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Collective multipartite Einstein-Podolsky-Rosen (EPR) steering is a type of quantum correlation shared among
n parties, where the EPR paradox of one party can be realized only by performing local measurements on all the
remaining n − 1 parties. Here, we propose an efficient method to produce collective multipartite EPR steering via
symmetrically and asymmetrically cascading parametric amplification processes, i.e., four-wave mixing (FWM)
of rubidium atoms. The simplified collective-steering criterion is introduced using the Coffman-Kundu-Wootters
monogamy relation. Moreover, by actively adjusting the parametric gains, the collective EPR steerability is
optimized in our schemes. We find that the scale of collective steering can be extended by cascading more
FWMs; in particular, introducing optical loss is useful for generating collective steering with more parties only
in the asymmetry structure. Our results pave the way for the construction of quantum networks and provide a
promising candidate for one-sided device-independent quantum cryptography among multiple users.
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I. INTRODUCTION

Einstein-Podolsky-Rosen (EPR) steering, which was first
put forward to describe the “spooky action-at-a-distance” non-
locality phenomenon of Schrödinger [1], is an increasingly
important concept in quantum mechanics. Suppose an EPR
entangled state is shared between Alice and Bob, who are
separated in remote space. If one observer, say, Alice, mea-
sures on her local particle A, the wave packet of Bob’s particle
B will collapse instantaneously. For the continuous-variable
(CV) system, Alice and Bob share the quantum correlation in
amplitude and phase quadratures, analogous to position and
momentum for a particle. In 1989, Reid first demonstrated
an experimental criterion via quadrature phase measurements
[2]. Then, Wiseman formalized the concept of steering math-
ematically through violations of the local-hidden-state model
[3] and, given a rigorous definition, revealed that a steerable
state is a subset of the entangled state [4]. The inherent feature
of EPR steering is a special type of quantum entanglement
between Bell nonlocality [4] and EPR entanglement [5]. Due
to the asymmetric property, EPR steering has been identified
as a significant resource for quantum information processing,
e.g., one-sided device-independent (1SDI) quantum key dis-
tribution [6–11], subchannel discrimination [12], and secure
quantum teleportation [13,14].

In 2013, He and Reid developed the concept of genuine
N-partite steering [15], which extended bipartite EPR steering
to multipartite steering. Recently, multipartite steering was
demonstrated experimentally using CV Gaussian states, i.e.,
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multipartite EPR steering with optical networks [16], in four-
mode cluster states [17], via a quantum frequency comb [18],
and by separable states [19]. Collective multipartite steering,
a special type of multipartite steering, was also presented
[15,20–22], in which one party of the states can be steered
only by the measurement of all the remaining n − 1 parties,
whereas it cannot be steered by a measurement on n − 2 or
fewer parties. This distinctive property of collective multi-
partite steering is relevant to the task of multimode quantum
cryptography, such as quantum secret sharing (QSS) [23–28].
The conventional QSS process is that first, a dealer encodes
a secret and distributes it into several parts and then sends
the part information to the receivers; last, only all receivers
working together can collaboratively decrypt the secret, and
fewer receivers cannot get any information about the secret.
Due to the intrinsic nature of collective steering, the security
of this process is guaranteed, and we need not assume all the
receivers are trustworthy. Therefore, it remarkably reduces the
number of trustworthy devices in the quantum network and
can provide an efficient implementation for 1SDI QSS [29].

Motivated by the demand for collective steering, a cur-
rent challenge is to generate multimode entangled states. A
promising candidate for producing quantum correlated twin
beams (signal and idler) [30] and CV multipartite entangle-
ment [31] is applying the single-pass parametric amplification
process, i.e., the four-wave mixing (FWM) process in an
atomic system. Using the FWM process to generate multi-
partite entanglement has several advantages, such as a strong
third-order nonlinear effect, without the need for an optical
cavity or extra beam splitter, spatially separated and well
matched with the atomic transitions. Currently, due to its
advantages, the single-pass FWM can be applied for quantum
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information [32–35] and quantum metrology [36], includ-
ing entanglement imaging [37], four-wave slow light [38],
delayed EPR entanglement [39], nonlinear interferometers
[36,40,41], quantum noiseless amplification [42], a control-
lable graph state [31], a multiple-spatial-mode squeezed state
[43], intensity-difference squeezing with dressed states [44],
orbital angular momentum multipartite entanglement [45,46],
phase estimation [47], etc.

Therefore, it is desirable to deeply study how collective
multipartite steering can be created via cascading parametric
amplification processes, i.e., FWM. In previous works, tripar-
tite steering and the monogamy relations within quadripartite
steering based on cascaded FWM were investigated [48–50].
In this paper, we simplify the collective-steering criterion with
the Coffman-Kundu-Wootters (CKW) monogamy relation.
And we theoretically produce collective tripartite, quadripar-
tite, and pentapartite steering via symmetric and asymmetric
structures of cascaded FWMs. Moreover, we investigate max-
imizing the collective multipartite steerability by adjusting the
parametric gains of FWMs. Last, we study the effect of optical
losses on collective multipartite steering. By introducing opti-
cal losses, we obtain collective quadripartite and pentapartite
steering in the asymmetric scheme. Our results indicate that
the cascaded FWM processes can provide a promising and
scalable platform for collective multipartite steering that is
useful for constructing the quantum networks for 1SDI-QSS.

This paper is organized as follows. In Sec. II, we present
the criteria of bipartite EPR steering and collective multipar-
tite steering. In Sec. III, we achieve collective multipartite
steering via the symmetric and asymmetric cascaded FWM
processes and analyze the collective regions with different
gain parameters. In Sec. IV we study the effect of losses on
the collective multipartite steering. Finally, we summarize in
Sec. V.

II. THE PROPERTIES OF EPR STEERING AND
MULTIPARTITE COLLECTIVE STEERING

Let us start by introducing the definition of bipartite EPR
steering and explain the differences between bipartite EPR
steering and multipartite collective steering in detail.

