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Superradiance and anomalous hyperfine splitting in inhomogeneous ensembles
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Collective effects in the interaction of light with ensembles of identical scatterers play an important role in
many fields of physics. However, often the term “identical” is not accurate due to the presence of hyperfine fields
which induce inhomogeneous transition shifts and splittings. Here we develop a formalism based on the Green’s-
function method to model the linear response of such inhomogeneous ensembles in one-dimensional waveguides.
We obtain a compact formula for the collective spectrum, which exhibits deviations from the uniform frequency
shift and broadening expected of two-level systems. In particular, if the coherent contribution to the collective
coupling is large, the effect of inhomogeneous broadening can be suppressed, with the linewidth approaching that
of the superradiant value. We apply this formalism to describe collective effects in x-ray scattering off thin-film
waveguides for inhomogeneous hyperfine parameters.
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I. INTRODUCTION

When an ensemble of identical atoms interacts with light
of wavelength much larger than the size of the ensemble,
the atoms absorb and emit radiation collectively, resulting in
the phenomenon of superradiance. This was first investigated
theoretically by Dicke for the case of two-level systems in [1].
Provided the average interparticle distance is much smaller
than the average radiated wavelength, the permutational in-
variance of the collective light-matter interaction results in
the N atoms of the ensemble absorbing and emitting radiation
collectively, with a factor of N enhancement of the decay rate
compared to the single-atom value [1–4]. Following the pio-
neering experiment by Skribanowitz et al. [5], superradiance
has been demonstrated and studied in many systems, such
as Bose-Einstein condensates [6,7], quantum dots [8], color
centers [9], cold atoms [10,11], Mössbauer nuclei [12–14],
and trapped atoms coupled to a cavity [15,16], to name a few.
Thus, the concept of superradiance has implications in many
fields, such as quantum information [17,18], cavity quan-
tum electrodynamics [15,16], astrophysics [19], and advanced
light sources [20].

The mechanism behind superradiance and collective emis-
sion also applies to multilevel systems, and extensions to
the Dicke model for multilevel atoms have been explored
[21–27]. Like the Dicke model, these assume completely
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uniform illumination of the ensemble of atoms and that the
latter are all completely identical. In parallel, since the 1970s
theoretical works have been addressing the effect of inhomo-
geneous broadening on superradiance [28–38] and radiation
trapping [39]. This is pertinent to many physical systems
where the energy levels and decay rates are different due
to local environment effects such as Zeeman and hyperfine
splittings induced by magnetic or electric fields, Doppler
broadening due to thermal interactions, or simply fabrication
in the case of quantum dots. Inhomogeneous broadening ef-
fects have been investigated also in the related process of
superfluorescence [40–42]. It is the purpose of this work to
present a versatile formalism which allows us to theoretically
model the superradiant response of multilevel systems in one-
dimensional waveguides, where at the same time the emitters
are inhomogeneous.

One-dimensional waveguides play a special role in su-
perradiance because they facilitate the otherwise challenging
uniform illumination of the scatterer ensemble. Superradi-
ance relies on permutation invariance, i.e., the invariance of
the system under the exchange of any two scatterers in the
ensemble, which in turn relies on uniform illumination of
the ensemble. In the single-photon regime, incident pulses
are reemitted in a highly directional manner [10,17], pre-
serving the incident wave vector. As such, it has been found
that arranging the atoms in quasi-one-dimensional arrange-
ments such as pencil geometries can enhance superradiance
[43]. Also, uniform illumination can be easily achieved if
the atoms are placed in a one-dimensional waveguidelike
structure [44–46] or from x-ray grazing incidence reflection
from thin films [47–51]. The atomic excitations propagate
through the waveguide as a polariton and the waveguide
structure restricts the propagation of the scattered light to one-
dimensional plane-wave propagation. This results in uniform
illumination, with translational symmetry playing the role
of permutational symmetry, achieving superradiance without
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requiring the wavelength to be much larger than the atomic
spacing.

In this work we investigate the superradiant response of
multilevel and inhomogeneous scatterers, e.g., atoms or nu-
clei, in one-dimensional waveguides. If the length scale of
the environmental variation is much larger than the emitter
spacing, the ensemble can be partitioned into approximately
uniform subensembles. Thus, the collective interaction can
still play a significant role; however, the interplay between the
spectral inhomogeneity and the collective scattering results in
nontrivial structure of the resulting spectra. To describe the
dipole-dipole interaction we use a Green’s-function method,
developed by Welsch and co-workers [52,53], which has been
successfully applied to describe superradiance in diverse sys-
tems such as atomic clouds [10,11,54,55], one-dimensional
waveguides [44,45], and thin-film x-ray reflection [51,56]. A
related multiple-scattering formulation by Wubs et al. [57]
also relates the scattered response of resonant atoms embed-
ded in a linear dielectric medium to a Lippmann-Schwinger
equation involving the Green’s function of the medium.

Using the Green’s-function approach, a compact formula is
found for the weak-excitation regime susceptibility, in terms
of the coherent average of the emitters responses, with the
collective interaction describable via a single complex con-
stant. This allows the effects of inhomogeneities and of the
collective interaction to be analyzed separately, allowing for
a better understanding of their respective contributions to the
collective spectrum.

We apply this formalism to the concrete example of x-ray
quantum optics systems that comprise ensembles of Möss-
bauer nuclei in thin-film x-ray cavities. The latter are a
particularly suitable platform for exploring superradiance and
collective interaction between emitters. In these systems, a
thin layer of resonant nuclei is placed in the center of a thin-
film cavity, forming a waveguidelike structure. Evanescent
guided modes of the cavity are driven at grazing incidence,
coupling to Mössbauer transitions in the nuclei. This forms
an exceptionally clean system, due to the incredibly narrow
linewidth of Mössbauer transitions and the large energy scale
of the x rays resulting in effectively zero thermal noise [12].
Using this setup, superradiance of single x-ray photons was
experimentally demonstrated by Röhlsberger et al. [13], ob-
serving both a collective Lamb shift and up to a factor of 61
enhancement of the decay rate. Further work by Chumakov
et al. at the SACLA x-ray free-electron laser has verified the
scaling behavior for multiphoton excitations [14].

However, at the same time the resonant nuclear spectrum
often features hyperfine interactions due to the electronic
and magnetic environment. As creating large single-crystal
samples is challenging, the resonant layer will in general
be polycrystalline, and therefore the nuclear hyperfine en-
vironment is typically inhomogeneous. Our results consider
examples of the combination of collective and inhomo-
geneous effects and show that in general the addition of
collective interactions is more complex than a simple broad-
ening and Lamb shift. In particular, the coherent part of
the collective coupling distorts the line shape and can even
be used to reduce the broadening from the sample inho-
mogeneity, thus providing user control over the samples
linewidth. These findings are therefore very useful both for

FIG. 1. Schematic plot (not to scale) of the waveguide scattering
geometry. The scatterers (spheres) are lined up along the waveguide
direction k̂ = x̂. The restriction of propagation to this one dimension
requires the polarization of the guided modes to span the (ŷ, ẑ) plane.
As an example, we may consider a superimposed magnetic hyperfine
field distribution with a Gaussian profile (blue shaded curve in the
background), creating an inhomogeneity.

understanding experimental results and for designing schemes
to control the collective radiation spectrum and remove un-
wanted features. Due to the versatility of the formalism, these
results will be useful for a larger community investigating
superradiant effects in various types of one-dimensional en-
sembles.

