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We present a study of photon statistics associated with high-order harmonic generation (HHG) involving
one-mode and intermodal correlations of the high harmonic photons. The aim of the paper is to give insight into
the nonclassical properties of high-order harmonic modes. To this end, we use a simplified model describing an
elementary quantum emitter: the model of a two-level atom. While the material system is extremely simplified
in this description, the conclusions and the methods may be generalized for more complex cases. Our primary
interest is an effective model of HHG in which the exciting pulse is classical and the harmonics are quantized,
although we touch upon the more generalized, fully quantized model as well. Evolution of the Mandel parameter,
photon antibunching, squeezing, and cross correlations are calculated. Results imply that with respect to a single
quantized emitter, nonclassicality of the harmonics is present: sub-Poissonian photon statistic and squeezing can
characterize certain optical modes, while strong anticorrelation can also be present.
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I. INTRODUCTION

High-order harmonic generation (HHG) is a strongly
nonlinear effect that is observed in several state-of-the-art
experiments [1–3]. One of the most important applications is
the generation of attosecond pulses, which can monitor or in-
duce physical processes on an experimentally unprecedented
timescale [4,5]. Therefore, deep understanding of the physical
mechanisms underlying the phenomenon of HHG is of crucial
importance.

Usually, the calculations involved in strong-field physics
and attosecond science are based on the semiclassical ap-
proach, treating the electron quantum mechanically and the
electromagnetic field classically [6–8].

On the other hand, quantized description of various phe-
nomena in strong fields has already been discussed in the
early 1980s. Reference [9] gives a nonperturbative treatment
of HHG in the nonlinear Compton process using a fully quan-
tized framework [10]. More recently, the idea that the photon
number distribution of a laser pulse shows fingerprints of the
generation of high-order harmonics after the interaction with
matter appeared in a theoretical paper [11]. Later on, the effect
has been demonstrated both with gaseous [12] and solid-state
targets [13]. A short review of quantum-optical spectrometry
is contained in [14]. On the theoretical side, a general pertur-
bative treatment of the problem has been given in [15].

In the most widely used picture that describes gaseous tar-
gets, the continuum energy levels and the charge acceleration
play an important role [8]. However, for solid-state targets,
it is possible for only bound states to be populated during
the process [16], and even the two-level approximation can
be valid for quantum wells [17]. Previous works highlight
how a driven two-level system can model the properties ob-

served in HHG spectra [18–22]. Let us note that a model with
finite number of bound states can directly be related to the
harmonic generation of solid-state targets described in the ve-
locity gauge using single-particle and dipole approximations.
Then all transitions are interband; that is, the dynamics of
states with different k eigenvalues are independent [23,24].

An interesting experimental aspect of HHG is the possi-
bility of performing photon counting experiments. In order
to obtain exact photon statistics, one should calculate all
higher-order correlation functions, but the experimentally
most significant terms are those of up to second order [25].

Of particular interest are the intermodal cross-correlation
functions, the calculation of which is generally nontrivial.
The properties of the two-mode correlation function are con-
nected with the characterization of the electromagnetic field
as a whole, which, as a first approximation, can be done by
measuring second-order intermode cross correlations.

Naturally, quantum-optical properties like photon statistics
are inherently unobtainable from a semiclassical approach.
Although there have been numerous studies—both experi-
mental and theoretical—about the photon statistics of second-
and N th-order harmonics [26,27], fully quantum-optical treat-
ments of the HHG are relatively rare.

The quantum properties of the radiation by an isolated,
pointlike system may be affected for example by the follow-
ing properties: the structure of the relevant energy levels of
the system and modes, and the transition dipole moments;
the polarization, intensity, and quantum properties (photon
statistics) of the excitation; the timescale of the harmonic
generation, i.e., whether spontaneous emission plays a role in
the dynamics.

In this paper, we will only deal with strong, coherent
excitation and its interaction with a two-level system, on a
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timescale that is short compared to the characteristic time of
the spontaneous emission.

The paper is organized in the following way. In Sec. II
we give definitions of the correlation functions and other
quantities calculated in this article. Section III specifies the
model [21] we investigate. In Sec. IV we present semianalytic
and numerical results connected to the photon statistics of
high-order harmonics induced by classical radiation, while the
intermodal correlations are treated in Sec. V. As an outlook,
we give a brief presentation of results concerning the quan-
tized excitation in Sec. VI. Conclusions are given in Sec. VII.

II. CORRELATION FUNCTIONS

The complete characterization of the radiation field in
terms of intensity is only possible in limited cases. More
accurate descriptions are possible by using a hierarchy of
correlation functions as defined by optical coherence theory
[25,28,29].

Correlation functions provide a concise method for ex-
pressing the degree to which two (or more) dynamical
properties are correlated. Generally speaking, the response of
a system to a specific weak probe is often directly related to
a correlation function; therefore, the determination of specific
correlation functions have been the focus of many experimen-
tal settings and theoretical investigations [30,31].

In quantum-optical experiments, the most relevant auto-
and cross-correlation functions are between photon numbers.
Usually, semiconductor avalanche photodiodes are used as
detectors in these experiments [32]. These detectors typi-
cally can achieve time resolution of the order of 500–50 ps.
Since detectors typically average over the detection time, fast
fluctuations of the correlation function (which can contain
important information concerning the physics of ultrafast pro-
cesses) are blurred. In recent years, picosecond resolution has
become possible [33,34].

Below, we introduce quantities relevant to quantum-optical
experiments. The experimental setup to measure these quan-
tities is typically similar to that of Hanbury Brown and
Twiss [35].

Mandel Q parameter:

Qn(t ) ≡ 〈Nn(t )〉(g2
n(t, 0) − 1

) = (�Nn)2

〈Nn〉 − 1.

Whenever it takes negative values, the photon statistics is
called sub-Poissonian and can be called nonclassical [36]. We
note that, during the time evolution, there can be time instants
when the photon number expectation value becomes (exactly
or numerically) zero. This circumstance can cause difficulties
during numerical evaluations of Qn.

The definition of the Q parameter is related to the
second-order coherence function g2

n(t, τ ), specifically for the
one-time τ = 0 case. The second-order coherence function

g2
i (t, τ ) ≡ 〈a†

i (t )Ni(t + τ )ai(t )〉
〈Ni(t )〉〈Ni(t + τ )〉 ∼ P(t + τ |t )

P(t + τ )

is related to the conditional probability P(t + τ |t ) of a detec-
tor measuring a second photon at time t + τ , granted that a
first photon was measured at t .

FIG. 1. Two-time correlation functions with fixed t . (a) super-
Poissonian bunching, (b) super-Poissonian antibunching, (c) sub-
Poissonian bunching, and (d) sub-Poissonian antibunching.

Photon antibunching measure:

δg2
i (t, τ ) ≡ lim

τ→0

g2
i (t, τ ) − g2

i (t, 0)

τ
. (1)

Definitions and quantifications of photon bunching and anti-
bunching are not completely unambiguous in the literature.
Especially in experimental situations, when one considers the
integration of signals by the detector, the concept of bunching
needs careful handling [26,37–41]. For the sake of clarity, we
list the commonly used definitions of photon antibunching for
a single mode.

The presence of photon antibunching is equivalent to (Def.
1) g2

n(t, 0) < 1 or Q(t ) < 0 [42], (Def. 2) G2
n(t, τ ) > G2

n(t, 0),
where the quantities are defined by G2

n(t, τ ) = 〈a†
n(t )a†

n(t +
τ )an(t + τ )an(t )〉 [25], and (Def. 3) g2

n(t, τ ) > g2
n(t, 0) [41].

