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Delay differential equation model of a nonlinear optical–nonlinear amplifying loop mirror mode-locked
laser is developed that takes into account the finite relaxation rate of the gain medium and asymmetric beam
splitting at the entrance of the nonlinear mirror loop. Asymptotic linear stability analysis of the continuous
wave solutions performed in the limit of large delay indicates that in a class-B laser flip instability is preceded
by the modulational instability and therefore cannot give rise to stable square wave patterns. Numerically
it is shown that the model can demonstrate large windows of regular fundamental and harmonic mode-
locked regimes with single and multiple pulses per cavity round trip time separated by domains of irregular
pulsing.
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I. INTRODUCTION

Passively mode-locked lasers have attracted much attention
in recent decades due to their numerous applications in sci-
ence, biomedicine, and industry. In passive mode-locking the
presence of saturable absorption in the laser cavity is needed
to allow short pulse generation. Among different mechanisms
to create saturable absorption, a promising one relies on the
use of the nonlinear optical–nonlinear amplifying loop mir-
ror (NOLM-NALM) [1], which contains a bidirectional loop
with asymmetrically located absorber or gain medium and
nonlinear element. These configurations are also known as
figure-eight lasers [2,3]. As a result of the interference of
two counterpropagating waves, the reflectivity of the NOLM-
NALM depends strongly on the power of the incident beam,
which creates an effective saturable absorption mechanism.

Most of the models used for theoretical analysis of NOLM-
NALM mode-locked lasers are based on the NLS- and
Ginzburg-Landau-type equations (see, e.g., [4–10] and refer-
ences therein), where the dynamics of the gain is determined
by the average intracavity laser power. An alternative ap-
proach to the modeling of NOLM-NALM lasers was proposed
in [11], where a simple delay differential equation (DDE)
model of a nonlinear mirror mode-locked laser was developed
using the approach of the authors of [12–14] and analyzed
analytically and numerically. Later a similar DDE model was
used in [15] to describe a mode-locking in a NALM mode-
locked laser with a semiconductor optical amplifier (SOA)
in the nonlinear mirror loop. Both these models, however,
assumed adiabatic elimination of the inversion in the gain
medium and symmetric beam splitter connecting the main
laser cavity with the nonlinear mirror loop. On the other hand,
asymmetric beam splitters are widely used in nonlinear mirror

mode-locked lasers, see, e.g., [4,16–19]. Furthermore, as soon
as the pulse duration becomes smaller than the gain relaxation
time the effect of the gain dynamics on the pulse shaping
must be taken into account [20]. An empirical NOLM model
including a rate equation for the population inversion dynam-
ics was reported in [17]. However, since such an important
physical factor as spectral filtering of the laser radiation is
missing in this model, similarly to the Poincaré map model
used in [21], it is hardly applicable to describe short pulse
generation in mode-locking regimes. The aim of this paper
is to generalize the model developed in [11] to the case of
arbitrary population relaxation rates of the laser gain medium
and beam splitting ratios. Note that, similarly to the models
discussed in [11,15], our model assumes that mode-locked
pulses are sufficiently long so that chromatic dispersion of
the intracavity medium does not play an important role in the
mechanism of the mode-locked pulse formation. Although the
chromatic dispersion can be included into DDE laser models
[22–25] and Ikeda-map models [26], this task is beyond the
scope of the present work. The lumped element approach used
to derive the NOLN-NALM laser model assumes that gain,
linear loss, Kerr nonlinearity, and Lorentzian spectral filtering
are separated in space in the laser cavity and attributed to dif-
ferent laser sections. Furthermore, we assume that the spectral
filtering section is thin.