This work is structured as follows. Section II introduces
the general model and derives the equation of motion and the
collective Lamb shift and cross couplings. The application of
the model to x-ray thin-film cavities with embedded layers of
Mössbauer nuclei is presented in Sec. III. We put the present
formalism in the context of already existing theoretical models
for x-ray grazing incidence on thin-film cavities in Sec. III A.
Our examples for inhomogeneous nuclear hyperfine splitting
are discussed in Secs. III B and III C. Conclusions and a brief
outlook are summarized in Sec. IV.

II. MODEL

A. Hamiltonian and Lindblad operators

We begin with an ensemble of atoms in a one-dimensional
waveguide, schematically illustrated in Fig. 1. The spectral
parameters of the atoms are inhomogeneous and the inho-
mogeneity is assumed to vary slowly over the interatomic
length scale such that the atoms can be divided into equally
sized subensembles that are approximately translationally and
permutationally symmetric. The size of each subensemble,
and hence the number required, is determined by the gradient
of the inhomogeneity over the spatial extent of the atoms.
The variation of the inhomogeneity across each subensem-
ble should be taken to be small enough that it cannot be
resolved within the linewidth of the transitions present and can
therefore be treated as a negligible perturbation. The atoms
are driven by a probe field Ep(t )ei(k0x−ω0t ) of frequency ω0,
wave vector k0, and uniform illumination, with a possible
time-dependent envelope.

Following Refs. [45,51], we work in the rotating frame of
the driving field. The internal Hamiltonian for the atoms is
given by

HA = −
∑

n

∑
i∈Dn

∑
μ∈Tn

h̄�μ

∣∣e(i)
μ

〉〈
e(i)
μ

∣∣, (1)
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where Dn is the set of atoms in subensemble n, Tn is the
set of excited states of subensemble n, and �μ � ω0 is the
detuning of excited state μ. Furthermore, h̄ is the reduced
Planck constant.

Incoherent decay is described by the Lindblad operator

LA[ρ] = −
∑

n

∑
i∈Dn

∑
μ∈Tn

h̄γμL
[
ρ,

∣∣e(i)
μ

〉〈
g(i)

∣∣, |g(i)〉〈e(i)
μ

∣∣], (2)

where γμ is the natural decay rate of excited state μ and

L[ρ, A, B] = ABρ + ρAB − 2BρA. (3)

At low saturations, the probe field only drives dipole transi-
tions directly accessible from the ground state g. It will be
convenient to express the transition dipole vectors in the form
dμ℘, with dμ a dimensionless vector and ℘ the mean dipole
magnitude. The driving Hamiltonian is then given by

Hp = ℘
∑

n

∑
i∈Dn

∑
μ∈Tn

dμ · Ep(t )eik0xi
∣∣e(i)

μ

〉〈g(i)| + H.c. (4)

The atoms couple collectively via a resonant dipole-dipole
interaction, described by the Green’s-function formalism
[45,51,52]. In this formalism, the atoms interact via the ex-
change of resonant photons, which are assumed to be short
lived compared with the timescale of the atomic coherences
and as such can be adiabatically eliminated. A sufficient
condition for this is if the Green’s function for the photonic
propagation is much broader in frequency space than the
atomic transition width γ [45], i.e.,

|ω − ω0| = O(γ ) → ←→
G (r, r′, ω) ≈ ←→

G (r, r′, ω0), (5)

where
←→
G (r, r′, ω0) is the dyadic Green’s function. This gives

rise to an effective resonant dipole-dipole interaction, me-
diated by the short-lived scattered photons, with the matrix
elements given via the classical dyadic Green’s function for
the waveguide,

Hdd = −μ0ω
2
0 ℘2

∑
n,m

∑
i ∈ Dn,

j ∈ Dm

∑
μ ∈ Tn,

ν ∈ Tm

dμ · Re[
←→
G (xi, x j, ω0)] · d∗

ν

∣∣e(i)
μ

〉〈g(i)| ⊗ |g( j)〉〈e( j)
ν

∣∣ + H.c.,

Ldd[ρ] = −μ0ω
2
0 ℘2

∑
n,m

∑
i ∈ Dn,

j ∈ Dm

∑
μ ∈ Tn,

ν ∈ Tm

dμ · Im[
←→
G (xi, x j, ω0)] · d∗

νL
[
ρ,

∣∣e(i)
μ

〉〈g(i)|, |g( j)〉〈e( j)
ν

∣∣], (6)

where
←→
G (xi, x j, ω0) is the dyadic Green’s function for the

one-dimensional waveguide and μ0 the vacuum permeability,
respectively. Note that both coherent and incoherent scattering
processes are modeled, via the Hamiltonian and Lindblad
superoperators, respectively.

Due to translational symmetry, the dyadic Green’s function←→
G (xi, x j, ω) for the waveguide can be expressed in the form

←→
G (xi, x j, ω) =

∫
dk

2πL−1

←→G (k, ω)eik(xi−x j ). (7)

We are interested in permutationally symmetric ensembles,
which require coupling to a single mode only. This can be
achieved, for instance, by tailoring the ensemble positions to
couple to a single eigenmode of the waveguide. Alternatively,
it can also be achieved in the low-saturation regime of any
ensemble that has approximately orthogonal Fourier modes,
i.e., uniform illumination of ensembles with large numbers of
scatterers. In this regime, the Green’s-function Hamiltonian
and Lindblad terms have a sharp resonance in the symmetric
subspace of the driven mode (see Appendix A) and as such
the collectively absorbed photons are reemitted with the same
wave vector. The propagation of excitations through these
coherently rescattered photons can be viewed in the Green’s-
function picture as the propagation of the atomic excitations as
a polariton with well-defined momentum. At low saturations,
the dynamics of the system is restricted to this polaritonic sub-
space. In particular, this amounts to restricting the interaction
terms to the Fourier mode of the driving field,

←→
G (xi, x j, ω0) → ←→G (k0, ω0)eik0(xi−x j ). (8)

The plane-wave phase factors can then be eliminated by the
following unitary transformation:∣∣e( j)

ν

〉 → e−ik0x j
∣∣e( j)

ν

〉
. (9)

The model then becomes permutationally symmetric. Such
systems can be analyzed by a generalization of the Holstein-
Primakoff transformation [58]. This is an exact transformation
that maps the collective transitions of the system to indepen-
dent bosonic modes, with the collective ground state mapping
to the bosonic vacuum. We introduce the bosonic creation
(annihilation) operators b†

μ (bμ) for each collective transition
μ. For our system, the transformation reads