A. The steering criterion

A generic Gaussian state can be fully characterized by
its covariance matrix (CM). We consider a Gaussian (nA +
mB)-mode state of a bipartite system, composed of two sub-
systems: Alice (n modes) and Bob (m modes). We define
the phase-space operators X̂ A(B) and P̂A(B) for each mode
and ξ̂ = (X̂ A

1 , P̂A
1 , . . . , X̂ A

n , P̂A
n , X̂ B

1 , P̂B
1 , . . . , X̂ B

m , P̂B
m )�, satis-

fying the canonical commutation relations [ξ̂i, ξ̂ j] = i�i j ,

where � = ⊕n+m
1 ( 0 1

−1 0) is the symplectic form. The CM

can be reconstructed in the form σAB = (A C
C� B) with el-

ements σi j = 〈�ξi�ξ j + �ξ j �ξi〉/2 − 〈�ξi〉〈�ξ j〉, where submatrices
A and B correspond to Alice’s and Bob’s reduced states,
respectively, and submatrix C stands for the correlation be-
tween them. The steerability from Alice to Bob (A → B),

FIG. 1. (a) A simplified graph of collective multipartite steer-
ing, using collective quadripartite steering as an example. The
possibilities among the steering party, i.e., A1, A2, A3, (A1, A2),
(A1, A3), (A2, A3), and (A1, A2, A3) are depicted. (b) and (c) Simpli-
fied schematics of the CKW monogamy relation. Each circle denotes
an optical mode, and arrows describe the bipartite steering between
them; arrows with crosses represent nonsteerability.

corresponding to a (nA + mB)-mode Gaussian state, is quanti-
fied by [51]

GA→B(σAB) = max

⎧⎪⎨
⎪⎩0,−

∑
j:ν̄AB/A

j <1

ln
(
ν̄
AB/A
j

)
⎫⎪⎬
⎪⎭, (1)

where ν̄
AB/A
j ( j = 1, . . . , mB) are the symplectic eigenvalues

of σ̄AB/A = B− C�A−1C, derived from the Schur comple-
ment ofA in the CM σAB. The quantity GA→B is a monotonic
function under Gaussian operations [52]. Bob can be steered
by Alice iff GA→B > 0 [51].

FIG. 2. Schematic diagram of the production of the four-mode
entangled state via the symmetric-structure cascaded FWM system.
âs0 is seeded into FWM1; âv0 , âv1 , and âv2 are the three vacuum input
modes; âi1 and âs1 are the output idler and signal beams of FWM1;
and â1,2,3,4 are the final four output modes after FWM2 and FWM3.
LO denotes the local oscillator for homodyne detection (HD1−4).
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FIG. 3. Collective tripartite steering with a symmetric-structure cascaded FWM system. Variation of the (1+1)- and (2+1)-mode steering
parameters with G3 for G1 = 2, G2 = 1.2. â1 and â3 are the idler beams; â2 and â4 are the signal beams. (a)–(c) The steering from individual
â2, â3, and â4 and any two of them to mode â1. (d)–(f) The steering from individual â1, â2, and â3 and any two of them to mode â4. The red
dotted and blue dashed lines correspond to (1+1)-mode steering. The black dot-dashed lines correspond to (2+1)-mode steering.

B. The collective-steering criterion

We introduce a sufficient condition to quantify the mul-
tipartite collective steering. Without loss of generality, let
us now formally define the collective quadripartite steer-
ing. The steered party B can be steered by only the
modes (A1, A2, A3) jointly, whereas a measurement on less
than three modes cannot steer mode B, as indicated in
Fig. 1(a); that is, (i) GA1→B = GA2→B = GA3→B = GA1A2→B =
GA1A3→B = GA2A3→B = 0, and (ii) GA1A2A3→B > 0. This re-
quirement means that, for collective steering, the steering
modes (A1, A2, A3) in a remote location can collaboratively
infer the higher-precision information such that the quantum
standard limit corresponding to the bound of the EPR steering
for the inferred amplitude and phase quadratures of steered
mode B is violated [2,51], but when it has fewer than three
modes, e.g., A1, A2, A3, (A1, A2), (A1, A3), and (A2, A3), the
information cannot be retrieved. The bound of the steering
criteria [Eq. (2)] corresponds to the case when the two parties
(Alice and Bob) are separable coherent states, relevant to the
Heisenberg uncertainty.

Then we extend the collective-steering criterion to the
n-partite case, which has one steered mode (B) and n − 1
steering modes (A1, A2, . . . , An−1). It is equivalent to the two
simultaneous conditions

GA′→B = 0, nA′ = 1, 2, . . . , n − 2,

GA1A2···An−1→B > 0, nA = n − 1, (2)

where A′ is a subsystem of the steering party A with n − 2
modes at most. If the two conditions are fulfilled at the
same time, the multipartite collective steering is generated.
Moreover, the multipartite steering from these Gaussian states
follows the CKW monogamy inequality [52,53], which can
help us understand the distributions of the quantum correla-

tion in the systems. For a three-mode case, the CKW-type
monogamy relation can be written as

GA1A2→B � GA1→B + GA2→B, (3)

where the steering party A consists of A1 and A2 in Fig. 1(b).
This means that if (A1, A2) cannot steer B jointly, A1 and A2

cannot steer B individually, as shown in Fig. 1(c). Therefore,
the above collective multipartite steering criterion can be sim-
plified as

GA′→B = 0, nA′ = n − 2,

GA1A2···An−1→B > 0, nA = n − 1. (4)

We need to make sure only that A′ with n − 2 modes cannot
steer mode B but A′ with n − 1 modes can. For instance, in
the case of collective quadripartite and pentapartite steering,
the simplified criteria require 4 and 5 constraints, while they
contained 7 and 15 conditions in previous works [54], respec-
tively. Note that the CKW monogamy relations may be shifted
for mB > 1 [50].

III. THE GENERATION OF MULTIMODE GAUSSIAN
STATES AND COLLECTIVE MULTIPARTITE STEERING

Here, we construct collective multipartite steering via cas-
cading single-pass parametric amplification process FWMs in
symmetric and asymmetric structures. Note that the FWMs
can also be taken as nonlinear beam splitters [49]. The nonlin-
ear FWM interaction process is based on a double-� system
between the hyperfine ground states (5S1/2, F = 2) and the
excited states (5P1/2) in Rb vapor at the D1 line [55]. The
double-� scheme is a third-order nonlinear process that mixes
an intense pump beam with a weak signal beam to generate
an idler beam simultaneously. The pump beam was tuned
∼0.8 GHz to the blue of the D1 line, and the weak signal beam
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was tuned ∼3.04 GHz to the red of the pump with an acousto-
optic modulator. The amplified signal beam and the idler beam
are cross coupled and have a strong quantum correlation. In
addition, the phase-matching and energy-conservation condi-
tions need to be satisfied in the FWM process. As shown in
Fig. 2, âs1 = G1âs0 + g1â†

v0
and âi1 = g1â†

s0
+ G1âv0 are the

input-output relationship of the single FWM1, where G1 is the
amplitude gain in the FWM1 process and G2

1 − g2
1 = 1; â†

s(v)0

and âs(v)0 stand for the creation and annihilation operators of
the seed (vacuum) input; âs1 and âi1 stand for the annihilation
operators of the output signal and idler beams, respectively.

Similarly, we can apply the relationship of the single FWM
process for the multiple cascaded FWM processes.

