
PHYSICAL REVIEW A 104, 033709 (2021)

Quantum Rabi model with dissipation and qubit driving
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We consider the quantum Rabi model as an open system that is subject to dissipation, dephasing, and
sinusoidal qubit driving. One can change to an interaction picture where the qubit-driving term disappears at
the expense of changing the free energy of the qubit which becomes time dependent. If the driving frequency is
large with respect to the rest of the parameters with the exception of the driving strength, then one can obtain
an effective Hamiltonian that accurately describes the dynamics of the system. The driving has two effects: the
qubit-transition frequency is changed and the qubit has reduced dephasing. The driving strength can be chosen
so that the qubit-transition frequency is reduced, made equal to zero, or even made negative so that the excited
and ground states of the qubit are interchanged. Therefore, sinusoidal qubit driving offers another method to
control the qubit-transition frequency and to reduce qubit dephasing. Adjusting the driving strength allows one
to consider a qubit with degenerate energy levels. Not taking dissipation into account, the evolution operator
of the qubit-harmonic oscillator system is given by a linear combination of the orthogonal projectors onto the
eigenstates of σ̂x followed by the evolution operator of a forced harmonic oscillator, the harmonic oscillator can
be prepared in such a way that it is always found in a Schrödinger cat state, and the transition probability of the
qubit can exhibit a collapse-revival behavior. In addition, the Born-Markov-secular master equation is deduced
and the effects of dissipation are presented. In particular, smaller ultrastrong-coupling values are preferable
over larger ultrastrong-coupling values and deep strong-coupling values in order to have long-lived, easily
distinguishable Schrödinger cat states because the decoherence rate is inversely proportional to the square of
the coupling. Finally, the qubit-harmonic oscillator system can be prepared in highly entangled states that are
stable under dissipation.
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I. INTRODUCTION

The quantum Rabi model (QRM) is one of the fundamental
models used to describe the interaction of light with matter
[1]. It is also known as the Jaynes-Cummings (JC) model
without the rotating wave approximation (RWA) [2,3], the
single-mode spin boson model [4,5], and the qubit-oscillator
system [6,7]. It can describe, for example, systems in cavity
quantum electrodynamics (QED) consisting of atoms interact-
ing with the electromagnetic field of a cavity [8,9], molecular
dimers [2], and systems in circuit QED where artificial atoms
(charge qubits or flux qubits) interact with the electromagnetic
field of a transmission line or a superconducting quantum
interference device [10,11].

The QRM consists of a two-level system (a qubit) inter-
acting with a one-dimensional harmonic oscillator. It depends
on three parameters: the transition frequency ωs of the qubit,
the frequency � of the harmonic oscillator, and the coupling
strength |g| between the qubit and the harmonic oscillator. De-
pending on the relationship between the three parameters and
the energies to which the system can have access, the QRM
can exhibit very different physics [11–13]. Assuming reso-
nance ωs = �, one can distinguish three regimes depending
on which terms of the QRM Hamiltonian dominate the dy-

*luis.castanos@tec.mx, LOCCJ@yahoo.com

namics [12,14]: the perturbative ultrastrong-coupling (pUSC)
regime, the nonperturbative ultrastrong-coupling and nonper-
turbative deep strong-coupling (npUSC and npDSC) regime,
and the perturbative deep strong-coupling (pDSC) regime.
The pUSC regime treats the interaction between the qubit and
the harmonic oscillator as a perturbation and roughly spans
the region 0.1 � |g/�| � 0.3. In this regime, the QRM can be
accurately described by the Bloch-Siegert Hamiltonian [3,14].
The pDSC regime treats the interaction between the qubit
and the harmonic oscillator as the dominant term and roughly
spans the region 1 � |g/�|. In this regime, it can be accurately
described by several approximate methods such as ordinary
perturbation theory [14,15] and the adiabatic approximation
[16]. Finally, the npUSC and npDSC regime does not treat any
term as a perturbation and roughly considers 0.3 � |g/�| �
1. Broadly speaking, one can refer simply to the ultrastrong-
coupling (USC) regime as the region where 0.1 � |g/�| � 1
and to the deep strong-coupling (DSC) regime as the region
where 1 � |g/�|. One must be careful with the numerical
values given to define all these regimes because they consider
small values of the energies. In general, they depend on the
energies to which the system can have access. For example,
for resonant situations ωs = � and larger values of the energy,
the npUSC and npDSC regime can start (end) for smaller
(larger) values of the coupling strength [14]. In addition to
the approximate treatments mentioned above, there are others
that can describe the QRM more accurately [4–7,17–20]. It is
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usually easier to work with these than to use the exact solution
[21–24].

The QRM model has had extensive applications in
quasiresonant situations |ωs − �| � � where the interaction
is a perturbation |g/�| � 1. These conditions correspond to
the pUSC regime and the QRM can be further simplified
using the RWA to obtain the JC model. For example, the JC
model has been applied to the experiments in cavity QED
where |g/�| � 10−6 [8,9,12]. On the other hand, there has
been great progress in the area of solid-state systems where
coupling strengths |g/�| corresponding to the npUSC [25,26]
and the DSC [27,28] regimes have been obtained. Even some
cold atom systems have reached the USC regime [29]. This
has driven research of the QRM and its extensions in the
USC and DSC regimes. In particular, important applications
in quantum computing have been developed such as ultrafast
two-qubit gates [30], frequency conversion [31], and quantum
simulations [32,33]. In addition, very interesting and often
counterintuitive physical phenomena have been found. For
example, it has been shown that the ground state of the QRM
contains virtual photons [34]. If the two-level system interact-
ing with the harmonic oscillator in the USC regime is built
from the excited states of a three-level system, then the afore-
mentioned virtual photons can be spontaneously converted
into measurable photons [35]. Also, it has been found that a
single photon can reversibly excite simultaneously several in-
dependent qubits without splitting the initial photon [36] and
that the system can be strongly protected against dissipation
or dephasing [37,38]. For an extensive discussion on USC and
DSC phenomena see [11–13].

In this paper we consider the QRM as an open system
that is subject to dissipation, dephasing, and qubit driving.
In particular, we are interested in situations where the RWA
cannot be applied to the qubit driving. First, it is shown that
one can change to an interaction picture (IP) where the qubit-
driving term disappears at the expense of changing the free
energy of the qubit which becomes time dependent. Second,
if the qubit-driving frequency is large with respect to the
rest of the parameters with the exception of the qubit-driving
strength, then one can average the interaction picture von
Neumann equation to obtain an effective Hamiltonian that ac-
curately describes the dynamics of the system. In this effective
Hamiltonian there are two effects of the driving: the qubit-
transition frequency is changed and the qubit has reduced
dephasing. One can choose the qubit-driving strength so that
qubit-transition frequency is reduced, made equal to zero,
or even made negative so that the excited and ground states
of the qubit are interchanged. Hence, it is shown that qubit
driving offers another method to control the qubit-transition
frequency and to reduce qubit dephasing. Third, adjusting the
qubit-driving strength allows one to consider a qubit with
degenerate energy levels. In particular, not taking dissipation
into account, it is shown that the harmonic oscillator can be
prepared in such a way that it is always found in a Schrödinger
cat state. This is particularly relevant to quantum information
where these states have been used for quantum error correc-
tion [39]. Also, it is shown that that the transition probability
of the qubit can exhibit a collapse-revival behavior. Then,
the Born-Markov-secular master equation is deduced and the
effects of dissipation and dephasing are presented. Finally,

it is shown that the qubit-harmonic oscillator system can be
prepared in highly entangled states that are stable under dissi-
pation.

It is important to mention that there are many studies
considering the effects of qubit driving on the qubit dynamics
[40–46]. In particular, its effects on spontaneous emission (en-
hancement and inhibition) have been studied both in the RWA
[41] and without the RWA (see [42] and references therein).
Moreover, if the qubit driving (in the RWA) is frequency or
phase modulated, then qubit population-trapping states exist
[43] and there can be complete population inversion even
without a resonant interaction [40]. In addition, slowing down
of decoherence can be achieved through frequency modula-
tion of the qubit–heat bath coupling [44].

The paper is organized as follows. In Sec. II we introduce
the model. In Secs. III and IV we, respectively, present the
aforementioned unitary transformation and effective Hamilto-
nian. In Sec. V we consider a qubit with degenerate energy
levels and study the dynamics of the system. The conclusions
are in Sec. VI.

II. THE MODEL

The complete system is composed of a driven qubit S, a
harmonic oscillator F , and three thermal baths Bj ( j = 1, 2, 3)
responsible for introducing dissipation and dephasing to the
open system S + F .

The ground state of the qubit is |1〉, while its excited state is
|2〉. The qubit raising and lowering operators are, respectively,
given by

σ̂+ = |2〉〈1|, σ̂− = σ̂
†
+ = |1〉〈2|, (1)

while the Pauli operators are

σ̂x = σ̂− + σ̂+, σ̂z = |2〉〈2| − |1〉〈1|,
σ̂y = i(σ̂− − σ̂+), σ̂ = x̂σ̂x + ŷσ̂y + ẑσ̂z. (2)

Here x̂, ŷ, and ẑ are unit vectors along the positive directions
of the x, y, and z axes. The qubit’s state space HS has the or-
thonormal bases βsz = {|2〉, |1〉} and βsx = {|+〉x, |−〉x} with

|±〉x = 1√
2

(|2〉 ± |1〉). (3)

The former is composed of eigenvectors of σ̂z, while the latter
is composed of eigenvectors of σ̂x:

σ̂z|2〉 = |2〉, σ̂z|1〉 = −|1〉, σ̂x|±〉x = ±|±〉x. (4)

The Hamiltonian of the driven qubit is

Ĥds(t ) = h̄ωs

2
σ̂z − h̄�d cos(ωdt )σ̂x. (5)

Here ωs > 0 is the qubit transition angular frequency, ωd > 0
is the driving angular frequency, and �d > 0 is the driving
strength.