∑
i∈Dn

∣∣e(i)
μ

〉〈
e(i)
ν

∣∣ = b†
μbν, μ, ν ∈ Tn,

∑
i∈Dn

eik0xi
∣∣e(i)

μ

〉〈g(i)| = b†
μ

√
N pn −

∑
ν∈Tn

b†
νbν,

(10)

where pn is the proportion of atoms in subensemble n, N is
the total number of atoms in all ensembles, and

[bν, b†
μ] = δμνδmn, μ ∈ Tn, ν ∈ Tm. (11)

As we are interested in the linear response of our system,
we have 〈b†

μbμ〉 � √
N and we may linearize the collective

transition operators

∑
i∈Dn

eik0xi
∣∣e(i)

μ

〉〈g(i)| ≈
√

N pnb†
μ, μ ∈ Tn. (12)
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In terms of these bosonic operators, the Hamiltonian of the
linearized system reads

HA = −
∑

n

∑
μ∈Tn

h̄�μb†
μbμ,

Hdd = −h̄
∑
n,m

∑
μ ∈ Tn,

ν ∈ Tm

√
pn pmdμ · ←→

J · d∗
νb†

μbν,

Hp =
√

N℘
∑

n

∑
μ∈Tn

√
pndμ · Ep(t )b†

μ + H.c.,

LA[ρ] = −
∑

n

∑
μ∈Tn

h̄γμL[ρ, b†
μ, bμ],

Ldd[ρ] = −h̄

∑
n,m

∑
μ ∈ Tn,

ν ∈ Tm

√
pn pmdμ · ←→


 · d∗
νL[ρ, b†

μ, bν],

(13)
where

←→
J + i

←→

 = N

μ0ω
2
0 ℘2

h̄

←→G (k0, ω0). (14)

Note that in transforming LA to the bosonic operators, we have
assumed that the decay is dominated by the superradiance
|
|  γμ such that we can approximate the single-particle de-
cay as collective. A more exact treatment of the single-particle
decay is given by Shammah et al. [59] and Gegg and Richter
[23,25], but it is not significant in the low-saturation regime
we are considering (see Appendix B).

Finally, although we have considered only a single ground
state, for systems with multiple ground states the resulting
equations of motion are of the same form. The partitioning of
the subensembles can be extended to partitioning by the initial

ground-state configurations of the atoms. Terms that couple
to a different ground-state configuration are suppressed by a
factor of

√
N and can be neglected (see Appendix C).

B. Equation of motion

The equation of motion for a transition operator corre-
sponding to μ ∈ Tn is given by

∂t bμ = i

h̄
[H, bμ] + 1

h̄
L[bμ]

= (i�μ − γμ)bμ

+ i
√

pndμ · (
←→
J + i

←→

 ) ·

∑
m

√
pm

∑
ν∈Tm

d∗
νbν

− i

√
N℘

h̄

√
pndμ · Ep(t ). (15)

Due to the one-dimensional nature of the problem, ob-
servables will depend on the dipole response only in the
two-dimensional polarization space of the guided modes.
As such, we need only consider the transverse polarization
operator

P = ℘
∑

n

∑
μ∈Tn

∑
i∈Dn

|g(i)〉〈e(i)
μ

∣∣dμ

≈
√

N℘
∑

n

√
pn

∑
μ∈Tn

d∗
μbμ. (16)

The susceptibility is found via solving for the linear response

P(ω) = ε0
←→χ (ω) · Ep(ω), (17)

where ε0 is the vacuum permittivity. A compact solution for
this can be obtained from the equation of motion in Fourier
space. We first Fourier transform Eq. (15) to obtain

(ω + �μ + iγμ)bμ(ω) + √
pndμ · (

←→
J + i

←→

 ) ·

∑
m

√
pm

∑
ν∈Tm

d∗
νbν (ω) =

√
N℘

h̄

√
pndμ · Ep(ω). (18)

It will be useful at this stage to define a reference frequency
scale γ0. For example, this could be the natural linewidth
of a single atom, which for an electric dipole excitation
can be expressed in terms of the mean dipole magnitude as
ω3

0 ℘2(3π h̄ε0c3)−1.
Multiplying both sides of (18) by

√
N pn℘d∗

μ

ω + �μ + iγμ

(19)

and summing over n, μ ∈ Tn, we obtain

P(ω) + ←→F (ω) · ←→
G · P(ω) = N℘2

h̄γ0

←→F (ω) · Ep(ω), (20)

where
←→
G = γ −1

0 (
←→
J + i

←→

 ) and

←→F (ω) =
∑

n

pn

∑
μ∈Tn

γ0d∗
μ ⊗ dμ

ω + �μ + iγμ

(21)

is the layer response matrix, the coherent average of the re-
sponses of each transition in each subensemble. Note that in
this context ⊗ refers to the outer product. Such a quantity
appears in the dynamical scattering approach to x-ray prop-
agation [see, e.g., Eq. (4.13) in [60] as well as [61]].

Solving for the polarization, we obtain

P(ω) = N℘2

h̄γ0
[
←→
1 + ←→F (ω) · ←→

G ]
−1 · ←→F (ω) · Ep(ω). (22)

This directly gives the first-order susceptibility

←→χ (ω) = χ0[
←→
1 + ←→F (ω) · ←→G ]

−1 · ←→F (ω), (23)

where χ0 = N℘2(h̄γ0ε0)−1.

C. Collective Lamb shift and cross couplings

The coherent part of the collective coupling J has previ-
ously been referred to as a collective Lamb shift [13,62,63].
Indeed, in the limit of a single uniform transition with natural
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decay width γ0, the susceptibility can be treated as a scalar
and is given by

χ (ω) = χ0
γ0

ω + � + iγ + J + i

, (24)

describing a single line, shifted by J and broadened by 
.
However, with multilevel atoms and inhomogeneous config-
urations, J does not act just as a Lamb shift but also provides
additional cross couplings, analogous to an additional control
field between transitions.

Specifically, a Lamb shift is a shift in an energy level due
to emission and reabsorption of virtual photons from the same
state. The analog of this in Eq. (13) is given by the diagonal
matrix elements of Hdd,

−h̄dμ · ←→
J · d∗

μ. (25)

If the collective coupling acts purely as a Lamb shift,
then each transition is simply shifted and broadened, giving
a susceptibility of

←−χ (ω) = χ0

∑
μ

γ0d∗
μ ⊗ dμ

ω + �μ + iγμ + dμ · ←→
G · d∗

μ

. (26)

However, we can see in Eq. (13) that due to additional cross
couplings from J and spontaneously generated coherences
from 
 [64], the resulting spectrum will not be so straightfor-
ward to interpret and is more generally described by Eq. (23).
Indeed, as we will see in Secs. III B and III C, the spectrum for
inhomogeneous two-level atoms shows features that cannot be
attributed to a simple Lamb shift. In the context of x-ray quan-
tum optics, this was already hinted at in Ref. [64] and later
on discussed in more detail for the general case in Ref. [26].
We note that, in particular, Ref. [26] has addressed the specific
case of uniform magnetic hyperfine splitting, using the atomic
cloud model of Svidzinsky et al. [55] to describe the collective
coupling. This method derives an interaction kernel for the ef-
fective interatomic interactions, which turns out to be identical
to the free-space Green’s function. As such, the Hamiltonian
of our model reproduces the model of Ref. [26] in the limiting
case of atoms in free space and uniform magnetic splitting.

