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Bio-inspired method for generating self-trapped beams in the nonlinear Schrödinger equation
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We introduce a stochastic optimization technique to obtain self-trapped beams in the generalized nonlinear
Schrödinger equation. The method is based on combining a variational approach with a bio-inspired method: the
cuckoo search algorithm that relies on Lévy flights. The proposed technique can be easily adapted to generate
diverse self-trapped structures in a plethora of nonlinear media. Unlike the standard variational technique and
some of the numerical algorithms previously reported, this algorithm allows for the optimization of different
families of self-trapped beams concurrently.
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I. INTRODUCTION

A soliton is a stable self-trapped wave in nonlinear media
with particlelike properties [1]. Solitons have been objects of
study in several different areas, such as optics for waveguides
[2–4], random lasers [5], high-energy and particle physics
[6], dark matter studies [7,8], and condensed-matter physics
[9,10], to name a few. Optical spatial solitons are self-trapped
optical beams that are generated by a balance between diffrac-
tion and self-focusing effects due to a nonlinear term [11].

Methods to obtain and study solitary waves include the
inverse scattering theory [12], Darboux-Backlund transfor-
mation [13], self-similarity technique [14], and F-expansion
technique [15,16]. These methods are generally used for the
case of so-called integrable systems, such as the Kerr medium.
For nonintegrable systems a general approach is not known.
Numerical methods are frequently needed to solve these sys-
tems.

The numerical algorithms for optimization can be classi-
fied as either deterministic or stochastic algorithms [17,18].
Deterministic algorithms arise naturally in the classical me-
chanics of a single particle based on gradient computation,
such as the Newton-Raphson method and the gradient descent
technique. Stochastic algorithms arise more naturally from
statistical physics, such as the case of the simulated annealing
algorithm used in thermodynamics [19] or the Metropolis-
Hastings algorithm used to study the behavior of neutrons
in fissile material [20]. Metaheuristic algorithms based on
stochastic optimization have been gaining popularity in the
recent years. They have the advantage of not needing the
gradient of the objective function, or any other information
besides the objective function itself. Although there are a wide
variety of metaheuristics, most of them are characterized by
two phases: exploitation and exploration. In exploitation, or
local search, new solutions are generated by a combination of
previous solutions. In exploration, or global search, solutions
are generated stochastically [21].

The generation of structured localized light in nonlinear
media is a challenging problem due to the lack of standard
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analytical and computational tools to obtain the correspond-
ing stationary modes. Therefore, in addition to the numerical
procedures, semianalytical methods such as variational tech-
niques are used.

In this paper, we propose a variational approach [22] com-
bined with a bio-inspired metaheuristic algorithm, the cuckoo
search (CS) [23], as a robust numerical approximation for
generating a plethora of structured light on demand that can
be used for either integrable or not integrable nonlinear me-
dia. We demonstrate that this technique can overcome a key
disadvantage of standard variational method, which is that the
optimization parameters must be part of a tractable ansatz.

Though solitons are solitary waves with particle behavior
in nonlinear media, it is important to mention that from a
mathematical point of view, the term “soliton” must fulfill
several rigorous requirements. Though in optics the term
“soliton” is generally interchangeable with the term “solitary
wave,” in this paper we chose to use the term “solitary wave”
to avoid any confusion.

The structure of our paper is as follows. In Sec. II we
explain the theoretical model as well as the stochastic method
used to obtain solitary-wave-like profiles. In Sec. III we
compare the numerical results obtained with the analytical
ones for the Kerr medium. We also report the numerical
results for media where there are no known analytical results
and we corroborate that the algorithm is useful in generating
self-trapped beams by performing numerical propagation.
Finally, in Sec. IV we discuss the behavior of the algorithm
as we increase the dimensionality of the problem and the
number of iterations.

II. METHODOLOGY

A. Theoretical model

We start our analysis by solving for �, the complex
scalar field modeled by the generalized (2 + 1) nonlinear
Schrödinger equation (GNLSE):

i
∂�

∂z
+ ∇2

⊥� + F (|�|2)� = 0, (1)
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TABLE I. Nonlinear terms in. Eq. (4). ρ is the radial distance in
the plane transverse to the propagation.

Medium N L(|U |2 )

Kerr − 1
2 |U |4

Saturation [ln (s|U |2 + 1) − s|U |2]/s2

nth-order Bessel −p[Jn(kρ )]2|U |2

where F (|�|2) is the corresponding function that describes
the nonlinear effects and ∇2

⊥ defines the transverse Laplacian.
Note that the generalized nonlinear Schrödinger equation is
in dimensionless units. In the context of propagation of opti-
cal scalar fields in nonlinear media, � is the dimensionless
complex amplitude of the optical field; x, y, and z are the
spatial coordinates where x and y are transverse coordinates
normalized to the beam width w0; and z is the longitudinal co-
ordinate normalized to the diffraction length Ld = η0ωw2

0/c.
Here η0 defines the unperturbed refractive index, ω models the
carrying frequency, and c is the speed of light [24].