Comparison of possible definitions are discussed in
[26,43–45]. We have used antibunching according to
(Def. 3), similar to [46]. Illustrative cases are presented in
Fig. 1. The positivity of ∂τ g2(t, τ )|τ=0 implies (assuming that
photon absorption happened at time t) that the probability of
photon absorption is larger some small τ time later than the
simultaneous absorption of two photons.

Intermodal cross correlation for two modes:

g2
i j (t ) = 〈Ni(t )Nj (t )〉

〈Ni(t )〉〈Nj (t )〉 .

The field is nonclassical, if the inequality g2
ii(t )g2

j j (t ) <

[g2
i j (t )]2 stands [47]. There are additional inequalities [45],

but here we only consider the following one: specifically,
nonclassical entanglement between two (i and j) modes is
implied if the

〈NiNj〉 < |〈aia
†
j〉|2

relation is fulfilled [48].
Another quantity of interest is the squeezing of the har-

monic modes. Light is considered to be squeezed in a given
mode if there exists a quadrature-variance smaller than the
one associated with the vacuum state [49,50]. The minimal
variance (and its associated phase) can be calculated through
the smaller eigenvalue (and associated eigenvector) of the
noise-ellipse matrix. To quantify it, we use the following

notations: Xn ≡ a†
n+an

2 , Yn ≡ i a†
n−an

2 , X2n ≡ a†2
n +a2

n
2 , and Y2n ≡

i a†2
n −a2

n
2 . Then the noise ellipse is( 〈(�X )2〉 1

2 〈{�X,�Y }〉
1
2 〈{�X,�Y }〉 〈(�Y )2〉

)
, (2)

where {·, ·} denotes the anticommutator. The eigen-
values [37,51] expressed with the above notations
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are

λ± = 1
4 [〈{�a,�a†}〉 ± 2|〈(�a)2〉|]

= 1
4 [1+2(〈N〉−〈X 〉2−〈Y 〉2) ± 2|〈X2+iY2〉−〈X +iY 〉2|].

(3)

The quantum state of a given mode is squeezed if λ− < 1
4 .

III. MODEL

In our investigation, we assumed that the excitations are—
at least before interaction—characterized by coherent states.
The model of the material is a two-level system. The sim-
plicity of two-level systems helps to form qualitatively (and
sometimes quantitatively) correct predictions and offers in-
sight into the dynamics of the HHG. Furthermore, the methods
used in this article can be generalized to more complex high
harmonic sources as well.

Although harmonic generation is a nonlinear optical ef-
fect, only relevant in high-field settings, the intensities of the
harmonics are typically much lower than that of the excita-
tion. Therefore, especially when investigating the “one-atom
response,” the assumption of classicality for the scattered har-
monic radiation might not be necessarily valid.

Let us consider the following Hamiltonian terms:

Ha = h̄
ω0

2
σz,

Hh =
∑

n∈HH

h̄ωna†
nan, Hah =

∑
n∈HH

h̄
	n

2
σx(an + a†

n),

He =
∑
n∈E

h̄ωna†
nan, Hae =

∑
n∈E

h̄
	n

2
σx(an + a†

n),

where the first term corresponds to a two-level atom, with the
operators σi being the Pauli matrices, the second (fourth) term
describes the quantized scattered (excitation) electromagnetic
modes, and the third (fifth) term expresses the interaction
using dipole approximation. Summations over HH(E) refer to
summation over modes of the high harmonics (excitation).

The general Hamiltonian, with both quantized harmonics
and excitation, can be written as

Hqq = Ha + Hah + Hh + Hae + He. (4)

Usually, it is assumed that the interaction of the pulse
with matter changes the quantum statistics of the pulse only
slightly. In our experience the backaction on the excitation,
while noticeable, does not (at least for short interaction times)
have significant effect on the dynamics of the dipole operator.
For this reason, we will be utilizing the classical approxi-
mation of the excitation, leading to the following effective
Hamiltonian [21]:

Hqc(t ) = Ha + Hh + Hah + Hex(t ), (5)

where the electromagnetic field of the excitation can be de-
scribed as

Hex(t ) = −DE (t ) = −dσxE (t ) = h̄
	(t )

2
σx. (6)

We note that 	n = 2d
√

h̄ωn
ε0V , where V is the quantization vol-

ume. Let us denote the eigenstates of the atomic Hamiltonian
by |e〉 and |g〉, i.e., Ha|e〉 = h̄ω0

2 |e〉 and Ha|g〉 = − h̄ω0
2 |g〉.

In this model, in principle all the electromagnetic modes
would need to be accounted for, with proper initial conditions.

FIG. 2. Mandel parameter under pulsed excitation. Subfigure
(a) shows sinh−1(105Q) on the central panel, with the (resonant)
excitation on the left panel. Top panel of subfigure (b) shows time
evolution of Q of an even (18th) harmonic with the ω0/ω detuning
being 0.8 (blue) and 1.2 (red), while the bottom panel shows the
excitation.

For simplicity, in numerical calculations we assumed the ini-
tial condition to be |�(0)〉 = |g〉 ⊗ |0〉 ⊗ · · · ⊗ |0〉.

The dynamics of the high-order harmonics are induced
by the quantized dipole driven by strong classical and weak
quantized fields. For practical reasons, we need to utilize some
kind of approximation for the calculations.

While the semiclassical theory of radiation assumes that
the atomic quantities and field quantities are independent [52],
i.e., 〈σia j〉 = 〈σi〉〈a j〉, that assumption is clearly unacceptable
when one investigates correlation functions.

On the other hand, it is true that the effect of the low-
intensity high-harmonic radiation on a classically driven
dipole—and thus on each other—is weak. The cumulative
effects of the mode-mode interactions become palpable at the
timescale of the spontaneous emission lifetime. Since in ex-
perimental settings the pulse is in the order of femtoseconds,
we will neglect the interplay between different harmonics and
consider the high harmonic modes independently.

We will treat the cases of monochromatic and pulsed exci-
tations separately, with both assumed to be linearly polarized.
The pulsed excitations have an electric field:

E (t ) = A sin2(ωet ) sin(ω f t + φ) if t ∈ [0, π/ωe],

0 otherwise,

where A denotes the amplitude, φ is the carrier envelope
phase, and ωe 	 ω f is fulfilled.
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FIG. 3. Mandel parameter under monochromatic excitations. The parameters are chosen such that δω = 0 on subfigures (a) and (c) and
δω = 0.1ω on subfigures (b) and (d). Subfigures (a) and (b) show evolution of the rescaled Mandel parameter sinh−1(105Q). Subfigures (c) and
(d) show time evolution of the Mandel parameter of given odd-harmonic line (blue) and even harmonic line(s) (red and orange). The mode
corresponding to the orange line has negligible population.

In this article, we use the following notations. Photon num-
ber operator: Nn; atomic operators: U = σx, V = −σy, W =
σz; first- and second-order field operators: (a†

n + an), i(a†
n −

an), (a†2
n + a2

n), i(a†2
n − a2

n); first-order atom-field opera-
tors: U ±

n = (i)(1∓1)/2σx(an ± a†
n), V ±

n = −(i)(1∓1)/2σy(an ±
a†

n), W ±
n = (i)(1∓1)/2σz(an ± a†

n).

IV. ONE-MODE PROPERTIES

The harmonic spectrum is composed of odd-order harmon-
ics and hyper-Raman lines (Mollow sidebands) which, in this
paper, we call even-order harmonics in accordance with our
earlier work [21]. To clarify our nomenclature, it is worth
pointing out that these spectral lines correspond to Mollow
triplets around the odd harmonics [53]. Since our focus is
on strong-field excitations, the nonodd harmonic optical lines
will be near to the spectral position of the even multiples of
the base harmonics, so, for the sake of simplicity, we will call
these (dual) lines even harmonics. We introduce the notation
δω for the spectral distance between the optical lines and the
closest even-order multiple of the base harmonic. The actual
value of delta omega is determined by the parameters of the
excitation (amplitude, detuning). Further details can be found
in Appendix A.