A. The symmetric cascaded FWM of four-mode entangled state

In this part, we first consider the case where three FWM
processes are symmetrically cascaded. We take the signal and
idler beams from the first FWM1 process as the seed beams for
FWM2 and FWM3, as illustrated in Fig. 2. The corresponding
input-output relationship in these cascaded FWM processes
can be written as [31]

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X̂ a
1

P̂a
1

X̂ a
2

P̂a
2

X̂ a
3

P̂a
3

X̂ a
4

P̂a
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1G2 0 G1G2 0 g2 0 0 0
0 −g1G2 0 G1G2 0 −g2 0 0

g1g2 0 G1g2 0 G2 0 0 0
0 g1g2 0 −G1g2 0 G2 0 0

G1g3 0 g1g3 0 0 0 G3 0
0 −G1g3 0 g1g3 0 0 0 G3

G1G3 0 g1G3 0 0 0 g3 0
0 G1G3 0 −g1G3 0 0 0 −g3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X̂s0

P̂s0

X̂v0

P̂v0

X̂v1

P̂v1

X̂v2

P̂v2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (5)

where X̂s(v)i and P̂s(v)i and X̂ a
i+1 and P̂a

i+1(i = 0, 1, 2, 3) are the amplitude and phase quadrature operators of the input and output
signal and idler beams, which are defined as X̂ = â + â† and P̂ = i(â† − â), respectively. Gi is the amplitude gain in the FWMi

process, and G2
i − g2

i = 1; â†
i and âi stand for the creation and annihilation operators of the ith modes, respectively.

To demonstrate the collective tripartite steering of the symmetric cascaded FWM, we need to derive the CM, which can fully
characterize the correlation properties of the produced four-mode Gaussian states. For Gaussian states, the elements of the CM
are composed of covariances of amplitude and phase quadratures, which are defined as σi j = 〈�ξi�ξ j + �ξ j �ξi〉/2 − 〈�ξi〉〈�ξ j〉, where
�ξsym4 = (X̂ a

1 , P̂a
1 , X̂ a

2 , P̂a
2 , X̂ a

3 , P̂a
3 , X̂ a

4 , P̂a
4 )� and i and j denote the output optical modes. Because the cross correlations between

the amplitude and phase quadratures do not exist, the corresponding covariances are all zero.
Then we are ready to quantify the collective tripartite steering shared among the four modes. In the symmetric cascaded

system, mode â1 (â4) can steer â2 (â3) deterministically [50]. Therefore, â2 and â3 are not suitable for the steered modes to
construct the collective tripartite steering. So six different partitions can achieve collective tripartite steering, i.e., (â2, â3) → â1,
(â2, â4) → â1, (â3, â4) → â1, (â1, â2) → â4, (â1, â3) → â4, and (â2, â3) → â4. Based on these partitions, we get the analytical
solution to (1+1)- and (2+1)-mode EPR steering of the symmetrical structure (G1 > 1, G2 > 1, and G3 > 1):

Ga1→a4 =

⎧⎪⎪⎨
⎪⎪⎩

0, G3 �

√
2G2

1G2
2−1

G2
1(2G2

2−1)
,

− ln
( 2G2

1G2
3(2G2

2−1)
2G2

1G2
2−1

− 1
)
, G3 <

√
2G2

1G2
2−1

G2
1(2G2

2−1)
,

(6a)

Ga2→a4 =

⎧⎪⎪⎨
⎪⎪⎩

0, G3 �

√
2G2

1(G2
2−1)+1

G2
1(2G2

2−1)
,

− ln
( 2G2

1G2
3(2G2

2−1)
2G2

1(G2
2−1)+1

− 1
)
, G3 <

√
2G2

1(G2
2−1)+1

G2
1(2G2

2−1)
,

(6b)

Ga3→a4 =
⎧⎨
⎩

0, G3 �
√

2G2
1−1

G1
,

− ln
( 2G2

1−1
2G2

1G2
3−2G2

1+1

)
, G3 >

√
2G2

1−1
G1

,
(6c)

Ga1a2→a4 =
⎧⎨
⎩

0, G3 �
√

2G2
1−1

G1
,

− ln
( 2G2

1G2
3

2G2
1−1

− 1
)
, G3 <

√
2G2

1−1
G1

,
(6d)

Ga1a3→a4 = − ln

(
2G2

1

(
G2

2 − 1
) + 1

2G2
1(2G2

2G2
3 − G2

2 − G2
3 + 1) − 1

)
, G3 > 1, (6e)

Ga2a3→a4 =

⎧⎪⎪⎨
⎪⎪⎩

0, G3 �

√
2G2

1G2
2−1

G2
1(2G2

2−1)
,

− ln
( 2G2

1G2
2−1

2G2
1(2G2

2G2
3−G2

2−G2
3 )+1

)
, G3 >

√
2G2

1G2
2−1

G2
1(2G2

2−1)
.

(6f)
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FIG. 4. Collective tripartite steering regions with the symmetric structure are examined by the steerability of (2+1) mode > 0 and (1+1)
mode = 0. The steering parameters Ga1a2→a4 , Ga1a3→a4 , and Ga2a3→a4 as a function of (a)–(c) G1 and G3 for G2 = 1.2, (d)–(f) G2 and G3 for
G1 = 2, and (g)–(i) G1 = G2 and G3, respectively. In the white areas, the criteria of collective multipartite steering are not satisfied, and thus,
the collective tripartite steering does not exist.

As shown in Fig. 3, we quantify the (1+1)- and (2+1)-
mode steering parameters with G3 for G1 = 2, G2 = 1.2.
Mode â2 cannot steer â1 due to the values of G1 and G2. Mode
â3 also cannot steer â1 by itself because the modes of the same
roles (signal and idler) cannot steer each other and they are not
coupled to each other in the Hamiltonian. But its role in assist-
ing joint steering with mode â2 is nontrivial when G3 > 1.16.
The range of gain parameter G3 for (â2, â3) → â1 is G3 ∈
(1.16, 2] in Fig. 3(a). Modes (â2â4) can steer â1 deterministi-
cally, because all the signal (idler) beams that can steer all the
idler (signal) ones or part of them. So we just need to make
sure that â2 and â4 cannot steer â1 individually. When G3 ∈
[1.16, 2], we ensure Ga2→a1 = Ga4→a1 = 0 and Ga2a4→a1 > 0
simultaneously in Fig. 3(b). The maximum Ga2a4→a1 is 1.42 at
G3 ≈ 1.16. In Fig. 3(c), Ga3a4→a1 ≈ 0.44, which is irrelevant
to G3. When G3 ∈ [1.16, 2], Ga3→a1 and Ga4→a1 both equal
zero. The range of the gain parameter G3 for (â3, â4) → â1 is
the same as that for (â2, â4) → â1. In the symmetric structure,
modes â1 and â4 and â2 and â3 play the same role in the
system. So we can replace the modes with the others, i.e.,

Ga2→a1 = Ga3→a4 and Ga1a3→a4 = Ga2a4→a1 . Accordingly, the
associated gain parameters G2 and G3 also need to replace
each other. When G3 < 1.32, Ga1a2→a4 > 0, and Ga3→a4 = 0
and vice versa. Similarly, when G3 > 1.18, Ga2a3→a4 > 0,
and Ga1→a4 = 0; for G3 > 0.78, Ga1a3→a4 > 0, and Ga2→a4 =
0 in Figs. 3(d)–3(f). This result agrees with the CKW-
type monogamy relation: Gi j→l > 0 ⇒ Gk→l = 0, which
means two independent groups cannot steer the third single
mode with Gaussian measurement simultaneously [50,56,57].
From the above analysis, The ranges of the gain param-
eter G3 for (â1, â2) → â4, (â1, â3) → â4, and (â2, â3) →
â4 are G3 ∈ [1.18, 1.32), [1.18,1.32], and (1.18,1.32],
respectively.