In this paper we restrict the analysis and results reported for
the case of the two-dimensional GNLSE, but a similar analysis
can be used to study cases from one to three dimensions. Thus,
we set ∇2

⊥� = ∂�2

∂x2 + ∂�2

∂y2 . In general, the variational ap-
proach used to solve Eq. (1) consists of changing a nonlinear
evolution problem to a variational problem corresponding to
a Lagrangian density L(�, ∂�

∂z ,∇2
⊥�,�∗, ∂�∗

∂z ,∇2
⊥�∗) [22].

The equivalent Lagrangian density of the evolution Eq. (1) is
given by [25,26]

L = i

2

(
�

∂�∗

∂z
− �∗ ∂�

∂z

)
+ |∇⊥�|2 + NL(|�|2). (2)

We are looking for approximations for localized wave entities
that can propagate in nonlinear media while maintaining a
constant size and shape. The transverse optical field amplitude
distribution of the beam is represented with the same function
through the entire propagation [11]. Therefore we set

�(r⊥, z) = U (r⊥)eiλz, (3)

where λ is a real propagation constant. This assumption re-
duces Eq. (2) to

L = λ|U (r⊥)|2 + |∇⊥U (r⊥)|2 + NL[|U (r⊥)|2], (4)

where r⊥ is the system of coordinates perpendicular to the
propagation direction. Possible forms of the anharmonic term
NL(|�|) in the Lagrangian density [Eq. (4)] are shown in
Table I. We assume media with focusing nonlinearity and we
report results for three media: the so-called integrable case for
the Kerr medium, a saturation medium which can be useful
to study photorefractive materials such as LiNbO3 [27], and
the final case which consists of a combination of a saturation
medium and a nth-order optical Bessel lattice [28].

To find approximate solutions, a trial function or ansatz is
proposed for U (r⊥) with some variational parameters. The pa-
rameters are chosen in such a way that the function minimizes
the integral of the Lagrangian in Eq. (4) with respect to r⊥.

Therefore, a k set of equations is obtained:

∣∣∣∣∇a,b,c,...

∫
Ldr⊥

∣∣∣∣ = 0 ≈ |�μ| (5)

where ∇a,b,c,... is the gradient operator acting over the k-
variational parameters a, b, c, . . . , which is a finite set of
parameters to be tuned, and | �μ| is the norm of the vector �μ
given by | �μ| =

√∑
μ2

k . Therefore, in order to find approxi-

mate solitary wave solutions, we look to minimize | �μ|.
Theoretically, Eq. (5) should be equated to zero. However,

since we are performing a numerical analysis and using trial
functions instead of the actual form of the solution, a residual
will be obtained. Hence, obtaining approximate solutions to
the differential equation in Eq. (4) is equivalent to solving
the nonlinear system of equations stated by Eq. (5). This
problem could result in a highly nontrivial task, even for the
case n = 2. Therefore, in this paper we explore the use of CS,
a stochastic numerical method, to find approximate solitary
wave solutions. We show that CS is a valuable and robust
technique to generate solitary waves in many nonlinear media.

B. Cuckoo search method

The CS algorithm was first introduced in optimization
problems by Yang and Deb [29]; it is a bio-inspired meta-
heuristic population search algorithm. The CS uses random
processes to search in a bounded space to find approximate
solutions to a given target function. The target function could
be either maximized or minimized, according to the problem.
For this paper the target function is Eq. (5), so the closer
| �μ(ak, bk, . . .)| = |�μ|k is to zero, the better the solution set
P(l )

k = [ak, bk, . . .](l ) k ∈ {1, . . . , κ} (κ being the total num-
ber of sets proposed). In this section subindices are used to
represent set members and superindices are used to represent
the step or iteration of the algorithm.

The algorithm is based on the behavior of cuckoo birds.
Some of these birds practice breeding parasitism, meaning
they let other species of birds take care of their own eggs
without the other bird’s knowledge. Cuckoo species try to
camouflage the appearance of their eggs with those of the host
bird to reduce the probability that the invading eggs will be
discovered [30].

In CS, each set of solutions Pk is called a nest (κ in total)
and each individual solution is an egg a, b, c, . . . (n in total).
Initially all eggs or solutions are generated randomly. The
quality of the camouflage is understood to be how good a
particular solution is. As stated previously, the quality of a
set Pk is measured with the target function [Eq. (5)].

A very crucial question for any stochastic algorithm is:
what is the most convenient statistical strategy to be used in
an optimization based on a random search? Though this is still
an open problem, it has been suggested that for a space where
there are sparse optimum values, a Lévy flight motion is the
most adequate strategy in some scenarios [31–33].

A crucial step in this algorithm is to generate novel solu-
tions with a stochastic optimization based in Lévy flights. A
Lévy flight is a random walk with a step size that follows a
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FIG. 1. First 100 steps of Lévy flights for random walks for
β = 3/2 (solid line) and β = 1 (dashed line) and a Brownian walk
(dotted-dashed line) for σ = 1. All start at the black circle located at
x = 0 and y = 0.