It can be argued [54] that harmonics should be defined
based on the phase and carrier frequency (through χ k non-
linear susceptibility) without reference to the position in the
optical spectrum. From this argument, the radiation which
we call even harmonics should be more precisely called odd
harmonics disguised as even harmonics [55].

We note that, according to [56–58], results obtained for
molecular targets suggest that the intensity of Mollow side-
bands remain around the same order of magnitude as odd
harmonics (in the macroscopic spectrum). They are also radi-
ated at wider angles and therefore can be distinguished from
the main harmonics, and in principle can also be isolated. It
is important to note that recent experiments observed these
hyper-Raman lines for atomic targets as well [59].

Starting from this section, we will present numerical results
first, followed by the analytically gained ones, the mathemat-
ical background of which can be found in the Appendixes.

A. Mandel parameter

When we consider pulsed excitation, the photon statistic—
just like the spectrum—becomes hard to characterize. The
narrow peaks of the Mandel parameters at the early stage
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FIG. 4. Asymptotical averaged photon number expectation values (blue) and Mandel parameters (red) for resonant, red-detuned, and
blue-detuned excitations. The horizontal axis is shared among the subfigures. The excitation is pulsed, with 25 optical cycle duration of rise
and decay and 500 cycle duration of constant amplitude.

of the time evolution, visible in Fig. 2(b), are signatures of
the initial transient effects. Then rapid oscillations appear,
which have a considerably more regular pattern—that is, the
average over multiple cycles is constant—when the pulse is
over (t > τ ). Note that the detuning has a strong effect on the
photon statistical properties in the case of pulsed excitations.

To make the analysis transparent, we present results spe-
cific to monochromatic excitations. We note that, in Fig. 3,
the visible super-Poissonian modes (positioned between the
harmonics) are characterized by very low photon-number ex-
pectation values, and their super-Poissonian quality can be
considered a numerical artifact.

The Mandel parameters of odd harmonic modes usually
display both positive and negative values within an optical
cycle, being approximately zero on average. Even harmonic
lines have more complicated behavior as follows.

(i) If δω = 0, the single even harmonic line will first be-
come sub-Poissonian and then super-Poissonian [Fig. 3(c)].
An intuitive explanation is that this optical line develops sig-
nificant squeezing (see Sec. IV B), while the photon-number
mean value is only increasing moderately, rendering the
photon-number fluctuation large as the interaction time in-
creases.

(ii) If |δω| is large, usually only one of the even-harmonic
modes will be significantly populated, while the other
spectral line develops significantly sub-Poissonian statistics
[Fig. 3(d)]. Our calculation shows that Q ≈ −〈N〉, which is
equivalent to 〈N2〉 ≈ 〈N〉; in other words, the photon statistic

of such an even harmonic mode is essentially a superposition
of zero- and one-photon states.

These results imply that sub-Poissonian behavior is present
in the even-harmonic (Hyper-Raman) lines. In order to check
that our results remain valid for the case of higher photon
numbers, we considered a very long, nearly monochromatic
pulsed excitation.

Note that our earlier results in [21] were considerably less
detailed. There, we only considered a single mode, while the
excitation was pulsed, which did not offer as much trans-
parency as the analysis of monochromatic excitation does.

We give the asymptotic value of Mandel parameters as a
function of harmonic order, for a long “boxed” monochro-
matic excitation in Fig. 4. The excitation is 500 optical cycle
long, with additional 25 cycle duration of rise and decay. In
order to filter out the oscillations after the excitation, we took
the average value over many cycles.

With respect to these averaged asymptotical values, we
found our statements to be, up to a good approximation, valid.
It is worth noting, however, that in these calculations the odd
harmonics themselves could display super- or sub-Poissonian
behavior, but, for them, the |Q| 	 〈N〉 relation is fulfilled.

As we can observe, the presence of even-order har-
monic (hyper-Raman line) modes with significant population
(and nonclassicality) holds also for such pulsed excitations.
As long as the rise and decay of the amplitude is rela-
tively short, the sensitivity to the detuning is practically
eliminated.
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FIG. 5. Time evolution of field quantities. The upper and lower row of figures corresponds to two monochromatic excitations with slightly
different amplitudes (shown in the left panels). Time evolution of δλ− − 1

4 is in subfigures (b) and (e), while δλ+ − 1
4 can be observed in

subfigures (c) and (f). For the sake of clarity, we showed 〈N〉 in subfigures (a) and (d). Vertical axis is time measured in T ; horizontal axis is
harmonic order. Amplitudes of the excitation have been chosen so that δω = 0 for (a) to (c) and δω = 0.1ω for (d), (e), and (f), corresponding
to dimensionless amplitudes 21.2119 and 21.8354, respectively.

B. Time evolution of quadrature variance

The quadrature variance spectrum, that is, the value of the
minimal and maximal variances λ± in Eq. (3) as the function
of the parameter ωn, can display distinct properties depending
on the chosen parameters, but it can be summarized in the
following way.

The odd harmonics on the plateau display squeezing,
which, however, is usually weak. The even harmonics have
quantum properties that are very sensitive to the excitation
parameters. If the parameters are chosen such that δω is practi-
cally zero, particularly strong squeezing is present, among the
even harmonics, whereas if δω is large, strongly antisqueezed
states (λ− > 1

2 ) will be produced, mainly in the more popu-
lated modes of the even harmonic lines. For illustration, we
plotted relevant quantities in Fig. 5.

One may conclude that as far as producing squeezed states
are concerned (obviously within the limits of this model)
special attention is to be given to the parameter space for

which δω = 0 (for details, see the Appendixes). In such cases,
the even harmonic lines display unusual behavior compared to
other lines. The squeeze in these modes will grow faster than
the photon number expectation values, rendering the photon
statistics super-Poissonian beyond a given interaction time
[see Fig. 3(c)].

C. Analytical approximation of photon statistics
for extremal δω values

Limiting ourselves to the case of monochromatic excita-
tion, it is possible to give analytic insight into the resulting
photon statistics of individual harmonics. Specifically, we fo-
cus on the special set of parameters that grant extremal δω.

Perturbative calculation in the fourth order, applied to the
electromagnetic mode with ωn angular frequency, leads us to
the expression below. The be

2 and bg
2 coefficients correspond to

the (two-photon) components (|e〉|2〉 and |g〉|2〉) of the quan-
tum state. The F symbol denotes Fourier transform, while ζ1/2
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are terms given in the Appendixes:

be
2(t )(4) ≈ −	2

nt2

4
√

2

(
F

{
be

0(0)[1 + iζ1] − ibg
0(0)ζ2

}
(−ωn + δω) F[1 − iσ1](−ωn − δω)

− e−i2φ0 F
{
bg

0(0)[1 − iζ1] − ibe
0(0)ζ ∗

2

}
(−ωn − δω) F[iζ ∗

2 ](−ωn − δω)
)
, (7)

bg
2(t )(4) ≈ −	2

nt2

4
√

2

(
F

{
bg

0(0)[1 − iζ1] − ibe
0(0)ζ ∗

2

}
(−ωn − δω) F[1 + iζ1](−ωn + δω)

− ei2φ0 F
{
be

0(0)[1 + iζ1] − ibg
0(0)ζ2

}
(−ωn + δω) F[iζ2](−ωn + δω)

)
. (8)

The perturbative approach leads us to the following statements.