Using the generalized model, we investigate analytically
the stability and bifurcations of continuous wave (CW) solu-
tions in the limit of large delay. Numerical simulations reveal
large domains of fundamental and harmonic mode-locking
regimes in the parameter space. We show that both the in-
version relaxation rate and beam splitting ratio can strongly
affect the dynamics of the system and the existence domains
of stable mode-locked regimes.
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FIG. 1. Schematic representation of the NOLN-NALM laser. g
is the amplifying medium in the main cavity, G the linear loss
or gain in the nonlinear mirror loop, NE is the nonlinear ele-
ment, A1,2,3,4,5,6 the electric field envelopes in the main cavity
(unidirectional, counterclockwise), and B±1,±2,±3,±4 the electric field
envelopes in the nonlinear mirror loop (bidirectional). Here the sub-
scripts “+” and “−” correspond to counterclockwise and clockwise
waves, respectively.

II. MODEL EQUATIONS

In this section we extend the NOLM-NALM mode-locked
laser model proposed in [11] to the case of finite gain re-
laxation rate and arbitrary beam splitting ratio. A schematic
presentation of the laser system under consideration is given
in Fig. 1. A commonly used figure-of-eight NOLM-NALM
laser contains a bidirectional nonlinear mirror loop coupled to
the main cavity, where an optical isolator is used to achieve
unidirectional operation [3,4,8,9,15–17,19,27].

To derive our model equations we use the lumped element
approach similar to that described in [12–14]. Propagation of
the electric field envelope in the passive sections of the main
unidirectional cavity can be described by the relations

A2(t ) = √
κ2A1(t − T1), A4(t ) = A3(t − T3),

A6(t ) = √
κ1A5(t − T2), (1)

where 0 < κ1,2 < 1 are the intensity attenuation factors due
to the linear nonresonant losses in the intracavity media and
output of radiation through the mirrors. T1,2 are the delay
times introduced by the passive sections.

The gain section of the main cavity can be described by the
relation

A5(t ) = A4(t − T4)e
1−iα

2 g(t ), (2)

where α is the linewidth enhancement factor, which is nonzero
in the case when SOA is used as a gain medium. The ex-
perimental study of a NOLM mode-locked laser with SOA
amplifying medium was reported in [28]. The time evolu-
tion of the cumulative gain g(t ) is governed by the ordinary

differential equation [14,29]

γ −1 dg

dt
= p − g − (eg − 1)|A4(t − T4)|2. (3)

Here γ is the normalized gain relaxation rate and p is the
linear gain (pump) parameter.

The transformations of the counterpropagating field am-
plitudes by the linear gain (loss) and passive sections of the
nonlinear mirror loop are given by

B−1(t ) =
√

GB−2(t − τ1), B+2 =
√

GB+1(t − τ1),

B−1(t ) = B−2(t − τ2), B+4(t ) = B+3(t − τ2), (4)

where G > 1 (G < 1) correspond to NALM (NOLM), the
subscript “+” (“−”) denotes counterclockwise (clockwise)
propagating wave, and τ1,2 are the corresponding delay times,
which depend on the length of the passive sections of the
nonlinear mirror loop. For the Kerr element inside this loop
we can write

B−2(t ) = B−3(t − τ3)e−ia[|B−3(t−τ3 )|2+h|B+2(t−τ3 )|2],

B+3(t ) = B+2(t − τ3)e−ia[|B+2(t−τ3 )|2+h|B−3(t−τ3 )|2], (5)

where a and τ3 are the Kerr coefficient and time delay in-
troduced by the nonlinear element, respectively. Both these
quantities are proportional to the length of the nonlinear el-
ement. The parameter h is responsible for the standing wave
effect. Since in the mode-locking regime when the pulse du-
ration is much smaller then the cavity round trip time one
can neglect the interference of the two counterpropagating
pulses in the nonlinear element; below we assume that h = 0
in Eq. (5).

The beam splitter with K : 1 − K intensity ratio is de-
scribed by

B+1(t ) = −
√

KA2(t ), B−4(t ) = √
1 − KA2(t ),

A3(t ) = √
1 − KB−1(t ) +

√
KB+2(t ), (6)

where 0 < K < 1 and the sign “−” in the first equation corre-
sponds to the reflection from a more dense medium. K = 0.5
corresponds to a symmetric 50 : 50 splitter.

