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We propose a scheme to realize nonreciprocal photon blockade and directional amplification in a spinning
resonator with clockwise and counterclockwise traveling modes coupled to a stationary two-level atom. By ma-
nipulating the rotational frequency of the resonator, the two-level atom can be resonant with one of the traveling
modes and largely detuned from the other one. Nonreciprocal conventional photon blockade is induced by the
difference of the detunings between the two-level atom and the optical modes traveling in different directions.
Besides that, nonreciprocal unconventional photon blockade (UPB) based on the quantum interference can also
be observed in the system. Based on the mechanism for nonreciprocal UPB, directional amplification of the
blockaded photons is predicted by driving the spinning resonator and stationary two-level atom simultaneously.
Our proposal will be applicable to achieve highly efficient nonreciprocal single-photon devices for applications
in chiral quantum information processing.
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I. INTRODUCTION

Methods to create and manipulate quantum photon trans-
port have drawn an immense amount of interest in the past
decades, for their significance in quantum optics and quan-
tum information processing [1]. One of the representative
researches is the photon blockade phenomenon predicted by
Imamoglu et al. in close analogy with the phenomenon of
Coulomb blockade for quantum-well electrons [2]. Experi-
mentally, photon blockade was first observed by Birnbaum
et al. for the light transmitted by an optical cavity contain-
ing one trapped atom, in the regime of strong atom-cavity
coupling [3]. Subsequently, photon blockade was reported on
chip with different platforms, including an atom interacting
with the evanescent fields of a microtoroidal resonator [4],
a single quantum dot strongly coupled to a photonic-crystal
cavity [5,6], and a qubit embedded in a transmission line
[7,8]. The main ingredient to observe the conventional photon
blockade (CPB) mentioned above is the strong photon-photon
interaction, regardless of the physical origin of the interaction.

On the other hand, Liew and Savona reported a numerical
study of a coupled cavity system and showed that strong
photon antibunching can be obtained with a Kerr nonlinear
coefficient much smaller than the cavity decay rate [9]. The
origin of the strong antibunching was traced back to a sort
of quantum interference effect, which was analytically un-
veiled by Bamba et al. [10] and the photon blockade based
on this novel mechanism is referred to as unconventional
photon blockade (UPB) [11–27]. UPB was demonstrated
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experimentally by two independent teams, in two orthogo-
nally polarized optical cavity modes [28] and two coupled
superconducting resonators [29].

Recently, Huang et al. introduced nonreciprocal photon
blockade to refer to the quantum effect that photon block-
ade happens when the system is driven in one direction
but not for the other [30]. A spinning resonator with bro-
ken time-reversal symmetry provides an ideal platform for
realization of nonreciprocal devices [31–33], and several pro-
posals for nonreciprocal photon blockade were suggested
based on this platform, such as a spinning Kerr resonator
[30], a spinning optomechanical resonator [34], a spinning
resonator with a second-order nonlinearity [35], a spinning
resonator immersed in a degenerate optical parametric am-
plifier [36], and a spinning resonator resonantly coupled to
a two-level atom [37]. Nonreciprocal photon blockade also
has been proposed without using spinning resonators, such
as in a quadratic optomechanical system based on directional
nonlinear interaction [38] and in a three-mode system based
on a combination of nonlinearity and synthetic magnetism
[39]. Nonreciprocal nonclassical statistics were reported in
a cavity quantum electrodynamical system with a few ce-
sium atoms strongly coupled to a high-finesse Fabry-Pérot
cavity [40].