III. APPLICATION TO X-RAY QUANTUM OPTICS

We now discuss the application of the general model from
Sec. II to x-ray quantum optics with Mössbauer nuclei and the
connection to existing formalisms. The relevant experimental
setup comprises so-called x-ray thin-film cavities using graz-
ing incidence reflection as illustrated in Fig. 2(a). In this setup,
layers are stacked from alternating high- and low-atomic-
number Z materials (for instance, Pt or Pd alternating with
C or B4C) to form a waveguide structure for a pulse fired at
grazing incidence to the layers. A thin resonant layer of Möss-
bauer nuclei, for instance, 57Fe or 57Fe-enriched stainless steel
(57SS), is embedded in this stack, usually sandwiched between
low-Z material layers. The scattering response of the system is
recorded in the cavity reflectivity measured at the detector. As
a function of incidence angle, the cavity reflectivity presents
several minima, which correspond to the resonant driving of
guided modes. An example is presented in Fig. 2(b). The
minima are known as critical angles and they indicate the for-
mation of a standing-wave structure across the cavity layers.

(a)

(b)

FIG. 2. (a) Schematic illustration of a thin-film cavity. X
rays in grazing incidence with angle θ couple evanescently to
the layered structure, exciting resonant transitions in stainless
steel 95% enriched with 57Fe (referred to as 57SS). The cavity
reflectivity |R|2 is measured at the detector. (b) Example of the-
oretical reflectivity spectrum |R|2(θ ) for a cavity with structure
Pt (2.8 nm)/C (22 nm)/ 57SS (0.6 nm)/C (22.5 nm)/Pt (15 nm), ob-
tained using the PYTHON library PYNUSS [65]. The reflectivity has
various minima that correspond to the resonant guided modes.

The resonant layer of Mössbauer nuclei is made sufficiently
thin such that the guided mode field is approximately uniform
across the depth of the layer.

The calculated probe field intensity profile for the
Pt(2.8 nm)/C(22 nm)/ 57SS (0.6 nm)/C(22.5 nm)/Pt(15 nm)
cavity structure and incidence angle θ = 3.35 mrad
[corresponding to the third reflection minimum in Fig. 2(b)]
is presented in Fig. 3. This example was chosen such that

FIG. 3. Probe field intensity profile throughout the sample depth
z for the third reflection minimum in Fig. 2(b). The background
shading illustrates the layer material, with the platinum capping
layers forming the cavity and the thin layer of 57SS placed at the
guided mode maximum.
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FIG. 4. Level scheme of 57Fe. The isomer shift δ shifts all excited
states equally and is due to a monopole interaction with the local
electric field. The addition of an external magnetic field Bhf results in
a hyperfine splitting of the magnetic sublevels according to their spin
projection mg or me on the quantization axis. The six M1 transitions
are illustrated.

the thin layer of resonant nuclei is placed at the guided mode
maximum. The low-Z layer is thereby used as an inert filler
which allows the precise positioning of the resonant layer at
the desired depth in the cavity. The guided mode ensures the
uniform illumination of all Mössbauer nuclei in the layer.

In most cases, the driven Mössbauer transitions present
hyperfine splittings. Expressed in a multipole expansion, the
most significant are the isomer shift, corresponding to the
monopole interaction with the local electric field, the mag-
netic splitting due to a dipole interaction with the local
magnetic field, and a quadrupole splitting resulting from the
interaction with local electric-field gradients. The splittings
are determined by the respective magnetic fields or electric-
field gradients, which are in turn highly sensitive to the local
electronic configuration. As most samples are polycrystalline,
the hyperfine splittings will be inhomogeneous across the
entire sample but homogeneous within an individual crystal
domain. For the case of the 14.413-keV Mössbauer transition
in 57Fe, the natural width is approximately 4.6 neV and the
transition has predominant magnetic dipole character. Mag-
netic splittings typically range in the interval (1–50)γ0, while
in iron carbides, for example, the isomer shift and quadrupole
splitting range from 2γ0 to 10γ0 and from 0 to 0.55γ0 [66],
respectively, and vary for different crystal structures of the
same chemical composition. An illustration of the isomer shift
and magnetic splitting for 57Fe is presented in Fig. 4.

The Mössbauer transition connects the 57Fe ground state
with spin Ig = 1

2 with the first excited state with spin Ie =
3
2 . The magnetic energy shift of each sublevel is given by
the expression me (g)μe (g)Bhf , where me (g) are the nuclear
spin projections on the quantization axis, μe (g) is the mag-
netic moment of the nuclear excited (ground) states, and
Bhf is the hyperfine magnetic field. For 57Fe, the excited-
state (ground-state) magnetic splittings amount to 3.26 neV/T
(5.71 neV/T). Note that we have used electric dipole transi-
tions in our general derivation, while the transitions in 57Fe are
magnetic dipole. This can be dealt with trivially by making
a duality transformation [67], replacing the incident electric

field E with the magnetic field B, electric dipole moment
℘d with magnetic moment μ, and so forth. In particular, the
electric dyadic Green’s function is replaced with its magnetic
dual

←→
G (r, r′) → ←→

G �(r, r′). (27)

In the effective refractive index model of x-ray scattering
in matter, the propagation is described via a frequency-
dependent index of refraction. Outside of resonant interac-
tions, magnetic scattering is orders of magnitude weaker than
electronic scattering [68]. Thus, the magnetic permeability of
the layers can be taken to be that of the vacuum, μ0.

Therefore, in the notation of Buhmann [67], we can obtain
the dual Green’s tensor as

←→
G �(r, r′) = 1

μ2
0

−→∇ × ←→
G (r, r′) × ←−∇ ′ − 1

μ0

←→
δ (r − r′).

(28)

The dyadic
←→
δ term in the above transformation will modify

each individual particle’s Lamb shift and linewidth equally
and as such can be absorbed into the definitions of ω0

and γ0.
As the wavelengths of x-ray photons are comparable to the

lattice spacing of the resonant nuclei, in general the nuclei
couple through a wide range of modes and this gives rise to
the dynamical beating of nuclear forward scattering [60,69].
However, for grazing incidence geometry, it can nevertheless
be shown that Fourier modes are approximately orthogonal
(see Appendix A) and therefore we can make the single-mode
approximation from before.