The harmonic oscillator F has angular frequency � > 0
and its state space HF has the orthonormal basis βF = {|n〉 :
n = 0, 1, 2, . . .} where |n〉 is a number state. Also, â† and â
are the creation and annihilation operators of the harmonic
oscillator, respectively, so [â, â†] = 1 and

â†|n〉 = √
n + 1|n + 1〉, â|n〉 = √

n|n − 1〉. (6)
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The free Hamiltonian of the harmonic oscillator is

ĤF = h̄�â†â. (7)

Bj ( j = 1, 2, 3) is a thermal bath of harmonic oscillators.
Its state space is HBj and â†

jk and â jk are the respective cre-
ation and annihilation operators of the kth oscillator of Bj . The
thermal baths are independent, so the following commutation
relations are satisfied:

[â jk, â j′k′ ] = [â†
jk, â†

j′k′ ] = 0, [â jk, â†
j′k′] = δ j j′δkk′ ,

(8)

with δ jk the Kronecker delta. The free Hamiltonian of Bj is

ĤBj =
∑

k

h̄ω jk â†
jk â jk, (9)

with ω jk > 0 the angular frequency of the kth oscillator of
Bj . The thermal baths B1 and B2 introduce dissipation and
dephasing to S and F , respectively, while B3 models additional
dephasing processes of S.

The complete system S + F + ∑3
j=1 Bj has the state

space H = HS ⊗ HF ⊗3
j=1 HBj and density operator ρ̂(t ). Its

Hamiltonian is

Ĥ (t ) = Ĥds(t ) + ĤF +
3∑

j=1

ĤBj −
3∑

j=0

h̄Â j Ê j, (10)

where −h̄Â j Ê j are the interactions between the different sub-
systems. The operators are given by

Â j =

⎧⎪⎨
⎪⎩

σ̂x if j = 0, 1,

â† + â if j = 2,

|2〉〈2| if j = 3

(11)

and

Ê j =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

gâ† + g∗â if j = 0,∑
k (g1kâ†

1k + g∗
1kâ1k ) if j = 1,∑

k (κkâ†
2k + κ∗

k â2k ) if j = 2,∑
k,l g3kl â

†
3kâ3l if j = 3.

(12)

Here and in the following z∗ denotes the complex conjugate
of the complex number z. Also, g, g1k , and κk are complex
numbers with units of 1/s, while g3kl are real numbers with
units 1/s that satisfy

g3kl = g3lk, (13)

so that Ê3 is a hermitian operator. Notice that all the Â j and
Ê j are hermitian operators. The parameters |g|, |g1k|, |g3kl |,
and |κk| represent the coupling strengths between the various
subsystems.

In all that follows assume that the initial density operator
ρ̂(0) can be factored as

ρ̂(0) = ρ̂SF(0) ⊗ ρ̂B1 (0) ⊗ ρ̂B2 (0) ⊗ ρ̂B3 (0), (14)

where ρ̂SF(0) and ρ̂Bj (0) are the initial density operators of
S + F and Bj , respectively. We assume that ρ̂Bj (0) is a thermal

state at temperature T > 0:

ρ̂Bj (0) =
∏

k

ρ̂ jk (0), ρ̂ jk (0) = 1

Zjk
e−β jk â†

jk â jk , (15)

with kB the Boltzmann constant and

β jk = h̄ω jk

kBT
, Zjk = N (ω jk, T ) + 1,

N (ω, T ) = 1

eh̄ω/(kBT ) − 1
. (16)

Note that ρ̂ jk (0) is the density operator at time t = 0 of the kth
oscillator of Bj and that it is a thermal state. Also, the expected
value at time t = 0 of the number operator â†

jk â jk of the kth
oscillator of Bj satisfies

〈â†
jk â jk〉(0) = Tr jk[ρ̂ jk (0)â†

jk â jk] = N (ω jk, T ). (17)

Here Tr jk denotes the trace with respect to the degrees of
freedom of the kth oscillator of Bj .

We are interested in determining the Born-Markov-secular
master equation governing the evolution of the density opera-
tor of S + F . In order to do this, it is convenient to rewrite the
Hamiltonian Ĥ (t ) so that the interactions between S + F and
the thermal baths have an expected value equal to zero at time
t = 0. One gets

Ĥ (t ) = Ĥ0(t ) − h̄

2
δ3, (18)

where

Ĥ0(t ) = h̄(ωs − δ3)

2
σ̂z − h̄�d cos(ωdt )σ̂x + ĤF

+
3∑

j=1

ĤBj −
2∑

j=0

h̄Â j Ê j − h̄Â3(Ê3 − δ3), (19)

and

δ3 = TrB3 [Ê3ρ̂B3 (0)] =
∑

k

g3kkN (ω3k, T ). (20)

Here, TrB3 [·] is the trace over the degrees of freedom of B3.
Notice that the transition frequency ωs of the qubit is shifted
by −δ3 and that δ3 is subtracted from the operator Ê3 in (19).
In general, |δ3| < ωs is a small frequency shift.

It follows that von Neumann’s equation governing the evo-
lution of ρ̂(t ) takes the form

ih̄
d

dt
ρ̂(t ) = [Ĥ0(t ), ρ̂(t )]. (21)

In the next section we are going to apply a unitary trans-
formation that is going to eliminate the qubit-driving term at
the expense of changing σ̂z by a projection of σ̂ in the yz-
plane. This will later allow us to obtain an effective Hamilto-
nian where an effect of the driving consists in changing the
transition frequency of the qubit.

III. THE UNITARY TRANSFORMATION

We now pass to an IP defined by the unitary transformation

ÛIS (t ) = e−ib0t2 [e
i
2 θ (t1 )|+〉xx〈+| + e− i

2 θ (t1 )|−〉xx〈−|]
= e−ib0t2 e

i
2 θ (t1 )σ̂x , (22)
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where

t1 = ωdt, θ (t1) = 2

(
�d

ωd

)
sin(t1),

t2 = (ωs − δ3)t, b0 = 1

2

[
1 − J0

(
2
�d

ωd

)]
, (23)

and J0 is the Bessel function of the first kind of order zero
[47]. Note that ÛIS (t ) is an operator of S.

Observe that ÛIS (t ) is designed to eliminate the qubit-
driving term, since

d

dt
ÛIS (t ) = i[−b0(ωs − δ3) + �d cos(ωdt )σ̂x]ÛIS (t ). (24)

For clarity, operators in the IP have a subindex I: if Â(t ) is
a linear operator in the Schrödinger picture (SP), then ÂI (t ) is
the corresponding operator in the IP with

ÂI (t ) = Û †
IS (t )Â(t )ÛIS (t ). (25)

The evolution equation for ρ̂I (t ) takes the form

d

dt
ρ̂I (t ) = − i

h̄
[ĤI (t1), ρ̂I (t )], (26)

with

ĤI (t1) = h̄(ωs − δ3)

2
σ̂ · û(t1) + ĤF −

2∑
j=0

h̄Â j Ê j +
3∑

j=1

ĤBj

− h̄

2
[Îs + σ̂ · û(t1)](Ê3 − δ3), (27)

Îs the identity operator of S, and

û(t1) = −sin[θ (t1)]ŷ + cos[θ (t1)]ẑ. (28)

Comparing (26) and (27) with (19) and (21) and us-
ing |2〉〈2| = (1/2)(Îs + σ̂z ), one finds that the effect of
the unitary transformation is to eliminate the driving term
−h̄�d cos(ωdt )σ̂x and to replace σ̂z by σ̂ · û(t1).

Notice that û(t1) is a unit vector in the yz plane that per-
forms a symmetric rotation around x̂: it rotates back and forth
around x̂ so that it forms a maximum angle 2�d/ωd and a
minimum angle −2�d/ωd with the positive z axis. In partic-
ular, it starts out as ẑ at time t = 0, rotates counterclockwise
around x̂ until it forms a maximum angle 2�d/ωd with the
positive z axis, and then rotates clockwise around x̂ until it
forms a minimum angle −2�d/ωd with the positive z axis.
Afterwards, it again rotates counterclockwise around x̂ until it
forms a maximum angle 2�d/ωd with the positive z axis and
the process repeats itself. In particular, û(t1) is t periodic with
period 2π/ωd .

The behavior of û(t1) described in the preceding paragraph
provides the geometric picture needed to intuitively under-
stand the averaging or rotating wave approximation to be
performed in the next section. Assume ωd is much larger than
the rest of the frequencies and coupling strengths appearing in
ĤI (t1) with the exception of �d (�d only affects the maximum
and minimum angles mentioned in the preceding paragraph).
Since each term of ĤI (t1) is multiplied by a frequency or
coupling strength much smaller than ωd , it follows that ρ̂I (t )
is going to remain approximately constant in a time interval
of length 2π/ωd while û(t1) performs a complete symmetric

rotation. Then, ρ̂I (t ) only sees the average of û(t1) in this time
interval and one can average von Neumann’s equation (26) in
a t interval of length 2π/ωd to obtain an approximate equation
describing accurately the evolution of ρ̂I (t ). This averaging is
usually called the rotating wave approximation and it is based
on the averaging theorem of dynamical systems [48].

To end this section we comment more on ÛIS (t ). Ref-
erences [45,46] considered a sinusoidally driven qubit with
large detuning ωs � ωd or ωd � ωs (say, ωs � 0.1ωd or
ωd � 0.1ωs) and presented very simple, analytic, and accurate
formulas describing the evolution of the Bloch vector of the
qubit. From them one can deduce that an accurate approxima-
tion to the evolution operator of a sinusoidally driven qubit in
the blue detuned regime ωs � ωd is

ÛIS (t )e− i
2 J0(2�d /ωd )t2σ̂z . (29)

We emphasize that (29) is an accurate approximation to the
evolution operator associated with the Hamiltonian Ĥds(t ) in
(5) if one takes δ3 = 0 in ÛIS (t ) and one considers ωs � ωd .
It was obtained by the method of multiple scales [45]. The
second factor in (29) was not used here for the IP so that
(σ̂x )I (t ) = σ̂x.