Inspired by the fact that most of the experiments for pho-
ton blockade are performed based on the Jaynes-Cummings
model [3–8], in this paper, we are going to discuss non-
reciprocal photon blockade and directional amplification in
a spinning resonator with the clockwise (CW) and counter-
clockwise (CCW) traveling modes coupled to a stationary
two-level atom. More specifically, the resonator without spin-
ning is largelyndetuned from the two-level atom, and when
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FIG. 1. Schematic diagram for a stationary two-level atom with
a ground state |g〉 and an excited state |e〉 coupled to a spinning res-
onator with clockwise (CW) and counterclockwise (CCW) traveling
modes, acw and accw. By fixing the CCW rotation of the resonator
with a frequency �, we have effective frequency ωc + �F (ωc − �F )
for the CW (CCW) traveling mode, with the stationary resonance
frequency ωc and rotation induced Sagnac-Fizeau shift �F

the resonator is spinning in one direction, the detunings of
the CW and CCW traveling modes from the two-level atom
will be different: one becomes larger and one becomes smaller
and even resonant with the two-level atom. Thus the pho-
tons transmitted in different directions will suffer different
interactions. Differently from the previous proposal of non-
reciprocal CPB in a resonator coupled to a two-level atom
[37], we will show that not only nonreciprocal CPB but also
nonreciprocal UPB based on the quantum interference can be
observed in the system. Moreover, based on the mechanism
for nonreciprocal UPB, directional amplification of the block-
aded photons can emerge by driving the spinning resonator
and stationary two-level atom simultaneously. Our proposal
opens up a route to engineer quantum chiral devices, such
as unidirectional single-photon quantum amplifiers, nonrecip-
rocal single-photon routers, and single-photon isolators and
circulators, based on the Jaynes-Cummings model.

The remainder of this paper is organized as follows. In
Sec. II, we introduce the physical model of a spinning res-
onator coupled to a stationary two-level atom. In Sec. III,
nonreciprocal CPB is proposed in the strong coupling regime.
In Sec. IV, we show that nonreciprocal UPB can be observed
in the weak coupling regime. In Sec. V, directional amplifi-
cation of the blockaded photons are realized by driving the
two-level atom coherently. Finally, the main results are sum-
marized in Sec. VI.

II. PHYSICAL MODEL

As shown in Fig. 1, the setup we consider here consists
of a stationary two-level atom with a ground state |g〉 and an
excited state |e〉, coupled to a spinning resonator with clock-
wise (CW) and counterclockwise (CCW) traveling modes via
the optical evanescent field. By fixing the CCW rotation of
the resonator with a frequency �, we have effective frequency

ωc + �F (ωc − �F ) for the CW (CCW) traveling mode, with
the stationary resonance frequency ωc and the rotation in-
duced Sagnac-Fizeau shift

�F = nR�ωc

c

(
1 − 1

n2
− λ

n

dn

dλ

)
, (1)

where c and λ are the speed and wavelength of light in
vacuum, and n and R are the refractive index and radius of
the resonator, respectively. The dispersion term dn/dλ orig-
inates from the relativistic correction of the Sagnac effect,
is relatively small, and can be ignored in typical materials
[31,32]. As introduced above, the system can be described by
a Hamiltonian (h̄ = 1)

Hsys = (ωc + �F )a†
cwacw + (ωc − �F )a†

ccwaccw

+ω0σ+σ− + J (acwσ+ + accwσ+ + H.c.), (2)

where σ+ ≡ |e〉〈g| and σ− ≡ |g〉〈e| are the raising and lower-
ing operators of the two-level atom with transition frequency
ω0; aη and a†

η (η = cw, ccw) are the annihilation and creation
operators of the traveling mode; and J is the coupling strength
between the two-level atom and traveling modes. In addition,
we assume that the traveling mode aη is coupled to the ports 1
and 2 of the tapered fibers via evanescent fields with strength
κ/2.

To investigate the system’s response behavior to a weak
probe field, a weak laser with amplitude ε � κ and frequency
ωp is input from one of the ports. Thus the total Hamiltonian
is given by

Htot = Hsys + Hprobe, (3)

with Hprobe as

Hprobe = εe−iωpt a†
η + H.c., (4)

where η = ccw for the probe field input from port 1, or
η = cw for the probe field input from port 2. In the ro-
tating reference frame with the unitary operator U (t ) =
exp[iωp(a†

cwacw + a†
ccwaccw + σ+σ−)t], Htot becomes time

independent,

Htot = (−�c + �F )a†
cwacw + (−�c − �F )a†

ccwaccw

−�0σ+σ− + J (acwσ+ + accwσ+ + H.c.)