Finally, the thin Lorentzian spectral filtering element is
described by

�−1 dA1(t )

dt
+ A1(t ) = A6(t ). (7)

Below we assume that the time t is normalized in such a
way that the spectral width of the filter is � = 1. In this case
the inversion relaxation rate in Eq. (3) is normalized by the
spectral filter width γ = (τg�)−1, where τg is the dimensional
inversion relaxation time. Note that the inverse filter spectral
width �−1 gives approximately the lower limit for the pulse
width τp generated by the NOLM-NALM mode-locked laser.
Therefore, we get the relation γ � τp/τg.

Substituting the relations (1) to (7) into one another we
obtain our master NOLM-NALM laser model

dA

dt
+ A = √

κe(1−iα)g/2+iθ r(|AT |2)AT , (8)

γ −1 dg

dt
= p − g − (eg − 1)|AT |2|r(|AT |2)|2, (9)
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FIG. 2. Intensity reflectivity R of the nonlinear mirror defined
by Eq. (11) as a function of the field intensity I = |A|2. Black (gray)
line corresponds to symmetric (asymmetric) beam splitter, K = 0.5
(K = 0.3). Other parameters are a = 1.0 and G = 0.5.

where A ≡ A1, κ = κ1κ2 describes the total linear nonresonant
losses in the main cavity per round trip 0 < κ < 1, the sub-
script T denotes the delayed argument, AT = A(t − T ) with
the delay time T = T1 + T2 + T3 + T4 + τ1 + τ2 + τ3 equal to
the normalized cold cavity round trip time, and the complex
nonlinear mirror amplitude reflection coefficient r is given by

r(|AT |2) =
√

G[(1 − K )eiXT − KeiYT ],

with

XT = −a(1 − K )|AT |2, YT = −aKG|AT |2. (10)

The intensity reflectivity coefficient R (0 � R � G) of the
nonlinear mirror is given by

R(|A|2) = |r(|A|2)|2

= G(1 − 2K (1 − K ){1+ cos(a(1 − K − GK )|A|2)})

= G

(
1 − 4K (1 − K ) cos

[
a

2
(1 − K − GK )|A|2

]2)
.

(11)

This coefficient coincides with that reported in [1,21,30]. The
dependence of the coefficient R on the laser field intensity
I = |A|2 is illustrated in Fig. 2 for the case of 50 : 50 and
30 : 70 beam splitter. It is seen that for symmetric beam split-
ting the reflectivity is zero at I = 0. This is the result of the
destructive interference of the two waves counterpropagating
in the nonlinear mirror loop, which have equal amplitudes
and phase difference π introduced by the splitter in the limit
when input intensity tends to zero. With the increase of the
input field intensity the amplitudes of the counterpropagating
waves remain equal, but acquire additional nonlinear phase
difference, which grows linearly with the input intensity. This
phase difference appears due to the asymmetry of the loop,
where one wave is attenuated first and then experiences the
intensity-dependent phase shift in the Kerr element, while the
other wave first acquires the phase shift and is attenuated
only afterwards. As a result, the reflectively oscillates with
the intensity between 0 (destructive interference) and G (con-
structive interference) with the period 4π/[a(1 − K − GK )].

If, on the other hand, the beam splitter is asymmetric, the
amplitudes of the two waves are always different and their
destructive interference never results in zero output. The min-
imal reflectivity of the nonlinear mirror is then given by
Rmin = G(1 − 2K )2 > 0.

III. CW REGIMES

The trivial solution of Eqs. (8) and (9) corresponding to the
laser off regime is given by A = 0 and g = p. This solution
is stable below the linear threshold defined by κR(0)ep = 1,
where R(0) = G(1 − 2K )2. It is seen from this expression
that the threshold value of the pump parameter p = p0 is
minimal for K = 0 and K = 1, p0 = − ln(κG), and tends
to infinity for K → 0.5. This means that for the symmetric
beam splitter the laser off solution is always stable [11]. Note
that since the linear gain in the nonlinear mirror loop cannot
exceed the total losses in the cavity the product κG should be
less than unity. All our calculations below are performed for
the case of NOLM when G < 1 and the condition κG < 1 is
satisfied automatically.