Odd harmonics. The quantum state of the field, up to
the order presented, can be written as |�〉(4)

HH ≈ |0〉 + α|1〉 +
α2/

√
2|2〉, where α ∈ C. By assuming that the coefficients

follow a similar pattern at higher order, the quantum state
of odd-order harmonics would be a coherent state with label
α = 	n/2F[ζ2](−ωn ± δω)t . Naturally, the perturbative cal-
culation is not strictly true. Predicted intensities are smaller
than the numerically calculated values, but the nearly Poisso-
nian (on the average) statistics is correctly reproduced.

Even harmonics. The quantum state of both hyper-Raman
lines can be written as |�〉(4)

HH ≈ |0〉 + β|1〉, where, if we
choose initial condition |�〉a(0) = |g〉, the β parameter is
nonzero only for one even harmonic line, characterized by
sub-Poissonian statistics. The Q = −〈N〉 relation observed
in numerical calculations follows straightforwardly, since
〈N2〉 = 〈N〉.

D. Photon-bunching properties

By the definition that we use, photon (anti)bunching is
implied by the sign of ∂τ g2(t, τ ). Expanding g2(t, t + τ ) −
g2(t, t ) up to the first order in τ , we get

g2(τ ) − g2(0) ≈ τ
	

2

〈a†U −a〉〈N〉 − 〈a†Na〉〈U −〉
〈N〉〈N〉〈N + τ 	

2 U −〉 , (9)

which can be simplified further. Since 〈N〉 > 0 and 〈a†Na〉 >

0 in the limit of small τ , the presence of photon bunching is
determined by the sign and relative magnitude of 〈U −〉 ∝ 〈Ṅ〉
and 〈a†U −a〉.

The only significant dynamics that we observed—both for
pulsed and monochromatic excitation—is the roughly 2π/ωn

periodic photon antibunching. For most modes, the average
value of δg is indistinguishable from zero, but for the sub-
Poissonian even harmonic that has been plotted on Fig. 6, the
average is slightly negative. Considering quantities averaged

FIG. 6. Time evolution of photon-antibunching measure
[Eq. (1)] of a given even harmonic mode (red), with the
monochromatic excitation parameters chosen so that |δω| is
large. For the purpose of illustration we also show the rescaled and
displaced mean photon value in blue.

over optical cycles, the fact that the sub-Poissonian statistic
coincides with photon bunching can be interpreted as a conse-
quence of the nonstationary state of the mode as the Mandel
parameter decreases in time.

V. INTERMODE CORRELATION BETWEEN HARMONICS

A. Numerical results

As a first step of characterizing the radiation field as a
whole, i.e., calculating the emerging cross correlations, the
two-mode approximation proves to be useful.

First, we treat the case of monochromatic excitation,
with parameters chosen so that |δω| = 0 and |δω| = 0.1ω

is fulfilled. Results can be seen on Figs. 7 and 8,
respectively.

Specifically for the |δω| = 0 parameter—which we can
associate with particularly significant squeezing being present
within the even harmonic modes—numerical results imply the
following.

(i) Odd harmonic photons tend to be correlated with other
odd harmonics, generally close to the classical limit (i.e.,
correlation of unit value).

(ii) Even and odd harmonic photons tend to be anticorre-
lated.

(iii) Even harmonic photons tend to be strongly correlated.
This implies the theoretical possibility that HHG can be the
source of wideband, correlated squeezed states.

For the |δω| = 0.1ω parameter—which is relatively close
to the maximal |δω| case, which we can associate with par-
ticularly nonclassical, nearly one-photon states being present
within the even harmonic modes—numerical results imply the
following.

(i) Odd harmonic photons tend to be correlated with other
odd harmonics, generally close to the classical limit.

(ii) Even and odd harmonic photons tend to be significantly
anticorrelated.

(iii) Even harmonic photons tend to be strongly anticorre-
lated. This implies the theoretical possibility that HHG can
be the source of one-photon states in wide spectral ranges. We
note that (at least in the cases investigated by us) the modes are
more populated (the quantum states are closer to one-photon
states) if the interaction time is longer and the coupling is
stronger.

For pulsed excitation, the cross correlations become more
complicated (see Fig. 9), but certain qualitative statements can
be made as follows.

(i) Odd harmonic photons tend to be correlated with other
odd harmonics, generally close to the classical limit.
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FIG. 7. Plot of cross-correlation functions for monochromatic excitation, with δω = 0. Subfigure (a) shows the time and frequency
dependence of the two-mode correlation on logarithmic scale, where one of the modes is the 19th harmonic. (b) Same as in subfigure (a),
but the fixed mode is the 14th harmonic. (c) Cross correlation between two odd (15th and 17th) harmonics. (d) Cross correlation between two
even (10th and 14th) harmonics. (e) Cross correlation between odd and even (17th and 20th) harmonics.

(ii) Even and odd harmonic photons tend to be significantly
anticorrelated.

(iii) Even harmonics photon’s correlation with other even
harmonic photons can be either stronger or weaker than the
classical limit.

B. Analytical approximation of intermodal correlations
for extremal δω values

An approximate physical picture of the quantum state of
the scattered radiation in the case of monochromatic exci-

tation can be constructed using analytic methods. As in the
previous section, we will only consider the special cases of
extremal δω.

Since our goal here is to gain a simple physical picture
we will assume that the state of each electromagnetic mode
spans a minimal space containing |0〉 and |1〉 photon number
states, that is, we focus only on the terms with dominant
contributions in intermodal cross correlations. For the sake of
transparency, we will consider two electromagnetic modes (of
arbitrary ω1 and ω2, respectively). The quantum state can be
written explicitly as

|�〉 = U e− i
h̄ ε+t

(
be

00(t )|ẽ〉|0〉|0〉 + be
01(t )|ẽ〉|0〉|1〉e−iω2t + be

10(t )|ẽ〉|1〉|0〉e−iω1t + be
11(t )|ẽ〉|1〉|1〉e−i(ω1+ω2 )t

)
+ U e− i

h̄ ε−t
(
bg

00(t )|g̃〉|0〉|0〉 + bg
01(t )|g̃〉|0〉|1〉e−iω2t + bg

10(t )|g̃〉|1〉|0〉e−iω1t + bg
11(t )|g̃〉|1〉|1〉e−i(ω1+ω2 )t

)
, (10)
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FIG. 8. Plot of cross-correlation functions for monochromatic excitation, with δω = 0.1ω. Subfigure (a) shows the time and frequency
dependence of the two-mode correlation on logarithmic scale, where one of the modes is the 19th harmonic. (b) Same as in subfigure (a),
but the fixed mode is that of the 14th harmonic’s more populated line. (c) Cross correlation between two odd (13th and 19th) harmonics.
(d) Cross correlation between two more populated even (8th and 14th) harmonic lines. (e) Cross correlation between odd and even (8th and
19th) harmonics.

where U ≡ ei
Aξ

2ω
sin(ωt+φ0 )σx e

i
2 (ωt+φ0 )σz (for details, see the Appendixes). We fix the initial condition so that, at time t = 0, bg

lm =
be

lm = 0 unless l = m = 0. The time evolution of the b coefficients is induced by

h̄W (t ) + h̄(σ+ei(ωt+φ0 ) + σ−e−i(ωt+φ0 ) )

[
	1

2
(a†

1 + a1) + 	2

2
(a†

2 + a2)

]
, (11)

where W (t ) is defined by (A12). Below we give the perturbative results, neglecting second-order contributions of h̄W (t ), and all
nonresonant terms.