At grazing incidence, s, p transmission and reflection are
approximately equal and the p polarization vector has negli-
gible longitudinal component [70]. The relevant Fourier mode
of the electric Green’s function can therefore be approximated
as a scalar times a projection matrix

←→
G (k0, ω0) ≈ ←→

1 ⊥G(k0, ω0), (29)

where
←→
1 ⊥ = ←→

1 − k̂0 ⊗ k̂0. The same will apply to the mag-
netic propagation and therefore we can take the magnetic dual
of this to be

←→
G �(k0, ω0) ≈ ←→

1 ⊥
k2

0

μ2
0

G(k0, ω0). (30)

This allows one to obtain the coherent and incoherent cou-
pling strengths J and 
 as scalars directly from the Fourier
transformed Green’s function. In addition, the quantum opti-
cal approach of Heeg and Evers [64] demonstrates that these
can also be understood in terms of the cavity detuning �C and
loss κ of the cavity mode excited by the probe field such that

J + i
 ∝ �C + iκ

�2
C + κ2

. (31)

In this model, the cavity detuning is minimized when the
probe field is incident along one of the reflectivity minima
of the cavity shown in Fig. 2(b) and increases when the
angle is shifted away from the minimum. As such, in graz-
ing incidence cavities, the coherent coupling constant J is
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experimentally controllable by setting the angle of incidence
of the probe field.

A. Semiclassical versus quantum models for x-ray quantum
optics with Mössbauer nuclei

Before presenting some numerical examples, it is instruc-
tive to place the present formalism in the context of existing
semiclassical and quantum models used in x-ray quantum
optics. Previous approaches such as by Hannon et al. [71–75]
as well as Sturhahn and Kohn [76,77] have modeled grazing
incidence x-ray reflection using a diagrammatic expansion
for the photonic scattering. The nuclear interaction is treated
semiclassically, with the nuclear transitions taken to be linear
dipole oscillators. In this approach, the results of Eq. (23) are
implicitly modeled, but not explicitly obtainable. Specifically,
the response of the nuclei is modeled according to Eq. (21)
and the rescattering is implicitly included in the layer ma-
trix formalism for the photonic propagation. However, this
approach obscures the collective dynamics of the nuclei. In
contrast, the present formalism makes the collective nuclear
dynamics features explicit which allows both the coherent and
incoherent effects to be investigated separately.

A more recent model, developed by Heeg and Evers
[50,64], has focused on the quantum optical perspective, with
the emphasis being on the resonant interaction of the nuclei
with the cavity mode. A Green’s-function approach for the
scattering part of the Hamiltonian has been developed by
Lentrodt et al. [51] and Kong et al. [56]. These works use
analytic expressions for the Green’s functions in layered me-
dia, developed by Tomaš [70] (and later on also by Johansson
[78]), which can be expressed in terms of the layer matrix
formalism for planar scattering. References [51,56] provide
a connection between the linear response of the quantum
optical model [50,64] to the scattering models of Hannon
et al. and Sturhahn and Kohn. Our work extends this quantum
optical Green’s-function approach to include inhomogeneous
hyperfine parameters and provides insight into how the inho-
mogeneity will enter the nonlinear dynamics of the system. In
the following we provide a few illustrative examples.

B. Gaussian broadening for two-level systems

As an illustrative example, we consider a layer of resonant
Mössbauer nuclei with a Gaussian distribution of the isomer
shift δ. Such Gaussian distributions of hyperfine parameters
are typical of amorphous solids [79–81]. For simplicity, we
will consider the other hyperfine splittings to be negligible.

The isomer shift affects all excited states equally and the
distribution does not affect the dipole vectors or the natural
linewidths. As we are taking the other hyperfine splittings
to be negligible, all states with a given nuclear spin I are
degenerate and we can model the system as having a single
transition. Thus, we can treat the problem as scalar.

In the continuum limit, the coherent average becomes an
integral over the distribution of δ,∑

n

pn →
∫ ∞

−∞
dδp(δ), (32)

where p(δ) is the probability distribution finding a given value
of δ in the ensemble. The response function F (ω) is then

FIG. 5. Collective spectrum |χ (ω)/χ0|2 as a function of the fre-
quency ω for J = 5γ0 and three different distribution widths σ . The
peak is shifted further as the broadening is increased, and the shape
is distorted.

given by

F (ω) =
∫

dδp(δ)
γ0

ω − δ + iγ0
. (33)

With a Gaussian distribution

p(δ; δ̄, σ ) = 1√
2πσ 2

exp

(
− (δ − δ̄)2

2σ 2

)
, (34)

this evaluates to a Voigt profile [see Eq. (7.19) in [82]]

F (ω) = γ0√
2σ

w

(
ω − δ̄ + iγ0√

2σ

)
, (35)

where

w(z) = −i
√

π exp(−z2)[erfi(z) − i]. (36)

As the dipole vectors are all along a single direction, we
need only consider the component of susceptibility in this
direction, given by

χ (ω) = χ0
F (ω)

1 + γ −1
0 (J + i
)F (ω)

. (37)

The interaction of the coherent collective coupling J and the
broadening σ is particularly interesting. Unlike the case of
purely collective broadening 
, for significant distribution
widths σ the coherent coupling factor J no longer acts as a
simple Lamb shift. Indeed, if J were to act as a Lamb shift,
from (26) one would expect instead a susceptibility of

χ (ω) = χ0F (ω + J + i
), (38)

with a simple translation and broadening. Instead, the peak
of the spectrum is shifted slightly further than it would be in
the absence of the Gaussian broadening and is asymmetrically
distorted. This is shown in Fig. 5, which presents the ratio
|χ (ω)/χ0|2 as a function of ω for three distributions widths σ .

At this point we find it interesting to compare our linear
regime results with the work of Javanainen et al. [36,37] and
Jenkins et al. [38], who have examined the effect of inhomo-
geneous broadening on strongly coupled atomic clouds near
saturation. In this regime, local spatial correlations become
significant and permutation symmetry no longer applies. They
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FIG. 6. Collective spectrum |χ (ω)/χ0|2 as a function of the fre-
quency ω for σ = 10γ0 and three different collective coupling values
J . With increasing coherent collective coupling J the shape of the
spectrum is distorted asymmetrically and the effective linewidth
tends to 
.

found that the local correlations in homogeneously broadened
systems suppresses the Lorentz-Lorenz and collective Lamb
shifts, while inhomogeneous broadening restores the super-
radiant mean-field dynamics [37]. We note that the case of
inhomogeneous broadening shows some qualitative similarity
to our linear regime result in Fig. 5, where we observe a larger
peak shift for inhomogeneous broadening vs the unbroadened
case.

For illustrative purposes, we have used values of J and 
 in
the ranges (0–10)γ0 and (3–5)γ0, respectively, typical of x-ray
cavities. For example, using PYNUSS to simulate the single line
spectrum, we find that the cavity in Fig. 2 has J = 8.5γ0 and

 = 3.36γ0 at an incident angle of 2.32 mrad, corresponding
to just below the first reflection minimum. Going exactly to
the first minimum gives J = 5.5γ0 and increases 
 signifi-
cantly to 
 = 18.6γ0. At an angle of 3.35 mrad, corresponding
to the third reflection minimum, we have J = 1.79γ0 and 
 =
3.37γ0. Typical hyperfine distribution widths are between 0
and 5γ0. In optical contexts (for example, Doppler broadening
in atomic clouds or size inhomogeneity in quantum dots), we
would expect that the distribution widths could be substan-
tially larger.