Now we investigate the collective tripartite steering as
a function of G1, G2, and G3 with the symmetric struc-
ture. As shown in Fig. 4, the contour-plot regions satisfy
the collective-steering criterion, where âi and â j (i, j =
1, 2, 3; i �= j) cannot steer â4 individually but âiâ j jointly can
steer â4. In order to study the effects of different gain param-
eters, the (1 + 2)-mode steering is varied with G1 and G3 for
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FIG. 5. Schematic diagram of producing the four-mode entan-
gled state via an asymmetric structure. âs0 , âs1 , and âs2 are seeded
into FWM1, FWM2, and FWM3, respectively. âv0 , âv1 , and âv2 are
the three vacuum input modes; b̂1,2,3,4 are the final four output modes.
LO denotes the local oscillator for homodyne detection (HD1−4).

G2 = 1.2, G2 and G3 for G1 = 2, or G1 = G2 and G3 in Fig. 4.
We can see Ga1a2→a4 increases when adjusting G1 from 1 to 2,
is unchanged when adjusting G2, and decreases when adjust-
ing G3 from 1 to 1.4, as shown in Figs. 4(a), 4(d) and 4(g).
Note that the gain parameter G2 does not affect the steerability
Ga1a2→a4 . The reason is mainly that mode â4 participates in
only the nonlinear processes FWM1 and FWM3 and is not
coupled with FWM2 in Eq. (6d). With the increase of gain
parameter G3, Ga1a3→a4 significantly increases, and Ga2a3→a4

remains the same. But with the increase of gain parameters
G1 and G2, they show the opposite trend in Figs. 4(b), 4(c)
4(e), and 4(f). If we assume G1 = G2, Ga1a3→a4 and Ga2a3→a4

are nearly unchanged when adjusting G1 = G2. The reason
is mainly that G1 and G2 have opposite effects on them and
cause their destruction.

Furthermore, we find collective quadripartite steering can-
not be obtained by the symmetric structure. According to
the simplified criterion (4), we need to ensure that Glkp→q >

0 and Glk→q = Gl p→q = Gkp→q = 0 simultaneously, where
k, l, p, and q represent the four modes. But the group of all
the signal (idler) beams can steer all the idler (signal) ones or
part of them deterministically, e.g., Ga2a4→a1 > 0 in Fig. 3(b)
and Ga1a3→a4 > 0 in Fig. 3(e). According to the analytical
solution with Eqs. 6(d)–6(f), G1, G2, and G3 have no solution
to satisfy these constraints at the same time, e.g., Ga1a2→a4 =
Ga1a3→a4 = Ga2a3→a4 = 0. By introducing the optical loss,
collective quadripartite steering also cannot be produced, as
discussed in Sec. IV.

B. The asymmetric cascaded FWM of the four-mode
entangled state

Now we move to investigate the case of three cascaded
FWM processes with the asymmetric structure. The difference
from the symmetric one is that we take the signal beams âs1

and âs2 as the seed beams for FWM2 and FWM3, respectively,
as shown in Fig. 5. The corresponding input-output relation-
ship in this structure can be written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X̂ b
1

P̂b
1

X̂ b
2

P̂b
2

X̂ b
3

P̂b
3

X̂ b
4

P̂b
4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

g1 0 G1 0 0 0 0 0
0 −g1 0 G1 0 0 0 0

G1g2 0 g1g2 0 G2 0 0 0
0 −G1g2 0 g1g2 0 G2 0 0

G1G2g3 0 g1G2g3 0 g2g3 0 G3 0
0 −G1G2g3 0 g1G2g3 0 g2g3 0 G3

G1G2G3 0 g1G2G3 0 g2G3 0 g3 0
0 G1G2G3 0 −g1G2G3 0 −g2G3 0 −g3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X̂s0

P̂s0

X̂v0

P̂v0

X̂v1

P̂v1

X̂v2

P̂v2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (7)

Compared with the symmetrical structure, in the asymmetric cascaded system, modes b̂4 can steer b̂1, b̂2, and b̂3 deterministically
[50]. Therefore, b̂1, b̂2, and b̂3 are not suitable for the steered modes to construct the collective tripartite steering. Only
mode b̂4 can be steered by b̂1, b̂2, and b̂3 conditionally. So three different partitions can achieve collective tripartite steering,
i.e., (b̂1, b̂2) → b̂4, (b̂1, b̂3) → b̂4, and (b̂2, b̂3) → b̂4. The analytical solution to (1+1)- and (2+1)-mode EPR steering of the
asymmetrical structure (G1 > 1, G2 > 1, and G3 > 1) is

Gb1→b4 =

⎧⎪⎨
⎪⎩

0, G3 �
√

2G2
1−1

G1G2
,

− ln
( 2G2

1G2
2G2

3

2G2
1−1

− 1
)
, G3 <

√
2G2

1−1
G1G2

,

(8a)

Gb2→b4 =

⎧⎪⎨
⎪⎩

0, G3 �
√

2G2
1(G2

2−1)+1
G1G2

,

− ln
( 2G2

1G2
2G2

3

2G2
1(G2

2−1)+1
− 1

)
, G3 <

√
2G2

1(G2
2−1)+1

G1G2
,

(8b)
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Gb3→b4 =

⎧⎪⎨
⎪⎩

0, G3 �
√

2G2
1G2

2−1
G1G2

,

− ln
( 2G2

1G2
2−1

2G2
1G2

2G2
3−2G2

1G2
2+1

)
, G3 >

√
2G2

1G2
2−1

G1G2
,

(8c)

Gb1b2→b4 =

⎧⎪⎨
⎪⎩

0, G3 >

√
2G2

1G2
2−1

G1G2
,

− ln
( 2G2

1G2
2G2

3

2G2
1G2

2−1
− 1

)
, G3 �

√
2G2

1G2
2−1

G1G2
,

(8d)

Gb1b3→b4 =

⎧⎪⎨
⎪⎩

0, G3 <

√
2G2

1(G2
2−1)+1

G1G2
,

− ln
( 2G2

1G2
2−2G2

1+1
2G2

1G2
2G2

3−2G2
1G2

2+2G2
1−1

)
, G3 �

√
2G2

1(G2
2−1)+1

G1G2
,

(8e)

Gb2b3→b4 =

⎧⎪⎨
⎪⎩

0, G3 <

√
2G2

1−1
G1G2

,

− ln
( 2G2

1−1
2G2

1G2
2G2

3−2G2
1+1

)
, G3 �

√
2G2

1−1
G1G2

.