In first and second order, we get

be
00(t )(1) = be

00(0)[1 + iζ1(t )] − ibg
00(0)ζ2(t ), (12)

bg
00(t )(1) = bg

00(0)[1 − iζ1(t )] − ibe
00(0)ζ ∗

2 (t ), (13)

be
10(t )(2) = −i

	1t

2
e−iφ0 F

{
bg

00(0)[1 − iζ1] − ibe
00(0)ζ ∗

2

}
(−ω1 − δω), (14)

bg
10(t )(2) = −i

	1t

2
eiφ0 F

{
be

00(0)[1 + iζ1] − ibg
00(0)ζ2

}
(−ω1 + δω), (15)
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FIG. 9. Plot of cross-correlation functions for pulsed excitation. The left side shows the time dependence of the excitation in units of
the optical cycles. (a) Logarithm of the cross correlation between the 17th mode and other optical modes. (b) Logarithm of the cross
correlation between the 18th harmonic mode and other optical modes. (c)–(e) Cross-correlation function (red) and sum of (104×)photon
number expectation values (blue) for 15th and 17th harmonics, 17th and 18th harmonics, and between two optical lines of the 18th harmonic,
respectively.

be
01(t )(2) = −i

	2t

2
e−iφ0 F

{
bg

00(0)[1 − iζ1] − ibe
00(0)ζ ∗

2

}
(−ω2 − δω), (16)

bg
01(t )(2) = −i

	2t

2
eiφ0 F

{
be

00(0)[1 + iζ1] − ibg
00(0)ζ2

}
(−ω2 + δω). (17)

The most important third-order effect is that induced by h̄W (t ), between the populations bg
10, be

10 and bg
01, be

01, resulting in

be
10(t )(3) ≈ −i

	1t

2

(
e−iφ0 F

{
bg

00(0)[1 − iζ1] − ibe
00(0)ζ ∗

2

}
(−ω1 − δω) [1 + iζ1]

− eiφ0 F
{
be

00(0)[1 + iζ1] − ibg
00(0)ζ2

}
(−ω1 + δω) [iζ2]

)
, (18)

bg
10(t )(3) ≈ −i

	1t

2

(
eiφ0 F

{
be

00(0)[1 + iζ1] − ibg
00(0)ζ2

}
(−ω1 + δω) [1 − iζ1]

− e−iφ0 F
{
bg

00(0)[1 − iζ1] − ibe
00(0)ζ ∗

2

}
(−ω1 − δω) [iζ ∗

2 ]
)
, (19)

be
01(t )(3) ≈ −i

	2t

2

(
e−iφ0 F

{
bg

00(0)[1 − iζ1] − ibe
00(0)ζ ∗

2

}
(−ω2 − δω) [1 + iζ1]

− eiφ0 F
{
be

00(0)[1 + iζ1] − ibg
00(0)ζ2

}
(−ω2 + δω) [iζ2]

)
, (20)

bg
01(t )(3) ≈ −i

	2t

2

(
eiφ0 F

{
be

00(0)[1 + iζ1] − ibg
00(0)ζ2

}
(−ω2 + δω) [1 − iζ1]

− e−iφ0 F
{
bg

00(0)[1 − iζ1] − ibe
00(0)ζ ∗

2

}
(−ω2 − δω) [iζ ∗

2 ]
)
. (21)
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Then, at the fourth order, we get

bg
11(t )(4) ≈ −	1	2t2

8

(
F

{
bg

00(0)[1 − iζ1] − ibe
00(0)ζ ∗

2

}
(−ω1 − δω) F[1 + iζ1](−ω2 + δω)

− ei2φ0F
{
be

00(0)[1 + iζ1] − ibg
00(0)ζ2

}
(−ω1 + δω) F[iζ2](−ω2 + δω)

+F
{
bg

00(0)[1 − iζ1] − ibe
00(0)ζ ∗

2

}
(−ω2 − δω) F[1 + iζ1](−ω1 + δω)

− ei2φ0 F
{
be

00(0)[1 + iζ1] − ibg
00(0)ζ2

}
(−ω2 + δω) F[iζ2](−ω1 + δω)

)
, (22)

be
11(t )(4) ≈ −	1	2t2

8

(
F

{
be

00(0)[1 + iζ1] − ibg
00(0)ζ2

}
(−ω1 + δω) F[1 − iζ1](−ω2 − δω)

− e−i2φ0F
{
bg

00(0)[1 − iζ1] − ibe
00(0)ζ ∗

2

}
(−ω1 − δω) F[iζ ∗

2 ](−ω2 − δω)

+F
{
be

00(0)[1 + iζ1] − ibg
00(0)ζ2

}
(−ω2 + δω) F[1 − iζ1](−ω1 − δω)

− e−i2φ0 F
{
bg

00(0)[1 − iζ1] − ibe
00(0)ζ ∗

2

}
(−ω2 − δω) F[iζ ∗

2 ](−ω1 − δω)
)
. (23)

Due to the coefficients constituting a quickly decreasing series, the intermode photon cross correlation between two (ω1, ω2)
high-order harmonic modes can be reasonably represented by

g12(t ) ≈
∣∣be

11

∣∣2 + ∣∣bg
11

∣∣2(∣∣be
10

∣∣2 + ∣∣bg
10

∣∣2)(∣∣be
01

∣∣2 + ∣∣bg
01

∣∣2) ,

where, during evaluation, it is worth separating the special cases below. For the sake of simplicity, we will consider only the
initial condition |g〉|0〉 . . . |0〉, which does not limit the validity of the conclusions.

Odd-odd harmonic modes. Let the frequencies be ω1 = (2k1 + 1)ω and ω2 = (2k2 + 1)ω, where k1, k2 ∈ N . Between two
odd harmonic lines, the cross correlation is

g12(t ) ≈
	2

1	
2
2t4

64 |2 e−i2φ0F[ζ ∗
2 ](−ω1 − δω)F[ζ ∗

2 ](−ω2 − δω)|2
	2

1t2

4 |e−iφ0F[ζ ∗
2 ](−ω1 − δω)

∣∣2 	2
2t2

4

∣∣e−iφ0F[ζ ∗
2 ](−ω2 − δω)|2

= 1, (24)

which is close to the numerically calculated value.
Even-even harmonic modes. Let us choose the frequencies as ω1 = 2k1ω + δω and ω2 = 2k2ω + δω. Between such even

harmonic lines, the cross correlation is

g12(t ) ≈
	2

1	
2
2t4

64 |F[ζ1](−ω1 + δω)F[ζ1](−ω2 − δω) + F[ζ1](−ω1 − δω)F[ζ1](−ω2 + δω)|2
	2

1t2

4 |eiφ0F[ζ1](−ω1 + δω)
∣∣2 	2

2t2

4

∣∣eiφ0F[ζ1](−ω2 + δω)|2
= 0. (25)

We can check that the perturbative calculation predicts a nonclassical entanglement between even harmonic modes, since
〈N1N2〉 = 0 < |bg

10bg
01|2 = |〈a1a†

2〉|.
Odd-even harmonic modes. To calculate the correlation between odd and even harmonics, let us choose the mode frequencies

as ω1 = (2k1 + 1)ω and ω2 = 2k2ω + δω,

g12(t ) ≈
	2

1	
2
2t4

64 |F[ζ ∗
2 ](−ω1 − δω)F[ζ1](−ω2 + δω) + ei2φ0F[ζ2](−ω1 + δω)F[ζ1](−ω2 + δω)|2

	2
1t2

4 |eiφ0F[ζ1](−ω2 + δω)
∣∣2 	2

2t2

4

∣∣e−iφ0F[ζ ∗
2 ](−ω1 − δω)|2

= 0, (26)

and, as above, there is nonclassical entanglement between even and odd harmonic modes.