Lévy distribution defined as follows:

L(s) = 1

π

∫ ∞

0
cos(τ s)e−γ τβ

dτ, (6)

where γ and β are some parameters of the probability distri-
bution and s is a stochastic variable. For most applications
γ = 1 for simplicity [34]. Since Eq. (6) does not have a
general analytical solution, usually approximations are used
to reproduce Lévy distributions [35].

Lévy flights allow the algorithm to find new solutions in
the search space. As shown in Fig. 1, a difference between
a Lévy flight (solid and dashed line) and a Brownian walk
(dotted-dashed line) in a two-dimensional space is that Lévy
flights cover longer distances within a search space which
helps to avoid converging to local minima in the algorithm.
The variance of a Lévy flight grows as σ 2

Lévy ∼ l3−β . This
contrasts the variance of a Brownian walk which grows as
σ 2

Brownian ∼ l , l being the current step number and β ∈ [1, 2]
being of special interest for mimicking an anomalous diffu-
sion process. From a physical point of view, the parameter β

has been suggested to model diverse physical effects, such as
quantum tunneling for 0 < β � 1 or superdiffusion, including
turbulence for 1 < β < 2 and diffusion processes for β = 2
[36]. For purposes of this paper, we set β = 3/2 since it has
been reported as a standard [23].

In our algorithm, new solutions P(l+1)
k are generated by a

Lévy flight. This process can be expressed by

P(l+1)
k = P(l )

k + [αk × Lk (s)], (7)

where the vector at the current step l is P(l )
k = [ak, bk](l ), and

the parameters ak and bk are within some chosen range. Lk is
defined as

Lk (s) = u

|v|1/β
, (8)

where u ∼ N (0, σ 2
u = 1) and v ∼ N (0, σ 2

v ) are two random
numbers generated from a normal distribution centered at zero
with σu and σv being the standard deviations. The latter is
described by

σv =
(

�(1 + β ) sin
(
π

β

2

)
�

( 1+β

2

)
2(β−1)/2β

)1/β

, (9)

where �(η) stands for the Gamma function, �(η) =∫ ∞
0 tη−1e−t dt . The standard deviations, σu and σv , are con-

structed in such a way that the quotient u/|v|1/β obeys a
symmetric Lévy distribution according to Mantegna’s al-
gorithm [35,37]. Mantegna’s algorithm is one of the most
efficient ways of producing Lévy flights [35]. For other pro-
cedures of computing Lévy distributions see [38]. Finally, αk

in Eq. (7) is a scale factor that is calculated as

αk = 0.01(Pbest − Pk ). (10)

Here Pbest is the current best solution [i.e., the Pk = [ak, bk]
that makes | �μ| in Eq. (5) closest to zero] and 0.01 is a factor
to prevent Lévy flights from becoming too aggressive [39].
Note that in this way the best solution is not modified since
αbest = 0.

Corresponding tails of the Lévy distributions do not fall
as fast as the tails of the Gaussian distributions. Hence, a
particularly important characteristic of a Lévy flight is that
it combines small steps with longer steps within as shown in
Fig. 1 causing the variance of the distribution to be infinite
[40].

Lévy steps do not have a characteristic length scale which
makes them especially good for chaos, field fractal related
problems [41], and optimization procedures [42,43] since it
is less likely to fall into local minima or maxima. Lévy dis-
tributions have also been found naturally in other areas such
as astrophysics [44], nuclear physics [45], and plasma physics
[46]. Remarkably, Lévy flights have been reported to be more
efficient than Brownian random walks for exploring large
scale space with sparse optimal values. This can be explained
because the variance of Lévy flights increases much more
rapidly than that of Brownian random walks [35].

In this paper, we use Lévy flights and Lévy walks
interchangeably; however, the former is strictly used for
discontinuous trajectories and infinite propagation velocity,
while the latter is a stochastic process oriented for continuous
trajectories and finite propagation velocity [47].

After the Lévy flight is done, the next step of the CS algo-
rithm will discard solutions with a probability of � ∈ [0, 1].
For this paper � = 0.25. This mimics the natural process of
the host bird finding a parasite egg and abandoning it. The
discarded solutions are subjected to an exploitation process
where they combine with each other. This is analogous to
improving the camouflage of eggs in nature. In this step of CS,
a local search occurs to improve the quality of the solutions,
and hence the algorithm ensures that the best eggs (high-
quality solutions) will reach the next generations. Figure 2
shows a flowchart of the CS algorithm implemented to obtain
approximate solitary wave solutions. We will show later in this
paper that even though the diagram is presented for just two
variational parameters, the algorithm could be used to tune
more parameters in a straightforward way.
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FIG. 2. Diagram of the CS algorithm implemented to approx-
imate solitary waves solutions with two variational parameters.
Here each row is composed of the two elements ak and bk (k =
1, 2, . . . , κ) which stand for the amplitude and width parameters, re-
spectively. The superindex, l , is used to show the number of iterations
of the algorithm.

In summary, the main idea of the CS is the use of random
walks based on Lévy flights to make every set P(l )

k converge
into the set S as l → ∞, where the set S satisfies | �μ|S ≡ 0.