+ε(a†
η + aη ), (5)

with the detunings �0 ≡ ωp − ω0, δ ≡ ωc − ω0, and �c ≡
ωp − ωc = �0 − δ.

According to the input-output relations [41], for probe pho-
ton transport from port 1 to port 2 with η = ccw in Eq. (5), we
have a1,in = ε/

√
κ/2 and a2,out = √

κ/2accw; then the trans-
mission coefficient for the weak probe field can be defined by

T21 ≡ 〈a†
2,outa2,out〉

〈a†
1,ina1,in〉

= κ2

4ε2
〈a†

ccwaccw〉, (6)

and the statistic properties of the transmitted photons a2,out

can be described by the equal-time second-order correlation
function in the steady state (t → ∞)

g(2)
21 (0) ≡ 〈(a†

2,out )
2(a2,out )2〉

〈a†
2,outa2,out〉2

= 〈(a†
ccw)2(accw)2〉
〈a†

ccwaccw〉2
. (7)
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FIG. 2. (a) [(b)] The probe laser transmission spectra T21 from port 1 to port 2 [T12 from port 2 to port 1] as a function of the frequency shift
�F and the detuning of the probe field �0. (c) [(d)] The second-order correlation function of the transited photons g(2)

21 (0) from port 1 to port 2
[g(2)

12 (0) from port 2 to port 1] as a function of the frequency shift �F and the detuning of the probe field �0. (e) and (f) are the magnifications
of (c) and (d). (g) g(2)

21 (0) [g(2)
12 (0)] and (h) T21 [T12] versus detuning of the probe field with �F = 7.16κ . The other parameters are taken as

J = 5κ , δ = 10κ , ε = 0.01κ , and γ = κ .

Similarly, for probe photon transport from port 2 to port 1
with η = cw in Eq. (5), we have a2,in = ε/

√
κ/2 and a1,out =√

κ/2acw; then the transmission coefficient for the weak probe
field can be defined by

T12 ≡ 〈a†
1,outa1,out〉

〈a†
2,ina2,in〉

= κ2

4ε2
〈a†

cwacw〉, (8)

and the equal-time second-order correlation function in the
steady state (t → ∞) is defined by

g(2)
12 (0) ≡ 〈(a†

1,out )
2(a1,out )2〉

〈a†
1,outa1,out〉2

= 〈(a†
cw)2(acw)2〉
〈a†

cwacw〉2
. (9)

In the following sections, based on the total Hamiltonian
in Eq. (5), the transmission coefficients and second-order cor-
relation functions will be obtained by numerically solving the
master equation for density matrix ρ [42],

∂ρ

∂t
= −i[Htot, ρ] + κL[acw]ρ + κL[accw]ρ + γ L[σ−]ρ,

(10)
where L[o]ρ = oρo† − (o†oρ + ρo†o)/2 denotes a Lindbland
term for an operator o; γ is the damping rate of the two-level
atom.

III. NONRECIPROCAL CPB

In Figs. 2(a) and 2(b), we show the transmission spectra
T21 for probe field transport from port 1 to port 2, and T12 for
probe field transport from port 2 to port 1 versus the frequency
shift �F and the detuning �0. The three green dashed curves
show the one-photon resonant conditions (see Appendix A
for details), which agree well with the peaks in the trans-
mission spectra; that is to say, the transmission spectra are
mainly dependent on the one-photon resonant conditions un-
der the weak driving condition ε = 0.01κ . The figures clearly
show T21 	= T12 when �F 	= 0 for the probe field input from
different transport directions exciting different traveling