C. Quantum state of the scattered field

We stress that the above approximate results can only be
considered valid for monochromatic excitation and for a given
set of parameters, for which |δω| is maximal. (That is, for the
special case that can be considered optimal for the creation
of one-photon states.) By collecting the analytically gained
results to reconstruct the quantum state of the scattered elec-
tromagnetic field (within the given approximations), we can
write

|�〉HH ∼ co|α3ω〉|α5ω〉 . . . |α(2k+1)ω〉
+ c1

e |β2ω+δω〉 + c2
e |β4ω+δω〉 · · · + ck

e |β2kω+δω〉.

Here, we only denoted those modes that are in a significantly
different state than the vacuum, and |α〉 is a coherent state,
while |β〉 denotes a superposition of |0〉 and |1〉.

We note that the quantum state of the odd harmonics and
even the anticorrelations between odd and even harmonic
photons can be generalized for all monochromatic excitations,
and even for pulsed excitations (at least to those that we
investigated). However, the quantum state of even harmonic
modes and the correlations between them strongly depends
on the excitation parameters.

VI. ON QUANTIZED EXCITATION

In this section, the quantized nature of the excitation is
incorporated into calculational schemes. Instead of containing
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the time-dependent semiclassical 	(t ) term, the excitation in
the Hamiltonian (4) is represented as a set of quantized modes,
with coherent states as the initial condition. For this system,
we apply the transformation

DExc ≡
∏

n∈Exc

Dn(αne−iωnt )‖�〉′ = D†
Exc|�〉,

H ′
qq = D†

ExcHqqDExc + ih̄DExc∂t D
†
Exc. (27)

The value of αn in the above transformation is determined by
the spectral composition of the excitation. After simplifica-
tions, the Hamiltonian can be reduced to

H ′
qq = h̄

ω0

2
σz +

∑
n∈HH

h̄

(
ωna†

nan + 	n

2
σx(a†

n + an)

)

+
∑
n∈E

h̄

(
ωnA†

nAn + 	n

2
σx(A†

n + An)

)
− 	(t )

2
σx.

(28)

Naturally, the driving term 	(t ) that dominates the time evo-
lution of the harmonics is unaffected by the quantum state
of the excitation. At the same time, this term drives the base
harmonic mode(s)—that is, the modes corresponding to the
excitation—as well, and (considering that the interaction is
resonant) the backaction on the excitation can be significant.

A. Backaction of HHG on quantized excitation

During the interaction, the photon statistical properties of
the excitation modes are dynamically changing. While this
(in our experience) has minor effect on the high harmonic
spectrum, the modifications taking place in the quantum state
of the excitation can be nevertheless experimentally relevant.

We calculated backaction on a single monochromatic exci-
tation. Our results show that the modification is comparatively
small if the parameters are chosen in such a way that |δω| is
extremal. For this perceived behavior, we give an approximate
analytic explanation by neglecting the high harmonic modes.

Without the harmonics, the Hamiltonian reduces to

H ′
qq = h̄

ω0

2
σz + h̄

⎛
⎜⎝ωa†a + 	

2
σx(a† + a) + 	

2
σx (α∗eiωt + α e−iωt )︸ ︷︷ ︸

A
2	

(eiωt+φ0 +e−iωt−φ0 )

⎞
⎟⎠. (29)

By writing the quantum state as

|�〉 = ei Aξ

2ω
sin(ωt+φ0 )σx e

i
2 (ωt+φ0 )σz e− i

h̄ tε+
∞∑
j=0

be
j |ẽ〉| j, α e−iωt 〉e−i jωnt

+ ei Aξ

2ω
sin(ωt+φ0 )σx e

i
2 (ωt+φ0 )σz e− i

h̄ tε−
∞∑
j=0

bg
j |g̃〉| j, α e−iωt 〉e−i jωnt , (30)

the dynamical equations turn out to be

iḃe
j (t ) = 〈ẽ|W (t )|ẽ〉be

j (t ) + 〈ẽ|W (t )|g̃〉ei
ε+−ε−

h̄ t bg
j (t ) + 	

2
ei(δωt−φ0 )

∑
k

〈 j|a + a†|k〉e−iω(k− j)t bg
k (t )

− 	 cos θ ei ε+−ε−
h̄ t cos(ωt + φ0)

∑
k

〈 j|a + a†|k〉e−iω(k− j)t bg
k (t ) + 	

2
sin(2θ ) cos(ωt + φ0)

×
∑

k

〈 j|a + a†|k〉e−iω(k− j)t be
k (t ),

iḃg
j (t ) = 〈g̃|W (t )|g̃〉bg

j (t ) + 〈g̃|W (t )|ẽ〉e−i
ε+−ε−

h̄ t be
j (t ) + 	

2
e−i(δωt+φ0 )

∑
k

〈 j|a + a†|k〉e−iω(k− j)t be
k (t )

− 	 cos θ ei ε−−ε+
h̄ t cos(ωt + φ0)

∑
k

〈 j|a + a†|k〉e−iω(k− j)t be
k (t ) − 	

2
sin(2θ ) cos(ωt + φ0)

×
∑

k

〈 j|a + a†|k〉e−iω(k− j)t bg
k (t ).

The notations θ and ε± are defined in the Appendixes. It is
easy to check that, unlike in the case of harmonic modes,
the dynamical equations regarding the excitation mode have
a resonant term [proportional to sin(2θ ) above] already at
first-order perturbation.

To quantify the backaction—that is, the difference from
the initial coherent quantum state that develops over time—let
us use the weighted sum BA ≡ ∑

j j(|be
j |2 + |bg

j |2). Since the
(displaced) vacuum state corresponds to the initially coherent

state, BA characterizes measures the components orthogonal
to the coherent state.

Its evaluation, together with the above considerations,
leads us to the following conclusion: the backaction can
be maximalized if cos θ is maximal, that is, when δω = 0,
whereas for parameters which fulfill the cos θ = 0 condition,
the backaction on the excitation is minimal. This can be ob-
served in Fig. 10, where the dominant feature (besides the
continuous growth) is the T -periodic oscillation. We note that
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FIG. 10. Time evolution of the measure of backaction BA. Param-
eters are chosen such that δω is extremal (blue) and δω = 0 (red),
with 	/

√
ω = 0.005.

this oscillation largely corresponds to the periodical dynamics
on phase space as described in [60].

B. Quantized excitation, quantized harmonics

Incorporating the fully quantum nature of the dynamics is
numerically challenging without some kind of approximation.
During our calculations, we employed the two-mode approxi-
mation, that is, considered only a single excitation and a single
scattered mode.

A meaningful question, only treatable within the fully
quantized formalism, is whether there are nontrivial correla-
tions arising between absorption from the excitation mode and
emission in the scattered modes.

Let us introduce an operator measuring the number of
absorbed photons in the excitation mode:

δN ≡ |α2| − N. (31)

We define the correlation function between δN and Nn as

gδi ≡ 〈δNNi〉
〈δN〉〈Ni〉 , (32)

which, unlike previously introduced correlation functions, can
be of negative value, since δN can be negative. The parame-
ters have been chosen so that the monochromatic excitation
contains ≈108 photons.

In Fig. 11(a) we can observe that photon absorption from
the highly populated excitation mode happens in discrete steps
in each half cycle. There is a nearly unit correlation between
the absorption from excitation mode and emission in odd-
harmonic modes [see Figs. 11(b) and 11(d)]; however, the
even harmonic photon emissions are uncorrelated to the pho-
ton emission from the excitation [see Figs. 11(c) and 11(e)].