III. RESULTS OF CUCKOO SEARCH TO
APPROXIMATE SOLITARY WAVES

It is necessary to propose trial functions in order to use the
variational approach to find a solitary wave solution to Eq. (4).
Three trial functions that have been used in literature are [48]

U (r⊥, θ ) = a exp (−r2
⊥/b2) cos (mθ )rm

⊥, (11)

U (r⊥, θ ) = a exp (−r2
⊥/b2) exp (imθ )rm

⊥, (12)

U (r⊥, θ ) = a sech(−r⊥/b), (13)

where θ is the angular coordinate in the transverse plane,
r⊥ =

√
x2 + y2 with x and y being the Cartesian coordinates,

m is an integer denoting the m + 1 humps for the solitary wave
solution, i is the complex unit, and a and b are variational
parameters to be tuned. In this paper, a and b physically
correspond to the amplitude and width of the optical beam,
respectively.

TABLE II. Analytical solutions for the variational parameters a
and b when m = 0 for Gaussian and hyperbolic secant envelopes
described in the Kerr medium by Eqs. (12) and (13), respectively.

Trial function a(λ) b(λ)

Gaussian [Eq. (12)] 2
√

λ
√

2/λ

Hyperbolic [Eq. (13)] 2.17
√

λ 0.76/
√

λ

The three proposed trial functions come from physical
insights. Equation (11) is emulating first-order Hermite-Gauss
beams that constitute solutions to the linear paraxial wave
equation [49]. Equation (12) resembles the Laguerre-Gauss
optical beams. Last, Eq. (13) is indeed the true soliton solution
but for the one-dimensional case of the nonlinear Schrödinger
equation in a pure Kerr medium. Note that these two first trial
functions are mimicking solutions for NL(|�|2) = 0.

For the integrable case of a fundamental bright soliton
solution (m = 0 in a Kerr medium) for Eqs. (12) and (13),
analytical solutions for the parameters a and b are already
known [48]. They are shown in Table II as a function of the
propagation constant λ [see Eq. (3)].

An integral of the trial function must be calculated to obtain
these values through the variational approach. The main limi-
tation of the traditional variational approach is that a complex
trial function is not useful because it cannot be integrated
analytically. Therefore, it is not possible to tune analytically
the variational parameters in this case. On the other hand, a
very simple trial function could not generate valuable optical
beams to analyze. The significance of the CS algorithm is
that it is able to numerically tune the variational parameters
regardless of the complexity of the trial function.

A. Testing algorithm performance: Kerr medium

As a first test of the CS method, we look for approximate
solitary waves in a Kerr medium using the corresponding
nonlinear term described in Table I. We use Eqs. (12) and
(13) as trial functions. We choose these functions because the
analytical values are known for these scenarios, therefore we
can compare numerical and analytical results. The average ab-
solute percentage deviation between these results is calculated
to have a quantitative analysis of the error of the form

εA = 1

N

N∑
k=1

∣∣∣∣A(λk ) − Q(λk )

A(λk )

∣∣∣∣, (14)

where A(λk ) are the analytical results for either a(λk ) or b(λk )
for the Kerr medium shown in Table II, Q(λk ) represents the
average of M numerical results obtained by CS for a(λk ) and
b(λk ), and N is the total number of λ′

ks computed. A standard

deviation σi =
√

1
M−1

∑M
p=1[A(λ) − Q(λk )]2 is calculated for

each λk and the total standard deviation is σ = 1
N

√∑M
i σ 2

i .
For the fundamental mode, i.e., m = 0, we compute a and
b for N = 20 different values of λ ∈ [0.2, 2]. This was per-
formed ten times for each λ value (M = 10) and a visual
assessment of the results is shown in Fig. 3.

CS is able to compute the amplitude a and width b parame-
ters necessary to approximate the Gaussian [see Fig. 3(a)] and

033524-4



BIO-INSPIRED METHOD FOR GENERATING … PHYSICAL REVIEW A 104, 033524 (2021)

(a) (b)

FIG. 3. Analytical and numerical solutions for parameters a and b for Eqs. (12) (a) and (13) (b) (Gaussian and sech beams, respectively)
for the fundamental mode (m = 0) in the Kerr medium.

hyperbolic secant [see Fig. 3(b)] functions on optical solitary
waves in a satisfactory way. In order to quantify the approxi-
mation, the corresponding εA and σ are shown in Table III. CS
is a robust algorithm that has a high accuracy due to a low εA

and high precision due to a low variance, as shown in Table III.
The low variance describes the high stability of convergence
of the CS algorithm while the εA indicates that the code de-
livers a satisfactory answer. These results constitute a positive
criterion for the performance of the CS algorithm and motivate
its use to explore more complex nonlinear media. Since the CS
is a stochastic algorithm, it is convenient to make several runs
of the computational algorithm to observe that the algorithm
is converging to an optimum value.