(8f)

As shown in Fig. 6, we quantify the (1+1)- and (2+1)-
mode steering parameters with G3 for G1 = 2, G2 = 1.2.
For the (b̂1, b̂2) → b̂4 case, mode b̂1 cannot steer b̂4 when

G3 �
√

−1+2G2
1

G1G2
≈ 1.10, and b̂2 cannot steer b̂4 for the whole

range. When G3 <

√
2G2

1G2
2−1

G1G2
≈ 1.35, modes b̂1b̂2 can steer

b̂4 jointly. So for G3 ∈ [1.10, 1.35), we ensure Gb1→b4 =
Gb2→b4 = 0 and Gb1b2→b4 > 0 simultaneously in Fig. 6(a).
Similarly, for the (b̂1, b̂3) → b̂4 case, the collective-steering
range is G3 ∈ [1.10, 1.35] in Fig. 6(b). For the (b̂2, b̂3) →
b̂4 case, the collective-steering range is G3 ∈ (1.10, 1.35]
in Fig. 6(c). From Fig. 6, it is seen that the (1+1)- and
(2+1)-mode steering ranges are complementary; that is, when
G3 < 1.10, Gb1b2→b4 > 0, and Gb3→b4 = 0, and when G3 >

1.10, Gb1b2→b4 = 0, and Gb3→b4 > 0. This result well agrees
with a generalized from of the monogamy relation, which
means two independent groups of modes cannot steer the
third single mode with Gaussian measurements simultane-
ously (Gkl→q > 0 ⇒ Gp→q = 0 or Gp→q > 0 ⇒ Gkl→q = 0,
where k, l, p, and q represent the four modes) [56]. With the
increase of G3, the function monotonicities of the (1+1)- and
(2+1)-mode steerings are opposite; that is, Gb3→b4 increases
with G3 > 1.35 in Fig. 6(c), and Gb1b2→b4 decreases with
G3 < 1.35 in Fig. 6(a). Due to the monogamy relation, the
two conditions cannot be satisfied simultaneously. Figure 7
shows that using three asymmetric cascaded FWMs can create
collective tripartite steering. The contoured regions satisfy
the collective-steering criterion, in which b̂i and b̂ j (i, j =
1, 2, 3; i �= j) cannot steer b̂4 individually but b̂ib̂ j jointly can
steer b̂4. We investigate the steerability of the (2+1)-mode
(Gb1b2→b4 , Gb1b3→b4 , and Gb2b3→b4 ) as a function of G1 and
G3 for G2 = 1.2 in Figs. 7(a)–7(c), G2 and G3 for G1 = 2 in
Figs. 7(d)–7(f), and G1 = G2 and G3 in Figs. 7(g)–7(i). We
find that Gb1b2→b4 increases with varying G1 and G2 from 1 to
2 and decreases with adjusting G3 from 1 to 1.4, as shown in
Figs. 7(a), 7(d) and 7(g). Compared with the symmetric FWM
processes, the value of G3 affects the steerability between
modes b̂1b̂2 and b̂4 in the asymmetric FWM processes but
does not affect the steerability between modes â1â2 and â4.
Similarly, Gb1b3→b4 increases with varying G1 and G3 from 1
to 2 and 1 to 1.4 but decreases with adjusting G2 from 1 to 2 in

Figs. 7(b), 7(e) and 7(h). Gb2b3→b4 increases with varying G2

and G3 from 1 to 2 and 1 to 1.4 but decreases with adjusting
G1 from 1 to 2 in Figs. 7(c), 7(f) and 7(i). Gb1b2→b4 ≈ 1.421
is maximized with experimentally feasible gain factors G1 ≈
1.336, G2 = 1.2, and G3 = 1.Gb1b3→b4 ≈ 1.296 is maximized
with G1 = 2, G2 = 1.2, and G3 ≈ 1.351. Gb2b3→b4 ≈ 1.015
is maximized with G1 = 1, G2 = 1.2, and G3 ≈ 1.143. Con-
sidering the specific FWM gain level of the experiment, this
partition of (b̂1, b̂2) → b̂4 is a good choice. If the gain of
FWM1 is greater than 2, then the partition of (b̂1, b̂3) → b̂4

is a better one with a larger steerability. Note that, in Fig. 7,
the three partitions of collective tripartite steering have very
different gain dependence, but it is interesting to find that the
area of the collective tripartite steering region is the same.
This outcome is well explained by the monogamy relation of
multipartite steering [50]. For instance, the upper left white
area represents Gb1→b4 > 0 in Figs. 7(a) and 7(b), and it also
signifies Gb2b3→b4 = 0 in Fig. 7(c). Similarly, the lower left
white area represents Gb2→b4 > 0 and Gb1b3→b4 = 0, and the
right white area denotes Gb3→b4 > 0 and Gb1b2→b4 = 0. This
pattern also fits the previous symmetric structures seen in
Fig. 4.

Similar to the symmetric structure, the four-mode pure
state produced by the asymmetric one still does not have
collective quadripartite steering. For the (b̂1, b̂2, b̂3) → b̂4
case, we cannot let the steerabilities Gb1b2→b4 ,Gb1b3→b4 , and
Gb2b3→b4 be zero by adjusting G3 simultaneously, as seen
in Fig. 6. Moreover, we calculate the analytical solution
with Eqs. 8(d)–8(f). The steerabilities Gb1b2→b4 ,Gb1b3→b4 , and
Gb2b3→b4 equal zero when G1 = G2 = G3 = 1. Obviously,
these gains will induce no steering at all. Although there is no
collective quadripartite EPR steering in pure states for either
structure, we can obtain collective quadripartite steering in
the asymmetric structure by introducing optical loss, which
is given in more detail in Sec. IV.