modes. Specifically, the CCW traveling mode is excited for
photon transport from port 1 to port 2 and the CW traveling
mode is excited for photon transport from port 2 to port
1. In this section, |g, nccw, ncw〉 (|e, nccw, ncw〉) denotes the
eigenstate of the two-level atom in the ground (excited) state
and nccw (ncw) photons in the CCW (CW) traveling mode. In
the strong coupling regime J = 5κ , there is an anticrossing
between the energy levels |e, 0, 0〉 and |g, 1, 0〉 around the
frequency shift �F = δ, so that there are two peaks for photon
transport from port 1 to port 2 under the one-photon resonant
conditions. In contrast, there is one peak under the one-photon
resonant condition around the frequency of (−�c − �F ) for
photon transport from port 2 to port 1, because the effect of
the coupling between the energy levels |e, 0, 0〉 and |g, 0, 1〉
becomes weaker for the monotonic increase of detuning (δ +
�F ) with increasing frequency shift �F .

There are two different mechanisms for photon blockade:
one is due to the strong anharmonicity, i.e., CPB; the other one
is due to the destructive interference between different paths
for two-photon excitation, i.e., UPB (we will discuss UPB in
the next section). In Figs. 2(c) and 2(d), the second-order cor-
relation functions g(2)

21 (0) and g(2)
12 (0) are plotted as functions of

the frequency shift �F and the detuning of the probe field �0.
The three green dashed curves show the one-photon resonant
conditions and the five yellow dashed-dot curves show the
two-photon resonant conditions (see Appendix A for details).
In the strong coupling regime J = 5κ , the CPB appears when
the probe field is resonant with the one-photon resonant con-
ditions but is also off-resonant from the two-photon resonant
conditions, as shown in Figs. 2(e) and 2(f). To compare the
results for photon transport in different directions, we show
g(2)

21 (0) and g(2)
12 (0) versus �0 with �F = 7.16κ in the same

figure, i.e., Fig. 2(g). We also show T21 and T12 versus �0 with
the same parameters in Fig. 2(h). As different traveling modes
are excited for the probe field input from different direc-
tions, the system show both g(2)

21 (0) < 1 < g(2)
12 (0) and T21 


T12, simultaneously. Physically, we have CPB with high
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FIG. 3. (a) The second-order correlation function of the transited
photons g(2)

21 (0) from port 1 to port 2 as a function of the coupling
strength J and the detuning of the probe field �0. (b) is the magnifi-
cation of (a). (c) g(2)

21 (0) [g(2)
12 (0)] and (d) T21 [T12] versus detuning of

the probe field �0 with J = κ/
√

2. The other parameters are taken
as �F = 10κ , δ = 10κ , ε = 0.01κ , and γ = κ .

transitivity for photon transport from port 1 to port 2, and
photon bunching with low transitivity for photon transport
from port 2 to port 1.

IV. NONRECIPROCAL UPB

In Fig. 3(a), we show the second-order correlation func-
tions g(2)

21 (0) versus the coupling strength J and the detuning
�0. It is clear that the CPB [i.e., the dark blue regimes in
Fig. 3(a)] appears in the strong coupling regime J > κ when
the probe field is resonant with the one-photon resonant con-
ditions (green dashed curves) but is also off resonant from the
two-photon resonant conditions (yellow dashed-dot curves).

More interestingly, photon blockade also can be observed
in the weak coupling regime (i.e., UPB) as shown in Fig. 3(b),
where the strong photon antibunching appears around the
optimal parameters J ≈ 0.7κ and �0 = 0 for photon transport
from port 1 to port 2. But UPB does not appear for photon
transport from port 2 to port 1, as shown in Fig. 3(c). In the
meanwhile, we have nonreciprocal transmission coefficients
with T21 
 T12, as shown in Fig. 3(d). So we have nonrecip-
rocal UPB with high transmittance for photons transport from
port 1 to port 2, and coherent photons with low transmittance
for photon transport from port 2 to port 1.