Nontrivial continuous wave (CW) solutions of Eqs. (8) and
(9), A(t ) = A0eiωt and g = g0, are defined by

κR(I0)eg0

1 + ω2
= 1, (12)

p − g0 − (eg0 − 1)I0R(I0) = 0, (13)

tan

(
ωT + 1

2
αg0

)

= K (sin Y0 − ω cosY0) − (1 − K )(sin X0 − ω cos X0)

K (ω sin Y0 − cosY0) − (1 − K )(ω sin X0 − cos X0)
,

(14)

where X0 = X (I0), Y0 = Y (I0), and I0 = |A0|2. These solu-
tions can be interpreted as longitudinal laser modes. Equation
(12) can be considered as an energy balance condition, which
states that the total losses in the cavity are compensated by
the amplification. The intensities I0 of different solutions of
Eqs. (12) and (13) are shown in Fig. 3 by gray lines as
functions of the pump parameter p. The black line shows the
envelope of these solutions obtained by substituting ω = 0
into Eq. (12). It is seen that CW solutions of the the model
equations can exhibit a multistable behavior.

The solutions of Eqs. (12) and (13) are shown in Fig. 4
for several different values of the pump parameter p by thick
colored curves on the (I0, ω) plane, while the solutions of
Eq. (14) are indicated by thin gray lines. The intersections
of the thick-colored lines with the thin gray lines correspond
to CW longitudinal laser modes. The density of gray lines
increases with T , so that in the limit T → ∞ the modes
densely fill the colored curves. Therefore, in this limit the
thick-colored curves in Fig. 4 defined by Eqs. (12) and (13)
determine the locus of the CW laser modes. A representation
of this locus as a two-dimensional (2D) surface in the three-
dimensional (3D) space (p, ω, I0) is shown in Fig. 5.
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FIG. 3. CW solutions of the model equations (8) and (9) as
functions of the pump parameter p (gray lines). Black line is obtained
by substituting ω = 0 into Eq. (12). Parameters are κ = 0.8, a = 1.0,
α = 0, T = 25, K = 0.4, and G = 0.5.

IV. LINEAR STABILITY ANALYSIS IN THE LIMIT
OF LARGE DELAY

In the large delay limit T → ∞ we assume that the CW
solutions of Eqs. (8) and (9) densely fill the locus of the CW
solutions defined by Eqs. (12) and (13). In this case we can
forget about Eq. (14) and consider the frequency ω of the
CW solutions as a pseudocontinuous variable. The bifurcation
diagram calculated in the limit T → ∞ is shown in Fig. 6. In
this figure linear laser threshold defined by the condition

κR(0)ep

1 + ω2
= 1

FIG. 4. CW solutions (longitudinal laser modes) on the (I0, ω)
plane correspond to the intersections of thick-colored curves with
thin gray lines. Different colors correspond to the pump parameter
values p = 4.0, p = 4.5, p = 6.5, p = 10.0, p = 13.0, p = 17.0, and
p = 25.0. Other parameters are the same as in Fig. 3.

FIG. 5. Locus of the CW longitudinal laser modes in the limit
T → ∞. Parameters are the same as in Fig. 3.

is indicated by black line on the (ω, p) plane.
The linear stability of a nontrivial CW solution with the

frequency ω is determined by the solutions λ of the character-
istic equation

c2(λ)Y 2 + c1(λ)Y + c0(λ) = 0, (15)

where

Y = e−λT ,

FIG. 6. Two-parameter bifurcation diagram of the CW solutions
in the limit T → ∞. Light gray area shows bistability domain
where the solutions of Eqs. (12) and (13) have three nontrivial so-
lutions for I0 > 0. This area is limited by the saddle-node instability
boundary indicated by the blue line. Dark gray areas indicate the
stability domains of CW regimes. Green line indicates long wave-
length modulation instability, orange line shows the short wavelength
modulation instability, and the red line represents the flip instability.
γ = 0.05. Other parameters are the same as in Fig. 3.
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FIG. 7. Real parts of the eigenvalues μ(ν ). Two curves correspond to μ1 and μ2, where μ2 is responsible for the long wavelength instability
and always has zero real part at ν = 0. ω0 = −0.02. (a) p = 6.0. (b) p = 9.0. (c) p = 10.75. (d) p = 15.0. (e) p = 19.7. (f) p = 20.9. Other
parameters are the same as in Fig. 6.

and the expressions for the coefficients c0(λ), c1(λ), and c2(λ)
are given in the Appendix.