C. The asymmetric cascaded FWM of the five-mode
entangled state

We have studied the collective tripartite steering exhibited
by the states generated by the symmetric and asymmet-
ric schemes. It is interesting to study whether the above
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FIG. 6. Collective tripartite steering with the asymmetric structure of three cascaded FWMs. Variation of the (1+1)- and (2+1)-mode
steering parameters with G3 for G1 = 2, G2 = 1.2. b̂1, b̂2, and b̂3 are the idler beams; b̂4 is the signal beam. (a)–(c) The steering from individual
b̂1, b̂2, and b̂3 and any two of them to mode b̂4. The red dotted and blue dashed lines correspond to (1+1)-mode steering.

schemes can scale to more parties and create collective
multipartite EPR steering. So we investigate collective quadri-
partite steering in a five-mode entangled state in this section,

first by generating the five-mode state and reconstructing
its CM. Considering the case where four FWM processes
are asymmetrically cascaded, we take the signal beam âsi

FIG. 7. Collective tripartite steering regions with the asymmetric structure of three cascaded FWMs, which are examined by the steerability
of (2+1) mode > 0 and (1+1) mode = 0. The steering parameters Gb1b2→b4 , Gb1b3→b4 , and Gb2b3→b4 as a function of (a)–(c) G1 and G3 for
G2 = 1.2, (d)–(f) G2 and G3 for G1 = 2, and (g)–(i) G1 = G2 and G3, respectively. In the white areas, the criteria of collective multipartite
steering are not satisfied, and thus, the collective tripartite steering does not exist.
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(i = 0, 1, 2, 3) as the seed beam for the FWMi+1 process, as
described in Fig. 8. The unitary transformation of the input-

output relation corresponding to the five-mode state can be
written as

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X̂ c
1

P̂c
1

X̂ c
2

P̂c
2

X̂ c
3

P̂c
3

X̂ c
4

P̂c
4

X̂ c
5

P̂c
5

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

g1 0 G1 0 0 0 0 0 0 0
0 −g1 0 G1 0 0 0 0 0 0

G1g2 0 g1g2 0 G2 0 0 0 0 0
0 −G1g2 0 g1g2 0 G2 0 0 0 0

G1G2g3 0 g1G2g3 0 g2g3 0 G3 0 0 0
0 −G1G2g3 0 g1G2g3 0 g2g3 0 G3 0 0

G1G2G3g4 0 g1G2G3g4 0 g2G3g4 0 g3g4 0 G4 0
0 −G1G2G3g4 0 g1G2G3g4 0 g2G3g4 0 g3g4 0 G4

G1G2G3G4 0 g1G2G3G4 0 g2G3G4 0 g3G4 0 g4 0
0 G1G2G3G4 0 −g1G2G3G4 0 −g2G3G4 0 −g3G4 0 −g4

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

X̂s0
P̂s0
X̂v0
P̂v0

X̂v1

P̂v1

X̂v2

P̂v2

X̂v3

X̂v3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(9)

Collective quadripartite steering with the asymmetric-
structure cascaded four-FWM system is shown in Fig. 9
while varying the (1+1)-, (2+1)-, and (3+1)-mode steering
parameters with G4 for fixed gain values of G1−3 (see the
analytical solutions in the Appendix). In Fig. 9(a), modes ĉ1,
ĉ2, ĉ3, and ĉ4 individually steer mode ĉ5 for G1 = 1.2 (line
with circles) or 2 (line with squares), with G2 = G3 = 1.2.
In Fig. 9(b), modes ĉ1, ĉ2, ĉ3, and ĉ4 individually steer mode
ĉ5 for G1 = G3 = 1.2, with G2 = 2. According to the CKW
monogamy relation in Eq. (3), we need to make sure that
(2+1)-mode steerability is zero and (3+1)-mode steerability
is larger than zero. For the (ĉ1, ĉ2, ĉ3) → ĉ5 case, we quantify
the (2+1)- and (3+1)-mode steering parameters with G1 =
G2 = G3 = 1.2. The steerabilities of modes ĉ1ĉ2, ĉ1ĉ3, ĉ2ĉ3,
and ĉ1ĉ2ĉ3 to mode ĉ5 decrease when adjusting G4 from 1
to 1.6 in Fig. 9(c). The steerabilities Gc1c2→c5 = Gc1c3→c5 =
Gc2c3→c5 = 0, and Gc1c2c3→c5 > 0 at G4 ∈ [1.171, 1.290), and
the collective quadripartite steering is achieved. In the region
of G4 ∈ [1.027, 1.114] (G1 = G2 = G3 = 1.2) in Fig. 9(d),
mode ĉ5 can be steered by (ĉ1, ĉ2, ĉ4) together but cannot
be steered by any two modes (Gc1c2c4→c5 > 0, Gc1c2→c5 =
Gc1c4→c5 = Gc2c4→c5 = 0). Similar phenomena are observed
for the (ĉ2, ĉ3, ĉ4) → ĉ5 case shown in Fig. 9(e), with fixed
G1 = 2, G2 = G3 = 1.2, Gc2c3→c5 = Gc2c4→c5 = Gc3c4→c5 =

FIG. 8. Schematic diagram of the production of the five-mode
entangled state via an asymmetric structure. âsi(i = 0, 1, 2, 3) is
seeded into FWM1, FWM2, FWM3, and FWM4. âvi (i = 0, 1, 2, 3)
are the vacuum input modes; ĉ1−5 are the final output modes. LO
denotes the local oscillator for homodyne detection (HD1−5).

0, and Gc2c3c4→c5 > 0 at G4 ∈ [1.075, 1.126]. It is also seen
that with fixed G1 = G3 = 1.2 and G2 = 2, the steerabilities
Gc1c3→c5 = Gc1c4→c5 = Gc3c4→c5 = 0 at G4 ∈ (1.078, 1.126],
but Gc1c3c4→c5 > 0, as shown in Fig. 9(f). Interestingly, our
system has a very unique property of entanglement distri-
bution; that is, the group of all the idler (signal) beams can
always steer the signal (idler) one. Hence, it is helpful for
achieving large-scale collective multipartite steering while
signal and idler beam numbers are unequal. The results show
that the collective multipartite steering can be extended with
more parties by asymmetric cascaded Rb vapors. Also, the
unequal number of the output modes via the asymmetric
structure and the corresponding quantum property suggest
the asymmetric nature of the quantum correlation distribution
within the collective steering defined in Eq. (2). Moreover, by
introducing optical loss, collective pentapartite steering in the
asymmetric structure can be created, as detailed in Sec. IV.

IV. EFFECT OF OPTICAL LOSS ON COLLECTIVE
MULTIPARTITE STEERING

Taking into account imperfect optical devices, optical
propagation, and detection efficiency, optical loss is unavoid-
able in practical situations. Therefore, it is necessary to
investigate the loss effect on the collective steering in two
structures. For simplicity, we place a beam splitter in front of
the photodetector to introduce some vacuum noise. Then all
of the output modes can be modified as â′

1−4 = √
η1−4â1−4 −√

1 − η1−4v̂1−4, where η1−4 is the transmissivity of the beam
splitters in different channels and 1 − η1−4 is the optical loss
[58,59]. Similarly, we define the output modes b̂′

1−4 and ĉ′
1−5

in the asymmetric structures.
In the symmetric four-mode scenario, we fix parametric

gains G1 = G2 = G3 = 1.2 and set η1 = η2 = η3 = η, η4 =
0.9, and the steerabilities Ga′