B. Lévy flights vs Brownian walk

In the previous section we showed that the CS algorithm
is able to obtain solitary-wave-like profiles. We conjecture
that an important part of the CS algorithm’s efficiency lies
in the Lévy flights’ lack of a characteristic length scale [35].
In order to study this proposition, we proceed to compare the
performance of CS using a Lévy walk (as originally formu-
lated) with CS using a Brownian walk. For a Lévy walk we
use parameter β = 3/2 as stated in Sec. II B. By changing the
parameter to β = 2 we produce a Brownian walk [35]. The
results of the comparison between a Brownian walk (β = 2)
and a Lévy walk (β = 3/2) for the variational parameter a

TABLE III. Statistical results for the variational parameters a and
b for m = 0 to Eqs. (12) and (13) in the Kerr medium. Error εA is
measured according to Eq. (14). The standard deviation σ is also
reported.

Trial function a×10−4 b×10−4

εA 2.6 6.8
Gaussian

σ 3.1 13.5
εA 13.9 4.50

Hyperbolic
σ 2.4 5.9

and trial function Eq. (11) when m = 0 in a Kerr medium are
shown in Table IV.

As seen in Table IV when a Lévy walk begins it is rather
unstable. There is a larger error and variance in the approx-
imation of the variational values. This behavior is due to
the aggressive steps of the Lévy flight. Comparatively, the
Brownian walk is characterized by more subtle steps, as it is
shown in Fig. 1. However, as the algorithm continues to iter-
ate, the Lévy walks converge to more accurate results than the
Brownian walks. Lévy walks are able to avoid local minima
by exploring the search space more efficiently. Consequently
they obtain better results than their Brownian counterpart.

C. Saturation medium

We proceed to compute solitary wave solutions in a more
realistic medium in which saturation effects are considerable.
We set the nonlinear term in Eq. (4) to the saturation term
described in Table I. To the best of our knowledge, there
is no previous report of analytical results for the variational
approach.

In Fig. 4 we show the results by using a CS for the param-
eters a and b for Eq. (11) when m = 1 and saturation values
of s = 0.05 and 0.2. Note that this scenario corresponds to

TABLE IV. Statistical results for the optimization of the varia-
tional parameter a of the Gaussian trial function [Eq. (11)] when
m = 0 in the Kerr medium for λ = 1 using two different random
walks: a Brownian and a Lévy walk. The results are shown for
different numbers of iterations (I) and each were compared to the
analytic solutions (shown in Table II). The average error is calculated
according to Eq. (14) (N = 10) and the standard deviation σ is also
reported.

Type of walk 25 I 75 I

εA 0.312 0.009
Lévy

σ 0.555 0.008
εA 0.061 0.012

Brownian
σ 0.053 0.013
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(a) (b)

FIG. 4. Numerical solutions for optical dipole solitary waves with parameters a and b for Eq. (11) when m = 1 in the saturation medium
(see Table I) for s = 0.05 (a) and s = 0.2 (b). A fitted curve for each parameter is also plotted. R2 = 0.9999 for a and R2 = 0.9982 for b in
(a) and R2 = 0.9992 for a and R2 = 0.9977 for b in (b).

optimizing the parameters for a dipole optical solitary wave.
Additionally, we fit a function for the solutions previously
shown in Table II. This proposed form of the solution is based
on the actual solutions for the Gaussian trial function in a Kerr
medium for the dipole solitary wave, i.e., m = 1 [26]. The
general form of the proposed function is

A(λ) = C1λ
−1/2 + C2λ + C3, (15)

where C1,C2, and C3 are the coefficients found with a standard
function fitting algorithm. These curves were fitted with the
set of a′s and b′s previously found by CS for 30 equidistant
λ′s ∈ [0.2, 2]. In this case, C1 was set to zero for the a′s since
for the Kerr solutions they are known to be linear with respect
to λ.

We compute the variational parameters for two saturation
values and we find that for the amplitude parameter a, C2 is
2.308 and 2.460, while C3 is 0.0058 and 0.0805 for saturation
values of s = 0.05 and 0.2, respectively. For the width param-
eter b with a saturation of s = 0.05, the effect of the linear
term C2 is found to be negligible, while C1 and C3 are 1.875
and 1.8075, respectively. However, for a saturation of s = 0.2,
the coefficient C2 is no longer negligible and C1, C2, and
C3 are 1.8075, 0.1525, and 0.4423, respectively. Therefore,
this procedure shows that CS can also be useful to compute
analytical expressions for solitary wave approximations like
the one explored in Eq. (15).

To quantify the solitary wave approximation, we compute
the coefficient of determination, which is given by

R2 = 1 −
∑n

k=1(ηk − φk )2∑n
k=1(ηk − η̄)2

, (16)

where ηk are the numerical results of the variational parame-
ters numerically obtained, φk is the fitted data [with the form
of Eq. (15)], η̄ is the average of the set {η1, η2, . . . , ηn}, and
n is the sample size. The R2 values are 0.9999 and 0.9982 for
a and b, respectively, for s = 0.05. Similarly, the R2 values
are 0.9992 and 0.9977 for a and b, respectively, for s = 0.2.
Thus, R2 → 1 shows that the function described by Eq. (15)

closely fits the data. For low saturation [see Fig. 4(a)] there
is no linear term for λ in b, while for higher saturation value
[see Fig. 4(b)] there is one. Therefore, a saturated medium can
be studied as a perturbation of the Kerr medium.