For significant distribution widths σ  γ0, the line shape
is that of a broad, almost Gaussian profile. However, as the
collective coupling J is increased, as well as being shifted and
skewed, the effective linewidth tends to that of the incoherent
coupling 
. Figure 6 illustrates this behavior for increasing
coherent collective coupling J .

C. Interference effects for magnetic splitting

Let us now consider the case of magnetic splitting in 57Fe
with no isomer shift and an x-ray field which drives the two
me − mg = 0 transitions as shown in Fig. 4. Compared to the
two-level system, the energies of these two transitions are now
detuned by ±φ = ± 1

2 (μe − μg)Bhf . Our model Hamiltonian
reads

H = h̄φ(b†
1b1 − b†

2b2) − h̄J (b†
1 + b†

2)(b1 + b2)

+ h̄�(b†
1 + b†

2) + H.c, (39)

FIG. 7. Comparison of the collective spectrum |χ (ω)/χ0|2 as
a function of the frequency ω for 
 = 5γ0, J = 0, mean splitting
φ̄ = 17γ0, and various values of the distribution width σ . As the
distribution width increases, the dip is washed out to a very flat and
broad peak.

with the Lindblad operator

L[ρ] = −γ
∑
i=1,2

L[ρ, b†
i , bi] − 


∑
i, j=1,2

L[ρ, b†
i , b j]. (40)

The superradiant response of such a system was investi-
gated by Kong and Pálffy [26] using an eigenvalue method.
It was found that if the splitting φ is less than the incoher-
ent part of the collective coupling 
, the contributions from
the two transitions interfere. The resulting spectrum has an
interference dip in the peak, similar to electromagnetically
induced transparency (EIT) [83], with the collective coupling
J playing the role of a control field. In addition, the coherent
part of the collective coupling J was found not to act as a
simple Lamb shift but in fact nontrivially couple with the
magnetic splitting, producing asymmetric Fano-like spectra.

We now consider this system with the addition of a Gaus-
sian distribution of magnetic-field strengths across the sites.
For a given site with splitting φ, the response matrix is given
by [26]

F (ω; φ) = 2γ0(ω + iγ0)

(ω + iγ0)2 − φ2
. (41)

In the case of a completely uniform magnetic field, the collec-
tive susceptibility is therefore given by

χ (ω) = χ0
2γ0(ω + iγ0)

(ω + iγ0)2 + 2(J + i
)(ω + iγ0) − φ2
. (42)

This has two poles in the denominator,

ω± = −iγ0 − J − i
 ±
√

(J + i
)2 + φ2. (43)

When the collective coupling is completely incoherent J = 0,
the discriminant becomes

√
φ2 − 
2. We can see that if

φ < 
, the argument of the square root becomes negative and
the poles become purely imaginary, describing overlapping
Lorentzians with differing linewidths. This results in an EIT-
like dip. This behavior is illustrated in Fig. 7, which presents
the susceptibility ratio |χ (ω)/χ0|2 as a function of ω for four
different values of the Gaussian distribution width σ .
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FIG. 8. Comparison of the collective spectrum |χ (ω)/χ0|2 as a
function of the frequency ω for small incoherent coupling 
 = 5γ0,
a small distribution width value σ = 3.5γ0, mean splitting φ̄ = 17γ0,
and varying values of the coherent collective coupling J .

If we now consider the magnetic splitting to have a Gaus-
sian distribution of width σ and mean φ̄, applying Eqs. (21)
and (35) gives

F (ω) =
∫

dφp(φ; φ̄, σ )F (ω; φ)

= γ0√
2σ

[
w

(
ω − φ̄ + iγ0√

2σ

)
+ w

(
ω + φ̄ + iγ0√

2σ

)]
,

(44)

with w(z) given by Eq. (36). The susceptibility is as before
given by

χ (ω) = χ0
F (ω)

1 + γ −1
0 (J + i
)F (ω)

. (45)

The overall envelope of the spectrum resembles that of the
homogeneous case, and if the distribution width σ is narrow
compared with 
 and φ̄, we can see that the intensity mini-
mum is still resolvable. However, increasing the distribution
width gradually flattens the dip and results in a flat broad peak
as shown in Fig. 7.

More interesting is the effect of different strengths of the
coherent collective coupling J . Rather than acting as a simple
Lamb shift, the overall spectral shape is changed. One peak
is flattened as the other increases, with large J resulting in
a completely asymmetric picture with only a single one of
the contributions being resolved. This can be seen in Fig. 8,
which presents the same dependence as Fig. 7 but this time for
different values of J . While the peak locations are somewhat
shifted, the shapes are distorted as well and the location of the
minimum is unchanged. This is in contrast to the single line
case, where J acts as a pure Lamb shift.

This holds even when the distribution width is large enough
that the minimum is not resolved, as shown in Fig. 9. For
vanishing collective coupling J = 0, the two peaks are merged
and the effective linewidth is very broad. Increasing J results
in the left peak growing while the right peak decreases, and
for significant J only the left peak is individually resolved,
with the linewidth approaching 2
. The result is an increase
in the effective resolution of the spectrum, with an energy

FIG. 9. Same as Fig. 8 but here for a wider distribution width
σ = 14γ0.

shift. As the coherent coupling strength is controlled via the
angle of incidence of the driving field [51,64], this provides a
mechanism for mechanical control of the linewidth of such a
sample.

To understand this, we consider the matrix form of the
corresponding equation of motion

M

(
b1(ω)
b2(ω)

)
=

(
�(ω)
�(ω)

)
, (46)

with

M = (J + i
)

(
1 1
1 1

)
+

(
φ + iγ0 0

0 −φ + iγ0

)
(47)

and �(ω) = h̄−1℘Ep(ω). If J is large enough compared with
φ and γ0, we may treat the second term as a small perturbation
of the first. The eigenvectors of M are then given by

ê± = 1√
2

(
1

±1

)
+ O(φ), (48)

with eigenvalues

λ+ = 2(J + i
) + O(φ), λ− = O(φ). (49)

The driving term couples to b1 and b2 equally and is thus
proportional to ê+. Therefore, only the symmetric state ê+ is
strongly driven and we will expect to see a single peak with
a Lamb shift of 2J and a broadening of 2
. If the collective
broadening 
 is significantly lower than the distribution width
σ , we will then see a reduction in the effective linewidth.
This has potential applications in samples with significant
magnetic texture, with the beam angle of incidence on the
sample being used to control the collective coupling and hence
the effective linewidth.

IV. CONCLUSION

In this paper we have examined an extension of the Dicke
model for inhomogeneous atoms. We found a compact for-
mula for the susceptibility in the weak-excitation regime,
in terms of the coherently averaged nuclear or atomic re-
sponses, and the collective coupling constants J and 
. In
addition to a collective Lamb shift and broadening, we found
that the collective coupling also provides additional cross
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couplings between transitions, as well as spontaneously gen-
erated coherences.