IV. THE AVERAGED EQUATION

In the rest of the paper assume that the frequencies and
coupling strengths satisfy

ωs

ωd
,

�

ωd
,
ω jk

ωd
,

∣∣∣∣ δ3

ωd

∣∣∣∣ � 1,

∣∣∣ g

ωd

∣∣∣, ∣∣∣g1k

ωd

∣∣∣, ∣∣∣g3kl

ωd

∣∣∣, ∣∣∣ κk

ωd

∣∣∣ � 1. (30)

Since (30) is satisfied and ĤI (t1) = ĤI (ωdt ) is t periodic
with period 2π/ωd , one can average von Neumann’s IP equa-
tion (26) in a t interval of length 2π/ωd (see Appendix A for
the details). One obtains the averaged equation

d

dt
ρ̂

avg
I (t ) = − i

h̄

[
Ĥ avg

I , ρ̂
avg
I (t )

]
, (31)

with the averaged Hamiltonian

Ĥ avg
I = h̄ωso

2
σ̂z + ĤF +

3∑
j=1

ĤBj −
2∑

j=0

h̄Â j Ê j

− h̄

2

[
Îs + J0

(
2
�d

ωd

)
σ̂z

]
(Ê3 − δ3), (32)

and the effective qubit frequency

ωso = (ωs − δ3)J0

(
2
�d

ωd

)
. (33)

Note that we have added the superscript avg to indicate that it
is the averaged equation. One transforms back to the SP using
the unitary transformation ÛIS (t ) in (22).

Comparing ĤI (t1) in (27) with Ĥ avg
I , one observes that

Ĥ avg
I is obtained from ĤI (t1) by replacing σ̂ · û(t1) by

J0(2�d/ωd )σ̂z, its average in a t1 interval of length 2π .
Choosing the driving frequency ωd so that (30) is satis-

fied leads to the effective IP Hamiltonian Ĥ avg
I in (32). Note

that it has the same form of the QRM with dissipation and
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that the qubit has the effective transition frequency ωso in
(33). Since −0.403 � J0(2�d/ωd ) � 1, one can adjust the
driving parameters �d/ωd to control ωso: it can take any
value between −0.403(ωs − δ3) and (ωs − δ3). In particular,
if �d/ωd = 1.2025, then J0(2�d/ωd ) = 0 and ωso = 0, so
one obtains a qubit with degenerate energy levels and reduced
dephasing because the qubit and the thermal bath B3 are not
coupled.

In the next sections we consider the case where �d/ωd is
adjusted so that the qubit has degenerate energy levels.

V. DEGENERATE QUBIT LEVELS

If the driving strength and frequency are adjusted so that
�d/ωd = 1.2025, then J0(2�d/ωd ) = 0 and the Hamiltonian
(32) reduces to

Ĥ avg
I = ĤDL +

3∑
j=1

ĤBj −
∑
j=1,2

h̄Â j Ê j − h̄

2
(Ê3 − δ3), (34)

where

ĤDL = h̄�â†â − h̄σ̂x(gâ† + g∗â). (35)

Notice that ĤDL is the Hamiltonian of the quantum Rabi model
where the qubit has degenerate energy levels. Also, observe
from (34) that the qubit is subject to reduced dephasing be-
cause it is no longer coupled to B3.

The unitary transformation ÛIS (t ) in (22) can be used to
return to the SP. Using ρ̂(t ) = ÛIS (t )ρ̂avg

I (t )Û †
IS (t ) and that

ÛIS (t ) commutes with Ĥ avg
I in (34), it follows from (31) that

the evolution equation for the density operator ρ̂(t ) in the SP
is

d

dt
ρ̂(t ) = − i

h̄

[
Ĥ avg

I − h̄�d cos(ωdt )σ̂x, ρ̂(t )
]
, (36)

with Ĥ avg
I in (34). In the rest of the paper we use (36).

Note from (36) that, in the SP, the qubit still has degenerate
energy levels and is still uncoupled to the thermal bath B3.
Moreover, observe that the difference between the SP and IP
Hamiltonians is the driving −h̄�d cos(ωdt )σ̂x. One eliminates
the driving by using ÛIS (t ) in (22).

We are interested in determining the master equation gov-
erning the evolution of the density operator of S + F . In
addition, we want to identify the effects of dissipation. In
order to do this one requires the spectrum of ĤDL and its
associated evolution operator. This is presented in the next
sections.

A. Eigenvectors and eigenvalues of ĤDL

To determine the eigenvalues and eigenvectors of ĤDL,
it is convenient to use coherent states and the displacement
operator of the harmonic oscillator [49]. Coherent states are
denoted by |γ 〉 with γ a complex number and the displace-
ment operator is the unitary operator

D̂(γ ) = eγ â†−γ ∗â. (37)

Some very useful properties of the displacement operator that
are used frequently are given in Appendix B.

The first step is to express both Îs and σ̂x in terms of
projectors onto the eigenvectors |±〉x of σ̂x so that

ĤDL = Ĥ1|+〉xx〈+| + Ĥ2|−〉xx〈−|, (38)

where

Ĥj = h̄�â†â + (−1) j h̄(gâ† + g∗â),

= D̂†
[
(−1) j g

�

][
h̄�â†â − h̄

|g|2
�

]
D̂

[
(−1) j g

�

]
. (39)

Making use of the eigenvectors of σ̂x in (3), the number states
|n〉, and the properties of the displacement operator in (B1), it
follows from (38) and (39) that an orthonormal basis for the
state space of S + F composed of eigenvectors of ĤDL is

β =
{
|ωn,−〉 ≡ |−〉x ⊗ D̂

(
− g

�

)
|n〉,

|ωn,+〉 ≡ |+〉x ⊗ D̂

(
g

�

)
|n〉 : n = 0, 1, 2, . . .

}
, (40)

with

ĤDL|ωn,±〉 = h̄ωn|ωn,±〉. (41)

The eigenvalues of ĤDL are given by

h̄ωn = h̄�

(
n − |g|2

�2

)
, n = 0, 1, 2, . . . . (42)

Notice that they are all two-degenerate and that the spectrum
of ĤDL is simply that of the harmonic oscillator translated by
−h̄|g|2/�.

B. Evolution operator associated with ĤDL

Using the orthonormal basis β in (40) it follows that the
evolution operator associated with ĤDL is

e− i
h̄ ĤDLt =

+∞∑
n=0

e−iωnt (|ωn,+〉〈ωn,+| + |ωn,−〉〈ωn,−|)

= e
i
h̄ �(t ){e−i�â†ât D̂[−α(t )]|+〉xx〈+|

+e−i�â†ât D̂[α(t )]|−〉xx〈−|}, (43)

where

�(t ) = h̄
|g|2
�2

[�t − sin(�t )], α(t ) = g

�
(1 − ei�t ). (44)

For g real and not taking into account a global phase,
e−i�â†ât D̂[±α(t )] is the evolution operator of a forced har-
monic oscillator with angular frequency � and forcing
−h̄gcos(φ)(â† + â) with φ = π for +α(t ) and φ = 0 for
−α(t ) [50]. Hence, the evolution operator is given by a linear
combination of the orthogonal projectors onto the eigenstates
|±〉x of σ̂x followed by the evolution operator of a forced
harmonic oscillator. Also, since the arguments ±α(t ) of the
displacement operators in (43) differ by a minus sign, it fol-
lows that the evolution operator (43) can naturally lead to the
formation of Schrödinger cat states in the harmonic oscillator.

If there are no thermal baths, the Hamiltonian of S + F in
the IP is given by ĤDL [see (34)], while the Hamiltonian of
S + F in the SP is given by ĤDL − h̄�d cos(ωdt )σ̂x [see (36)].
Then, (43) is the evolution operator of S + F in the IP if there
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are no thermal baths. To determine the evolution operator of
S + F in the SP if there are no thermal baths, one can use the
unitary transformation ÛIS (t ) in (22) and that J0(2�d/ωd ) =
0. One has

ÛIS (t )|ωn,±〉 = e− i
2 t2 e± i

2 θ (t1 )|ωn,±〉. (45)

Using this result in (43), one obtains the evolution operator of
S + F in the SP if there are no thermal baths:

ÛIS (t )e− i
h̄ ĤDLt = e− i

2 t2
+∞∑
n=0

e−iωnt [e
i
2 θ (t1 )|ωn,+〉〈ωn,+|

+ e− i
2 θ (t1 )|ωn,−〉〈ωn,−|]

= e
i
h̄ �(t )e− i

2 t2{e i
2 θ (t1 )e−i�â†ât D̂[−α(t )]|+〉xx〈+|

+ e− i
2 θ (t1 )e−i�â†ât D̂[α(t )]|−〉xx〈−|}, (46)

with �(t ) and α(t ) given in (44). Observe that the relative
phases e±iθ (t1 )/2 were added in addition to a global phase and
that the eigenvectors of ĤDL are stationary states because they
are only affected by a global phase. The evolution operator
(46) is used in the next two sections to determine how the
state of S + F evolves without dissipation and dephasing.

1. Preparation of a Schrödinger cat state

In this section we show how to prepare S + F in such a way
that the harmonic oscillator is always found in a Schrödinger
cat state. It only requires measuring the state of the qubit three
times and the creation of the Schrödinger cat state is inde-
pendent of the results of the measurements. We emphasize
that we do not take into account the effects of dissipation and
dephasing in this section. This is done in a later section. To
determine the evolution of a state of S + F we use (46), the
evolution operator of S + F in the SP if there are no thermal
baths.

Assume that the state of S + F is |ωn, r〉 with

r =
{

1 if the initial state is |ωn,+〉,
2 if the initial state is |ωn,−〉 (47)

for some n = 0, 1, . . .. Recall that this is an eigenstate of ĤDL

and observe from (46) that this is a stationary state of the
system.