In the limit T → ∞ the pseudocontinuous spectrum μ(ν)
of the CW solutions is obtained by solving the characteristic
Eq. (15) with respect to Y , Y = Y1,2(λ), and performing the
substitution λ → iν in the resulting solution [31]

μ(ν) = − ln [Y (iν)].

The saddle-node and flip instabilities of CW solutions are
defined by the condition that the first solution of the charac-
teristic Eq. (15) satisfies the conditions

Y1(0) = 1 (16)

and

Y1(0) = −1, (17)

respectively, with

Y1(0) = κ + I0(1 + ω2)

κ[1 + I0R(I0)]
[
1 + I0

d lnR(I0 )
dI0

] . (18)

It follows from Eq. (18) that the saddle-node and flip insta-
bility conditions do not depend on the gain relaxation rate γ .
The saddle-node instability condition (16) defines the folds
of CW locus surface shown in Fig. 5. The flip instability
(17) is responsible for a period-doubling cascade giving rise
to more and more complicated square wave patterns with
increasing periods [11]. The light gray area in Fig. 6 indicates
the bistability domain, where for every given frequency ω

there are three nontrivial solutions of Eqs. (12) and (13) with
I0 > 0. This domain is limited by the saddle-node instability

boundary shown by the blue line. The red line indicates the
flip instability.

Unlike the flip and saddle-node instabilities, the short-
and long-wavelength modulational instabilities of the CW
solutions depend on the normalized inversion relaxation
rate γ . The second solution Y2(λ) of the characteristic
Eq. (15) has the property Y2(0) = 1 or equivalently μ2(0) =
0, which corresponds to the phase-shift symmetry of the
model Eqs. (8) and (9), A(t ) → A(t )eiφ with arbitrary φ. The
long-wavelength modulational instability is defined by the
condition

Re[∂ννμ2(ν)]ν=0 = Re{∂νν[− ln Y2(iν)]}ν=0 = 0.

It is shown by the green lines in Fig. 6. Another type of the
modulational instability of CW solutions of Eqs. (8) and (9)
is the short-wavelength instability which corresponds to the
situation when the pseudocontinuous spectral curve touches
the imaginary axis at the points ν = ±ν0 with ν0 > 0, i.e.,

Re[μ1(ν0)] = Re[∂νμ1(ν)]ν=ν0
= 0,

where μ1 = − ln Y1(iν). This instability is shown in Fig. 6
by the orange lines. It is seen that all the CW solutions are
unstable to short- and long-wave modulations already at the
threshold [see Fig. 7(a)] for any frequency ω and are stabilized
in the lower dark gray area after crossing the respective lines
with increasing p [see Fig. 7(b)]. Unlike the case of adiabati-
cally eliminated gain, where (in a certain range of frequency
detunings) flip instability occurs on stable CW solutions be-
fore the modulational instability and gives rise to a formation
of stable square wave patterns [11], for the parameters of
Fig. 6 corresponding to a relatively slow inversion relaxation,
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FIG. 8. Bifurcation tree illustrating the pulse peak power as func-
tion of the pump parameter p. κ = 0.8, a = 1.0, α = 0, T = 25,
K = 0.4, G = 0.5, and γ = 0.05.

flip bifurcation always occurs on CW solutions which are
already modulationally unstable. Therefore, branching of the
stable square wave patterns from CW solutions via a cascade
of flip bifurcations is not possible for such parameter values.
Real parts of the eigenvalues μ corresponding to the pump
parameter values close to short-wavelength modulational and
flip instabilities are shown in Figs. 7(c) and 7(d), respec-
tively. It is seen that both these instabilities are associated
with the same eigenvalue branch μ1. Finally, the two bottom
panels in Fig. 7 illustrate the pseudocontinuous eigenvalue
spectrum within the upper dark gray area [Fig. 7(e)] and short-
wavelength modulational instability at the upper boundary of
this area [Fig. 7(f)]. Note that to avoid overloading of Fig. 6
we do not show in this figure the bifurcations of the unstable
branch of CW solutions having negative slope on the (p, I0)
plane, see, e.g., the black line in Fig. 3.