To reveal the physical mechanism for nonreciprocal UPB,
we need to rewrite the Hamiltonian with the parameter used
in Fig. 3. As �F = δ 
 κ , we have that −�c − �F = −�0

and −�c + �F = −�0 + 2�F , i.e., the two-level atom is res-
onant with CCW traveling mode and largely detuned from the
CW traveling mode. At the same time, the coupling strengths
between the two-level atom and the traveling modes are weak,
i.e., J < κ , so the interaction terms between the two-level
atom and the CW traveling mode are negligible. The effective
Hamiltonian for photon transport from port 1 to port 2 can be

written as

H21 = −�0(σ+σ− + a†
ccwaccw) + J (accwσ+ + H.c.)

+ ε(a†
ccw + accw), (11)

and the effective Hamiltonian for photon transport from port
2 to port 1 is given by

H12 = (−�0 + 2�F )a†
cwacw + ε(a†

cw + acw). (12)

H12 describes a linear resonator driven by a weak coherent
field, so the transmitted photons are coherent, i.e., g(2)

12 (0) ≈
1, and T12 � 1 around �0 = 0 for large detuning (−�0 +
2�F ) 
 κ . In contrast, H21 is the Hamiltonian of the system
for a two-level atom resonant interacting with a single-mode
resonator by the Jaynes-Cummings model [3–8]. The UPB is
induced by the destructive quantum interference between the
two paths for two-photon excitation: (i) |g, 1〉 → |g, 2〉; (ii)
|g, 1〉 → |e, 0〉 → |e, 1〉 → |g, 2〉. Here, |g, nccw〉 (|e, nccw〉)
denotes the eigenstate of the two-level atom in the ground
(excited) state and nccw photons in the CCW traveling mode.
The conditions for the appearance of UPB can be understand
in the following way. For �0 = 0, the amplitude for transition

|g, 1〉
√

2ε→ |g, 2〉 is proportional to
√

2ε and the amplitude for

transition |g, 1〉 J→ |e, 0〉 ε→ |e, 1〉
√

2J→ |g, 2〉 is proportional to
4
√

2εJ2/[γ (γ + κ )], where the decay rates of the states |e, 0〉
and |e, 1〉, i.e., γ /2 and (γ + κ )/2, are taken into considera-
tion. The UPB as well as the destructive quantum interference
are achieved when the coefficients of these two paths of pho-
ton excitation have the same amplitude but inverse phase, thus
we obtain the optimal condition Jopt = √

γ (γ + κ )/2. This is
consistent well with the numerical results in Fig. 3(b) and the
analytical result given in Appendix B.

V. DIRECTIONAL AMPLIFICATION OF BLOCKADED
PHOTONS

Despite the nonreciprocity T21 
 T12 as shown in Fig. 3(d),
only ten percent of the photons are transported from port 1 to
port 2, i.e., T21 ≈ 0.1 for UPB. In order to enhance the inten-
sity of the single-photon output from port 2, we assume that
the two-level atom is driven by anther coherent field with the
same frequency ωp; see Fig. 4(a). Then the total Hamiltonian
can be rewritten as

Htot = (−�c + �F )a†
cwacw + (−�c − �F )a†

ccwaccw

−�0σ+σ− + J (acwσ+ + accwσ+ + H.c.)

+ (εa†
η + εde−iφσ+ + H.c.), (13)

where εd is the driving strength and φ is the phase difference
between the two coherent driving fields. The numerical results
in Fig. 4 are calculated by substituting this total Hamiltonian
into the master equation (10).

To obtain the optimal conditions for UPB analytically, we
will consider the special case that the system is working under
the resonant condition �0 = �c + �F and weak coupling
condition J < κ � �F ; then the effective Hamiltonian for
photon transport from port 1 to port 2 can be rewritten as

H̃21 = −�0(σ+σ− + a†
ccwaccw) + J (accwσ+ + H.c.)