The first step is to measure the state of the qubit to see if it
is in the state |1〉 or |2〉. The state of S + F immediately after
the first measurement is

|ψ1(0)〉 = | j〉 ⊗ D̂†
[
(−1)r g

�

]
|n〉, (48)

where

j =
{

1 if the first measurement result is |1〉,
2 if the first measurement result is |2〉. (49)

Now let the system evolve and measure the state of the qubit
after a time Tp = (2p − 1)π/� with p a positive integer to see
if it is in the state |1〉 or |2〉. The state of S + F immediately
after the second measurement is

|ψ2(0)〉 = |J〉 ⊗ 1

NJ
|KJ〉, (50)

where

J =
{

1 if the second measurement result is |1〉,
2 if the second measurement result is |2〉,

|KJ〉 = eiθ (ωd Tp)/2D̂
[
2

g

�
+ (−1)r g

�

]
|n〉

+ (−1) j+Je−iθ (ωd Tp)/2D̂
[
−2

g

�
+ (−1)r g

�

]
|n〉,

NJ =
√

〈KJ |KJ〉. (51)

Now let the system evolve and measure the state of the qubit
after a time Tq = (2q − 1)π/� where q is a positive integer
to see if it is in the state |+〉x or |−〉x. The state of S + F
immediately after the third measurement is

|ψ3(0)〉 = |±〉x ⊗ 1

N±
|ξ (0)〉, (52)

with N± = √〈ξ (0)|ξ (0)〉 a normalization constant. Here

|ξ (0)〉 = eiθ (ωd Tp)/2D̂
[
−(−1)r g

�

]
|n〉

+ (−1) j+Je−iθ (ωd Tp)/2D̂
[
4

g

�
− (−1)r g

�

]
|n〉, (53)

if the result of the third measurement was |+〉x and

|ξ (0)〉 = eiθ (ωd Tp)/2D̂
[
−4

g

�
− (−1)r g

�

]
|n〉

+ (−1) j+J e−iθ (ωd Tp)/2D̂
[
−(−1)r g

�

]
|n〉, (54)

if the result of the third measurement was |−〉x. Notice that
|ξ (0)〉 is similar to a Schrödinger cat state.

Now simply let the system evolve. Using the evolution
operator in (46) and omitting a global phase, the state of S + F
a time t after the third measurement is

|ψ3(t )〉 = |±〉x ⊗ 1

N±
|ξ (t )〉. (55)

To simplify the expression of |ξ (t )〉 define

λ±(t ) = 1

2
θ (ωdTp) ± 2

∣∣∣ g

�

∣∣∣2
sin(�t ). (56)

First assume that the initial state of S + F was |ωn,+〉. If the
third measurement result was |+〉x, then

|ξ (t )〉 = eiλ−(t )D̂

(
g

�

)
|n〉

+ (−1) j+Je−iλ−(t )D̂

[
g

�
(1 + 4e−i�t )

]
|n〉. (57)

If the result of the third measurement was |−〉x, then

|ξ (t )〉 = eiλ+(t )D̂

[
− g

�
(1 + 2e−i�t )

]
|n〉

+ (−1) j+Je−iλ+(t )D̂

[
− g

�
(1 − 2e−i�t )

]
|n〉. (58)
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FIG. 1. Trajectories followed in the complex plane by the argu-
ments z of the displacement operators appearing in the Schrödinger
cat states (57)–(60) with n = 0. The cat states (57) and (60) have the
form of a solar system with arguments z = ±g/� (circle markers)
and ±(g/�)(1 + 4e−i�t ) (blue solid lines). The cat states (58) and
(59) have the form of end points of a rotating rigid bar with arguments
z = ±(g/�)(1 + 2e−i�t ) and ±(g/�)(1 − 2e−i�t ) (red dashed lines).
The diamond, triangle, and square markers indicate the respective
starting points: z = ±(g/�)(1 − 2e−i�t ), ±(g/�)(1 + 2e−i�t ), and
±(g/�)(1 + 4e−i�t ) at t = 0. All trajectories rotate in the clockwise
sense, g/� = 0.537, and Re(z) and Im(z) are the real and imaginary
parts of the dimensionless complex number z, respectively. The upper
(lower) signs correspond to Figs. 1(a) and 1(b).

Now assume that the initial state of S + F was |ωn,−〉. If the
third measurement result was |+〉x, then

|ξ (t )〉 = eiλ−(t )D̂

[
g

�
(1 − 2e−i�t )

]
|n〉

+ (−1) j+Je−iλ−(t )D̂

[
g

�
(1 + 2e−i�t )

]
|n〉. (59)

If the result of the third measurement was |−〉x, then

|ξ (t )〉 = eiλ+(t )D̂

[
− g

�
(1 + 4e−i�t )

]
|n〉

+ (−1) j+Je−iλ+(t )D̂

(
− g

�

)
|n〉. (60)

Observe from (57)–(60) that |ξ (t )〉 is a superposition of nor-
malized, displaced number states the overlap of which is
e−16|g/�|2 [Ln(16|g/�|2)]2 with Ln the nth Laguerre polyno-
mial. The overlap of two kets |ψ1〉 and |ψ2〉 is |〈ψ1|ψ2〉|2. For
n = 0 and USC values |g/�| � 0.537, the overlap is � 0.01
and the harmonic oscillator is always in an easily distinguish-
able Schrödinger cat. In particular, if n = 0 (that is, the initial
state of the system was |ω0,±〉), then |ξ (t )〉 is a Schrödinger
cat state with the form of a solar system for (57) and (60) and
with the form of end points of a rotating rigid bar for (58)
and (59), as shown in Fig. 1. These types of states could be
used in quantum information because they have been applied
in quantum error correction [39].

2. Qubit and harmonic oscillator in their ground states

Assume that the initial state of S + F is

|ψ (0)〉 = |1〉 ⊗ |0〉, (61)

that is, both the qubit and the harmonic oscillator are in their
respective ground states. Using the evolution operator (46)

and omitting a global phase, the state of S + F in the SP is

|ψ (t )〉 = 1
2 [|2〉 ⊗ |ψ−(t )〉 + |1〉 ⊗ |ψ+(t )〉], (62)

where |ψ±(t )〉 are superpositions of coherent states and have
the form of Schrödinger cat states

|ψ±(t )〉 = e
i
2 θ (t1 )| − α(t )e−i�t 〉 ± e− i

2 θ (t1 )|α(t )e−i�t 〉. (63)

The overlap between the states comprising |ψ±(t )〉 is

|〈−α(t )e−i�t |α(t )e−i�t 〉|2 = exp

[
−16

∣∣∣ g

�

∣∣∣2
sin2

(
�t

2

)]
.

(64)

This overlap takes on its maximum value 1 at times

T ′
n = n

2π

�
, (n = 0, 1, 2, . . .). (65)

Since α(T ′
n ) = 0, the harmonic oscillator is in its ground state

[see (44), (62), and (63)].
At any other times, α(t ) �= 0 and |ψ±(t )〉 are Schrödinger

cat states. In particular, at times

Tn = (2n − 1)
π

�
, (n = 1, 2, . . .), (66)

the overlap (64) takes on its minimum value

|〈−α(Tn)e−i�Tn |α(Tn)e−i�Tn〉|2 = exp(−16|g/�|2), (67)

and from (63) one has

|ψ±(Tn)〉 = e
i
2 θ (ωd Tn )

∣∣∣2 g

�

〉
± e− i

2 θ (ωd Tn )
∣∣∣−2

g

�

〉
. (68)

Observe that (67) is <10−2 if |g/�| � 0.537. Hence, one
requires USC to have an easily distinguishable Schrödinger
cat. If the interaction between the qubit and the harmonic
oscillator is tuned to zero at a time Tn and one measures the
state of the qubit at this time to see if it is in the state |1〉 or |2〉,
then it follows from (62) that the harmonic oscillator would
be in one of the states in (68) and, since it would evolve freely
afterwards, it would remain in a Schrödinger cat state with the
form of end points of a rigid bar centered at the coordinate
origin and rotating in the clockwise sense:

e− i
h̄ ĤF (t−Tn )|ψ±(Tn)〉 = e

i
2 θ (ωd Tn )

∣∣∣2 g

�
e−i�(t−Tn )

〉

± e− i
2 θ (ωd Tn )

∣∣∣−2
g

�
e−i�(t−Tn )

〉
. (69)

To determine other properties, it is convenient to use the
following operators:

X̂ = 1√
2

(â† + â), P̂ = i√
2

(â† − â). (70)

Observe that
√

h̄/(M�)X̂ and
√

Mh̄�P̂ would be the re-
spective position and momentum operators of the harmonic
oscillator if it has mass M [49] and that X̂ and P̂ are propor-
tional to quadrature operators if the harmonic oscillator is a
single mode of an electromagnetic field [51].

Given a linear operator Â(t ), we define the following ex-
pected values and root-mean-square (rms) deviations of Â(t )
in the states | ± α(t )e−i�t 〉 comprising the Schrödinger cat
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states in (63):

〈Â〉c
±(t ) = 〈±α(t )e−i�t |Â(t )| ± α(t )e−i�t 〉,

�Âc
±(t ) =

√
〈Â2〉c±(t ) − 〈Â〉c±(t )2. (71)

Using the properties in (B1) it follows that

x± = 〈X̂ 〉c
±(t ) = ∓

√
2
∣∣∣ g

�

∣∣∣[cos(δ) − cos(�t − δ)],

p± = 〈P̂〉c
±(t ) = ∓

√
2
∣∣∣ g

�

∣∣∣[sin(δ) + sin(�t − δ)],
(72)

�X̂ c
± = �P̂c

± = 1√
2
,

�(â†â)c
±(t ) =

√
〈â†â〉c±(t ),

with
g

�
=

∣∣∣ g

�

∣∣∣eiδ,

〈â†â〉c
±(t ) =

[
1√
2
〈X̂ 〉c

±(t )

]2

+
[

1√
2
〈P̂〉c

±(t )

]2

. (73)

Since | ± α(t )e−i�t 〉 are coherent states, we obtained
�X̂ c

±�P̂c
± = 1/2, that is, | ± α(t )e−i�t 〉 are associated

with minimum uncertainty wave packets. Also, observe
that (x±, p±) are parametrizations of circumferences
in the xp plane of radius

√
2|g/�| and centered at

∓√
2|g/�|(cos(δ), sin(δ)). Moreover, they trace out the

circumferences in the clockwise sense with angular velocity
�. Figure 2(a) illustrates the trajectories followed by (x+, p+)
(red solid line) and (x−, p−) (blue dotted line) for g/� = 1.
Starting at the coordinate origin at t = 0, the arrows indicate
the direction of the motion of (x+, p+) = −(x−, p−). At times
T ′

n one has (x±, p±) = (0, 0) and at times Tn the expected
values 〈X̂ 〉c

±(t ) are the furthest away from each other. At
these times Tn, the expected value 〈â†â〉c

±(t ) is largest and
the relative rms deviation �(â†â)c

±(t )/〈â†â〉c
±(t ) is small

because the former is one half of the square of the distance of
(x±, p±) to the coordinate origin and the latter is

√
2 over the

aforementioned distance. Recall that it is at one of these times
Tn when one must measure the state of the qubit to see if it is
in the state |1〉 or |2〉 and one must tune to zero the interaction
between the qubit and the harmonic oscillator to obtain the
most easily distinguishable Schrödinger cat state in (68) and
(69).