VII. CONCLUSIONS

We analyzed photon statistics of high-order harmonics spe-
cific to a two-level radiating system. The harmonics induced
by monochromatic excitations follow a relatively simple be-
havior: odd harmonics oscillate between super-Poissonian and
sub-Poissonian statistics, usually fulfilling the Q 	 〈N〉 rela-
tion. Even harmonics (hyper-Raman lines) can be, depending
on the parameters, either strongly squeezed or effectively in
the superposition of zero- and one-photon states.

Our results point to the theoretical possibility that, with
specific excitations, HHG can be the source of one-photon ra-
diation in many modes, encompassing a broad spectral range
(notably with detuning, the spectra can become quasicontin-
uum) or a source of broadband squeezed states.

FIG. 11. Subfigure (a) shows time evolution of δN . Subfigures
(b) and c) show the correlation between the absorption of a photon
in the excitation mode and the emission of a photon in an odd
and even harmonic mode, respectively, with the parameter chosen
so that |δω| = 0. Subfigures (d) and (e) are analogous, but with
|δω| = 0.1ω.

Intermodal correlations within the radiation field have also
been investigated. Generally speaking, the odd-odd harmonic
photons are classically cross correlated, while the odd- and
even-harmonic photons are anticorrelated in all cases in-
vestigated by us. The even-even harmonic photons can be,
depending on the parameters, either strongly correlated or
anticorrelated. Our results suggest that the anticorrelations
correspond to nonclassical entanglement.

In other words, we have found that nonclassical properties,
potentially of experimental interest, can be associated primar-
ily with the modes of even-order harmonics. HHG as a source
of nonclassical light can be realized in the same experimental
settings that allow observation of these optical lines; see, e.g.,
Ref. [59].
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GOMBKÖTŐ, FÖLDI, AND VARRÓ PHYSICAL REVIEW A 104, 033703 (2021)

APPENDIX A: ANALYTICAL RESULT FOR CLASSICALLY
DRIVEN TWO-LEVEL ATOM

The spectrum of scattered radiation from a two-level
system under monochromatic excitation is structured into
qualitatively different odd and even harmonics. While the two-
level system has been investigated in the literature thoroughly
using a semiclassical approach [61,62]—usually involving
approximations that limit the validity of analytic results or
given in a complicated form that offers little insight [63]
—we present here a transparent analytic characterization of
the dynamics with respect to HHG..

Consider the semiclassical Hcc Hamiltonian

Hcc(t ) = h̄ω0

2
σz + h̄A

2
σx cos(ωt + φ0) (A1)

and use the unitary transformation

|� ′(t )〉 = e�(t )|�(t )〉, (A2)

H ′
cc(t ) = e�(t )Hcce−�(t ) + ih̄ e−�(t ) ∂

∂t
e�(t ), (A3)

with the choice

�(t ) ≡ i
A

2ω
ξ sin(ωt + φ0)σx. (A4)

Here ξ ∈ R is to be determined in the following. The trans-
formed Hamiltonian can be written as

H ′
cc(t ) = h̄ω0

2

{
cos

[
A

ω
ξ sin(ωt + φ0)

]
σz

+ sin

[
A

ω
ξ sin(ωt + φ0)

]
σy

}

+ h̄A

2
(1 − ξ ) cos(ωt + φ0)σx. (A5)

Using the Anger-Jacobi identity, we can divide the Hamil-
tonian [64] as H ′

cc(t ) = H ′
0 + H ′

1(t ) + H ′
2(t ), where the terms

are the following:

H ′
0 = h̄ω0

2
J0

(
A

ω
ξ

)
σz, (A6)

H ′
1(t ) = h̄A

2
(1 − ξ ) cos(ωt + φ0)σx

+ h̄ω0J1

(
A

ω
ξ

)
sin(ωt + φ0)σy, (A7)

H ′
2(t ) = h̄ω0

∞∑
n=1

J2n

(
A

ω
ξ

)
cos[2n(ωt + φ0)]σz

+ h̄ω0

∞∑
n=1

J2n+1

(
A

ω
ξ

)
sin[(2n + 1)(ωt + φ0)]σy.

(A8)

With the neglection of H ′
2(t ), a solution can be given [65].

However, as H ′
2(t ) contains the terms associated with har-

monic generations, we will need to incorporate it as the
driving term in the interaction picture.

At this point, let us fix ξ such that

J1

(
A

ω
ξ

)
ω0 = A

2
(1 − ξ ) ≡ B

4
. (A9)

With this choice we can write

H ′
0 + H ′

1(t )

= h̄ω0

2
J0

(
A

ω
ξ

)
σz + h̄B

4
(e−i(ωt+φ0 )σ+ + ei(ωt+φ0 )σ−).

The solutions can be found straightforwardly by apply-

ing the rotation transformation e
i
2 (ωt+φ0 )σz and employing the

e
i
2 (ωt+φ0 )σzσ±e− i

2 (ωt+φ0 )σz = σ±e±i(ωt+φ0 ) relation [66]. The
transformed Hamiltonian and its eigenvalues turn out to be

H̃ ′
0 + H̃ ′

1 = h̄

2

[
ω0J0

(
A

ω
ξ

)
− ω

]
σz + h̄B

4
σx,

ε± = ± h̄

2

√[
J0

(
A

ω
ξ

)
ω0 − ω

]2

+ B2/4. (A10)

The eigenvectors are

|ẽ〉 = sin θ |g〉 + cos θ |e〉, ‖g̃〉 = sin θ |e〉 − cos θ |g〉,

where the θ parameter is given as

θ = arctan

⎡
⎣

√[
J0

(
A
ω
ξ
)
ω0 − ω

]2 + B2
/

4 − [
J0

(
A
ω
ξ
)
ω0 − ω

]
B/2

⎤
⎦. (A11)

The time evolution can then be understood on the basis of eigenstates |ẽ〉 and |g̃〉 in the interaction picture. The driving is done

by h̄W (t ) ≡ e
i
2 (ωt+φ0 )σz H ′

2(t )e− i
2 (ωt+φ0 )σz , where

W (t ) = ω0

∞∑
n=1

J2n

(
A

ω
ξ

)
cos[2n(ωt + φ0)]σz + ω0

∞∑
n=1

J2n+1

(
A

ω
ξ

)
sin[(2n + 1)(ωt + φ0)][sin(ωt + φ0)σx + cos(ωt + φ0)σy].

(A12)
The quantum state is written as

|�〉 = be(t ) ei Aξ

2ω
sin(ωt+φ0 )σx e

i
2 (ωt+φ0 )σz |ẽ〉e− i

h̄ ε+t + bg(t ) ei Aξ

2ω
sin(ωt+φ0 )σx e

i
2 (ωt+φ0 )σz |g̃〉e− i

h̄ ε−t , (A13)

with the time dependence of coefficients be and bg given by

iḃe(t ) = 〈ẽ|W (t )|ẽ〉be(t ) + 〈ẽ|W (t )|g̃〉e−i ε−−ε+
h̄ t bg(t ), iḃg(t ) = 〈g̃|W (t )|g̃〉bg(t ) + 〈g̃|W (t )|ẽ〉e−i ε+−ε−

h̄ t be(t ).
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The physical picture emerging is the following: the eigenstates of H̃ ′
0 + H̃ ′

1(t ) define two energy levels, which together with the
unitary transform define a set of infinite virtual energy levels (essentially equivalent to the Floquet quasienergies). At the same
time, h̄W (t ) corresponds to higher-order optical processes and induces transitions between the eigenstates.