Previous work by Kong and Pálffy [26] has shown that for
homogeneous multilevel atoms, the collective coupling does
not act as an overall broadening and Lamb shift and that in
particular the coherent coupling J distorts the shape of the line
asymmetrically. We have shown that this conclusion holds in
the case of inhomogeneous ensembles and that, in addition,
the coherent coupling J can counteract the inhomogeneous
broadening.

In our model we have only considered linear dynamics and
ignored the nonlinearity from local decay. The nonlinear dy-
namics of permutationally invariant systems, including local
decay, have been well studied [23,25,59] and can be applied
numerically to the subensembles. The Hilbert space of each
subensemble scales with NM+1, where M is the number of
transitions and N is the maximum excitation number being
modeled [23,25]. If the distribution of hyperfine parameters
can be modeled in a piecewise constant fashion with P pieces,
then the Hilbert space can be modeled as the tensor product of
P subensembles, for a final dimension of NP(M+1). The scaling
remains polynomial in excitation number but is exponential in
subensemble number, which poses a considerable challenge
for numerical simulation.

Our work is applicable to geometries that couple essen-
tially via a single mode and are quasi-one-dimensional. For
arbitrary geometries, our results hold if the driving field is
weak and the scatterers are dense. This is the case for Möss-
bauer transitions in both nuclear forward geometry and in
grazing incidence x-ray cavities. Experiments with x-ray scat-
tering for both types of systems have shown that the Dicke
model dynamics holds at currently experimentally accessible
regimes [13,14]. However, going beyond the weak-excitation
regime, the rescattered radiation will be emitted into differ-
ent modes than the driving field and will therefore couple
differently to the various transitions depending on the length
and direction of travel. The problem then becomes highly
geometrically dependent and the real-space Green’s function
must be used, with local spatial correlations taken into account
[36–38,44,54,55,84].

ACKNOWLEDGMENTS

This work was funded by the Deutsches Forschungsge-
meinschaft (DFG) through Projects No. 273811115 (SFB
1225 ISOQUANT) and No. 429529648 (TRR 306 QuCoL-
iMa) (“Quantum Cooperativity of Light and Matter”). A.P.
acknowledges support from the Heisenberg Program of the
DFG.

APPENDIX A: SINGLE-MODE APPROXIMATION
FOR POLARITON TRANSFORMATION

In this Appendix we show that a coupling to Fourier
modes other than the driving mode is negligible at low
saturations. For simplicity, we consider only two-level sys-
tems; however, the argument can be adapted to multilevel
systems by considering each pair of transition operators
individually.

1. Collective transition operators

Let us define the collective raising and lowering operators
S± and collective spin operator Z as

Z (k) =
∑

i

σ (i)
z eik·ri ,

S±(k) =
∑

i

σ
(i)
± eik·ri . (A1)

They obey the commutation relations

[S−(k1), S+(k2)] = −Z (k1 + k2),

[Z (k1), S±(k2)] = ±2S±(k1 + k2). (A2)

The operators can be centered on the driven wave vector k0

via the unitary transformation

|ei〉 → e−ik0·ri |ei〉. (A3)

Under this transformation, we have

σ
(i)
+ → σ

(i)
+ e−ik0·ri , σ (i)

z → σ (i)
z (A4)

and therefore

Z (k) → Z (k), S±(k) → S±(k ∓ k0). (A5)

In particular, we note that Z (0), S+(k), and S−(−k) obey the
usual SU(N ) algebra of operators on symmetric Dicke states,
and after the unitary transformation, S±(0) are the collective
transition operators of the driven mode.

2. Orthogonality of Fourier modes

The Fourier modes can be treated as orthogonal if the sum
over atomic positions can be approximated as a δ function,

∑
i

eik·ri ≈ N
(2π )d

Ld
δd (k), (A6)

where δd (k) is the Dirac delta function, L is the length scale of
the ensemble, and d is the spatial dimension. We will consider
this sum in three regimes: (a) dense samples, (b) dilute ordered
lattices, and (c) dilute disordered lattices.

a. Dense samples

Equation (A6) can be seen to easily hold for dense en-
sembles such that the number density is much larger than the
wavelength scale,

N

Ld
λd � 1. (A7)

In this case, one can approximate the sum over positions as an
integral, which gives

∑
i

eik·ri ≈ N

Ld

∫
dd reik·ri = N

(2π )d

Ld
δd (k). (A8)

b. Ordered lattices

The case of crystalline samples has been extensively stud-
ied in condensed-matter physics. It is well known that even
if the wavelength is comparable to the lattice spacing, for
sufficiently large numbers of lattice sites the sum (A6) can
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be approximated by a sum over δ functions for the Bragg
resonances of the lattice [85],

∑
i

eik·ri ≈ N
(2π )d

Ld

∑
K

δd (k − K), (A9)

where the K denote the reciprocal lattice vectors. If the lattice
is placed in a waveguide, the Bragg scattered momenta which
do not coincide with the direction of the guided mode will be
rapidly decaying. As such, the contributions from the Bragg
scattering can be modeled as an additional decay channel for
the polariton.

c. Disordered lattices

Finally, Eq. (A6) also holds for any sufficiently large dis-
ordered sample, as the phase factors will be random and
interfere destructively unless k is very close to zero. Indeed,
for the particular case of uniformly distributed atoms, one can
consider the sum to be a Monte Carlo integration of Eq. (A8),
and so Eq. (A6) will hold for N sufficiently large.

3. Applicability to Mössbauer nuclei

For Mössbauer samples we refer to Eq. (4.19) in [69] for a
discussion of the width of the solid angle that the radiation is
scattered to, which is proportional to∣∣∣∣∣

∑
i

ei(k0−k)·ri

∣∣∣∣∣
2

, (A10)

where k0 is the driving wave vector and k is the scattered
wave vector. In particular, for the x-ray thin-film cavities the
relevant estimate is for the two-dimensional crystalline case,
which is applicable given our assumption of a very thin layer.
This gives for the scattering solid angle

�� ≈ 6

(
λ2

A‖

)3/4

, (A11)

where A‖ is the planar area of the cavity. In particular, since λ

is on the order of 1 Å and the area on the order of 1 mm2, we
find that the solid angle is on the order of 10−15 sr. As such,
we see that Eq. (A6) is a good approximation in this regime.
Even considering a sum over a single grain on the order of

1 μm2 in area, the solid angle is still very small, on the order
of 10−6 sr.

In the case of perfectly crystalline samples, as discussed
previously Bragg resonances must be considered. It is well
known, however, that for grazing incidence, the reflection and
transmission correspond to the (000) Bragg reflection, which
preserves the planar wave vector [86].