From (62) it follows that the probability to find the qubit in
the excited state |2〉 is

P2(t ) = 1

2
{1 − Re[e−iθ (t1 )〈−α(t )e−i�t |α(t )e−i�t 〉]},

= 1

2
− 1

2
cos[θ (t1)]exp

{
−4

∣∣∣ g

�

∣∣∣2
[1 − cos(�t )]

}

(74)

with Re(z) the real part of complex number z. P2(t ) has the
lower envelope

P2l (t ) = 1

2
− 1

2
exp

{
− 4

∣∣∣ g

�

∣∣∣2
[1 − cos(�t )]

}
, (75)

FIG. 2. (a) Parametric curves (x+, p+) (red solid line) and
(x−, p−) (blue dotted line) defined in (72). The arrows indicate the
direction of the motion. (b) Probability to find the qubit in the
excited state P2(t ) (blue solid line) and the envelopes P2l (t ) (black
dotted line) and P2u(t ) (black dashed line) as functions of �t [see
(74)–(76)]. (c) x+ (red solid line), x− (red dashed line), p+ (blue
dot-dashed line), and p− (blue dotted line) as functions of �t . The
values of the parameters are in (79).

and the upper envelope (with �d/ωd = 1.2025)

P2u(t ) = 1

2
− 1

2
cos

(
2
�d

ωd

)
exp

{
− 4

∣∣∣ g

�

∣∣∣2
[1 − cos(�t )]

}
.

(76)

It gives an upper bound for the maximum value of P2(t ):

P2max = 1

2

[
1 − cos

(
2
�d

ωd

)]
 0.87. (77)

Notice that the envelopes are t-periodic functions with period
2π/� and that the driving strength and frequency �d/ωd

determine the maximum probability. In addition, observe that
at times Tn in (66), x± = 〈X̂ 〉c

±(Tn) are furthest away from each
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other and

P2u(Tn) = 1

2

[
1 − cos

(
2
�d

ωd

)
e−8|g/�|2

]
,

P2l (Tn) = 1

2

[
1 − e−8|g/�|2]. (78)

These values reduce to  0.5 for large coupling strengths
|g/�| (their distance to 0.5 is � 0.01 if |g/�| � 0.76), so it
is approximately equal to find the qubit in the excited and
ground states when x± = 〈X̂ 〉c

±(t ) are furthest away from each
other.

Figure 2(b) illustrates P2(t ) (blue solid line) and the en-
velopes P2l (t ) (black dotted line) and P2u(t ) (black dashed
line) for

�d

ωd
= 1.2025,

g

�
= 1,

�

ωd
= 10−1. (79)

Observe that P2(t ) oscillates between the envelopes in a form
similar to a collapse revival, although the collapse is at P2 
0.5. The oscillations are faster for smaller values of �/ωd .
Figure 2(c) illustrates x± (red solid and red dashed lines) and
p± (blue dotted and blue dot-dashed lines) as functions of �t
for the values in (79) [see the definitions in (72)]. Observe
that in the neighborhood of the times T ′

n when x±, p± are
all close to zero, P2(t ) exhibits large oscillations. Also, in
the neighborhood of the times Tn when x± are furthest away
from zero, P2(t ) collapses to a value  0.5. This behavior of
P2(t ) comes from the fact that it depends on the inner product
between the states | ± α(t )e−i�t 〉 [see the first line in (74)].
In the neighborhood of times T ′

n the overlap is approximately
1 because x±, p± are all close zero. In the neighborhood of
times Tn the overlap is approximately zero because x± are
furthest away from each other. It also follows that it is ap-
proximately equal to find the qubit in the ground and excited
states when one measures at a time Tn its state to create the
Schrödinger cat state in (68).

It is important to identify the effects of the driving in
P2(t ). The driving modifies the qubit transition frequency and
introduces quantities depending on θ (t1) [see (35), (43), and
(46)]. If the qubit has degenerate energy levels and there is no
driving [that is, it evolves according to (43)], then θ (t1) = 0
and the probability to find the qubit in the excited state |2〉 is
P2l (t ) in (75). Observe that P2l (t ) has a maximum value <0.5
and recall that it is illustrated in Fig. 2(b) as the lower black
dotted line for the values in (79). Comparing P2(t ) in (74) with
P2l (t ) in (75) one finds that the term cos[θ (t1)] comes from
the driving, is responsible for the fast oscillations of P2(t )
illustrated as a blue solid line in Fig. 2(b), and allows P2(t )
to attain the much larger value P2max  0.87 in (77).

Finally, we comment on the accuracy of the results pre-
sented in this section. These are based on ĤDL in (35). Since
this Hamiltonian is an approximation, it is important to deter-
mine the accuracy of the dynamics obtained from it.

First, recall that the exact Hamiltonian of the system in the
IP is ĤI (t1) in (27). Then, we made assumption (30) and this
allowed us to average the von Neumann IP equation (26) over
a t interval of length 2π/ωd to obtain the averaged equation
(31) with the averaged Hamiltonian Ĥ avg

I in (32) and the
effective qubit frequency ωso in (33). Finally, we assumed that
the driving parameters satisfy �d/ωd = 1.2025, so ωso = 0

and Ĥ avg
I reduced to the form in (34). Hence, the dynamics

obtained from Ĥ avg
I in (34) have to be compared with those of

the exact Hamiltonian ĤI (t1) in (27) under assumptions (30)
and �d/ωd = 1.2025. If there are no thermal baths, then Ĥ avg

I
in (34) reduces to ĤDL in (35), ĤI (t1) in (27) takes the form

ĤI (t1) = h̄ωs

2
σ̂ · û(t1) + h̄�â†â − h̄σ̂x(gâ† + g∗â), (80)

and the assumptions reduce to

ωs

ωd
,

�

ωd
,

∣∣∣ g

ωd

∣∣∣ � 1,
�d

ωd
= 1.2025. (81)

Observe that the dynamics obtained from ĤDL are going
to be more accurate for smaller values of the quantities on
the left-hand side of (81) (see the argument given in Sec. III).
To determine the accuracy quantitatively, we considered the
initial condition in (61) and

ωs

�
= g

�
= 1,

�

ωd
= 10−2,

�d

ωd
= 1.2025. (82)

Notice that these values correspond to conditions of res-
onance, USC, and the assumptions in (81). Then, we
numerically solved the exact (nondimensional) Schrödinger
equation

d

dτ
|ψIN (τ )〉 = −i

ĤI (τ )

h̄ωd
|ψIN (τ )〉, (83)

and calculated the overlap between the numerical so-
lution |ψIN (τ )〉 and the analytic solution |ψI (τ/ωd )〉 =
Û †

IS (τ/ωd )|ψ (τ/ωd )〉 in the IP with |ψ (τ/ωd )〉 in (62). We
obtained |〈ψIN (τ )|ψI (τ/ωd )〉|2 > 0.9998 for the time interval
0 � τ = ωdt � 10π (ωd/�) = 3141.6. Given these results,
we conclude that the dynamics obtained from ĤDL accurately
describe those obtained from ĤI (t1) for the values in (82) and
the time interval 0 � �t � 10π .

C. Master equation

In this section we consider S + F as an open quan-
tum system interacting with the thermal baths. Applying a
standard method [52] to the SP equation for ρ̂(t ) in (36)
with the averaged Hamiltonian in (34), one can calculate
the Born-Markov-secular master equation in the Lindblad
form governing the evolution of the S + F density operator
ρ̂SF(t ) = TrB1B2B3 [ρ̂(t )] (here TrB1B2B3 is the partial trace with
respect to the thermal baths’ degrees of freedom):

d

dt
ρ̂SF(t ) = − i

h̄
[h̄�′b̂†b̂ − h̄�d cos(ωdt )σ̂x, ρ̂SF(t )]

+D[ρ̂SF(t )], (84)

where the dissipator D(·) is given by

D(ρ̂) = γ0N (�, T )

(
b̂†ρ̂b̂ − 1

2
{b̂b̂†, ρ̂}

)

+ γ0[N (�, T ) + 1]

(
b̂ρ̂b̂† − 1

2
{b̂†b̂, ρ̂}

)

+ γ00

(
σ̂xρ̂σ̂x − 1

2
{σ̂xσ̂x, ρ̂}

)
. (85)
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Here N (�, T ) is defined in (16) and represents the mean
number of B2 thermal excitations (photons if B2 is an electro-
magnetic field) at frequency �. Only � appears because the
qubit has transition frequency ωso = 0 in all of Sec. V. Also,
{·, ·} is the anticommutator and

b̂ = â − g

�
σ̂x. (86)

If ρD j (ω) is the density of states where ρD j (ω)dω gives the
number of oscillators of Bj ( j = 1, 2) with frequencies in the
interval ω to ω + dω, then the shifted frequency �′ can be
expressed using the principal value (PV) as

�′ = � + PV
∫ +∞

0
dωρD2(ω)|κ (ω)|2 2ω

�2 − ω2
, (87)

the decay rate γ0 is given by

γ0 = 2πρD2(�)|κ (�)|2, (88)

and the decay rate γ00 is defined by

γ00 = γ1(0) + γ10(0) +
(

g + g∗

�

)2

[γ2(0) + γ20(0)], (89)

with

γ j (ω
′) = 2π

∫ +∞

0
dωρD j (ω)| f j (ω)|2N (ω, T )

× [δ(ω + ω′) + δ(ω − ω′)],

γ j0(ω′) = 2π

∫ +∞

0
dωρD j (ω)| f j (ω)|2δ(ω − ω′),

f j (ω) =
{

g1(ω) if j = 1,

κ (ω) if j = 2
(90)

and δ the Dirac-delta function.
Observe that the term multiplied by γ00 on the righthand

side of the dissipator in (85) does not lead to a decay of
the populations of the eigenstates |ωn,±〉 of ĤDL but it does
lead to a decay of the coherences because its matrix elements
between |ωn,+〉 and |ωm,−〉 can be different from zero.
Physically, γ j (ω′) is associated with rates of stimulated and
absorptive transitions at frequency ω′ induced by Bj thermal
excitations (photons if Bj is an electromagnetic field), while
γ j0(ω′) is associated with rates of spontaneous transitions at
frequency ω′ induced by Bj . Since the qubit has degenerate
energy levels, γ00 is associated with transition rates at fre-
quency ω′ = 0.