1a′
2a′

3→a′
4 and Ga′

1a′
3→a′

4 always
equal zero with η = 0.5 at the same time, as indicated in
Fig. 10(a). We increase the gain to 2 in Fig. 10(b) and get
the same result. So collective quadripartite steering cannot
be achieved by adjusting gain and loss in the symmetric
case. Then, we investigate the collective steerability in the
asymmetric four-mode scenario with the same G and η.
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FIG. 9. Collective quadripartite steering with an asymmetric-structure cascaded four-FWM system. Variation of the (1+1)-, (2+1)-, and
(3+1)-mode steering parameters with G4 for fixed gain values of G1−3. ĉ1, ĉ2, ĉ3, and ĉ4 are the idler beams; ĉ5 is the signal beam. (a) Modes
ĉ1, ĉ2, ĉ3, and ĉ4 individually steer mode ĉ5 for G1 = 1.2 (line with circles) or 2 (line with squares), G2 = G3 = 1.2. (b) Modes ĉ1, ĉ2, ĉ3,
and ĉ4 individually steer mode ĉ5 for G1 = G3 = 1.2, G2 = 2. (c) Modes ĉ1ĉ2, ĉ1ĉ3, ĉ2ĉ3, and ĉ1ĉ2ĉ3 steer mode ĉ5 for G1 = G2 = G3 = 1.2.
(d) Modes ĉ1ĉ2, ĉ1ĉ4, ĉ2ĉ4, and ĉ1ĉ2ĉ4 steer mode ĉ5 for G1 = G2 = G3 = 1.2. (e) Modes ĉ2ĉ3, ĉ2ĉ4, ĉ3ĉ4, and ĉ2ĉ3ĉ4 steer mode ĉ5 for G1 = 2,
G2 = G3 = 1.2. (f) Modes ĉ1ĉ3, ĉ1ĉ4, ĉ3ĉ4, and ĉ1ĉ3ĉ4 steer mode ĉ5 for G1 = G3 = 1.2, G2 = 2.

In the asymmetric-structure case, the collective steerability
can be obtained remarkably, as shown in Figs. 10(c) and
10(d). The largest steerability Gb′

1b′
2b′

3→b′
4 is 0.338, with η =

0.642, andGb′
1b′

2→b′
4 = Gb′

2b′
3→b′

4 = Gb′
1b′

3→b′
4 = 0 in Fig. 10(c).

Hence, the amount of steerability is larger than ln(e/2) and
meets the condition of 1SDI QSS with nonzero key rates
[20]. The dealer b̂′

4 sends a secret, and receivers (b̂′
1, b̂′

2,
and b̂′

3) can decode the information only by collaborat-
ing; any one of the receivers is indispensable. When the
gain parameters G1 = G2 = G3 increase to 2, the steerabil-
ities Gb′

2b′
3→b′

4 and Gb′
1b′

3→b′
4 also increase and become more

sensitive to the loss. Therefore, for the collective steering
[(b′

1, b′
2, b′

3) → b′
4], it is possible, by introducing more losses,

to make Gb′
2b′

3→b′
4 and Gb′

1b′
3→b′

4 equal zero while Gb′
1b′

2b′
3→b′

4

is larger than zero. The largest steerability Gb′
1b′

2b′
3→b′

4 is de-
creased to 0.088 at η = 0.525, and the collective-steering
region changes in Fig. 10(d). After the calculation of two
four-mode systems, we extend this protocol to an asymmetric

five-mode case. Figure 10(e) shows that the collective penta-
partite steering can be obtained based on four cascaded FWMs
and by adjusting the transmissivity η. The maximum steer-
ability Gc′

1c′
2c′

3c′
4→b′

5 is 0.264 with η1 = η2 = η3 = η4 = η =
0.577, η5 = 0.9, and Gc′

1c′
2c′

3→b′
5 = Gc′

1c′
2c′

4→b′
5 = Gc′

1c′
3c′

4→b′
5 =

Gc′
2c′

3c′
4→b′

5 = 0. When the parametric gain G1 = G2 = G3 =
G4 is increased to 1.5, the maximum steerability Gc′

1c′
2c′

3c′
4→b′

5

is decreased to 0.092, and the collective-steering region is
reduced to η ∈ (0.5, 0.527], as shown in Fig. 10(f). Because
of the difference in internal entanglement distributions in the
two schemes, the sensitivity of collective steering to loss is
different. Cascading more Rb vapors in the asymmetric struc-
ture can build higher-party collective steering in the system.

In general, the loss needs to be overcome because it will
weaken the quantum correlation among different modes. In-
terestingly, we find that loss has a positive effect on achieving
the collective steering. And larger parametric gain is not al-
ways better. Here, by jointly adjusting the parametric gain
and the transmissivity of the beam splitter, the collective-
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FIG. 10. Loss effect on collective steering for two structures with different FWM gains. (a) and (b) The symmetric four-mode system with
η1 = η2 = η3 = η, η4 = 0.9, G1 = G2 = G3 = 1.2 and 2, respectively. (c) and (d) The asymmetric four-mode system with η1 = η2 = η3 = η,
η4 = 0.9, G1 = G2 = G3 = 1.2 and 2, respectively. (e) and (f) The asymmetric five-mode system with η1 = η2 = η3 = η4 = η, η5 = 0.9,
G1 = G2 = G3 = G4 = 1.2 and 1.5, respectively. The light green shaded areas represent the collective-steering region.

steering region can be obtained with more parties. Therefore,
nontrivially, introducing optical loss might be useful for im-
plementing QSS tasks in practice.

V. SUMMARY

In summary, we have theoretically studied the collective
multipartite EPR steering properties of multimode Gaus-
sian entangled states. Those states can be produced by
cascading FWM processes in Rb atomic vapors symmetri-
cally and asymmetrically. According to the CKW monogamy
relations for Gaussian steering, we simplified the collective-
steering criterion. We investigated the steering properties
shared among four- and five-mode states, which could be
actively modulated by changing the parametric gain values
of FWM in both structures. With the analytical solutions of
the steering parameter upon the gain values, for pure four-
mode states, we obtained six partitions of collective tripartite
steering in the symmetric structure and three partitions in
the asymmetric one for pure four-mode states. Interestingly,
although versatile collective steering can be obtained, we

found that there is no collective quadripartite EPR steering
when the four-mode states in both structures are pure. Fur-
thermore, our scheme can be extended to construct collective
quadripartite steering [e.g., (ĉ1, ĉ2, ĉ3) → ĉ5, (ĉ1, ĉ2, ĉ4) →
ĉ5, (ĉ2, ĉ3, ĉ4) → ĉ5, and (ĉ1, ĉ3, ĉ4) → ĉ5)] in asymmetric
five-mode entangled states by cascading more FWMs. Finally,
we found that introducing the optical loss can assist in creating
collective multipartite steering only in the asymmetric struc-
ture. By introducing optical loss in the steering modes, the
collective quadripartite [(b̂′

1, b̂′
2, b̂′

3) → b̂′
4] and pentapartite

[(ĉ′
1, ĉ′

2, ĉ′
3, ĉ′

4) → ĉ′
5] steerings were produced in the asym-

metric structure. Our results indicate that the cascaded FWM
processes can provide a promising and scalable platform for
the 1SDI-QSS.