Using the following formulae:

〈ẽ|σz|ẽ〉 = cos2 θ − sin2 θ, 〈g̃|σz|g̃〉 = sin2 θ − cos2 θ, 〈g̃|σz|ẽ〉 = 〈ẽ|σz|g̃〉 = 2 sin θ cos θ,

〈ẽ|σx|ẽ〉 = 2 sin θ cos θ, 〈ẽ|σy|ẽ〉 = 0, 〈g̃|σx|g̃〉 = −2 sin θ cos θ, 〈g̃|σy|g̃〉 = 0,

〈g̃|σx|ẽ〉 = 〈ẽ|σx|g̃〉 = sin2 θ − cos2 θ, 〈g̃|σy|ẽ〉 = −i = −〈ẽ|σy|g̃〉,
the dynamical equations can be expanded, using the nonlinear optical parameter η ≡ Aξ

ω
as below:

iḃe(t ) = be(t )ω0

∞∑
n=1

[
J2n(η) cos(2θ ) cos[2n(ωt + φ0)] + J2n+1(η)

2
sin(2θ ){cos[2n(ωt + φ0)] − cos[(2n + 2)(ωt + φ0)]}

]

+ bg(t )ω0e−i ε−−ε+
h̄ t

∞∑
n=1

[
J2n(η) sin(2θ ) cos[2n(ωt + φ0)] − J2n+1(η)

2
cos(2θ ){cos[2n(ωt + φ0)]

− cos[(2n + 2)(ωt + φ0)]} + i
J2n+1(η)

2
{sin[(2n + 2)(ωt + φ0)] + sin[2n(ωt + φ0)]}

]
, (A14)

iḃg(t ) = −bg(t )ω0

∞∑
n=1

[
J2n(η) cos(2θ ) cos[2n(ωt + φ0)] + J2n+1(η)

2
sin(2θ ){cos[2n(ωt + φ0)] − cos[(2n + 2)(ωt + φ0)]}

]

+ be(t )ω0e−i ε+−ε−
h̄ t

∞∑
n=1

[
J2n(η) sin(2θ ) cos[2n(ωt + φ0)] − J2n+1(η)

2
cos(2θ ){cos[2n(ωt + φ0)]

− cos[(2n + 2)(ωt + φ0)]} − i
J2n+1(η)

2
{sin[(2n + 2)(ωt + φ0)] + sin[2n(ωt + φ0)]}

]
. (A15)

In semiclassical spectral calculations, the quantity of inter-
est is 〈D(t )〉 ≡ 〈�|dσx|�〉, the expectation value of the dipole
moment:

〈D〉/d = [|b+(t )|2 − |b−(t )|2] cos(ωt + φ0)2 sin θ cos θ

+ 2 Re[b+∗
(t )b−(t )ei ε+−ε−

h̄ t ]

× cos(ωt + φ0)(sin2 θ − cos2 θ )

+ 2 Im[b+∗
(t )b−(t )ei ε+−ε−

h̄ t ] sin(ωt + φ0). (A16)

Evaluation shows that the terms with not odd-harmonic fre-
quencies have (plus-minus) δω ≡ ε+−ε−

h̄ − ω detuning from
even-order multiples of the basic harmonic.

If we fix the gap ω0 and detuning ω/ω0 ratio, both cos θ and
δω are functions of only the amplitude and are asymptotically
(albeit with slow convergence) zero; see Fig. 12. Let us note
that zero points of cos θ are corresponding to local extremum
of δω/ω; that is, at these parameters the dual lines of even har-
monics have maximal separation. The cos θ function has zero

FIG. 12. Dependence of δω/ω (red) and cos θ (blue) on the am-
plitude of resonant excitation.

points in all intensity range, more or less being distributed
evenly.

APPENDIX B: FIRST-ORDER PERTURBATIVE
EXPANSION

In the dynamical equations (A14) and (A15) there is
no resonant contribution, that is, the b(e/g) coefficients fol-
low high-frequency, small-amplitude oscillations around their
initial values, which implies that perturbation methods are ap-
plicable. Comparison between spectra calculated numerically
and through first-order perturbation—within realistic excita-
tion intensity value—can be seen on Fig. 13. We note that the
dominant spectral lines (odd or even harmonics, depending
on the initial conditions) are reproduced by the perturbative
treatment typically within ∼10% relative error.

For the sake of simplicity, we focus on the special case
of cos θ = 0, which, as mentioned above, corresponds to the
maximal spectral gap between the dual lines of even harmon-
ics. Then Eqs. (A14) and (A15) become

iḃe(t ) = −be(t )ω0

∞∑
n=1

[J2n(η) cos[2n(ωt + φ0)]]

+ bg(t )ω0e−i ε−−ε+
h̄ t

∞∑
n=1

[
J2n+1(η)

2
{exp[2ni(ωt + φ0)]

− exp[−(2n + 2)i(ωt + φ0)]}
]
,
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FIG. 13. Comparison of spectrum induced by resonant ex-
citation, calculated numerically (blue) and with the first-order
perturbation method (dashed). Subfigure (a) shows the spectra cal-
culated with initial condition be = bg = 1/

√
2 and (b) with initial

condition bg = 1.

iḃg(t ) = bg(t )ω0

∞∑
n=1

[J2n(η) cos[2n(ωt + φ0)]]

+ be(t )ω0e−i ε+−ε−
h̄ t

∞∑
n=1

[
J2n+1(η)

2
{exp[−2ni(ωt + φ0)]

− exp[(2n + 2)i(ωt + φ0)]}
]
.

This special case is not unrealistic, considering that a
careful selection of the parameters allows this condi-
tion to be fulfilled in all, not too specific intensity
intervals.

Here we give the analytic expression of the first-order
perturbation calculation results which have been employed
in the article. The first-order perturbative solution can be

written as

be(t ) ≈ be(0) + ibe(0)ζ1(t ) − ibg(0)ζ2(t ),

bg(t ) ≈ bg(0) − ibg(0)ζ1(t ) − ibe(0)ζ ∗
2 (t ), (B1)

where we define the ζ1(t ) and ζ2(t ) expressions as

ζ1(t ) = ω0

∞∑
n=1

[
J2n(η)

2nω
{sin[2n(ωt + φ0)] − sin[2nφ0]}

]
,

ζ2(t ) = iω0

∞∑
n=1

[
J2n+1(η)

2

(
[1 − ei(2nω+ ε+−ε−

h̄ )t ]

2nω + ε+−ε−
h̄

ei2nφ0

+ [1 − ei(−(2n+2)ω+ ε+−ε−
h̄ )t ]

(2n + 2)ω − ε+−ε−
h̄

e−i(2n+2)φ0

)]
.

The dipole-operator expectation value can be expressed

through be∗
(t )bg(t )ei

ε+−ε−
h̄ t , which, after simplification, can be

rewritten as (B2).
The evaluation of the dipole moment can be done in a

lengthy but straightforward manner. The dipole oscillation
contains frequencies (2n + 1)ω and (2n + 1)ω ± ε+−ε−

h̄ =
(2n + 2)ω ± δω:

be∗
(t )bg(t )ei ε+−ε−

h̄ t

= be∗
(0)bg(0)[1 − iζ1(t )]2ei ε+−ε−

h̄ t

+ bg∗
(0)be(0)[ζ ∗

2 (t )]2ei ε+−ε−
h̄ t

+ [|bg(0)|2 − |be(0)|2][iζ ∗
2 (t ) + ζ1(t )ζ ∗

2 (t )]ei ε+−ε−
h̄ t .

(B2)

If either bg(0) or be(0) is zero, we can expect the lack
of even-order harmonics in semiclassical solutions. We note
in passing that the two spectral lines within even harmonics
carry different multiples of the excitation phase, which can
have consequences when macroscopic wave propagation is
considered.
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