It is important to note that b̂ and b̂† are the annihilation and
creation operators of a harmonic oscillator with the eigenvec-
tors |ωn,±〉 of ĤDL in (40) playing the role of the number
states, since

[b̂, b̂†] = 1, b̂†|ωn,±〉 = √
n + 1|ωn+1,±〉,

b̂†b̂|ωn,±〉 = n|ωn,±〉, b̂|ωn,±〉 = √
n|ωn−1,±〉. (91)

Not taking into account the term multiplied by γ00 in (85) and
the driving on the right-hand side of (84), the master equation
in (84) and (85) has the same form as the Born-Markov-
secular master equation of a damped harmonic oscillator with
b̂ and b̂† as its annihilation and creation operators [52,53].

Observe that a stationary solution of (84) and (85) is given
by the thermal state at frequency � (not �′) of a harmonic

oscillator:

ρ̂ss
SF = 1

2
[1 − e−h̄�/(kBT )]exp

(
− h̄�

kBT
b̂†b̂

)
. (92)

In the rest of the paper we assume that γ00 = 0 and that the
temperature T of the thermal baths is sufficiently low so that
N (�, T )  0. Then, one can approximate the master equation
(84) and (85) by the zero-temperature master equation

d

dt
(ρ̂SF)I (t ) = L(ρ̂SF)I (t ), (93)

where the superoperator L is defined by

Lρ̂ = − i

h̄
[h̄�′b̂†b̂, ρ̂] + γ0b̂ρ̂b̂† − γ0

2
{b̂†b̂, ρ̂}. (94)

We have written (93) and (94) in the IP defined by the uni-
tary transformation ÛIS (t ) in (22) to eliminate the driving
term −h̄�d cos(ωdt )σ̂x and to obtain a master equation with
the same form as the zero-temperature master equation for a
damped harmonic oscillator [52,53].

Note that the assumption γ00 = 0 is reasonable because it
is associated with transition rates at frequency ω′ = 0. Suffi-
cient mathematical requirements for this are the following: if
ρD j (ω)| f j (ω)|2 ∼ c jω

n j or ρD j (ω)| f j (ω)|2 � c jω
n j as ω →

0+ for some constants c j > 0 and n j > 1( j = 1, 2) with f j (ω)
in (90), then γ j (0) = γ j0(0) = 0( j = 1, 2) and γ00 = 0. For
example, a radiatively damped two-level atom satisfies this
with n = 3 [53].

We now determine the evolution of some special states.

1. Separable states

Assume that the initial state of S + F is a separable state
where the qubit is in an eigenstate of σ̂x, that is, the initial state
is of the form

ρ̂SF(0) = |±〉xx〈±| ⊗ ρ̂F (0). (95)

It follows from the master equation in (93) that the state of the
system will always be separable and that the qubit will remain
in the eigenstate of σ̂x. In addition, the IP and SP density
operators are the same because the IP unitary transformation
in (22) only affects the qubit and is given by a superposition
of projectors onto the |±〉x states. Explicitly, the state of the
system is

ρ̂SF(t ) = |±〉xx〈±| ⊗ ρ̂F (t ), (96)

where ρ̂F (t ) is given by

ρ̂F (t ) = D̂
(
± g

�

)
ρ̂HO(t )D̂†

(
± g

�

)
(97)

and ρ̂HO(t ) is the solution of the usual damped harmonic
oscillator master equation at zero temperature [52]:

d

dt
ρ̂HO(t ) = − i

h̄
[h̄�′â†â, ρ̂HO(t )] + γ0âρ̂HO(t )â†

− γ0

2
{â†â, ρ̂HO(t )}, (98)

with the initial condition

ρ̂HO(0) = D̂†
(
± g

�

)
ρ̂F (0)D̂

(
± g

�

)
. (99)
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(a) (b)

(c) (d)

FIG. 3. Probabilities pn(t ) in (103) as a function of n for N = 5 and the times γ0t = 0 (a), 1/5 (b), 1 (c), and 4 (d).

There are two important cases where the initial state is
separable and of the form (95), namely, the eigenvectors of
ĤDL and the Schrödinger cat states in (55) above. We consider
these now.

First assume that the initial state of S + F is an eigenstate
of ĤDL, that is,

ρ̂SF(0) = |ωN ,±〉〈ωN ,±|. (100)

From the evolution operator in (46) observe that, if there were
no dissipation, then the system would remain in this state.
Moreover, recall that |ωN ,±〉 is an eigenvector of ĤDL with
energy (eigenvalue) h̄ωN in (42). In particular, |ω0,±〉 have
the smallest energies.

Note that (100) can be expressed in the form given in (95)
by using the definition of the states |ωn,±〉 in (40):

ρ̂SF(0) = |±〉xx〈±| ⊗ D̂
(
± g

�

)
|N〉〈N |D̂†

(
± g

�

)
. (101)

It then follows that the state of S + F at time t is

ρ̂SF(t ) =
N∑

n=0

pn(t )|ωn,±〉〈ωn,±|, (102)

with

pn(t ) = N!

(N − n)!n!
(1 − e−γ0t )N−n

e−nγ0t . (103)

See Appendix C for the details of the calculation. In particular,
observe that

pN (t ) = e−Nγ0t , (104)

so the lifetime of the state (100) is γ0t ∼ 1/N . Then, the
larger the associated energy h̄ωN of (100), the smaller its
lifetime. Also, pn(t ) with 1 � n � N − 1 is maximized when
γ0t = ln(N/n), so ρ̂SF(t ) quickly becomes a statistical mixture
because pN−1(t ) and pN−2(t ) are rapidly maximized.

Figure 3 illustrates a typical evolution of the probabilities
pn(t ) in (103) for N = 5 and the times γ0t = 0 [Fig. 3(a)],
1/5 [Fig. 3(b)], 1 [Fig. 3(c)], and 4 [Fig. 3(d)]. Observe that
ρ̂SF(0) starts as the pure state |ω5,±〉〈ω5,±| [Fig. 3(a)]. Then,
it quickly becomes a mixed state involving non-negligible
contributions pn(t ) from several states |ωn,±〉〈ωn,±| after
γ0t = 1/5 [Fig. 3(b)]. As time advances [Fig. 3(c)], the values
of the n’s of the |ωn,±〉〈ωn,±| having non-negligible contri-
butions in the statistical mixture decrease and ρ̂SF(t ) tends to
the pure state |ω0,±〉〈ω0,±| [Fig. 3(d)]. Note that the latter is
an eigenstate of ĤDL with minimum energy.

Now assume that ρ̂SF(0) is a state of the form (95) with
ρ̂F (0) a pure state consisting of a superposition of coherent
states, that is,

ρ̂F (0) = |ψ (0)〉〈ψ (0)|, (105)

with

|ψ (0)〉 = 1

N
(|γ10〉 + eiχ |γ20〉

)
, (106)

γ10 �= γ20 complex numbers, χ a real number, and N > 0 a
normalization factor. Observe that the Schrödinger cat states
(1/N±)|ξ (0)〉 in (55) and (57)–(60) have this form if one
chooses n = 0 in those equations.

Then, the state of S + F at time t is given by (96) with

ρ̂F (t ) = 1

N 2

[∣∣∣γ1(t ) ± g

�

〉〈
γ1(t ) ± g

�

∣∣∣
+

∣∣∣γ2(t ) ± g

�

〉〈
γ2(t ) ± g

�

∣∣∣
+ f (t )

∣∣∣γ1(t ) ± g

�

〉〈
γ2(t ) ± g

�

∣∣∣
+ f (t )∗

∣∣∣γ2(t ) ± g

�

〉〈
γ1(t ) ± g

�

∣∣∣
]
, (107)
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where

γ j (t ) =
(
γ j0 ∓ g

�

)
e−(γ0/2+i�′ )t , ( j = 1, 2),

f (t ) = e−iχ

〈
γ20 ∓ g

�
|γ10 ∓ g

�

〉1−e−γ0t

e−iφ(t ), (108)

and

φ(t ) = Im

{
± g

�
(γ10 − γ20)∗[1 − e−(γ0/2−i�′ )t ]

}
. (109)

See Appendix D for the details of the calculation.
The first thing to observe from (107)–(109) is that

ρ̂F (t ) →
∣∣∣± g

�

〉〈
± g

�

∣∣∣, (t → +∞). (110)

Hence, instead of tending to the ground state |0〉, the state of
the harmonic oscillator tends to the coherent state | ± g/�〉.
We note that this effect is due to the coupling to the qubit
and not to the driving. In particular, observe that the com-
plex numbers γ1(t ) ± g/� and γ2(t ) ± g/� that appear as the
arguments of the coherent states comprising ρ̂F (t ) in (107)
spiral towards ±g/�. One can use this result to visualize
what happens to the Schrödinger cat states |ξ (0)〉 given in
(57)–(60) with n = 0. Assuming that the cat states |ξ (0)〉 have
been prepared, the arguments of the displacement operators in
|ξ (0)〉 and illustrated in Fig. 1 spiral clockwise towards the
centers ±g/� of their respective circles.

Substituting (110) in (96) and using the definition of the
states |ωn,±〉 in (40), it follows that

ρ̂SF(t ) → |ω0,±〉〈ω0,±| (t → +∞), (111)

so the system tends to an eigenstate of ĤDL with minimum
energy.

To determine the lifetime of the superposition of coherent
states in (105) and (106), one must determine the decoherence
time (the time over which coherences are destroyed). From
(107) the decoherence function is

�(t ) = ln| f (t )| = − 1
2 |γ10 − γ20|2(1 − e−γ0t ). (112)

Making a linear approximation in γ0t in (112) one gets

�(t ) = − 1
2 |γ10 − γ20|2(γ0t ), (113)

so the decoherence time is

tD = 2

γ0|γ10 − γ20|2 . (114)

Assuming that the cat states |ξ (0)〉 in (57)–(60) with n = 0
have been prepared, one can use this result to determine their
lifetime. For all the Schrödinger cat states in (57)–(60)

tD = 1

8γ0|g/�|2 . (115)

The decoherence time is inversely proportional to the square
of the coupling. Hence, the larger the coupling |g/�|, the
shorter the lifetime so USC values of |g/�| are preferable over
DSC values. In particular, it is convenient to have |g/�| ∼
0.537 because one would have an easily discernible (the over-
lap of the states composing the cat state is � 0.01), long-lived
cat state with tD ∼ 0.43/γ0.