Moreover, our method is general for treating all large-scale
Gaussian states via multimode parametric amplification pro-
cesses [60,61]. The cascaded four-wave mixing scheme in
combination with a mode-dependent non-Gaussian operation,
such as photon subtraction on a specific mode, is useful for
remotely generating a Wigner-negative entangled state in CV
multimode cluster states [62–64].
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APPENDIX

1. CM of a four-mode state of the symmetric structure for G1 = 2 and G2 = G3 = 1.2

σsym4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

10.520 0 6.3679 0 5.5148 0 9.9766 0
0 10.520 0 −6.3679 0 5.5148 0 −9.9766

6.3679 0 4.5200 0 3.0484 0 5.5148 0
0 −6.3679 0 4.5200 0 −3.0484 0 5.5148

5.5148 0 3.0484 0 4.5200 0 6.3679 0
0 5.5148 0 −3.0484 0 4.5200 0 −6.3679

9.9766 0 5.5148 0 6.3679 0 10.520 0
0 −9.9766 0 5.5148 0 −6.3679 0 10.520

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A1)

2. CM of a four-mode state of the asymmetric structure for G1 = 2 and G2 = G3 = 1.2

σasy4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7.0000 0 4.5957 0 5.5148 0 9.9766 0
0 7.0000 0 4.5957 0 5.5148 0 −9.9766

4.5957 0 4.5200 0 4.2240 0 7.6415 0
0 4.5957 0 4.5200 0 4.2240 0 −7.6415

5.5148 0 4.2240 0 6.0688 0 9.1698 0
0 5.5148 0 4.2240 0 6.0688 0 −9.1698

9.9766 0 7.6415 0 9.1698 0 15.589 0
0 −9.9766 0 −7.6415 0 −9.1698 0 15.589

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A2)

3. CM of a five-mode state of the asymmetric structure for G1 = 2, G2 = G3 = 1.2, and G4 = 1.1

σasy5 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

7.0000 0 4.5957 0 5.5148 0 4.5719 0 10.974 0
0 7.0000 0 4.5957 0 5.5148 0 4.5719 0 −10.974

4.5957 0 4.5200 0 4.2240 0 3.5018 0 8.4057 0
0 4.5957 0 4.5200 0 4.2240 0 3.5018 0 −8.4057

5.5148 0 4.2240 0 6.0688 0 4.2021 0 10.087 0
0 5.5148 0 4.2240 0 6.0688 0 4.2021 0 −10.087

4.5719 0 3.5018 0 4.2021 0 4.4836 0 8.3621 0
0 4.5719 0 3.5018 0 4.2021 0 4.4836 0 −8.3621

10.974 0 8.4057 0 10.087 0 8.3621 0 19.072 0
0 −10.974 0 −8.4057 0 −10.087 0 −8.3621 0 19.072

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

. (A3)

4. Solution to (1+1)-, (2+1)-, (3+1)-, and (4+1)-mode EPR steering in a five-mode state of the asymmetric structure, G1 > 1, G2 > 1,
G3 > 1, and G4 > 1

Gc1→c5 = max

{
0,− ln

(
2G2

1G2
2G2

3G2
4 − 2G2

1 + 1

2G2
1 − 1

)}
, (A4a)

Gc2→c5 = max

{
0,− ln

(
2G2

1G2
2G2

3G2
4 − 2G2

1G2
2 + 2G2

1 − 1

2G2
1G2

2 − 2G2
1 + 1

)}
, (A4b)

Gc3→c5 = max

{
0,− ln

(
2G2

1G2
2G2

3G2
4 − 2G2

1G2
2G2

3 + 2G2
1G2

2 − 1

2G2
1G2

2G2
3 − 2G2

1G2
2 + 1

)}
, (A4c)

Gc4→c5 = max

{
0,− ln

(
2G2

1G2
2G2

3 − 1

2G2
1G2

2G2
3G2

4 − 2G2
1G2

2G2
3 + 1

)}
, (A4d)
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Gc1c2→c5 = max

{
0,− ln

(
2G2

1G2
2G2

3G2
4 − 2G2

1G2
2 + 1

2G2
1G2

2 − 1

)}
, (A4e)

Gc1c3→c5 = max

{
0,− ln

(
2G2

1G2
2G2

3G2
4 − 2G2

1G2
2G2

3 + 2G2
1G2

2 − 2G2
1 + 1

2G2
1G2

2G2
3 − 2G2

1G2
2 + 2G2

1 − 1

)}
, (A4f)

Gc1c4→c5 = max

{
0,− ln

(
2G2

1G2
2G2

3 − 2G2
1 + 1

2G2
1G2

2G2
3G2

4 − 2G2
1G2

2G2
3 + 2G2

1 − 1

)}
, (A4g)

Gc2c3→c5 = max

{
0,− ln

(
2G2

1G2
2G2

3G2
4 − 2G2

1G2
2G2

3 + 2G2
1 − 1

2G2
1G2

2G2
3 − 2G2

1 + 1

)}
, (A4h)

Gc2c4→c5 = max

{
0,− ln

(
2G2

1G2
2G2

3 − 2G2
1G2

2 + 2G2
1 − 1

2G2
1G2

2G2
3G2

4 − 2G2
1G2

2G2
3 + 2G2

1G2
2 − 2G2

1 + 1

)}
, (A4i)

Gc3c4→c5 = max

{
0,− ln

(
2G2

1G2
2 − 1

2G2
1G2

2G2
3G2

4 − 2G2
1G2

2 + 1

)}
, (A4j)

Gc1c2c3→c5 = max

{
0,− ln

(
2G2

1G2
2G2

3G2
4 − 2G2

1G2
2G2

3 + 1

2G2
1G2

2G2
3 − 1

)}
, (A4k)

Gc1c2c4→c5 = max

{
0,− ln

(
2G2

1G2
2G2

3 − 2G2
1G2

2 + 1

2G2
1G2

2G2
3G2

4 − 2G2
1G2

2G2
3 + 2G2

1G2
2 − 1

)}
, (A4l)

Gc1c3c4→c5 = max

{
0,− ln

(
2G2

1G2
2 − 2G2

1 + 1

2G2
1G2

2G2
3G2

4 − 2G2
1G2

2 + 2G2
1 − 1

)}
, (A4m)

Gc2c3c4→c5 = max

{
0,− ln

(
2G2

1 − 1

2G2
1G2

2G2
3G2

4 − 2G2
1 + 1

)}
, (A4n)

Gc1c2c3c4→c5 = max

{
0,− ln

(
1

2G2
1G2

2G2
3G2

4 − 1

)}
. (A4o)
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