ei|φ−φ′| ,

(A6b)

where

tan α =
∫

dφ̃dφ̃′v(φ̃)v(φ̃′) sin (φ + φ′)∫
dφ̃dφ̃′v(φ̃)v(φ̃′) cos (φ + φ′)

.

Note that in the above derivations, the relation
∫

dxV (x) =√
vg

∫
dφ̃v(φ̃) is used. Finally, by using the definitions T =

|t |2 and R = |r|2, one can arrive at Eqs. (16a) and (16b) in the
main text.

APPENDIX B: EXPRESSIONS OF
COUPLING-DISTRIBUTION FUNCTIONS, LAMB SHIFTS,

AND EFFECTIVE DECAYS

In Fig. 5, we have schematically shown five different
coupling distributions: (a) uniform distribution, (b) exponen-
tial distribution, (c) triangular distribution, (d) raised cosine
distribution, and (e) double exponential distribution. The cor-
responding expressions for these distributions are summarized
as follows:

va(φ̃) =
(

�̃

2

) 1
2 1

�̃
, −�̃

2
� φ̃ � �̃

2
, (B1a)

vb(φ̃) =
(

�̃

2

) 1
2 1

�̃
e− 2|φ̃|

�̃ , (B1b)

vc(φ̃) =
(

�̃

2

) 1
2 2

�̃

(
1 − 2|φ̃|

�̃

)
, −�̃

2
� φ̃ � �̃

2
, (B1c)

vd(φ̃) =
(

�̃

2

) 1
2 2

�̃
cos2

(
φ̃

�̃
π

)
, −�̃

2
� φ̃ � �̃

2
, (B1d)

ve(φ̃) =
(

�̃

2

) 1
2 1

2�̃

(
e
− 2

�̃

∣∣∣φ̃+ φ̃0
2

∣∣∣ + e
− 2

�̃

∣∣∣φ̃− φ̃0
2

∣∣∣)
. (B1e)

One can check that
∫

vi(φ̃)dφ̃ = (�̃/2)1/2 (i =
a, b, c, d, e) for each distribution, where �̃ is the decay
rate under the dipole-approximation limit. By substituting
the distribution functions given by Eqs. (B1a)–(B1e) into
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Eq. (17a), one can obtain the corresponding analytic
expressions of the Lamb shifts,

	
(a)
L = �̃

�̃ − sin �̃

�̃2
, (B2a)

	
(b)
L = �̃

�̃(�̃2 + 12)

2(�̃2 + 4)
2 , (B2b)

	
(c)
L = 4�̃

3�̃4

(
12�̃ + �̃3 − 48 sin

�̃

2
+ 12 sin �̃

)
, (B2c)

	
(d)
L = �̃

32π4�̃ − 20π2�̃3 + 3�̃5 − 32π4 sin �̃

2(�̃3 − 4π2�̃)
2 , (B2d)

	
(e)
L = �̃

4(�̃2 + 4)
2

[(
8φ̃0 + 12�̃ + �̃3 + 2�̃2φ̃0

)
e− 2φ̃0

�̃

+ 12�̃ + �̃3 + 16 sin φ̃0
]
. (B2e)

And by substituting Eqs. (B1a)–(B1e) into Eq. (17b), one
can get the corresponding effective decay rates,

�
(a)
eff = 2�̃

1 − cos �̃

�̃2
, (B3a)

�
(b)
eff = �̃

16

(�̃2 + 4)
2 , (B3b)

�
(c)
eff = �̃

256 sin4
(

�̃
4

)
�̃4

, (B3c)

�
(d)
eff = �̃

32π4(1 − cos �̃)

(�̃3 − 4π2�̃)
2 , (B3d)

�
(e)
eff = �̃

8(1 + cos φ̃0)

(�̃2 + 4)2
. (B3e)

APPENDIX C: SCATTERING COEFFICIENTS FOR THE
DOUBLE-EXPONENTIAL DISTRIBUTION

In this Appendix, we will provide the analytic expressions
of the scattering coefficients in the non-Markovian regime for
the distribution given by (B1e). Substituting Eq. (B1e) into
Eqs. (16a) and (16b), one can obtain the transmission and
reflection coefficients as

T = [	k − A(	k )]2

[	k − A(	k )]2 + [B(	k )]2 , (C1a)

R = [B(	k )]2

[	k − A(	k )]2 + [B(	k )]2 , (C1b)

where

A(	k ) = �

4(�2 + 4)2

[
(8φ0 + 12� + �3 + 2�2φ0)e− 2φ̃0

�̃

+ 12� + �3 + 16 sin φ0

]
, (C2a)

B(	k ) = �̃
4(1 + cos φ0)

(�2 + 4)2 , (C2b)

with � and φ0 being defined as � = (1 + 	k/ωa )�̃ and φ0 =
(1 + 	k/ωa )φ̃0, respectively.
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