2. Nonseparable states

In this section we discuss the evolution of some nonsepa-
rable states of S + F that start as pure states:

ρ̂SF(0) = |ψ (0)〉〈ψ (0)|. (116)

First, assume that both the qubit and the harmonic oscil-
lator are initially in their respective ground states, that is, the
initial state of the system is (61). Solving the master equation
in (93) for the initial condition (116) with (61), one finds that
the state of S + F evolves as

ρ̂SF(t ) = 1

2

[
|+〉xx〈+| ⊗

∣∣∣−γ1(t ) + g

�

〉〈
−γ1(t ) + g

�

∣∣∣
+ F (t )|+〉xx〈−| ⊗

∣∣∣−γ1(t ) + g

�

〉〈
γ1(t ) − g

�

∣∣∣
+ F (t )∗|−〉xx〈+| ⊗

∣∣∣γ1(t ) − g

�

〉〈
−γ1(t ) + g

�

∣∣∣
+ |−〉xx〈−| ⊗

∣∣∣γ1(t ) − g

�

〉〈
γ1(t ) − g

�

∣∣∣
]
, (117)

with

γ1(t ) = g

�
e−(γ0/2+i�′ )t ,

F (t ) = −exp
[
iθ (t1) − 2

∣∣∣ g

�

∣∣∣2
(1 − e−γ0t )

]
. (118)

See Appendix D for the details of the calculation, where the
evolution of a more general type of state is presented.

Result (117) allows one to determine under which condi-
tions one can still create the Schrödinger cat state in (69).
One simply requires (117) to be approximately equal to
|ψ (t )〉〈ψ (t )| with |ψ (t )〉 the state of S + F in (62) when there
is no dissipation. This happens if π/�′ � 1/γ0 or, equiva-
lently, if the decay rate γ0 is much smaller than the shifted
harmonic oscillator frequency �′. Also note that the times Tn

in (66) have to be changed to Tn = (2n − 1)π/�′ to take into
account the small frequency shift of �.

The probability to find the qubit in the excited state suffers
an interesting change. It is given by

P2(t ) = 1

2
− 1

2
cos[θ (t1)]

× exp

{
− 4

∣∣∣ g

�

∣∣∣2
[1 − cos(�′t )e−γ0t/2]

}
. (119)

Comparing (74) with (119), one finds that the differences
are the presence of the exponential e−γ0t/2 and the shifted
harmonic oscillator frequency �′. Hence, the effect of the
thermal baths is to decrease the maximum value of P2(t ) and
to increase its minimum value. In particular, if |g/�| � 1, then
P2(t ) approximately tends to the value 1/2, as illustrated in
Fig. 4. The probability behaves in this way because the state
of S + F approximately tends to the maximum mixed state
composed of the eigenstates of ĤDL with minimum energy if
|g/�| � 1:

ρ̂SF(t ) → 1
2 [|ω0,+〉〈ω0,+| + |ω0,−〉〈ω0,−|]. (120)

Note that |ω0,±〉 is an equal weights superposition involving
the states |1〉 and |2〉, so P2(t ) tends to 1/2 if |g/�| � 1.
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FIG. 4. P2(t ) in (119) as a function of �t for the values in (79)
and γ0/� = 0.1. Compare with Fig. 2(b).

Finally, consider an initial state of the form (116) with

|ψ (0)〉 = 1√
2

(|ω0,+〉 + eiχ |ω0,−〉), (121)

and χ a real number. Notice that |ψ (0)〉 is a superposition of
the eigenstates of ĤDL with minimum energy and that ρ̂SF(0)
is a stationary state of the master equation in (93). Using the
unitary transformation ÛIS (t ) in (22) to change (ρ̂SF)I (t ) =
ρ̂SF(0) back to the SP, one finds that the state of S + F is a
pure state given by

|ψ (t )〉 = 1

2
|2〉 ⊗

{∣∣∣ g

�

〉
+ e−i[θ (t1 )−χ]

∣∣∣− g

�

〉}

+ 1

2
|1〉 ⊗

{∣∣∣ g

�

〉
− e−i[θ (t1 )−χ]

∣∣∣− g

�

〉}
. (122)

Hence, the state of S + F evolves into a stable superposition
that involves Schrödinger cat states of the harmonic oscillator.
To have easily discernible cat states one needs DSC values
|g/�| � 1 so that |〈g/�| − g/�〉|2 < 0.02. For these values
of the coupling, the probability to find the qubit in the excited
state |2〉 is approximately equal to 1/2. These highly entan-
gled states are robust against dissipation and could be used
for quantum information processes.

D. The case B1 = B2

In all the above it was assumed that B1 and B2 are two
independent thermal baths to which the open system S + F is
coupled. Recall that only S is coupled to B1 and that only F
is coupled to B2. The purpose of this section is to answer the
following question: What happens if B1 = B2, that is, what
happens if B1 and B2 are the same thermal bath?

If B1 = B2, then the following changes occur. First, ĤB2

and ρ̂B2 (0) must be eliminated wherever they appear and â2k

must be replaced by â1k everywhere. Second, since the IP
unitary transformation ÛIS (t ) only affects operators of S, all
the steps leading to the IP von Neumann equation (26) hold.
Now, the averaging only affects the vector û(t1) and leaves all
the operators unaffected because they are time independent.
Hence, all the steps leading to the averaged von Neumann IP
equation in (31) also hold. We emphasize that this happens
because the IP unitary transformation only affects the qubit
and the averaging only affects the vector û(t1).

Finally, the density of states ρD2(ω) has to be replaced ev-
erywhere by ρD1(ω) and one obtains exactly the same master
equation in (84) and (85) except that the decay rate γ00 has to
be replaced by

γ000 = γ00 + γ12(0)

(
g + g∗

�

)
, (123)

with γ00 in (89) and

γ12(ω′) = 2π

∫ +∞

0
dωδ(ω − ω′)ρD1(ω)[2N (ω, T ) + 1]

× [g1(ω)∗κ (ω) + g1(ω)κ (ω)∗]. (124)

Hence, B1 = B2 only modifies a single decay rate.

VI. CONCLUSIONS

In this paper we considered the quantum Rabi model as
an open system that is subject to dissipation, dephasing, and
sinusoidal qubit driving. It was shown that one can change to
an interaction picture where the qubit-driving term disappears
at the expense of changing the free energy of the qubit which
becomes time dependent. Now, if the qubit-driving frequency
is large with respect to the rest of the parameters with the
exception of the qubit-driving strength, then one can obtain
an effective interaction picture Hamiltonian that accurately
describes the dynamics of the qubit-harmonic oscillator sys-
tem and where the driving has two effects: the qubit-transition
frequency is changed and the qubit has reduced dephasing.
The qubit-driving strength can be chosen so that the qubit-
transition frequency is reduced, made equal to zero, or even
made negative so that the excited and ground states of the
qubit are interchanged. Therefore, sinusoidal qubit driving
offers another method to control the qubit-transition fre-
quency and to reduce qubit dephasing. In particular, initially
quasiresonant qubit-harmonic oscillator interactions can be
made nonresonant and vice versa.

Adjusting the qubit-driving strength allows one to consider
a qubit with degenerate energy levels. Not taking dissipation
into account, it was found that the evolution operator of the
qubit-harmonic oscillator system is given by a linear com-
bination of the orthogonal projectors onto the eigenstates of
σ̂x followed by the evolution operator of a forced harmonic
oscillator. This was used to show that the harmonic oscillator
can be prepared in such a way that it is always found in a
Schrödinger cat state. This is particularly relevant to quantum
information where these states have been used for quantum er-
ror correction [39]. Also, the transition probability of the qubit
can exhibit a collapse-revival behavior. In addition, the Born-
Markov-secular master equation was deduced and the effects
of dissipation were presented. In particular, it was found that
smaller ultrastrong-coupling values are preferable over larger
ultrastrong-coupling values and deep strong-coupling values
in order to have long-lived, easily distinguishable Schrödinger
cat states because the decoherence rate is inversely propor-
tional to the square of the coupling. Finally, it was shown
that the qubit-harmonic oscillator system can be prepared in
highly entangled states that are stable under dissipation and
that could be used in quantum information processes.
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The results are especially useful in the area of cir-
cuit quantum electrodynamics and cold atoms where the
ultrastrong-coupling regime can be reached. In particular, ul-
trastrong coupling is required to have easily distinguishable,
long-lived Schrödinger cat states. It would be very interesting
to apply the results to the cold atom system of [29] because
it has very small dissipation, it can be described by the quan-
tum Rabi model, and the harmonic oscillator consists of the
degrees of motion of an atom. Hence, the atom could be
prepared in a Schrödinger cat state where it is found in a
superposition of two different positions. Finally, the results
can also be applied to atomic systems such as that involving
lithium 6 in [45,46] where the two-level approximation is
very accurate in spite of having a large driving strength and
frequency. Nevertheless, these types of systems usually cannot
reach the ultrastrong-coupling regime.