+ (εa†
ccw + εde−iφσ+ + H.c.). (14)
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FIG. 4. (a) Schematic of the system working as a directional amplifier. (b) and (d) g(2)
21 (0) [g(2)

12 (0)] versus detuning of the probe field �0;
(c) and (e) T21 [T12] versus detuning of the probe field �0. We set J = κ/2 in (b) and (c), J = κ/10 in (d) and (e). The other parameters are
taken as �F = 10κ , δ = 10κ , ε = 0.01κ , εd = εζ+ exp (−iφ+), and γ = κ .

Differently from the case with one driving field, the optimal
condition to observe UPB with two driving fields is given by

ζ±e−iφ± = − �2

Jopt
±

√
�1

Jopt

�2

Jopt
− 1. (15)

with ζ ≡ εd/ε, �1 = �0,opt + iκ/2, and �2 = 2�0,opt +
i(γ + κ )/2. �0,opt and Jopt are the parameters we can choose
for UPB. The details of the derivation for Eq. (15) are given
in Appendix B.

In Figs. 4(b) and 4(c), we show the second-order correla-
tion functions g(2)

21 (0) and g(2)
12 (0), and the transmission spectra

T21 and T12, versus the detuning �0, with the optimal param-
eters J = Jopt = 0.5κ and �0,opt = −J . Clearly, the system
exhibits nonreciprocal UPB, i.e., g(2)

21 (0) < 1 < g(2)
12 (0) and

T21 
 T12 in the weak coupling regime J < κ . Differently
from the Figs. 2 and 3, we have T21 > 1 
 T12 around the
optimal detuning �0,opt = −J , i.e., the photon transport from
port 1 to port 2 is amplified, whereas the transmission in the
opposite direction is still very low. Physically, the amplifica-
tion of the probe field results from the energy conversion due
to the existence of the coherent driving field applied to the
two-level atom. The transmission coefficient T21 can be even
higher, as shown in Figs. 4(d) and 4(e), but we need much
stronger external driving strength εd. Finally, we would like
to emphasize that, unlike previous works on directional am-
plification [43–47], the amplified output field exhibits strong
antibunching effects even though all the driving fields are
coherent.

VI. DISCUSSIONS AND CONCLUSIONS

Let us now discuss the experimental requirements for
our proposal. As strong coupling between one atom and
a monolithic microresonator has been observed [4,48], the

key parameter for experimental demonstration is the angular
velocity of the spinning resonator. With the experimen-
tally feasible parameter values for microtoroidal resonators
[48–54], λ = 1550 nm, Q ∼ 108–1012, R = 22 μm, n = 1.44,
γ = κ  2π × 1 MHz, we can estimate that the required
Sagnac-Fizeau shift �F = 10κ  2π × 10 MHz is obtained
with angular velocity �  2π × 150 kHz. We have also
confirmed that by using the experimental parameters of the
spinning resonator (radius R = 4.75 mm and angular velocity
�  2π × 3 kHz) as adopted in the experiment [32], all the
nonreciprocal features we predicted in this manuscript can
be achieved. Also, we note that even for smaller angular ve-
locity �  6.6 kHz quantum nonreciprocal features still can
be achieved as confirmed in various previous works based on
spinning devices (see Refs. [30,34,55]).