Since there are no known analytical solutions to com-
pare our results, we use the generated optical profiles with
CS as initial conditions to study their optical evolution as
self-trapped structures. Therefore, we corroborate the approx-
imate solitary wave solutions obtained by propagating them
using a standard pseudospectral technique and we show the
corresponding propagation dynamics in Figs. 5(a)–5(c) for

FIG. 5. (a)–(c) Propagation dynamics for an optical dipole soli-
tary wave with parameters a = 0.69 and b = 4.09 for Eq. (11) when
m = 1 and λ = 0.25 in a saturation medium (see Table I) for a
transverse display area of 40. (d) Evolution of the peak amplitude.
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a saturation medium with s = 0.2. We report that despite
showing oscillations in the peak amplitude [see Fig. 5(d)], ini-
tially the solitary wave remains self-trapped. Also, because the
intensity-dependent refractive index between the two initial
humps has a minimum value resulting from the destructive
interference of the initial optical field, both humps feel a
repulsive force caused by the nonlinear term. Therefore, this
initial dipole soliton eventually decays into two fundamental
solitary waves as is expected in any realistic local media.

A problem beyond the scope of the present paper that
should be explored is the stabilization of the generated
structures. Physical mechanisms such as nonlocal effects,
competing nonlinearities, or particular boundary conditions
should be studied in order to achieve stability. Remarkably, the
initial light structure profiles generated by the CS algorithm
show propagation dynamics where the initial profiles gener-
ated remain self-trapped for several diffraction lengths. This is
contrary to the most common scenarios where either the initial
profile is completely distorted as a result of the diffraction
or the initial profile experiences catastrophic collapse. Thus,
the numerical results reported show that CS can be useful
to generate approximate solitary wave solutions in nonlinear
systems.

D. More complex media

In this section, we report results of the CS algorithm for a
more complex medium generated by a combination of satu-
ration effects and an optical lattice described by a nth-order
Bessel function (see Table I) that modulates the refractive
index. A varying refractive index in the medium drastically
changes the propagation, allowing new dynamics and local-
izations of optical beams. This modulated refractive index can
be experimentally induced by imprinting an optical pattern
onto a photorefractive crystal (see, for example, [28]). The
parameters were chosen as follows: lattice depth p = 15, sat-
uration parameter s = 0.2, transverse scale of the Bessel beam
k = 3, and the corresponding Bessel order n = 5. Note that Jn

in Table I stands for a nth-order Bessel function of the first
kind.

From a physical point of view, Bessel beams are interesting
because of their nondiffracting behavior. This is due to the su-
perposition of plane waves with wave number k that have the
same inclination angle with respect to the propagation axis.
The nondiffracting properties make the Bessel beams quite
useful in applications such as the manipulation of biological
and colloidal material or soliton routing and steering [50,51].

For the simulation, we use the trial function described by
Eq. (12) that corresponds to optical solitary wave vortices. For
these optical structures, the energy flow rotates around the
vortex core at the center, and the velocity of energy flow is
infinite at this point and thus the optical intensity must vanish.
The results for different λ′s and different topological charges
(i.e., different m values) are shown in Table V. Note that the
topological charge, or dislocation strength, can also be defined
by the circulation of the phase gradient around the singularity
located at the center of the optical field.

Similar to the case of the saturation medium, here there
are no analytical solutions to compare these CS results with,
therefore we perform a numerical propagation to study the

TABLE V. Numerical results for a combination of media (satu-
ration and nth-order Bessel) for the trial function 12 with m = 1 and
parameters p = 15, s = 0.2, k = 3, and n = 5.

λ 2 3 4

a 10.52 6.17 7.01
b 1.68 2.98 4.62

evolution of the initial profile. The results of the propagation
are shown in Fig. 6. In Figs. 6(a)–6(c) it can be observed that
the initial profile is partially conserved after 50 propagation
units. In Fig. 6(d) we observe that the peak amplitude of the
propagated beam oscillates, but the initial distribution of the
energy of the beam remains self-preserved during the prop-
agation. This confirms again that CS is correctly generating
approximate solitary wave solutions in complex nonintegrable
media. Contrary to the dipole soliton case, here there is
nonzero angular momentum associated with the spatial struc-
ture of the beam, resulting in the rotation of these self-trapped
structures during propagation.

Similarly, we compute vortex solitary waves with topolog-
ical charge of m = 2 and parameters p = 15, s = 0.2, k = 3,
n = 5 with the trial function Eq. (12) for different λ′s. We
show some values obtained in Table VI. The initial profile is
shown in Fig. 7(a). In comparison to the single topological
charge shown in Fig. 6, here the optical vortex solitary wave
also oscillates during propagation; however, the initial circular
shape is more deformed [see Figs. 7(b) and 7(c)]. Eventually
the initial ring-shaped vortex decays into fundamental modes

FIG. 6. (a)–(c) Propagation dynamics of a single vortex solitary
wave done in a combination of a saturation medium with s = 0.2
and an optical Bessel lattice with parameters p = 15, n = 5, and
k = 3 (see Table I) in a transverse display area of 30. The initial
state generated with CS obtained parameters a = 6.17 and b = 2.98.
(d) Evolution of the peak amplitude.
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TABLE VI. Numerical results for a combination of media satu-
ration and nth-order Bessel (see Table I) for the trial function 12 with
m = 2 and parameters p = 15, s = 0.2, k = 3, and n = 5.