APPENDIX A: AVERAGING OF VON
NEUMANN’S IP EQUATION

To derive the averaged equation it is convenient to use
nondimensional quantities. Define

τ = ωdt, ρ̃I (τ ) = ρ̂I

(
τ

ωd

)
. (A1)

Notice that τ is the nondimensional time and that

t1 = τ, t2 =
(

ωs − δ3

ωd

)
τ. (A2)

Then, von Neumann’s IP equation (26) takes the form

d

dτ
ρ̃I (τ ) = −i

[
1

h̄ωd
ĤI (τ ), ρ̃I (τ )

]
. (A3)

Observe from (27) and (30) that each term of ĤI (τ )/(h̄ωd ) is
multiplied by a very small quantity and that the only τ depen-
dence of ĤI (τ )/(h̄ωd ) comes from û(τ ). Moreover, observe
from (23) and (28) that û(τ ) is τ periodic with period 2π .
Hence, it follows from (A3) that ρ̃I (τ ) evolves slowly, while
ĤI (τ )/(h̄ωd ) evolves rapidly and is 2π periodic. Then,

ρ̃I (τ ′)  ρ̃I (τ ) for all τ ′ ∈ [τ, τ + 2π ], (A4)

and

dρ̃I

dτ
(τ )  ρ̃I (τ + 2π ) − ρ̃I (τ )

2π
. (A5)

Integrating (A3) in the interval [τ, τ + 2π ] and using (A4)
and (A5) one gets

d

dτ
ρ̃I (τ )  − i

2π

∫ τ+2π

τ

dτ ′
[

1

h̄ωd
ĤI (τ ′), ρ̃I (τ )

]

= − i

h̄ωd

[
Ĥ avg

I , ρ̃I (τ )
]
, (A6)

with the averaged Hamiltonian

Ĥ avg
I = 1

2π

∫ τ+2π

τ

dτ ′ĤI (τ ′). (A7)

This Hamiltonian reduces to (32) once one substitutes ĤI (τ )
given in (27) and one applies Bessel’s integral formulas [47].

Using (A1) to introduce units, it follows from (A6) that the
averaged equation for ρ̂I (t ) is given in (31) where we have
added the superscript avg to indicate that it is the averaged
equation.

APPENDIX B: PROPERTIES OF THE
DISPLACEMENT OPERATOR

Some properties of the displacement operator that are used
throughout the main text are the following:

â|γ 〉 = γ |γ 〉, e−i�â†ât D̂(γ )|0〉 = |γ e−i�t 〉,
D̂†(γ ) = D̂(−γ ), eγ â†ââe−γ â†â = e−γ â,

D̂†(γ )âD̂(γ ) = â + γ , eγ â†
âe−γ â† = â − γ ,

[â, D̂(γ )] = γ D̂(γ ), D̂(γ )âD̂(γ ) = D̂(2γ )(â + γ ),

and

eγ1â†âD̂(γ )e−γ1â†â = exp[(γ eγ1 )â† − (γ ∗e−γ1 )â],

D̂(γ1)D̂(γ2) = e
1
2 (γ1γ

∗
2 −γ ∗

1 γ2 )D̂(γ1 + γ2),

D̂†(γ )e−i�â†ât = e−i�â†ât D̂(−γ ei�t ). (B1)

Here |0〉 is the number state with n = 0 and γ , γ1, and γ2 are
complex numbers. These properties can be proved using the
Baker-Campbell-Hausdorff formula [54] and the following
result: if A and B are linear operators that commute with
their commutator, then [A, F (B)] = [A, B]F ′(B) with F (x) a
function [49].

APPENDIX C: EVOLUTION OF |ωN, ±〉〈ωN, ±|
In this Appendix we show how to determine the evolution

of |ωN ,±〉〈ωN ,±| under the zero-temperature master equa-
tion in (93) and (94).

Assume that the initial state of S + F is given by (100), that
is, by |ωN ,±〉〈ωN ,±|. Now, given that the |ωn,±〉 behave as
number states for b̂ and b̂† [see (91)], it follows from (94) that
L|ωn,±〉〈ωn,±| gives a linear combination of |ωn,±〉〈ωn,±|
and |ωn−1,±〉〈ωn−1,±|. Since L only provokes decay from
one |ωn,±〉 to another, this leads one to propose ρ̂SF(t ) in
(102) as the state of S + F at time t . Substituting (102) into the
zero-temperature master equation (93) and (94), one obtains
the following system of differential equations:

d

dt
eγ0nt pn(t ) = γ0(n + 1)e−γ0t [eγ0(n+1)t pn+1(t )], (C1)

with n = 0, 1, . . . , N and pN+1(t ) = 0. Solving system (C1)
for the first few cases n = N , N − 1, N − 2, and N − 3 leads
one to propose formula (103) for pn(t ), which can then be
proved by induction. In addition, substituting ρ̂SF(t ) in (102)
into the zero-temperature master equation (93) and using
expression (103) for pn(t ), one indeed finds that (102) and
(103) is the solution of the master equation (93) for the initial
condition in (100).

APPENDIX D: EVOLUTION OF SOME
NONSEPARABLE STATES

In this Appendix we present how to determine the evo-
lution of certain nonseparable states presented in the main
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text. In order to do this, we first define coherent states of the
annihilation operator b̂.

It was observed in (91) that the operators b̂† and b̂ are the
creation and annihilation operators of a harmonic oscillator
where the states |ωn,±〉 take the place of the number states.
Then, one can define coherent states |γ ,±〉 of b̂ as follows:

|γ ,±〉 = e− 1
2 |γ |2

+∞∑
n=0

γ n

√
n!

|ωn,±〉, (D1)

where γ is any complex number. One can readily verify that
the kets (D1) are normalized eigenvectors of b̂:

b̂|γ ,±〉 = γ |γ ,±〉, 〈γ ,±|γ ,±〉 = 1. (D2)

The connection with the coherent states of F (eigenvectors
of â) can be established by using the definition of the states
|ωn,±〉 in (40):

|γ ,±〉 = e±(gγ ∗−g∗γ )/(2�)|±〉x ⊗
∣∣∣γ ± g

�

〉
. (D3)

Then, except for a global phase, the coherent states |γ ,±〉 of
b̂ are the tensor product of an eigenstate of σ̂x with a coherent
state of F .

Now we are going to determine how superpositions of
coherent states of b̂ evolve under the zero-temperature master
equation (93).

Assume that the initial state of the system is the pure state
in (116) with |ψ (0)〉 the following superposition of coherent
states of b̂:

|ψ (0)〉 = 1√
2

(|γ10,+〉 + eiχ |γ20,−〉). (D4)

Here γ10 and γ20 are complex numbers, while χ is a real
number.

Using the superoperator L defined in (94), the solution of
the zero-temperature master equation (93) can be written as

(ρ̂SF)I (t ) = eLt ρ̂SF(0), (D5)

where we have used that the IP and SP coincide at time t = 0
[see (22) and (25)].

Since eLt is a linear superoperator and ρ̂SF(0) =
|ψ (0)〉〈ψ (0)| with |ψ (0)〉 given in (D4), to calculate (ρ̂SF)I (t )
in (D5) one only needs to calculate

eLt |α10, j〉〈α20, k|, (D6)

where j, k ∈ {+,−} and |α10, j〉 and |α20, k〉 are arbitrary
coherent states of b̂. Therefore, consider the initial state

|α10, j〉〈α20, k|, (D7)

and propose that it evolves under the zero-temperature master
equation (93) as

σ (t ) = eLt |α10, j〉〈α20, k| = f (t )|α1(t ), j〉〈α2(t ), k| (D8)

with f (t ) a complex-valued function. In order to satisfy the
initial condition (D7) it must happen that

αl (0) = αl0, (l = 1, 2), f (0) = 1. (D9)

Substituting (D8) in the master equation (93), one finds that

[
f ′(t )

f (t )
− 1

2

d

dt
|α1(t )|2 − 1

2

d

dt
|α2(t )|2

]
σ (t )

+ α′
1(t )

α1(t )
b̂†b̂σ (t ) +

[
α′

2(t )

α2(t )

]∗
σ (t )b̂†b̂

= γ0α1(t )α2(t )∗σ (t ) −
(γ0

2
+ i�′

)
b̂†b̂σ (t )

−
(γ0

2
− i�′

)
σ (t )b̂†b̂. (D10)

Equating the coefficients of σ (t ), b̂†b̂σ (t ), and σ (t )b̂†b̂ and
solving the resulting equations, one finds that (D8) is a solu-
tion of (93) that satisfies the initial conditions (D9) if and only
if

αl (t ) = αl0e−(γ0/2+i�′ )t , (l = 1, 2),

f (t ) = 〈α20|α10〉1−e−γ0t
, (D11)

where |α10〉 and |α20〉 are coherent states of F .
Using the results (D8) and (D11) in (D5), one obtains

(ρ̂SF)I (t ) = 1
2 [|γ1(t ),+〉〈γ1(t ),+| + |γ2(t ),−〉〈γ2(t ),−|
+ FI(t )|γ1(t ),+〉〈γ2(t ),−|
+ FI(t )∗|γ2(t ),−〉〈γ1(t ),+|], (D12)

with

γl (t ) = γl0e−(γ0/2+i�′ )t , (l = 1, 2),

FI(t ) = e−iχ 〈γ20|γ10〉1−e−γ0 t
. (D13)

Using the connection with coherent states of F in (D3) and
the unitary transformation ÛIS (t ) in (22) to change back to the
SP, it follows from (D12) that

ρ̂SF(t ) = 1

2

[
|+〉xx〈+| ⊗

∣∣∣γ1(t ) + g

�

〉〈
γ1(t ) + g

�

∣∣∣
+ F (t )|+〉xx〈−| ⊗

∣∣∣γ1(t ) + g

�

〉〈
γ2(t ) − g

�

∣∣∣
+ |−〉xx〈−| ⊗

∣∣∣γ2(t ) − g

�

〉〈
γ2(t ) − g

�

∣∣∣
+ F (t )∗|−〉xx〈+| ⊗

∣∣∣γ2(t ) − g

�

〉〈
γ1(t ) + g

�

∣∣∣
]
.

(D14)

Using θ (t1) in (23), the quantities in (D13), and the imaginary
part Im(z) of a complex number z, F (t ) can be expressed as

F (t ) = eiθ (t1 )FI(t )exp

(
iIm

{
g

�
[γ1(t ) + γ2(t )]∗

})
. (D15)

Now, the state |1〉 ⊗ |0〉 that describes the qubit and the
harmonic oscillator in their respective ground states can be
expressed in the form (D4) by choosing

γ10 = − g

�
, γ20 = g

�
, χ = π. (D16)
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Hence, the evolution of the state |1〉 ⊗ |0〉 under the zero-
temperature master equation (93) can be obtained from
(D13)–(D15) by using the values in (D16). This was presented
in (117).

Finally, using exactly the same method presented
above, one can calculate the evolution of superpo-
sitions of coherent states of F presented in (106)
and (107).
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