4. Action of lowering operators in symmetric subspace

We consider the (nonnormalized) symmetric Dicke state
with m excitations,

|m〉 = S+(0)m|0〉. (A12)

We consider the action of the collective lowering operator
S−(k) on this state,

S−(k)|m〉 = S−(k)S+(0)m|0〉. (A13)

With the help of the commutation relations (A2), this leads to

S−(k)|m〉 = [S+(0)S−(k) − Z (k)]S+(0)m−1|0〉. (A14)

We can recursively expand this product and continue commut-
ing S−(k) through to the right, until it annihilates the ground
state. This then gives

S−(k)|m〉 = −
m−1∑
l=0

S+(0)lZ (k)S + (0)m−1−l |0〉. (A15)

We now consider

Z (k)S+(0)m|0〉 = 2S+(k)S+(0)m|0〉
+ S+(0)Z (k)S+(0)m−1|0〉. (A16)

The base case is

Z (k)|0〉 = −
∑

i

eik·ri |0〉 ≈ −N
(2π )d

Ld
δd (k)|0〉. (A17)

By recursion, we can see that

Z (k)S+(0)m|0〉= 2mS+(k)S+(0)m−1|0〉− N
(2π )d

Ld
S+(0)m|0〉.

(A18)

This finally gives

S−(k)|m〉 = −
m−1∑
l=0

2(m − l − 1)S+(k)Sm−2
+ |0〉 − N

(2π )d

Ld
δd (k)S+(0)m−1|0〉

= m

(
N

(2π )d

Ld
δd (k)S+(0) − (m − 1)S+(k)

)
|m − 2〉. (A19)

In particular, we see that the second term involving the non-
symmetric state S+(k)|m − 2〉 is smaller than the symmetric
state by a factor of (m − 1)/N . At low saturations, this is
negligible. Therefore, if the state is driven to a symmetric
state with wave vector k0, the Hamiltonian for low excitations
has a sharp resonance in the symmetric subspace and we can
make a single-mode approximation. In particular, since we
can express a translationally symmetric Green’s function in

the form

←→
G (r1, r2, ω0) =

∫
Ld dd k

(2π )d

←→G (k, ω0)eik·(r1−r2 ), (A20)

the single-mode dynamics allows us to make the replacement

←→
G (r1, r2, ω0) → ←→G (k0, ω0)eik0·(r1−r2 ). (A21)
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APPENDIX B: APPROXIMATING SINGLE-PARTICLE DECAY AS COLLECTIVE

To justify approximating the single-particle decay as collective, we note that we can write the exact form of LA as

LA[ρ] = −
∑
μ,i

h̄γμ

(∣∣e(i)
μ

〉〈
e(i)
μ

∣∣ρ + ρ
∣∣e(i)

μ

〉〈
e(i)
μ

∣∣−2
∣∣g(i)

μ

〉〈
e(i)
μ

∣∣ρ∣∣e(i)
μ

〉〈
g(i)

μ

∣∣)

= −
∑

μ

h̄γμ

(
b†

μbμρ + ρb†
μbμ +

∑
i

∣∣g(i)
μ

〉〈
g(i)

μ

∣∣〈e(i)
μ

∣∣ρ∣∣e(i)
μ

〉)
. (B1)

At low saturations 〈e(i)
μ |ρ|e(i)

μ 〉 ≈ 0; therefore, both the single-particle and collective decays give the same result,

LA[ρ] ≈ −
∑

μ

h̄γμ{b†
μbμ, ρ}. (B2)

In addition, for x-ray quantum optics the cavities considered are in the so-called bad cavity regime and the cavity mode lifetime is
much shorter than the natural lifetime of the resonant transitions. Therefore, the incoherent processes are dominated by collective
interactions and the internal decay can be approximated as a small correction to the collective decay rates.

APPENDIX C: MULTIPLE GROUND STATES

We now consider an atom with multiple ground states as
well as multiple excited states. As with the excited states, the
ground states are considered to have small splittings compared
with the energy difference between the ground and excited
bands, and dipole transitions are forbidden between ground
states. We index here the excited states with greek indices
μ, ν . . . and the ground states with latin indices j, k . . ..

For nuclei with multiple ground states, we further par-
tition the ensembles by the initial ground states of the
atoms, creating permutationally invariant subensembles. For
a given subensemble, we use the initial ground state g0 as
the “vacuum” state for the generalized Holstein-Primakoff
transformation. We then obtain

N∑
i=1

∣∣e(i)
μ

〉〈
g(i)

0

∣∣ ≈
√

Nb†
μ,

N∑
i=1

∣∣g(i)
j

〉〈
g(i)

0

∣∣ ≈
√

Nc†
j ,

N∑
i=1

∣∣g(i)
j

〉〈
g(i)

k

∣∣ = c†
j ck,

N∑
i=1

∣∣e(i)
μ

〉〈
g(i)

j

∣∣ = b†
μc j,

N∑
i=1

∣∣e(i)
μ

〉〈
e(i)
ν

∣∣ = b†
μbν,

[bμ, b†
ν] = δμν,

[c j, c†
k ] = δ jk,

[c j, b†
μ] = 0. (C1)

The single-particle Hamiltonian then reads

HA =
∑

μ

(�μ − δ0)b†
μbμ +

∑
j

(δ j − δ0)c†
j c j, (C2)

with the single-particle decay reading

LA[ρ] = −
∑

μ

γμ0L[ρ, b†
μ, bμ] −

∑
μ, j

γμ jL[ρ, b†
μc j, c†

j bμ],

(C3)
where γμ0 is the decay rate to the initial ground state and γμ j

is the decay rate to ground state j. If we consider the action of
this superoperator on bμ, we obtain

LA[bμ] = −γμ0bμ −
∑

j

γμ j (1 + c†
j c j )bμ. (C4)

The action on a ground-state operator reads

LA[c j] =
∑

μ

γμ jb
†
μbμc j . (C5)

The rate of population transfer to the other ground state is
thus proportional to the excited-state populations, which are
negligible in the linear-response regime. Therefore, we can
assume c jck ≈ 0 for all j and k. However, the decay rate of
the transition operator bμ is still affected by the leftover terms,

LA[bμ] ≈ −
(

γμ0 +
∑

j

γμ j

)
bμ = −γμbμ, (C6)

i.e., the effective decay rate γμ for a transition operator bμ is
the sum of the decay rates of all decay channels for excited
state μ. Thus, we may write

LA[ρ] ≈ −
∑

μ

γμL[ρ, b†
μ, bμ]. (C7)

In addition to the internal decay, the cavity mediated cou-
pling includes transitions to different ground states than the
initial. The interaction Hamiltonian reads

Hdd = −J
∑
μ,ν

d⊥
μ0 · d∗⊥

ν0 b†
μbν

− J√
N

∑
μ,ν

∑
m

d⊥
μ0 · d∗⊥

ν j b†
μbνc†

j + H.c.

− J

N

∑
μ,ν

∑
j,k

b†
μbνc†

j ck . (C8)
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We can see that terms involving population transfer between
ground states are suppressed by a factor of

√
N or higher

and thus can be neglected in the linear-response regime.
An analogous argument holds for the dipole-dipole Lindblad
term and for the probe field driving. Thus, we conclude that

for the linear response in the presence of multiple ground
states, only the initial ground state of a subensemble needs
to be considered, with the only contributions of the other
ground states being to the decay rates of the transition
operators.
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