λ 2 3 4

a 1.04 1.59 1.54
b 3.18 3.34 4.48

because of transverse instabilities. These modes fly off the
initial configuration along tangential trajectories due to the
conservation of angular momentum. Therefore, the oscillation
in the peak amplitude is maintained for up to 80 propagation
units and the vortex solitary wave decays into modes, each
with zero angular momentum, as expected.

The results of the CS algorithm for self-trapped struc-
tures depend strongly on the trial function proposed. For
most cases, the initial optical profile launched will experi-
ence breathinglike dynamics, contrary to what would result
from more deterministic algorithms such as Newton-Raphson,
where a closer profile to the exact invariant optical structure
might be obtained. CS allows us to study more general shapes
of self-trapped optical structures and avoid limitations from
deterministic approaches when looking for optical profiles
with certain symmetries.

E. Scaling the CS algorithm

We increase the dimensionality of the parameters to show
the robustness of the CS algorithm by optimizing three beams,

FIG. 7. (a)–(c) Propagation dynamics of a solitary wave with
topological charge m = 2 done in a combination of a saturation
medium with s = 0.2 and an optical Bessel lattice with parameters
p = 15, n = 5, and k = 3 in a transverse display area of 35. (a) Initial
state generated with CS obtaining parameters a = 1.59 and b = 3.34.
(d) Evolution of the peak amplitude.

TABLE VII. Numerical results for the solitonic system made by
three trial functions [Eq. (12) for m = 0, 1, 2, λ = 2] in the Kerr
medium. The corresponding six parameters are obtained at the same
time with a single run of CS.

m = 0 m = 1 m = 2

a 2.83 3.97 2.17
Error (%) 0.01 0.73 0.47
b 0.99 1.42 1.73
Error (%) 0.03 0.45 0.17

and therefore six parameters, simultaneously. Although the
problem is still nonlinear, the superposition principle can be
used since each beam is far enough away to not interfere with
the domain of the others. We can take this interference to
be null. Therefore, we expect that solving these three beams
simultaneously will closely match with the results of solving
for each beam individually. Table VII shows the CS results
and their respective error according to the analytical results
[26] for optimizing Eq. (12), m = 0, 1, 2 and λ = 2 in the Kerr
medium. This result demonstrates the potential of the algo-
rithm to optimize more complex test functions with multiple
variational parameters. Further results using the CS algorithm
for a large number of variational parameters could be analyzed
by using cloud computing, graphics processing units, or paral-
lel computing techniques that are naturally supported by CS.
However, the primary objective of this paper is to introduce
the CS algorithm and to demonstrate its basic and general use.

We perform a similar procedure for optimizing six param-
eters, but now for a saturation medium with s = 0.05 and
λ = 1, and we use the combination of three spatially modu-
lated vortex solitary waves or azimuthons described by [52]
as a trial function:

U =
3∑

j=1

a( j) exp
[
r2
⊥, j

/
(b( j) )2

]
r2
⊥, j[cos (� j ) cos(2θ j )

+ sin(� j ) sin(2θ j )], (17)

where r⊥, j and θ j are the same as in Eqs. (11)–(13), but
displaced from the origin to avoid overlap between the beams.
�1,2,3 are 20◦, 30◦, and 40◦, respectively, and show differ-
ent modulations in the azimuthons. To obtain these results
(Table VIII) an important adjustment is needed to make the
algorithm converge. The algorithm searches for the optimal
values of the variational parameters within a given interval
(this interval could be chosen individually for each parame-
ter); however, if the lower limit for the parameter modulating
the amplitude for a is not big enough, the algorithm could

TABLE VIII. Numerical results for azimuthons constructed with
three trial functions [Eq. (17), λ = 1] in the saturation medium for
s = 0.05. The corresponding six parameters are obtained at the same
time with a single run of CS.

j = 1 j = 2 j = 3

a j 0.91 0.96 0.96
bj 2.56 2.59 2.61
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FIG. 8. Propagation dynamics of three azimuthons with charge m = 2. (a) Propagation dynamics without optimized parameters. Here
the corresponding amplitude values are only half of the corresponding value obtained by CS. (b) The peak amplitude evolution for the
three interacting beams. (c) Propagation dynamics with optimized parameters obtained by a single CS. (d) The peak amplitude evolu-
tion for the three interacting beams. The propagations were done in a transverse display area L = 60 and in a saturation medium with
s = 0.05.

converge to the trivial solution U = 0. For most of the results
obtained here, the lower limit is chosen to be 0.65, though
a lower limit of 0.9 can be chosen for the a( j) parameters to
avoid the trivial solution, as shown in Table VIII.