In summary, we have demonstrated that nonreciprocal pho-
ton blockade and directional amplification can be observed in
a spinning resonator for the supported CW and CCW traveling
modes coupled to a stationary two-level atom with different
detunings. We explicitly showed that both nonreciprocal CPB
and UPB can be observed in the system. The nonreciprocal
CPB appears in the strong coupling regime when the probe
field is resonant with the one-photon resonant conditions but
is also off-resonant from the two-photon resonant conditions.
The nonreciprocal UPB is induced by the destructive quantum
interference between the two paths for two-photon excitation
in one traveling mode but not in the other traveling mode.
Moreover, a directional amplifier of the blockaded photons is
proposed by driving the optical mode and the two-level atom
simultaneously. This physical model can also be extended to
the case that the spinning resonator is coupled to other nonlin-
ear systems, such as a resonator with χ (2) nonlinearity [56,57]
or χ (3) nonlinearity [58–60], optomechanical interaction [61],
degenerate optical parametric amplifiers [62], or graphene
plasmonics [63,64]. Our proposal will be applicable to achieve
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highly efficient nonreciprocal single-photon devices, such as
unidirectional single-photon quantum amplifiers, nonrecip-
rocal single-photon routers, and single-photon isolators and
circulators, for applications in chiral and topological quantum
technologies.
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APPENDIX A: THE DERIVATION OF THE ONE-
AND TWO-PHOTON RESONANT CONDITIONS

To understand the optimal conditions for CPB in the sys-
tem, we will show how to get one-photon and two-photon
resonant conditions in this Appendix. The eigenstate of the

two-level atom in the ground (excited) state and nccw (ncw)
photons in the CCW (CW) traveling mode can be represented
as |g, nccw, ncw〉 (|e, nccw, ncw〉). The weighted excitation num-
ber operator N = σ+σ− + a†

ccwaccw + a†
cwacw is a conserved

quantity for the commutative relation [N, Hsys] = 0. Thus
the subspaces corresponding to different weighted excitation
number N are separated from each other and we can obtain the
one-photon and two-photon resonant conditions in different
subspaces independently.

In the one-excitation subspace with bases
{|e, 0, 0〉, |g, 1, 0〉, |g, 0, 1〉}, the Hamiltonian is

H (1)
sys =

⎛⎝−�0 J J
J (−�c − �F ) 0
J 0 (−�c + �F )

⎞⎠. (A1)

The eigenvalues E (1) of the Hamiltonian H (1)
sys are obtained by

|H (1)
sys − E (1)I| = 0, where I is the identity matrix. The one-

photon resonant conditions are that the frequency of the probe
field ωp equals the eigenvalues E (1), i.e., ωp = E (1).

In the two-excitation subspace with bases
{|e, 1, 0〉, |e, 0, 1〉, |g, 2, 0〉, |g, 1, 1〉, |g, 0, 2〉}, the Hamil-
tonian is

H (2)
sys =

⎛⎜⎜⎜⎜⎝
(−�c − �F − �0) 0

√
2J J 0

0 (−�c + �F − �0) 0 J
√

2J√
2J 0 2(−�c − �F ) 0 0
J J 0 2(−�c) 0
0

√
2J 0 0 2(−�c + �F )

⎞⎟⎟⎟⎟⎠. (A2)

The eigenvalues E (2) of the Hamiltonian H (2)
sys are obtained by

|H (2)
sys − E (2)I| = 0. The two-photon resonant conditions are

that the frequency of the probe field ωp equals one-half of the
eigenvalues E (2), i.e., ωp = E (2)/2.

APPENDIX B: THE DERIVATION OF THE OPTIMAL
CONDITIONS FOR UPB

We assume that both the CCW traveling mode and the
two-level atom are driven by coherent fields with the same
frequency ωp; see Fig. 4(a). We will consider the special
case that the system is working under the resonant condition
�0 = �c + �F and weak coupling condition J < κ � �F ;
then the effective Hamiltonian for photon transport from port
1 to port 2 can be rewritten as Eq. (14) in the main text.