V. NUMERICAL RESULTS

The bifurcation tree obtained by numerical integration of
Eqs. (8) and (9) is shown in Fig. 8. The black dots in this figure
correspond to the local maximums of the laser field intensity
time trace (pulse peak powers) calculated after the transient
time of 4000 cavity round trips. For a given pump parameter
value where the laser exhibits a regular mode-locked regime
all the dots coincide and have their ordinate equal to the pulse
peak power. Irregular pulsing behavior corresponds to a cloud
of dots having different ordinates corresponding to different
pulse peak powers. The bifurcation tree in Fig. 8 shows four
windows of regular mode-locking regimes separated by the
domains of irregular pulsing. The first, second, third, and
fourth windows correspond to a regime with one, two, three,
and four pulses per cavity round trip, respectively. The funda-
mental mode-locking regime is illustrated in Fig. 9(a), while
the harmonic mode-locked regimes with two, three, and four
pulses per cavity round trip time are shown in Figs. 9(b)–
9(d), respectively. It is seen that, although initially the pulse
peak power of the fundamental mode-locking regime grows
with the pump parameter p, the further increase of p leads
to an increase of the number of pulses per cavity round trip
time, while the pulse peak power and shape remain almost
unchanged. The pulses shown in Fig. 9 are asymmetric with
slowly decaying trailing edge due to relatively slow relaxation

FIG. 9. Fundamental mode-locking regime (a) p = 6.0. Har-
monic mode-locking regimes with two (b) p = 7.5, three (c) p = 9.5,
and four (d) p = 11.5, pulses per cavity round trip time. Other
parameters are the same as in Fig. 8.

of the gain. Note that, unlike the case of the 50 : 50 beam
splitter [11], where mode-locked pulses are always bistable
with the laser off state, for the parameter values of Fig. 8
corresponding to an asymmetric 40 : 60 splitter stable mode-
locked pulses exist above the linear laser threshold, where the
laser off solution is unstable. Figure 10 is similar to Fig. 8
and shows the evolution of the mean power with the pump
parameter p. This figure gives an idea how the number of
pulses per cavity round trip increases with the pump power.

4 6 8 10 12
0.0

0.2

0.4

0.6

0.8

1.0

p

m
ea

n
po

w
er

FIG. 10. Same as Fig. 8 but with mean laser power instead of
peak power on the y axis. Parameters are the same as in Fig. 8.
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FIG. 11. Bifurcation tree similar to that shown in Fig. 8, but
obtained by changing the cold cavity round trip time T . p = 5. Other
parameters are the same as in Fig. 8.

In Fig. 11, a bifurcation tree similar to that shown in Fig. 8
is presented, but obtained by increasing the delay parame-
ter T , three windows of regular mode-locking solutions are
separated by thin domains of irregular pulsing. Here the first,
second, and third mode-locking windows correspond to reg-
ular mode-locking regimes with one, two, and three pulses
per cavity round trip time. These regimes are similar to those
shown in Figs. 9(a)–9(c).