In order to verify the self-trapped nature of these solutions,
we propagate the approximate solitonic system by using a
standard pseudospectral technique as before. For a general
combination of the parameters a and b, the azimuthons ex-
perience stronger deformations depicted in Fig. 8(a), where
after only five units of propagation, the initial configuration
is completely lost, despite the peak amplitude not changing
drastically [see Fig. 8(b)]. However, using the parameters ob-
tained by CS in the propagation makes the configuration more
robust, as depicted in Fig. 8(c), though the peak amplitude
oscillates at a higher percentage than for the past scenario [see
Fig. 8(d)]. Each of the three azimuthons decays finally into
four fundamental modes due to instability issues, as expected.
Similar studies that use different stabilization mechanisms
such as nonlocal media [53] could improve the propagation
of this kind of complex solitonic system. Note that these
azimuthons can be characterized by two integer numbers: the
topological charge m and the number of the intensity peaks
Np. For this scenario we set m = 2 and Np = 4, fulfilling the
condition Np � 2m that is necessary for observing rotation
azimuthons in saturated media [52]. From a physical point
of view, the corresponding rotation of these optical structures
has two different components. The first contribution comes
from their particular phase distribution and has a wavelike
origin, while the second contribution is due to the azimuthal
modulation of the intensity of the optical field which can be
associated more with particlelike behavior.

IV. GENERAL ALGORITHM BEHAVIOR

The CS algorithm is tested to analyze the order of growth
of running time with respect to the total iterations. In Fig. 9(a)
the results for m = 0 and λ = 1 are shown. The algorithm
shows an apparent linear relationship between time and the
total number of iterations, and is confirmed with R2 = 0.9901.
Evidently, the fitted equation shown in Fig. 10(a) can change
according to the computational power, but estimations of
the total amount of time for N iterations could be done
just by running a few iterations and extrapolating these
results.

In Fig. 9(b) we show the dependence of time vs the total
number of parameters to adjust (the dimension of the prob-
lem). There is a quasilinear behavior with R2 = 0.9909. A
crucial remark is that these results are obtained by leaving the
number of iterations constant. However, if the dimensions of
the problem are increased, more iterations could be needed
to converge to an accurate result. Therefore, as we increase
the total number of parameters, the total order of growth of
running time will be nonlinear.

We depict the cost function vs iteration behavior for three
different trial functions [Eq. (11) with m = 0, 1, 2] in Fig. 10.
Figures 10(a) and 10(b) have a x-log and y-log axis, respec-
tively. Note that for the case of m = 0 the line stops before the
iteration 1500 because the cost function reaches zero, which
has no representation in a log scale. As m in Eq. (11) increases,
the trial function has a more complicated shape, making the
cost function converge slower. Therefore, it is natural to ex-
pect different values for the cost functions corresponding to
different trial functions. In general, the more complex the trial
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(a) (b)

FIG. 9. (a) Iterations vs time. The plot shows a linear dependence with R2 = 0.9901. (b) Number of variational parameters vs time. The
plot shows a linear dependence with R2 = 0.9909. In this case the number of iterations is fixed to 5.

function, the slower the algorithm will converge to the lowest
bound. Furthermore, this limit value could vary depending on
the trial function used.

V. CONCLUSIONS

In this paper, we report a robust stochastic method to
find approximate optical spatial solitary waves in nonlinear
media based on Lévy flights. We have developed a meta-
heuristic algorithm, based on the bio-inspired cuckoo search
algorithm, that is able to overcome the cumbersome mathe-
matical treatment of a trial function required in the variational
approach for generating approximate solitary wave solutions.
The algorithm is scalable in the sense that it grows linearly in
time with increased iterations and dimensions. However, in-
creasing the number of variables will require more iterations,
making the computational time not linear. The CS algorithm

successfully obtained solitary wave solutions for different sat-
uration and media, namely, Kerr and more complex media,
including a combination of the saturation effects and optical
Bessel lattices. For the Kerr medium the obtained solutions
were compared with the analytical results. The absolute errors
for this medium were obtained and the variances for ten runs
were on the order of ≈10−4. The results show that the algo-
rithm has a highly converging accuracy and precision. The
algorithm has been tested for even more complex media. Due
to the lack of previous analytical solutions to compare these
results with, numerical propagations were performed to study
the evolution of the initial profiles. Remarkably, the diffrac-
tion and self-focusing effects are balanced, showing that the
CS algorithm can successfully be used to obtain approximate
solitary wave solutions even for more complex nonlinear sys-
tems. Furthermore, the algorithm has been able to optimize
solitary wave systems with several dimensional variational

(a) (b)

FIG. 10. Average cost function iteration evolution for Eq. (11) with m = 0, 1, 2 and N = 20 in the x-log axis (a) and in the y-log axis (b).
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parameters. This shows the relevance of applying the CS
method to more complex trial functions and using it as an
efficient optimization tool for designing optical systems based
on the exploration of more complex self-trapped optical struc-
tures. Finally, note that modifying the cost value function
described in this paper by Eq. (5) could result in even more
specific and efficient stochastic algorithms for solving par-

ticular optimization problems that arise from many other
nonlinear physical systems.
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