In order to find the optimal condition for photon blockade
of the photons transmitted from port 1 to port 2 through the
CCW traveling mode, we use the ansatz

|ψ〉21 =Cg,0|g, 0〉 + Ce,0|e, 0〉 + Cg,1|g, 1〉
+ Ce,1|e, 1〉 + Cg,2|g, 2〉, (B1)

where |g, nccw〉 (|e, nccw〉) denotes the eigenstate of the two-
level atom in the ground (excited) state and nccw photons in
the CCW traveling mode, with the corresponding occupying
probability |Ce,nccw |2 (|Cg,nccw |2). Substitute the wave function
|ψ〉21 and Hamiltonian H̃21 into the Schrodinger equation

i∂t |ψ〉21 = H̃21|ψ〉21; then we have

i∂tCe,0 =
(
−�0 − i

γ

2

)
Ce,0 + JCg,1 + εCe,1 + εde−iφCg,0,

(B2)

i∂tCg,1 =
(
−�0 − i

κ

2

)
Cg,1 + JCe,0 + εCg,0

+
√

2εCg,2 + εdeiφCe,1, (B3)

i∂tCe,1 =
(
−2�0 − i

γ + κ

2

)
Ce,1 +

√
2JCg,2

+ εCe,0 + εde−iφCg,1, (B4)

i∂tCg,2 = (−2�0 − iκ )Cg,2 +
√

2JCe,1 +
√

2εCg,1. (B5)

As {ε, εd} � {κ, γ }, we have |Cg,0| 
 {|Ce,0|, |Cg,1|} 

{|Ce,1|, |Cg,2|}. In the steady state, i.e., i∂tCe/g,nccw = 0, we have

0 =
(
−�0 − i

γ

2

)
Ce,0 + JCg,1 + εde−iφCg,0, (B6)

0 =
(
−�0 − i

κ

2

)
Cg,1 + JCe,0 + εCg,0, (B7)

0 =
(
−2�0 − i

γ + κ

2

)
Ce,1 +

√
2JCg,2 + εCe,0 + εde−iφCg,1,

(B8)

0 = (−2�0 − iκ )Cg,2 +
√

2JCe,1 +
√

2εCg,1. (B9)
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From Eqs. (B6) and (B7), we have

Ce,0 = εJ + εd
(
�0 + i κ

2

)
e−iφ(

�0 + i γ

2

)(
�0 + i κ

2

) − J2
Cg,0, (B10)

Cg,1 = Jεde−iφ + ε
(
�0 + i γ

2

)(
�0 + i γ

2

)(
�0 + i κ

2

) − J2
Cg,0. (B11)

To derive the optimal condition for photon blockade with
Cg,2 = 0, by substituting Eqs. (B10) and (B11) into Eqs. (B8)
and (B9), we have

0 =
(
−2�0 − i

γ + κ

2

)
Ce,1

+ ε2J + εεd
(
2�0 + i γ+κ

2

)
e−iφ + Jε2

de−i2φ(
�0 + i γ

2

)(
�0 + i κ

2

) − J2
Cg,0,

(B12)

0 =
√

2JCe,1 +
√

2ε
Jεde−iφ + ε

(
�0 + i γ

2

)(
�0 + i γ

2

)(
�0 + i κ

2

) − J2
Cg,0. (B13)

The condition for Ce,1 and Cg,0 to have nontrivial solutions
is that the determinant of the coefficient matrices equals zero,
and then we get the equation for optimal phonon antibunching

as

(ζe−iφ )2 + 2

Jopt

(
2�0,opt + i

γ + κ

2

)
ζe−iφ + 1

J2
opt

(
�0,opt + i

γ

2

)
×

(
2�0,opt + i

γ + κ

2

)
+ 1 = 0, (B14)

where ζ ≡ εd/ε. If the driving field is not applied to the two-
level atom, i.e., εd = 0 and ζ = 0, the optimal conditions are
written as

�0,opt = 0, (B15)

Jopt = 1
2

√
γ (γ + κ ). (B16)

If εd 	= 0 and ζ 	= 0, then the two solutions of Eq. (B14) are
given by

ζ±e−iφ± = −
(

2�0,opt

Jopt
+ i

γ + κ

2Jopt

)

±
√(

�0,opt

Jopt
+ i

κ

2Jopt

)(
2�0,opt

Jopt
+ i

γ + κ

2Jopt

)
− 1.

(B17)
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