Our numerical simulation shows that for certain parame-
ter values the solutions of the model equations can exhibit
bistability or multistability when choosing different initial
conditions. In particular, it follows from Figs. 6 and 8 that sta-
ble mode-locked pulses can coexist with stable CW regimes.
In addition, these pulses can coexist with irregular pulsed
regimes and, when K is sufficiently close to 0.5, with the
laser off state. A numerically calculated map of the dynam-
ical regimes is shown in Fig. 12 in the two-parameter plane
(K, p). It was obtained by integration of Eqs. (8) and (9)
with the initial condition in the form of the Gaussian pulse
A(t ) = Am exp[−(t + 0.5T )2/w2] and g(t ) = p on the inter-
val t ∈ [−T, 0], where Am = 2 and w = 4. The red color in
Fig. 12 indicates the regions of the fundamental mode-locked
regime with a single pulse per cavity round trip. The regions of
the harmonic mode-locked regimes with two, three, and four
pulses per cavity round trip are shown by the cyan, gray, and
orange colors, respectively. The white color corresponds to the
laser off regime. The yellow and green colors indicate stable
and weakly periodically modulated CW regimes, respectively.
It is seen from Fig. 12 that the domain of the fundamental
mode-locked regime is asymmetric in K and located around
K = 0.5 and that the use of slightly asymmetric beam splitter
could help to achieve stable harmonic mode-locked regimes.

VI. CONCLUSION

We developed and analyzed a DDE NOLM-NALM mode-
locked laser model taking into account an arbitrary inversion
relaxation rate in the gain medium as well as the asymme-
try of the beam splitter. Our numerical simulations indicate
that with increasing pump parameter this model can exhibit
large windows of regular fundamental and harmonic mode-
locked regimes separated by regions of irregular pulsing. The
experimental observation harmonic mode-locking regimes in

FIG. 12. Map of different dynamical regimes in the (K, p) plane.
White color indicates laser off regime, yellow is the CW solutions,
and green are the weakly periodically modulated CW solutions. Red
areas correspond to fundamental mode-locked regime with a single
pulse per cavity round trip. Cyan, gray, and orange show harmonic
mode-locked regimes with two, three, and four pulses per cavity
round trip. Blue color indicates irregular pulsing. Parameters are the
same as in Fig. 8.

NOLM-NALM lasers was reported in [10,27,32]. We showed
that, unlike the laser with a symmetric beam splitter where
the mode-locked pulses always coexist with a stable laser off
solution, a laser with an asymmetric beam splitter can exhibit
regular mode-locked regimes above the linear lasing threshold
where the laser off solution is unstable. Our numerical simu-
lations reveal that a proper choice of the beam splitting ratio
can favor the development of harmonic mode-locked regimes.
Furthermore, we demonstrated that for sufficiently slow re-
laxation of the gain inversion flip bifurcation always takes
place on modulationally unstable CW solutions and hence,
unlike the case of fast gain recovery, cannot lead to a gen-
eration of stable square wave patterns. This bifurcation was
predicted theoretically using a Poincaré map NOLM-NALM
laser model [21] as well as DDE models with adiabatically
eliminated gain [11,15]. The experimental observation of
square wave patterns was reported in [15], in a NALM laser
with SOA amplifier in the nonlinear mirror loop. On the other
hand, the experimental studies of the authors of [21] have not
revealed the period doubling cascade predicted theoretically
in the same paper. We believe that this work could create a
theoretical basis for further steps in modeling of specific types
of lasers, for instance, including into consideration the effect
of chromatic dispersion of the intracavity media.
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APPENDIX: COEFFICIENTS OF THE CHARACTERISTIC EQUATION (15)

The coefficients c0,1,2(λ) in the characteristic Eq. (15) are given by

c0(λ) = [(1 + λ)2 + ω2]
[
γ + γ I0

κ
(1 + ω2) + λ

]
,

c1 = −(1 + λ + ω2)

{
2(γ + λ) + γ I0

κ
[1 + ω2 + κR(I0)] + I0[γ + λ + γ I0R(I0)]

d lnR(I0)

dI0

}

− λωW
[
γ + λ + γ I0

κ
(1 + ω2)

]
,

c2(λ) = (1 + ω2)[γ + γ I0R(I0) + λ]

[
1 + I0

d lnR(I0)

dI0

]
,

where W = aI0[ (1−2K )(1−K−GK )
R(I0 ) + 1 − (1 − G)K] and I0 = |A0|2 is the CW intensity obtained from the solution of Eqs. (12)

and (13).
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